DOCKETED	
Docket Number:	22-IEPR-03
Project Title:	Electricity Forecast
TN #:	242551
Document Title:	Presentation - CEC Demand Scenarios Project
Description:	I.A,1.B Mike Jaske, Anitha Rednam Overview & Framework
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	4/5/2022 8:33:54 AM
Docketed Date:	4/5/2022

CEC Demand Scenarios Project

Michael R. Jaske, Ph.D., Project Principal Anitha R. Rednam, P.E., Project Technical Lead April 7, 2022

Why Develop this Capability Now?

- California policymakers are generally in agreement that massive reductions in GHG emissions are needed by mid-century
- Since GHG emissions are largely a result of burning carbon-based fuels, a major reduction in GHG emissions means a large shift from high carbon fuels to low- or no-carbon energy forms
- Although GHG emission inventories reveal that most GHG emissions result from final end-user energy consumption, substantial energy is used extracting, transforming, transmitting, and distributing energy to end-users
- Understanding energy demand and the pattern of change from one energy form to another is critical to assuring reliability for each energy form
- There are numerous uncertainties about <u>how</u> various policy goals will actually be achieved, <u>when</u> they will be achieved, and <u>what</u> their energy demand impacts will be. A demand scenario capability can assist in such studies

Demand Scenarios Project Scope & Approach

- Demand Scenarios are being developed to support SB 100 analyses and interests of other agencies.
- The scope includes:
 - Developing demand scenario specifications
 - Assessing these in both final demand and supply-side dimensions
 - Developing key insights
 - Communicating results to sister agencies and stakeholders
- This capability will develop a product each biennial IEPR cycle, and may become adopted similar to demand forecasts

- Develop and assess scenarios explicitly quantifying impacts of programs, standards, and policies impacting energy demand by, and GHG emissions from, selected customer sectors
- Understand what existing programs, standards, and policies are expected to achieve, and compare these results to our goals
- Contribute to thoughtful development of additional policy initiatives to "close the gap" between expected outcomes and goals

Phased Development Plans

- 2021 IEPR
 - Develop and assess scenarios stressing a high electrification theme
 - Adapt/create modeling capabilities that can assess scenario consequences:
 - Through time out to 2050
 - Address all significant energy fuel types
 - Compute GHG consequences
 - Build off of existing demand forecasting models, ancillary projections tools developed for AAEE and AAFS and other fuel substitution assessments and rely on E3's PATHWAYS model for other sectors/fuels
- 2022 IEPR
 - Complete the original 2021 IEPR Scope
 - Geographically disaggregated to planning area and/or major utility
 - Create/adapt hourly 8760 load impacts needed for electric generation sector assessments

Comparison To CARB Scoping Plan

CARB conducted a workshop on March 15, 2022 to unveil the preliminary analysis undertaken for the draft 2022 Scoping Plan

CARB

- Full scope of all GHG sources
- Uses E3 PATHWAYS model
- Full representation of "supplyside" feedback inducing total energy demand
- Relies upon assumed penetration of technologies to show feasibility of achieving GHG policy goals

Only energy consumption sources for GHG emissions.

CEC

- Uses Adapted-PATHWAYS (selected CEC model results bypass internal computations)
- Partial representation of "supply-side" feedback
- Attempt to project impacts from known programs that induce changes in energy consumption
- Stepping stone for developing an Inter-Agency Scenario to conduct electricity analysis at the level needed for resource and transmission planning

Adapting Plans Mid-Stream

- While the EAD was developing the original project, discussions started among energy agencies about higher electrification scenarios than was anticipated for the 2021 IEPR demand forecast.
- As a result, the EAD team adapted plans so that:
 The original CEC project would proceed unchanged, but on a slower track (was not completed in 2021 IEPR)
 A new Inter- Agency High Electrification Demand Scenario would be developed focusing on energy agency needs to understand infrastructure implications of a higher electrification future
- Today's workshop will focus on the original CEC project, but briefly explain the nature and status of the inter-agency high electrification scenario and its assessment.

- **Purpose:** Scenarios enable more comprehensive examination of demand-side fuel shifts, and the supply-side consequences of demand changes.
- Time Horizon: Scenarios will extend to 2050.
- Scope: Scenarios will reflect a full set of fuel types.
- Number: Three primary scenarios which enable a more complete assessment of uncertainties.
- Methods: Using mid demand forecast and load modifier projection tools for this analysis.

CEC Demand Scenarios Involvement

- Need for objective, independent information that convey a range of solution sets that can achieve California's energy and GHG emission reduction goals.
 - Provides a sense of how easy or difficult it may be for each sector to achieve those goals.
 - Provides insights into where incentives or programs need to be targeted.
 - Provide the demand analysis projections that the CPUC and CAISO need to undertake their infrastructure planning responsibilities.

- Demand Scenarios Process will focus on the higher degrees of electrification than the CEC's 2021 IEPR demand forecast.
- Combinations of energy efficiency and fuel substitution programs are used to modify baseline demand forecast to produce final demand projections.
- The outputs of this process is modified energy consumption projections and corresponding GHG emissions by sector.

Reference Scenario by IEPR Vintage

- This scenario uses the same core assumptions as the CEC adopted, managed Mid-Mid demand forecast through 2035.
- Beyond 2035, this scenario assumes continuation of the same set of standards, programs, and policies reflected in the CEC adopted managed demand forecast with the same degree of compliance.

Policy/Compliance Scenario

Serve as sensitivities to the Reference Scenario by testing varying degrees of compliance with the same set of standards, programs, and policies, or aspirational policies not yet enacted.

Mitigation Scenario (Additional Policies, Not Goal Constrained)

- Adds additional standards, programs, policies and what-if assumptions with impacts beyond those already included in the Policy/Compliance Scenario.
- > Reflects incremental impacts of programs relative to the previous scenarios.

Scenario Modeling Framework

Sectors Inp		outs	Electricity	Natural Gas	Traditional Fuels In Transportation	Traditional Fuels Outside Transportation	
	Baseline	Forecast	Residential/ Commercial Model		N/A	Adapted PATHWAYS Model	
Residential/Commercial	Energy Effici	ency Impacts	AAEE /AAFS Programmatic Tool		N/A		
	Fuel Substitution	Programmatic Impacts	AAEE /AAFS Programmatic Tool		N/A		
		Speculative Impacts	Fuel Substitution Scenario Assessment Tool		N/A		
Transportation	Baseline	Baseline Forecast		Transportation Models			
Other Sectors (Industrial, O&G, Agriculture, Petroleum Refining, TCU)	PATH	WAYS	Adapted PATHWAYS Model N/A		Adapted PATHWAYS Model		

Final Reference Scenario Design

Sectors	Inputs		Electricity	Natural Gas	Traditional Fuels In Transportation	Traditional Fuels Outside Transportation
	Baseline Forecast		2021 IEPR Mid Residential/ Commercial Forecast	2021 IEPR Mid Residential/ Commercial Forecast	N/A	PATHWAYS Assumptions
Residential/Commercial	AAEE (Programmatic Contributions From EE/FS Tool)		Mid- Mid Business-As-Usual BAU (Scenario 3)		N/A	PATHWAYS Assumptions
	AAFS	Programmatic Contributions From EE/FS Tool	Mid- Mid Business-As-Usual BAU (Scenario 3)		N/A	PATHWAYS Assumptions
		Additional Speculative FS Contribution From FSSAT Tool	None		N/A	
TransportationBaseline ForecastOther Sectors (Industrial, O&G, Agriculture, Petroleum Refining, TCU)PATHWAYS Model		Baseline Forecast	2021 IEPR Mid Transportation Forecast	2021 IEPR Mid Transportation Forecast	2021 IEPR Mid Transportation Forecast	N/A
		PATHWAYS Assumptions	PATHWAYS Assumptions	N/A	PATHWAYS Assumptions	

Final High Electrification Policy/Compliance Scenario Design

	Sectors	Inputs		Electricity	Natural Gas	Traditional Fuels In Transportation	Traditional Fuels Outside Transportation
		Baseline Forecast		2021 IEPR Mid Residential/ Commercial Forecast	2021 IEPR Mid Residential/ Commercial Forecast	N/A	PATHWAYS Assumptions
		AAEE (Programmatic Contributions From EE/FS Tool)		Mid-High (Scenario 4)	Mid -Mid (Scenario 3)	N/A	PATHWAYS Assumptions
	Residential/Commercial		Programmatic Contributions from EE/FS Tool	Mid –Mid Plus (Scenario 4)		N/A	PATHWAYS Assumptions
		AAFS	Additional Speculative FS Contribution From FSSAT Tool	Incorporate WH & SH NOx control measures from CARB 2022 SIP Strategy beginning in 2029 for BAAQMD and 2030 for the rest of the State		N/A	
		Baseline Forecast		2021 IEPR Mid Transportation Forecast	2021 IEPR Mid Transportation Forecast	2021 IEPR Mid Transportation Forecast	
	Transportation	CARB State SIP Strategy (ACC II for LDV, ACF for MD-HD)		Incremental Impacts Beyond Reference Scenario	Incremental Impacts Beyond Reference Scenario	Incremental Impacts Beyond Reference Scenario	N/A
	Other Sectors (Industrial, O&G, Agriculture, Petroleum Refining, TCU)	PATHWAYS Model		PATHWAYS Assumptions	PATHWAYS Assumptions	N/A	PATHWAYS Assumptions

Final High Electrification (GHG) Mitigation Scenario Design

	Sectors		Inputs	Electricity	Natural Gas	Traditional Fuels In Transportation	Traditional Fuels Outside Transportation
			Baseline Forecast	2021 IEPR Mid Residential/ Commercial Forecast	2021 IEPR Mid Residential/ Commercial Forecast	N/A	PATHWAYS Assumptions
		(Progra	AAEE Immatic Contributions From EE/FS Tool)	Mid - High Plus (Scenario 6)	Mid -Mid (Scenario 3)	N/A	PATHWAYS Assumptions
	Residential/Commercial	AAFS	Programmatic Contributions From EE/FS Tool	Mid -High Plus (Scenario 6)		N/A	PATHWAYS Assumptions
			Additional Speculative FS Contribution From FSSAT Tool	CARB Scoping Plan Scenario (Alternate 4)		N/A	
			Baseline Forecast	2021 IEPR Transportation Forecast	2021 IEPR Transportation Forecast	2021 IEPR Transportation Forecast	
	Transportation CA		B Mobile Source Strategy (Default Case)	Incremental Requirements Beyond Policy/Compliance Scenario	Incremental Requirements Beyond Policy/Compliance Scenario	Incremental Requirements Beyond Policy/Compliance Scenario	N/A
	Other Sectors (Industrial, O&G, Agriculture, Petroleum Refining, TCU)	PATHWAYS Model		PATHWAYS Assumptions	PATHWAYS Assumptions	N/A	PATHWAYS Assumptions

Thank You!

