DOCKETED		
Docket Number:	00-AFC-01C	
Project Title:	Contra Costa Power Plant Project Compliance	
TN #:	242483	
Document Title:	Annual Compliance Report RY 2021 for PG&E Gateway Generating Station	
Description:	Annual Compliance Report RY 2021 as per General Condition of Certification (pp 179-180) for PG&E Gateway Generating Station	
Filer:	Angel B. Espiritu	
Organization:	PG&E Gateway Generating Station	
Submitter Role:	Applicant Representative	
Submission Date:	3/28/2022 3:56:00 PM	
Docketed Date:	3/28/2022	

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

March 21, 2022

Mr. John Heiser
Compliance Project Manager
California Energy Commission
Siting, Transmission and Environmental Protection Division
1516 Ninth Street, MS-15
Sacramento, CA 95814

Reference:

PG&E Gateway Generating Station (00-AFC-01C)

Subject:

Annual Compliance Report for Reporting Period of January 2021 to

December 2021

Dear Mr. Heiser,

In compliance with the General Condition of Certification as set forth in the California Energy Commission's Final Decision for Pacific Gas and Electric Company Gateway Generating Station (GGS) pages 179-180, attached is the Annual Compliance Report for the reporting period of January 2021 to December 2021.

Included in this report are documents specifically required by Conditions of Certification SOILS&WATER-10, SOILS&WATER-4, HAZ-1, and SOILS&WATER-3, BIO-2 to be submitted along with the Annual Compliance Report and are attached herewith as Exhibits 3, 4, 5, 6, and 7, respectively. Also included in this report are updated compliance matrix, Project operating status, and statements of compliance with Conditions of Certifications VIS-1, and VIS-4.

If you have any questions regarding this report, please contact Angel Espiritu at (925) 522-7838, 510-861-1597 (m) or abe4@pge.com.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachments: a/s

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 13

(Reporting Period: January 2021 - December 2021)

March 30, 2022

Table of Contents

Annual Compliance Report

Introduction	1
Compliance Activities	
Compliance Matrix	1
2. Summary of Project Operating Status	1
3. Documents Required by Specific Conditions	
4. Cumulative Listing of Post Certification Changes	3
5. Missed Submittal Deadlines	
6. List of Filings/Permits	6
7. Projected Compliance Activities for the Succeeding Year	13
8. Listing of Year's Addition to On-site Compliance File	15
9. Evaluation of On-site Contingency Plan	20
10. Complaints, NOVs, and Citations	20
List of Attachments	
1. Updated Compliance Matrix	Exhibit 1
2. Key Events List	
3. Water Use Summary (SOIL&WATER-10)	
4. Semi-annual Self-Monitoring Reports to Delta Diablo District	
(SOIL&WATER-4)	Exhibit 4
5. HAZ-1 Appendix C Table 8.12-4 (HAZ-1), and Hazardous	
Materials Inventory as submitted to CUPA through CERS	Exhibit 5
6. Copy of Notice of Intent (NOI), AND Revised SWPPP to	
comply with the requirements of new	
Statewide Industrial General Permit	
(SOIL & WATER-3)	Exhibit 6
7. Biological Record Summaries (BIO-2)	

Introduction

This document constitutes PG&E's Annual Compliance Report (ACR) for the Gateway Generating Station (GGS) Project. The information contained in this report covers the reporting period of January 2021 to December 2021 (RY 2021).

Compliance Activities

This section of the Annual Compliance Report focuses on PG&E's activities related to ensuring that compliance with all the Conditions of Certification, as specified in the California Energy Commission's Final Decision for the Gateway Generating Station Project, are achieved in a timely and satisfactory manner. The following information is provided per the requirements set forth on page 179 and 180 of the Final Decision, specifically General Conditions on Annual Compliance Report.

- Updated Compliance Matrix The compliance matrix has been updated for the reporting period to reflect the status of all conditions of certification. See matrix in Exhibit 1.
- Current Project Operating Status The PG&E Gateway Generating Station (GGS) achieved Plant Commercial Operation status on January 4, 2009. During the reporting period of January 2020 to December 2020, GGS continued its normal commercial operation activities. The Project key events list is included in Exhibit 2.
- Required Documents Submitted with This Report The Final Decision sets forth specific conditions, many of which include reporting requirements that must be addressed in the project's ACR. The following paragraphs provide the status of ongoing compliance activities that were completed during the reporting period:
 - 3.1 <u>SOIL&WATER-10</u> GGS utilized potable water, supplied by the City of Antioch. The Water Use Summary for RY 2020 is included in this report as **Exhibit 3**. Also included in Exhibit 3 is monthly water consumption invoices information from the City of Antioch. The total water use for the reporting period is 49.87 AF (acre-feet). The metering devices are owned, and maintained by the City of Antioch,

- hence GGS is not allowed to do servicing, testing, and calibration of the metering devices.
- 3.2 VIS-1 The maintenance works on treatment of structures, buildings, and tanks at Gateway Generating Station (GGS) were performed on regular basis expeditiously. There are at least 3 separate routine plant inspections, which include among other items, the identification of treatment re-works on structures, buildings, and tanks. These are: (1) Semi-annual (Spring and Fall) Facility-wide Inspection by Safety Committee, (2) Weekly Plant Engineer's Walk-down, and (3) Daily Plant Technician's Walk-down Inspection. In each of these inspections, maintenance work is identified (as may be needed), and a job request notification is submitted. At GGS, there is Work Management (SAP) System which tracks job requests to ensure that works are completed in a timely manner.
- 3.3 VIS-4 In compliance with the Condition of Certification VIS-4, GGS confirms that appropriate maintenance was performed to ensure continued establishment (of growth) of the planted trees and shrubs. A suitable drip irrigation system, equipped with automatic sprinkler timer, was installed and is in operation.
- 3.4 <u>SOIL&WATER-4</u> In compliance with Condition of Certification SOIL&WATER-4, attached in **Exhibit 4a** are copies of Quarterly Self-Monitoring Reports submitted to and received by the Delta Diablo (DD) on April 12, 2021, July 12, 2021, October 14, 2021 and January 13, 2022 to cover the reporting year (RY) 2021. Attached in **Exhibit 4b** is the status on agency citation. No Notice of Violation (NOV) was received from DD during the reporting period.
- 3.5 <u>HAZ-1</u> In compliance with Condition of Certification HAZ-1, attached in **Exhibit 5** is Updated Table 8.12-4: Hazardous Materials

- to be Added at Gateway Generating Station During the Operational Phase (of the Project). Also, a copy of Annual (2020) Update on Hazardous Materials Inventory as submitted to Local CUPA (Contra Costa Health Services) through the California Environmental Reporting System (CERS) is attached.
- 3.6 <u>SOIL & WATER-3</u> In compliance with Condition of Certification SOIL & WATER-3, a copy of the correspondence with the State Water Resources Control Board, through SMARTS (Stormwater Application & Report Tracking Systems) on the most current NOI and Revised SWPPP to comply with the requirements of the Industrial General Permit (WQ Order No. 2014-0057-DWQ) is submitted with this ACR. (See **Exhibit 6**.)
- 3.7 <u>BIO-2</u> In compliance with Condition of Certification BIO-2, the biology record summaries of the tasks described in BIO-2 is submitted with this ACR. (See **Exhibit 7**)
- 4. Cumulative Listing of All Post-Certification Changes Approved by the CEC The following is a cumulative listing of all post-certification changes as approved by the CEC or cleared by the CPM.
 - 4.1 ORDER Approving Addition, of Pacific Gas and Electric Company as

 Co-Owner and Operator with Mirant Delta, LLC on the Gateway

 Power Plant Unit 8 Project Approved on July 19, 2006.
 - 4.2 Removing Mirant Delta LLC As A Co-Owner, And Changing the
 Name of The Project To The Gateway Generating Station –
 Approved on January 3, 2008
 - 4.3 Order to Change Construction Work Hours and Noise-8 for the Gateway Generating Station Approved on May 23, 2007
 - 4.4 Order Amending the Energy Commission Decision to Eliminate the use of San Joaquin River Water as the Cooling Water Source and

- <u>Complete Ten Associated project design Changes</u> Approved on August 1, 2007
- 4.5 Order to Amend the Energy Commission Decision to Allow Use of Anhydrous Ammonia as the Refrigerant in the Inlet Air Chiller Approved on December 5, 2007.
- 4.6 Order Approving a Petition to Amend the Energy Commission

 Decision to Allow Use of Two Additional Water Tanks January 2,

 2008
- 4.7 <u>Petition for Insignificant Project Change -</u> On February 4, 2008, PG&E filed a request for an insignificant project change related to a modification to the route for the sewer line. The CEC approved PG&E's request on March 10, 2008.
- 4.8 Approval of the Pacific Gas & Electric Company Petition to use a diesel fire pump engine and make other minor changes to Air Quality Conditions of Certification of the Energy Commission Decision for the Gateway Generating Station (Order Amending the CEC Decision to Modify Equipment & Change Air Quality Conditions of Certification) Approved August 26, 2009.
- 4.9 <u>Commission Adoption Order Adoption of the Proposed Decision of the Siting Committee on the Complaint for Noncompliance</u> Approved on February 17, 2010
- 4.10 Notice of Approval to Modify Gateway Generating Station Project:

 Petition for Insignificant Project Change to Plant Facility Approved on October 18, 2010
- 4.11 On May 27, 2010, the CEC (Mr. Joseph Douglas) approved AQ-SC-11 submittal on the Preliminary Compliance Review on the Authority to Construct Application for the Fire Pump Diesel Engine.
- 4.12 Order Approving a Petition to Modify Several Air Quality Conditions to reflect the Bay Area Management District current conditions and the Prevention of Significant Deterioration (PSD) Action, September 7, 2011.

- 4.13 <u>Notice of Decision by California Energy Commission</u> on: Amendment to Modify Several Air Quality Conditions to Reflect the (BAAQMD) current conditions and the Prevention of Significant Deterioration (PSD) Enforcement Actions, dated and posted: September 9, 2011.
- 4.14 <u>Storage of One Spare Generator Step-Up (GSU) Transformer,</u> January 26, 2012
- 4.15 Notice of Determination on Petition to Install additional 40,000-gallon Storage Tank, April 3, 2012
- 4.16 Approval of Project Change: to Install additional 40,000-gallon Storage Tank, April 19, 2012
- 4.17 Approval of Petition for Insignificant Project Change to Plant Facility: (a) to acquire the 29% aqueous ammonia system (from NRG, Inc., (b) to install a new stainless steel above-ground aqueous ammonia delivery piping system, and (c) to build security fence around the aqueous ammonia system and remainder of the west side of facility property. Staff-level approval: April 9, 2013. A request to modify this petition to include installation of 2 gate structures (one for GGS and the other for NRG, Inc., was sent to CEC on October 23, 2013. The modification was approved on October 23, 2013. A second modification to install only one gate structure for GGS was sent to CEC on November 13, 2014. The second modification was approved on November 13, 2014.
- 4.18 Approval of proposed stormwater BMP: Construction Work to Cover the Asphalt Drainage Ditch: The request was submitted to CEC on October 14, 2013. The request was approved on October 14, 2013.
- 4.19 <u>Approval of proposed construction of additional turbine decking</u>: The request was submitted on May 23, 2014. The request was approved on September 15, 2014.
- 4.20 Approval of proposed access stairs upgrades at three separate switchgear rooms: The request was submitted on August 11, 2014. The request was approved on October 2, 2014.

- 4.21 Approval of proposed installation of fixed hydrogen tube bank at the south side of the facility: The request was submitted on December 5, 2014. The request was approved on March 19, 2015
- 4.22 Approval of proposed construction of additional grating-type decking on the east side of the steam turbine: The request was submitted on May 21, 2015. The request was approved on August 14, 2015.
- 4.23 <u>Approval of proposed construction of a temporary stormwater</u> <u>treatment system</u>. The request was submitted on August 26, 2016. The request was approved on December 22, 2016.
- 4.24 Response to a project change questionnaire for work to be conducted by PG&E Gas Department on natural gas pipelines located within the site parcel boundaries of Gateway Generating Station, RE: Removal and Replacement of Underground Natural Gas Pipelines at Gateway Generating Station. The questionnaire was submitted to CEC on January 24, 2019. The CEC responded on March 15, 2019. The CEC determined that the approval by the CEC is not required. However, the trees that would be impacted by the pipeline work would have to be replanted when the work is completed. This is to comply with the Condition of Certification VIS-4.
- 4.25 Approval of Title IV Acid Rain Permit Renewal -The Bay Area Air Quality Management District (BAAQMD) approved the Title IV Acid Rain permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- 4.26 Approval of Title V Major Facility Review Permit Renewal The Bay Area Air Quality Management District (BAAQMD) approved the Title V Major Facility Review permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- Missed Submittal Deadline: None
- 6. Filings Submitted to / Permits Issued by Other Government. Agencies

 During the Reporting Period The following is a list of filings submitted to,
 or permits issued by other government agencies during the reporting period:

- 6.1. January 11, 2021 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: October 2020 to December 2020
- 6.2. January 25, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for December 2020
- 6.3. January 25, 2021 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q4-2020Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.4. January 27, 2021 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q4-2020 was submitted to CEC/BAAQMD
- 6.5. January 27, 2021 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2020 (Part 75 Compliance)
- 6.6. February 22, 2021 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Annual Update for 2021, through the California Environmental Reporting System (CERS)
- 6.7. February 23, 2021 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on January 27, 2021 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.8. February 24, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for January 2021
- 6.9. March 10, 2021 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on February 11, 2021 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)

- 6.10. March 11, 2021 (Condition of Certification AQ-29, AQ-30, AQ-31) GGS submitted to BAAQMD/CEC Source Test Report and 2020 Relative Accuracy Test Audit & Compliance Test Report. The tests were completed January 1-15, 2021
- 6.11. March 29, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for February 2021
- 6.12. March 29, 2021 (General Condition of Certification, pages 179-180): GGS submitted the Annual Compliance Report for RY 2020
- 6.13. April 8, 2020 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for March 2021
- 6.14. April 12, 2021 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: January 2021 to March 2021
- 6.15. April 12, 2021 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q1-2021 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.16. April 16, 2021 submitted a Reportable Compliance Activity (RCA) on Ammonia Slip to BAAQMD/CEC. The excess emission was a result of using new sets of correction factors derived from the 2021 Source Test result.
- 6.17. April 22, 2021 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q1 2021 was submitted to CEC/BAAQMD
- 6.18. April 26, 2021 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q1-2021 (Part 75 Compliance)
- 6.19. April 27, 2021 GGS submitted to BAAQMD/CEC the Semi-annual Monitoring report for the period October 1, 2020 to March 31, 2021. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit.

- 6.20. April 27, 2021 GGS submitted to BAAQMD the Permit to Operate (PTO) Renewal Data update (2021-2022)
- 6.21. April 28, 2021 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Notification/Waiver Request on Visual Emission Evaluation for the earliest anticipated re-start date of April 30, 2021 on Unit-A.
- 6.22. April 28, 2021 submitted a Reportable Compliance Activity (RCA)/Breakdown Relief request to BAAQMD/CEC on an equipment breakdown event impacting NOx emission that occurred on April 28, 2021
- 6.23. April 30, 2021 submitted a modified Reportable Compliance Activity (RCA)/Breakdown Relief request to BAAQMD on an equipment breakdown event impacting NOx emission that occurred on April 28, 2021. The modified RCA included the data on resultant excess emission of 2.1 NOx 1-hr ppm as per requested by the BAAQMD.
- 6.24. April 30, 2021 submitted 10-day follow up report on the Reportable Compliance Activity (RCA) on Ammonia Slip submitted to BAAQMD/CEC on April 16, 2021. The excess emission was a result of using new sets of correction factors derived from the 2021 Source Test result.
- 6.25. May 5, 2021 submitted to BAAQMD/CEC the 10-day follow up report on the RCA/Breakdown Relief request submitted on April 28, 2021
- 6.26. May 5, 2021 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Report on Visual Emission Evaluation (VEE) for the VEE performed on April 30, 2021 on Unit A.
- 6.27. May 14, 2021 submitted 30-day follow up report on the Reportable Compliance Activity (RCA) on Ammonia Slip submitted to BAAQMD/CEC on April 16, 2021. The excess emission was a result of using new sets of correction factors derived from the 2021 Source Test result.
- 6.28. May 20, 2021 (Condition of Certification AQ-SC13) GGS submitted

- to BAAQMD/CEC the Notification on Visual Emission Evaluation for the earliest anticipated re-start date of May 27, 2021 on Unit-B, and May 31, 2021 on Unit-A.
- 6.29. May 26, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for April 2021
- 6.30. May 27, 2021 submitted to BAAQMD/CEC the 30-day follow up report on the RCA/Breakdown Relief request submitted on April 28, 2021
- 6.31. June 4, 2021 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Report on Visual Emission Evaluation (VEE) for the VEE performed on May 29, 2021 on Unit-B, and June 1, 2021 on Unit-A.
- 6.32. June 14, 2021 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.33. June 24, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for May 2021
- 6.34. June 29, 2021 Received response from the BAAQMD on the RCA on ammonia Slip submitted on April 16, 2021, instructing the Gateway Generating Station to not use the ammonia correction factors derived from the source test of 2021, but instead to continue using the correction factors from the source test of 2020 until the BAAQMD has certified the 2021 source test result.
- 6.35. July 4, 2021 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, the 2020-2021 Annual Report was submitted to Central Valley Regional Water Quality Control Board
- 6.36. July 12, 2021 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: April 2021 to June

2021.

- 6.37. July 20, 2021 GGS received the renewal on the Permit to Operate (PTO) from BAAQMD. The PTO expires on August 1, 2022
- 6.38. July 21, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for June 2021
- 6.39. July 26, 2021 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q2-2021 (Part 75 Compliance)
- 6.40. July 29, 2021 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q2-2021 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.41. July 30, 2021- (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q2 2021 was submitted to CEC/BAAQMD
- 6.42. August 23, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for July 2021
- 6.43. September 27, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for August 2021
- 6.44. September 28, 2021 GGS submitted to BAAQMD/EPA, and copied CEC, on the Annual Compliance Certification for the reporting period of September 1, 2020 to August 31, 2021 as required under permit condition I.G of the Major Facility Review (Title V) permit.
- 6.45. October 14, 2021 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: July 2021 to September 2021
- 6.46. October 25, 2021 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q3-2021 (Part 75 Compliance)

- 6.47. October 26, 2021 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q3-2021 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.48. October 26, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for September 2021
- 6.49. October 26, 2021 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q3 2021 was submitted to CEC/BAAQMD
- 6.50. October 27, 2021 GGS submitted to BAAQMD/CEC the Semiannual Monitoring report for the period April 1, 2021 to September 30, 2021. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit
- 6.51. November 1, 2021 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Notification/Waiver Request on Visual Emission Evaluation for the earliest anticipated re-start date of November 5, 2021 on Unit-A.
- 6.52. November 12, 2021 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Report on Visual Emission Evaluation (VEE) for the VEE performed on November 5, 2021 on Unit A.
- 6.53. November 23, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for October 2021
- 6.54. November 24, 2021 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on November 1, 2021 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.55. November 24, 2021 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified

- Storm Event (QSE) that occurred on November 9, 2021 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.56. December 9, 2021 The Priority Pollutant Exemption Form for CY 2022 with Certification Statement was submitted to DD.
- 6.57. December 13, 2021 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.58. December 14, 2021 (Conditions of Certification AQ-31) GGS submitted to BAAQMD and CEC the 2022 Annual RATA and Source Test Protocol for the proposed dates of January 10-14, 2022
- 6.59. December 15, 2021 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for November 2021
- 7. Projected Compliance Activities for Next Year (RY January 1, 2022 December 31, 2022) The following is a list of compliance activities/documents that PG&E anticipates for the January 1, 2022 to December 31, 2022 reporting period:
 - 7.1 (Condition of Certification AQ-14) Quarterly Air Compliance Reports will be submitted within 30 days after the reporting period
 - 7.2 (Condition of Certification AQ-33) Monthly CEMS Reports will be submitted to BAAQMD within 30 days after the reporting period
 - 7.3 (Air Quality Compliance) PG&E anticipates the issuance of Permit to Operate (PTO Annual Renewal) in August 2022
 - 7.4 Quarterly Air Quality EDR reports to EPA due on January 30, 2022, April 30, 2022, July 30, 2022 and October 30, 2022
 - 7.5 Quarterly Self-Monitoring Reports to DD due on January 15, 2022, April 15, 2022, July 15, 2022 and October 15, 2022
 - 7.6 Quarterly Industrial Flow Data Report to DD due January 15, 2022,

- April 15, 2022, July 15, 2022 and October 15, 2022
- 7.7 Annual HMBP update due to CCHS on March 1, 2022
- 7.8 2021-2022 Annual Report to comply with General Permit for Storm Water Associated with Industrial Activity, due to Central Valley Regional Water Quality Control Board on July 15, 2022
- 7.9 Sampling results of all qualified storm events due to Central Valley Regional Water Quality Control Board within 30 days of receiving analytical results from laboratory
- 7.10 (Conditions of Certification AQ-30 and AQ-31) To submit to BAAQMD and CEC the Annual Source Test and RATA Plan for 2022
- 7.11 (Conditions of Certification AQ-29, AQ-30, AQ-31, and AQ-32) To submit to BAAQMD and CEC Source Test Report and 2022 Relative Accuracy Test Audit & Compliance Test Report within 60 days of test date.
- 7.12 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on January 30, 2022, April 30, 2022, July 30, 2022 and October 30, 2022
- 7.13 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the CO Projected Exceedance Date (on semi-annual basis). This is incompliance with the requirement of Paragraph 11 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on June 15, 2022 and December 15, 2022.
- 7.14 To submit to BAAQMD/EPA Annual and Semi-annual Title V reports. These reports are due on September 30, 2022, April 30, 2022 and October 31, 2022, respectively.
- 7.15 (Conditions of Certification General Conditions) CEC Annual Compliance Report for RY2020 due March 30, 2022, as pre-

negotiated with the CPM

8. **Listing of the Year's Addition to Compliance File** - During the reporting period, the following compliance submittals were submitted to the CEC CPM and other regulatory agencies as required for review and approval.

Date	То	Condition	Subject
<mark>/25/2021</mark>	BAAQMD	AQ-33	Monthly CEMS Report for December 2020
1/25/2021	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q4-2020
1/11/2021	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: Oct 2020 to Dec 2020
1/27/2021	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q4-2020
1/27/2021	EPA	Part 75	EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2020
2/22/2021	CCHS/CERS		Hazardous Materials Business Plan Annual Update for 2021
<mark>2/23/2021</mark>	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Jan 27, 2021
2/24/2021	BAAQMD	AQ-33	Monthly CEMS Report for January 2021
3/10/2021	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Feb 11, 2021

Date	То	Condition	Subject			
3/11/2021	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Source Test Report and 2020 Relative Accuracy Test Audit and Compliance Test Report; the tests were completed January 11-11, 2021			
3/29/2021	BAAQMD	AQ-33	Monthly CEMS Report for February 2021			
3/29/2021	CEC	GEN (pp.179- 180)	Annual Compliance Report #12 RY 2020			
4/8/2021	BAAQMD	AQ-33	Monthly CEMS Report for March 2021			
4/12/2021	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: January 2021 to March 2021			
<mark>4/12/2022</mark>	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q1-2021			
4/16/2021	CEC/BAAQMD	AQ-35	Reportable Compliance Activity on Ammonia slip emission			
4/22/2021	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q1 2021			
4/26/2021	EPA	Part 75	EPA ECMPS ED) for Q1-2021			
4/27/2021	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Oct 1, 2020 to Mar 31, 2021			
4/27/2021	BAAQMD	PTO	PTO Renewal Data Update			
4/28/2021	CEC/BAAQMD	AQ-SC13	Notification/Waiver request on Visual Emission Evaluation (VEE) for Apr 30, 2021 Restart (Unit-A)			
4/28/2021	CEC/BAAQMD	AQ-33, AQ-35	Reportable Compliance Activity/Breakdown Relief Request on Breakdown event of Apr 28, 2021 impacting NOx emission			

Date	То	Condition	Subject
4/30/2021	CEC/BAAQMD	AQ-33, AQ-35	Modified Reportable Compliance Activity/Breakdown Relief Request on Breakdown event of Apr 28, 2021 impacting NOx emission
4/30/2021	CEC/BAAQMD	AQ-35	10-day Follow ip report on Reportable Compliance Activity on Ammonia slip emission
5/5/2021	CEC/BAAQMD	AQ-SC13	Report on Visual Emission Evaluation (VEE) for Apr 30, 2021 Restart (Unit-A)
5/5/2021	CEC/BAAQMD	AQ-33, AQ-35	10-day Follow up report on Reportable Compliance Activity/Breakdown Relief Request on Breakdown event of Apr 28, 2021 impacting NOx emission
5/14/2021	CEC/BAAQMD	AQ-35	30-day Follow up report on Reportable Compliance Activity on Ammonia slip emission
5/20/2021	CEC/BAAQMD	AQ-SC13	Notification on Visual Emission Evaluation (VEE) for May 27-31, 2021(Unit-B and Unit-A)
5/26/2021	BAAQMD	AQ-33	Monthly CEMS Report for April 2021
5/27/2021	CEC/BAAQMD	AQ-33, AQ-35	30-day Follow up report on Reportable Compliance Activity/Breakdown Relief Request on Breakdown event of Apr 28, 2021 impacting NOx emission
6/4/2021	CEC/BAAQMD	AQ-SC13	Report on Visual Emission Evaluation (VEE) for May 29, 2021(Unit-B) and Jun 1, 2021 (Unit-A)
6/14/2021	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date

Date	То	Condition	Subject		
6/24/2021	BAAQMD	AQ-33	Monthly CEMS Report for May 2021		
7/4/2021	CVRWQCB- SMARTS	IGP	Storm Water Annual Report for 2020-2021		
7/12/2021	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: April 2021 to June 2021		
7/21/2021	BAAQMD	AQ-33	Monthly CEMS Report for June 2021		
7/26/2021	EPA	Part 75	EPA ECMPS EDR for Q2-2021		
7/29/2021	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q2-2021		
7/30/2021	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q2 2021		
8/23/2020	BAAQMD	AQ-33	Monthly CEMS Report for July 2021		
9/27/2021	BAAQMD	AQ-33	Monthly CEMS Report for August 2021		
9/28/2021	BAAQMD/EPA /CEC	Title V	Annual Compliance Certification (Sep 1, 2020- Aug 31, 2021)		
10/14/2021	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: July 2021 to September 2021		
10/25/2021	EPA	Part 75	EPA ECMPS EDR for Q3-2021		
10/26/2021	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q3-2021		
10/26/2021	BAAQMD	AQ-33	Monthly CEMS Report for September 2021		
10/26/2021	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q3 2021		

Date	То	Condition	Subject
10/27/2021	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Apr 1, 2021 to Sep 30, 2021
11/1/2021	CEC/BAAQMD	AQ-SC13	Notification/Waiver request on Visual Emission Evaluation (VEE) for Nov 5, 2021 Restart (Unit-A)
11/12/2021	CEC/BAAQMD	AQ-SC13	Report on Visual Emission Evaluation (VEE) for performed on Nov 5, 2021 Restart (Unit-A)
11/23/2021	BAAQMD	AQ-33	Monthly CEMS Report for October 2021
11/24/2021	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Nov 1, 2021
11/24/2021	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Nov 9, 2021
12/9/2021	DD	SOILS&WATE R-4	Priority Pollutant Exemption Form/Certification Statement for CY 2022
12/13/2021	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date
12/14/2021	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Notification on 2022 Source Test and Relative Accuracy Test Audit for Jan 10-14, 2022

Date	То	Condition	Subject
12/15/2021	BAAQMD	AQ-33	Monthly CEMS Report for November 2021

- 9. Evaluation of On-site Contingency Plan The On-site Contingency Plan for Unexpected Facility Closure (previously submitted to CEC 12/30/2008) has been evaluated. PG&E determined that the plan is adequate and does not need revision. PG&E, however, will continue to evaluate the plan and make necessary revisions as may be needed. A copy of the revision will be submitted to CEC promptly.
- 10. Listing of Complaints, NOVs, Citations Received None for RY 2021

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 13

Exhibit 1 Updated Compliance Matrix

Color Code Leger

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-13	3_OPS	CTs and HRSGs shall be fired on gas with a maximum sulfur content of no greater than 1 grain per 100 standard cubic feet.	Conduct monthly sulfur analysis and incorporate results into QAQR.	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-14	3_OPS	Combined heat input rate to each power train shall not exceed 2,227 MM BTU per hour over any rolling 3 hour period.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-15	3_OPS	Combined heat input rate to each power train shall not exceed 49,950 MM BTU per calendar day.	Demonstrate compliance in QAQR due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-16	3_OPS	Combined cumulative heat input rate for the CTs and HRSG shall not exceed 34,900,000 MM BTU per year.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-17	3_OPS	HRSG duct burners shall not be fired without CT in operation.	Include info on date, time, an duration of any violation in Quarterly Air Quality Reports (due January 30, April 30, July 30, and October 30)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-18	3_OPS	CT 1 and HRSG 1 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-19	3_OPS	CT 2 and HRSG 2 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-20	3_OPS	CTs and HRSGs to comply with requirements as listed in the Condition under all operating scenarios, including duct burner firing mode and steam injection power aug mode. Requirements do not apply to CT start-up or shut down. (BACT, PSD)	Provide info listed in Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-21	3_OPS	Regulated air pollutant mass emission rates shall not exceed limits shown in the Condition. (PSD)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-22	3_OPS	CTs shall not run in startup mode simultaneously (PSD).	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-23	3_OPS	Total combined emissions from CTs and HRSG shall not exceed limits specified in Condition during any calendar day.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 (of each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	

Color Code Legend

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-24	3_OPS	Cumulative combined emissions shall not exceed limits specified in Condition during any consecutive 12 month period.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-25	3_OPS	Maximum projected annual toxic air contaminant emissions from CTs and HRSGs shall not exceed limits specified in Condition.	Owner shall perform a health risk assessment using emission rates determined by source test and most current BAAQMD approved procedures and unit risk factors in effect at the time of the analysis.	Within 60 days of source test date	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-26	3_OPS	Demonstrate compliance with Conditions AQ-14 through 17, 20(a) through 20 (d), 21, 23 (a), 24(a), and 24(b) with CEMs during all hours of operation including equipment startup and shutdowns for all parameters listed in Condition.	Detailed plan on how the measurements and recordings will be performed. CEMS Monitoring Plan	At least 60 days prior to initial operation	8/21/2008		Submitted to CEC & BAAQMD	Record keeping to demonstrate compliance is ongoing.
AQ-27	3_OPS	Calculate and record daily the POC, PM10, and SO2 from each power train using actual heat input rates calculated per AQ-26, actual CT startup and shutdown times, and CEC/BAAQMD approved emission factors to calculate emissions. (See additional reporting requirements listed in Condition.)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-28	3_OPS	Calculate and record on an annual basis the maximum projected emissions of formaldehyde, benzene, and specified PAHs.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-30	3_OPS	Conduct District approved source test on exhaust points while CTs and HRSGs are operating at max. load and min. load to demonstrate compliance with AQ-20, and to verify accuracy of CEMS (per Condition AQ-26).	Submit Source Test Protocols/Conduct Source Test 60 days of initial operation and annually thereafter	Within 60 days of first fire, & annually thereafter	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			
AQ-31a	3_OPS	Obtain approval for all source test procedures from BAAQMD Source Test Section and CPM prior to conducting tests.	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates.	At least 7 days prior to source test dates	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			
AQ-31b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2021			
AQ-32a	3_OPS	Conduct source test on exhaust point P-11 or P-12 while CT and HRSGs are operating at maximum allowable operating rates to demonstrate compliance with AQ-25 (see Condition for more details).	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates. Conduct Source test 60 days of initial operation and biennial thereafter	At least 7 days prior to source test dates	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			

Color Code Legend

Construction Phase	Commissioning	Operations Phase		Submitted / Approved /
Condition	Phase Condition	Condition	Submitted	Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-32b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2021			
AQ-33	3_OPS	Submit all reports (monitor breakdowns, CEMS, emission access reports, equipment breakdowns) as required by District Rules or Regulations	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-34	3_OPS	Maintain ongoing records and reports on site for a minimum of 5 years (to include but not limited to: CEMS records (firing hours, fuel flows, emission rates, monitor excesses, breakdowns, etc.). Source and analytical records, natural gas sulfur content analysis results, emission calculation record, plant upsets and related incidents.)	Make records available to BAAQMD, ARB, EPA, and CEC.	Ongoing	N/A		On-going (Records are maintained)	
AQ-35	3_OPS	Notify District and CPM of violation of any permit conditions in accordance with applicable BAAQMD rules and regulations.	Submit written notification to Enforcement Division within 96 hours of the violation.	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	event occurred on 10/19/16
AQ-44	3_OPS	Take monthly gas samples.		Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-45b	3_OPS	WSAC shall be properly installed/maintained to minimize drift losses	Sample the water once in July, August and September each year while WSAC is in operation and submit results in QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-46b	3_OPS	Have WSAC field rep inspect drift eliminators and certify installation was performed satisfactorily. Verify that PM10 emissions do not exceed 4.7 lbs/day based on most recent TDS (see formula in condition).	Report calculated PM10 emissions from WSAC in QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-47	3_OPS	Fuel gas preheater shall not be operated more than 16 hours in any day.	Submit verification of hours of operation as part of QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2021, Q2: 7/20/2021, Q3:10/23/2021, Q4: 1/27/2022		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AM-1	3_OPS	Conduct Source Test to determine ammonia emission concentration	Submit the results of Source Test with in 60 days of completion	Annually (recurring)	3/11/2021			
BIO-02	3_OPS	Designated Biologist to submit record summaries in the Annual Compliance Report	Provide statement in the Annual Compliance Report whether any actions that affected biological resources occurred on site for the reporting year.	Annually in ACR	3/29/2021		Submitted with this Annual Compliance Report (ACR)	

Color Code Legend

Construction Phase	Commissioning	Operations Phase	Submitted	Submitted / Approved /
Condition	Phase Condition	Condition		Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
BIO-09	3_OPS	Incorporate a Biological Resource Element that includes biological resource facility closure measures into the facility closure plan and BRMIMP.	at least 12 months prior to commencement of permanent closure activities.	at least 12 months prior to facility closure or earlier if needed				Not needed yet
GEN	3_OPS	Annual Compliance Report (ACR)	Submit Annual Compliance Report (ACR): March 31st of the following calendar year	Annually (recurring)	3/29/2021		Submitted w/ this report	
GEN-09	3_OPS	Submit closure/decommissioning plan	Submit closure/decommissioning plan. Meet with CPM prior to submittal.	12 months prior to closing				Not needed yet
HAZ-01	3_OPS	Do not use any hazardous material not listed in Appendix C of the Final Decision.	Provide list of all hazardous materials used at site in the Annual Compliance Report	Annually in ACR	3/29/2021		Submitted w/ this report (see Exhibit 5)	
PAL-07	3_OPS	Include in facility closure plan a description regarding facility closure activity's potential to impact paleontological resources.	Include description of closure activities.	12 months prior to closure of the facility.				Not needed yet
SOILS & WATER- 03	3_OPS	Keep the CPM informed of any modification to the permit, Stormwater Industrial General Permit (IGP).	Submit to CPM: any modification of IGP, submit copy of correspondence with the County on MS4 permit and CVRWQCB, maintain in SWPPP a copy of NOI.	during operation	3/29/2021			NOI and revised SWPPP was submitted to Waterboard through SMARTS copied on this report
SOILS & WATER-4	3_OPS	During operation, any monitoring reports provided to DD shall be provided to the CPM. The CPM shall be notified of any violations of discharge limits/amounts	Submit any water quality monitoring required by DD to the CPM in annual compliance report. Submit any NOV from DD to the CPM within 10 days of receipt explaining corrective actions taken.	Annually	3/29/2021		Submitted w/ this report	
SOILS & WATER- 10b	3_OPS	Submit a water use summary to the CPM in the annual compliance report. Also report on the servicing, testing, and calibration of the meters in the ACR.	Provide information in annual compliance report.	Annually in ACR	3/29/2021		Submitted with ACR: Water use for RY 2016 = 63.6 AF	

Color Code Legend							
Construction Phase	Commissioning	Operations Phase	Submitted	Submitted / Approved /			
Condition	Phase Condition	Condition		Completed			

CEC Cond. No	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
TLSN-03			Submit reports of line-related interferences and action taken to CPM for the first five year of operation.	Annually in ACR (for 2009-2013)	No longer required starting in RY 2014			
VIS-04c	_	Install aesthetic screening (trees) along south, east, and north boundaries	Verify in the annual compliance report that maintenance has been performed	Annually in ACR	3/29/2021		Submitted with ACR: appropriate maintenance was performed in RY 2016	

Key Dates:

First Fire	11/1/2008	(CT-A = 11/01/08, CT-B = 11/04/08)
Perf. Tests (Target)	12/6/2008	
Source Test (Started)	1/4/2009	Unit A:1/4/2009, Unit B: 01/06/2009
Source Test (Completed)	1/14/2009	For Both Units
COD (Target)	2/5/2009	
COD (Actual)	1/4/2009	
COD (Guaranteed)	2/28/2009	
Aq. Ammonia on Site	12/4/2008	
Steam Blow	11/4/2008	
Install Catalyst (SCR/CO)	11/24/2008	(SCR Catalyst = 11/24/08)
Q4 2009 Report	1/30/2010	
Sulfuric Acid on Site	3/1/2009	Planned: March 2009
First Lube	7/14/2008	
Noise Survey(Completed)	1/21/2009	Both Community and in-plant surveys
Sustained output	1/4/2009	
Connection Potable Water	3/17/2008	
Pre-energy E/MF	5/19/2008	
		(W/in 6 mos of start of operation = first synchronization to
Post-energy E/MF	5/9/2009	grid)
First Synchronization	11/10/2008	(First Synchronization to grid: CT-A : 11/11/08, CT-B : 11/10/08)
Start of operation	1/4/2009	,
Annual Compliance Report	3/26/2021	RY 2020 ACR

Gateway Generating Station (03-AFC-01)

Annual Compliance Report No. 13

Exhibit 2 Key Events List

KEY EVENTS LIST

PROJECT: GATEWAY GENERATING STATION

DOCKET #: 00-AFC-1C

EVENT DESCRIPTION

DATE

Date of Certification	05-30-01
POWER PLANT SITE ACTIVITIES	
Start Site Pre-Mobilization	01-08-07
Start Ground Disturbance	02-02-07
Start Grading	03-12-07
Start Construction	02-05-07
Begin Pouring Major Foundation Concrete	04-09-07
Begin Installation of Major Equipment	02-12-07
Completion of Installation of Major Equipment	10-16-08
First Combustion of Gas Turbine	10-25-08
Start Commercial Operation	12-31-08
Acquisition of second ammonia tank, tank farm facility, and associated property	December 2013
Regulated Substances Deregistration of Anhydrous Ammonia	05/23/2016
Granted exemption to forego sampling of 126 priority pollutants per 40CFR423.17(a)(4)(ii)	7/23/2019
Renewal of Title IV and Title V Permits was approved	09/03/2020
Submitted 5-year Anniversary Update of the Risk Management Program (to EPA) and California Accidental Release Prevention (CalARP) Program (to Contra Costa Health Services -Hazardous Materials Program)	02/22/2021
SWITCHYARD & TRANSMISSION TIE-IN ACTIVITIES	
Start Switchyard Construction	10-01-07
Switchyard & Tie-in Complete	04-30-08
Synchronization with Grid and Interconnection	12-01-08

FUEL SUPPLY LINE ACTIVITIES	
Started Gas Pipeline Construction and Interconnection	07-13-07
Completed Gas Pipeline Construction	07-01-08

Gateway Generating Station (03-AFC-01)

Annual Compliance Report No. 13

Exhibit 3 Water Use Summary and City of Antioch Invoices

(To comply with CEC Condition of Certification: SOIL & WATER-10)

PG&E Gateway Generating Station Water Use Summary Reporting Period: Jan 2021 - Dec 2021

Date	Water Consumption				
Date	(gals.)	(cu. feet)	(acre-feet)		
Jan-21	1,507,968	201,586.00	4.63		
Feb-21	1,671,780	223,484.48	5.13		
Mar-21	2,167,704	289,779.88	6.65		
Apr-21	2,316,556	309,678.49	7.11		
May-21	797,368	106,592.60	2.45		
Jun-21	2,664,376	356,175.26	8.18		
Jul-21	2,584,340	345,476.01	7.93		
Aug-21	2,079,440	277,980.69	6.38		
Sep-21	1,543,872	206,385.67	4.74		
Oct-21	1,518,440	202,985.90	4.66		
Nov-21	1,280,576	171,188.11	3.93		
Dec-21	871,420	116,491.91	2.67		
Annual Total:	21,003,840.00	2,807,805.00	<mark>64.46</mark>		

City of Antioch - Finance Department

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 01 For service at: WILBUR

2 / 0 3 / 2 0 2 1 CREATED ON

Water Service From: 1 / 0 2 / 2 0 2 1

2 / 0 1 / 2 0 2 1 To: Units: 2,016

4.55 Zone Charge:

հրոսիկիկիվույրերՍյութվիյյիվեւլերկիՍիլոգելիՍի

P G & E

COM ZONE 2

3 2 2 5 WILBUR 9 4 5 0 9 - 8 5 4 6 ANTIOCH CA

Amount

,550.79 ,172.80 9, 165.00

2,423.64

PRIOR BALANCE WATER USAGE 2 "WATER M WATER MAINT FEE SEWER NON-RES 3 " BACKFLOW RP WE ARE EXCITED TO A
OUR NEW WATER BILL,

ANNOUNCE THE LAUNCH OF COMING MARCH 2021. THE

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

2 / 2 4 / 2 0 2 1 **Due Date**

Amount Now Due, 5% Late Penalty if Not Received by Due Date

23,337.33

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

8 9 2 9 8

Current Previous

87282

Units 2,016

1 , 1 7 8

CONSUMPTION INFORMATION

Gallons Days 1,507,968 3 0 881,144 3 0

PG&E

Gallons / Day 50,265 29,371

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Customer Name:

For Service At:

Due Date:

2 / 2 4 / 2 0 2 1

004-01511-01

Amount Now Due:

Account:

23,337.33

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

3225 WILBUR AVE

004015110102333733

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

004-01512 - 0 1 For service at: WILBUR

2 / 0 3 / 2 0 2 1 CREATED ON

Water Service From: 1 / 0 2 / 2 0 2 1

Units:

To:

Zone Charge:

2 / 0 1 / 2 0 2 1

վել իկիլիուդիկումը կինկիների կորհականին հե

3225 WILBUR ANTIOCH CA 9 4 5 0 9 - 8 5 4 6

PRIOR BALANCE W A T E R U S A G E 5 / 8 " X 3 / 4 " M MAINT FEE

FL DET CHK 6"
BACKFLW DC 5/8"X3/4 WE ARE EXCITED TO ANNO OUR NEW WATER BILL, CO THE NOUNCE THE LAUNCH OF COMING MARCH 2021. **Amount**

77.50 24.40 47.80

5.30

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

2 / 2 4 / 2 0 2 1 **Due Date**

155.00

Amount Now Due, 5% Late Penalty if Not Received by Due Date

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Previous Units Gallons

CONSUMPTION INFORMATION Days

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date: 2/24/2021

Current

Account: 0 0 4 - 0 1 5 1 2 - 0 1

Amount 155.00 Now Due:

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Customer Name: P G & E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

llaladlaalaalllaaalaldlallaaaallalaaallalalaal

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

004-01511 WILBUR Account: For service at:

CREATEDON 3 / 0 2 / 2 0 2 1

2 / 0 1 / 2 0 2 1 Water Service From:

3 / 0 1 / 2 0 2 1 2,235

COM ZONE 2

Units: 4.55 Zone Charge:

To:

||-|-||-ել|ել||-ելը-բ||լիՄերբել||-եելի||Մ-|Ալել

3 2 2 5 ${\tt WILBUR}$

ANTIOCH CA 9 4 5 0 9 - 8 5 4 6

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3" WE ARE EXCITED TO 3 "

ANNOUNCE THE THE LAUNCH MARCH 2021. OUR NEW WATER BILL, COMING

Amount

23, 23, , 3 3 7 . 3 3 , 3 3 7 . 3 3 -10,169.25 165.00 2,686.44

25.10

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

3 / 2 3 / 2 0 2 1 **Due Date**

Amount Now Due, 5% Late Penalty if Not Received by Due Date

13,045.79

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Previous

89298

Units

1,462

2,235

CONSUMPTION INFORMATION Gallons 1,671,780

Days 28

3 0

Gallons / Day 59,706 36,452

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

1,093,576

Due Date:

Current

9 1 5 3 3

3 / 2 3 / 2 0 2 1

Customer Name: For Service At:

PG&E

Account:

004-01511-01

Amount Now Due: 13,045.79

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

E00401511 E00401511

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

3225 WILBUR AVE

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billling, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01512-01 For service at: 3225 WILBUR AVE

CREATED ON 3/02/2021 Water Service From: 2/01/2021 To:

Units:

Zone Charge:

վերիկ||իուլիվուգ||բլիՈկինել|կերվենո|գենժ||են

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE

PRIOR BALANCE
PAYMENTS APPLIED
WATER USAGE
5/8"X3/4" MAINT FEE
FL DET CHK 6"
BACKFLW DC 5/8"X3/4

BACKFLW DC 5/8"X3/4"
WE ARE EXCITED TO ANNOUNCE THE LAUNCH O
OUR NEW WATER BILL, COMING MARCH 2021.

Amount

3 / 0 1 / 2 0 2 1

1 5 5 . 0 0 1 5 5 . 0 0 -0 . 0 0 2 4 . 4 0 4 7 . 8 0

5.30

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date > 3 / 2 3 / 2 0 2 1

Amount Now Due, 5% Late Penalty if Not Received by Due Date

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

. . ..

CONSUMPTION INFORMATION

Current Previous Units Gallons

Days

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

77.50

Account: 004-01512-01 For Service At: 3225 WILBUR AVE

Amount

Amount \$ Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Now Due:

Ê0040151201BŠ E0040151201BŠ Please remit your payment to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Haladhadaalllaaadabladhaaadblababall

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billling, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 01 For service at: WILBUR

4 / 0 6 / 2 0 2 1 CREATED ON

Water Service From: 3 / 0 1 / 2 0 2 1

> Units: 2,898

4 / 0 1 / 2 0 2 1

4.55 Zone Charge:

To:

COM ZONE 2

հինը հովեվ Միկլլիդ իկինիդիուիը իումի լինիկինդրով Սիկ

PG&E

PRIOR

3 2 2 5 WILBUR 9 4 5 0 9 - 8 5 4 6 ANTIOCH CA

Amount

13,045.79 13,185.90

165.00

3,482.04 25.10

WATER USAGE WATER MAINT FEE SEWER NON-RES 3 " BACKFLOW RP 3" PAYMENT ARRANGEMENTS

US. RENT AND

BALANCE PAYMENTS APPLIED

> NT ARRANGEMENTS ARE AVAILABLE, PLEASE CAL TENANTS NEEDING FINANCIAL ASSISTANCE WITH AND UTILITIES, VISIT HOUSINGISKEY.COM CALL

> > 4/27/2021

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Amount Now Due, 5% Late Penalty if Not Received by Due Date

16,858.04

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

94431

Previous

9 1 5 3 3

Units 2,898

1,632

CONSUMPTION INFORMATION Gallons 2,167,704

Days 3 1

3.0

Due Date

Gallons / Day

69,925 40,691

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

1,220,736

Due Date:

4/27/2021

0 0 4 - 0 1 5 1 1 - 0 1

Amount Now Due:

Account:

16,858.04

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

004-01512 - 0 1 For service at: WILBUR

4 / 0 6 / 2 0 2 1 CREATED ON

Water Service From: 3 / 0 1 / 2 0 2 1

4 / 0 1 / 2 0 2 1 To:

Units: Zone Charge:

<u>ԵիլինկերհՈւկիՈսկինիիկիուիգիրանիրգրեն</u>գ

3 2 2 5 WILBUR

ANTIOCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE 5/8"X3/4" M MAINT FEE СНК 6 FL DET " BACKFLW DC 5/8"X3/4
PAYMENT ARRANGEMENTS
US. TENANTS NEEDING
RENT AND UTILITIES, ARE AVAILABLE, PLEASE CAL FINANCIAL ASSISTANCE WITH VISIT HOUSINGISKEY.COM **A**mount 77.50 0.00

24.40 47.80 5.30

For questions regarding this invoice, call Customer Service at (925) 779-7060.

Previous

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

4/27/2021 **Due Date**

Amount Now Due, 5% Late Penalty if Not Received by Due Date

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Units

CONSUMPTION INFORMATION

Gallons

Days

CALL

Gallons / Day

NO HISTORY AVAILABLE

Customer Name:

For Service At:

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date: 4 / 2 7 / 2 0 2 1

Current

Account: 004-01512-01

Amount Now Due: 77.50

Amount Paid:

Payment must be received by the City,

on or before due date above to avoid 5% late penalty.

Please remit your payment to: City of Antioch PO BOX 6015

PG&E

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

3225 WILBUR AVE

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 01 For service at: WILBUR

CREATED ON 5 / 0 4 / 2 0 2 1 Water Service From: 4 / 0 1 / 2 0 2 1

5 / 0 1 / 2 0 2 1 To: Units: 3,097

COM ZONE 2

4.55 Zone Charge:

PRIOR

WATER USAGE

3 2 2 5 WILBUR

9 4 5 0 9 - 8 5 4 6 ANTIOCH CA

BALANCE

WATER MAINT

Amount

16,858.04 14, 0 9 1 . 3 5 1 65 .00

3,720.84

SEWER NON-RES BACKFLOW RP 3 " PAYMENT ARRANGEMENTS ARE AVAILABLE, PLEASE US. TENANTS NEEDING FINANCIAL ASSISTANCE VRENT AND UTILITIES, VISIT HOUSINGISKEY.COM

FEE

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441. 5 / 2 5 / 2 0 2 1

34,860.33

Amount Now Due, 5% Late Penalty if Not Received by Due Date

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Previous Current 97528 9 4 4 3 1

Units 3,097

917

CONSUMPTION INFORMATION Gallons 2,316,556

Days 3 0 3.0

Due Date

WTTH

Gallons / Day 77,218

22,863

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

Account:

5/25/2021

0 0 4 - 0 1 5 1 1 - 0 1

Amount Now Due: 34,860.33

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

685,916

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01512-01 For service at: 3225 WILBUR AVE

CREATED ON 5/04/2021

Water Service From: 4 / 0 1 / 2 0 2 1

To: Units:

Zone Charge:

5 / 0 1 / 2 0 2 1

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE
WATER USAGE
5/8"X3/4" MAINT FEE
FL DET CHK 6"
BACKFLW DC 5/8"X3/4"

PAYMENT ARRANGEMENTS A US. TENANTS NEEDING FRENT AND UTILITIES, VI

"
ARE AVAILABLE, PLEASE CALIFINANCIAL ASSISTANCE WITH VISIT HOUSINGISKEY.COM

Amount

77.50 0.00 24.40

24.40 47.80 5.30

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date >

5 / 2 5 / 2 0 2 1

Amount Now Due, 5% Late Penalty if Not Received by Due Date

155.00

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Previous Units

CONSUMPTION INFORMATION

Gallons

Days

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date: 5 / 2 5 / 2 0 2 1

Current

Account: 004-01512-01

Amount 155.00

Amount \$ Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG & E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Haladhadaaddaaadabballadhaaadbblaadbblabad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 01 For service at: WILBUR

CREATED ON 6 / 0 3 / 2 0 2 1 Water Service From: 5 / 0 1 / 2 0 2 1

Units: 1,066

6 / 0 1 / 2 0 2 1

COM ZONE 2

4.55 Zone Charge:

To:

լինդվիկեսիլիություրիննեներնինիննիննիուինիինի

P G & E

3 2 2 5 WILBUR ANTIOCH CA 9 4 5 0 9 - 8 5 4 6

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE WATER MAINT SEWER NON-RES 3 "

FEE BACKFLOW RP 3" PAYMENT ARRANGEMENTS NT ARRANGEMENTS ARE AVAILABLE, PLEASE CAL TENANTS NEEDING FINANCIAL ASSISTANCE WITH AND UTILITIES, VISIT HOUSINGISKEY.COM CALL US.

Amount

34,860.33 34, 8 6 0 . 3 3 -4,850.30 165.00 1,283.64

25.10

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441. 6/24/2021

Amount Now Due, 5% Late Penalty if Not Received by Due Date

6,324.04

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Previous Current 98594

97528

Units 1,066

2.476

CONSUMPTION INFORMATION Gallons 797,368

Days 3 1 3 1

Due Date

Gallons / Day 25,721 59,743

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

1,852,048

FOR

Due Date:

6 / 2 4 / 2 0 2 1

0 0 4 - 0 1 5 1 1 - 0 1

Amount

Account:

Now Due:

6,324.04

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

004-01512 - 0 1 For service at: WILBUR

6 / 0 3 / 2 0 2 1 CREATED ON

Water Service From: 5 / 0 1 / 2 0 2 1

Units:

To:

Zone Charge:

6 / 0 1 / 2 0 2 1

իրիկիալ||||իդեկիա||րըվենալկետեիլ|||կենհիկիիլ

3225 WILBUR ANTIOCH CA 94509-8546

Amount

155.00 0.00

24.40 47.80

5.30

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE 5/8"X3/4" M MAINT FEE СНК 6 DET "

BACKFLW DC 5/8"X3/4
PAYMENT ARRANGEMENTS
US. TENANTS NEEDING
RENT AND UTILITIES, ARE AVAILABLE, PLEASE CAL FINANCIAL ASSISTANCE WITH VISIT HOUSINGISKEY.COM CALL

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441. 6 / 2 4 / 2 0 2 1

Amount Now Due, 5% Late Penalty if Not Received by Due Date

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

CONSUMPTION INFORMATION Gallons

Current Previous Units Days

Due Date

Gallons / Day

77.50

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

6 / 2 4 / 2 0 2 1

Customer Name: PG&E

For Service At:

Account:

004-01512-01

Amount Now Due: 77.50

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

3225 WILBUR AVE

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 01 For service at: WILBUR

7/07/2021 CREATED ON

COM ZONE 2

Water Service From: 6 / 0 1 / 2 0 2 1

7 / 0 1 / 2 0 2 1 To: Units: 3,562

Zone Charge:

4.55

իցեոցեցով|||Ալից||թակութակցիլերերեկիկ|||Ալիկիցի

PG&E 3 2 2 5

PRIOR

RENT AND

US.

Current

102156

WILBUR

WATER USAGE

SEWER NON-RES

9 4 5 0 9 - 8 5 4 6 ANTIOCH CA

BALANCE PAYMENTS APPLIED

WATER MAINT

BACKFLOW RP 3" PAYMENT ARRANGEMENTS

Amount

6,324.04 6,324.04-16,207.10

165.00

4,670.82

25.10

3 "

For questions regarding this invoice, call Customer Service at (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email

Due Date

CALL

7/28/2021

Amount Now Due, 5% Late Penalty if Not Received by Due Date

NT ARRANGEMENTS ARE AVAILABLE, PLEASE CAL TENANTS NEEDING FINANCIAL ASSISTANCE WITH AND UTILITIES, VISIT HOUSINGISKEY.COM

21,068.02

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Meter Readings

Previous 98594

Units 3,562

2,415

FEE

CONSUMPTION INFORMATION

Gallons Days 2 , 6 6 4 , 3 7 6 3 0 1,806,420 3.0

Gallons / Day 88,812

60,214

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

7/28/2021

0 0 4 - 0 1 5 1 1 - 0 1

Amount Now Due:

Account:

21,068.02

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

004-01512 - 0 1 For service at: WILBUR

7/07/2021 CREATED ON

Water Service From: 6 / 0 1 / 2 0 2 1

Units:

To:

7 / 0 1 / 2 0 2 1

Zone Charge:

րհիլիդերովիլիկությելիննորուիլիիլինիրը հուկիկիրի

3225 WILBUR ANTIOCH CA 9 4 5 0 9 - 8 5 4 6

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE 5/8"X3/4" M MAINT FEE СНК 6 FL DET "

BACKFLW DC 5/8"X3/4
PAYMENT ARRANGEMENTS
US. TENANTS NEEDING
RENT AND UTILITIES, ARE AVAILABLE, PLEASE CAL FINANCIAL ASSISTANCE WITH VISIT HOUSINGISKEY.COM **Amount** 77.50 0.00 24.40

47.80 5.30

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

7/28/2021 **Due Date**

Amount Now Due, 5% Late Penalty if Not Received by Due Date

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

Previous

Units

CONSUMPTION INFORMATION Gallons

Days

CALL

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

7 / 2 8 / 2 0 2 1

004-01512-01

Customer Name:

For Service At: 3225 WILBUR AVE

PG&E

Amount Now Due:

Account:

77.50

Amount

Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 01 For service at: WILBUR

8 / 0 4 / 2 0 2 1 CREATED ON

Water Service From: 7 / 0 1 / 2 0 2 1

> **Units:** 3 , 4 5 5

8 / 0 2 / 2 0 2 1

COM ZONE 2

4.55 Zone Charge:

To:

իքբ ԱդլիկիՍԱլևոլի||իրերա|||ոլդիիթիԱիիութեա

P G & E

PRIOR

3 2 2 5 WILBUR 9 4 5 0 9 - 8 5 4 6 ANTIOCH CA

Amount

21,068.02 21, 15, 720.25

165.00

4,530.65 25.10

WATER USAGE WATER MAINT FEE SEWER NON-RES 3 " BACKFLOW RP

BALANCE PAYMENTS APPLIED

PLEASE NOTE NEW REMITTANCE ADDRESS FOR PAYMENTS.
BE SURE TO UPDATE YOUR ONLINE BANKING PAYMENTS.
WE WILL START ASSEESSING LATE FEES ON 10/01/2021.

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

8 / 2 5 / 2 0 2 1 **Due Date**

Amount Now Due, 5% Late Penalty if Not Received by Due Date

20,441.00

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

105611

Previous

102156

Units 3,455

1,965

CONSUMPTION INFORMATION Gallons 2,584,340

Days 3 2

3 1

Gallons / Day 80,760

47,413

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

1,469,820

Due Date:

8 / 2 5 / 2 0 2 1

Amount

Account:

004-01511-01

Now Due:

20,441.00

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01512-01 For service at: 3225 WILBUR AVE

CREATED ON 8/04/2021

Water Service From: 7 / 0 1 / 2 0 2 1

To: 8 / 0 2 / 2 0 2 1

Units:

Zone Charge:

որիվիվիկորիկիրինիկոնիկորինիրիկիկուրկինի

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE
PAYMENTS APPLIED
WATER USAGE
5/8"X3/4" MAINT FEE
FL DET CHK 6"
BACKFLW DC 5/8"X3/4"

BACKFLW DC 5/8"X3/4"
PLEASE NOTE NEW REMITTANCE ADDRESS FOR PAYMENTS.
BE SURE TO UPDATE YOUR ONLINE BANKING PAYMENTS.
WE WILL START ASSEESSING LATE FEES ON 10/01/2021.

Amount

77.50 77.50-0.00 24.40

4 7 . 8 0 5 . 3 0

For questions regarding this invoice, call Customer Service at (925) 779-7060.

Previous

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

8 / 2 5 / 2 0 2 1

Amount Now Due, 5% Late Penalty if Not Received by Due Date

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Units

CONSUMPTION INFORMATION

Gallons

Days

Due Date

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date: 8 / 2 5 / 2 0 2 1

Current

Account: 0 0 4 - 0 1 5 1 2 - 0 1

Amount Now Due:

77.50

Amount \$

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Haladlandan Hlanada Hallanda Halada Halada H

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 0 1 For service at: WILBUR

CREATED ON 9 / 1 4 / 2 0 2 1

COM ZONE 2

Water Service From: 8 / 0 2 / 2 0 2 1

9 / 0 1 / 2 0 2 1 **Units:** 2,780

Zone Charge:

To:

4.55

իժնես եպ Մեկով ((իլ Մեկր հեկ լիպ եվիրկայի ((իրկրդիկ)

3 2 2 5 WILBUR ANTIOCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE WATER MAINT SEWER NON-RES 3 " BACKFLOW RP

FEE PLEASE NOTE NEW REMITTANCE ADDRESS FOR PAYMENTS.
BE SURE TO UPDATE YOUR ONLINE BANKING PAYMENTS.
WE WILL START ASSEESSING LATE FEES ON 10/01/2021.

Amount 20,441.00 20, 4 4 1 . 0 0 -

12,649.00 165.00 3,646.40 25.10

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

10/05/2021 **Due Date**

Amount Now Due, 5% Late Penalty if Not Received by Due Date

16,485.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Previous Current 108391

1 0 5 6 1 1

Units 2,780 1,762

CONSUMPTION INFORMATION

Gallons Days 2,079,440 3 0 1,317,976 3 1

Gallons / Day 69,314 42,515

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

10/05/2021

004-01511-01

Amount Now Due:

Account:

16,485.50

Amount

Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 981476

West Sacramento, CA 95798

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

004-01512 - 0 1 For service at: WILBUR

9 / 1 4 / 2 0 2 1 CREATED ON

Water Service From:

Units:

To:

Zone Charge:

9 / 0 1 / 2 0 2 1

րկ|||լիորկ|իվը|ՍդՍորկ|ի|ՍուՍիմո||ՍրՍկ||լորկ|Ս||Սյորդ

3 2 2 5 WILBUR ANTIOCH CA 9 4 5 0 9 - 8 5 4 6

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE 5/8"X3/4" M MAINT FEE DET СНК 6 "

BACKFLW DC 5/8"X3/4"
PLEASE NOTE NEW REMITTANCE ADDRESS
BE SURE TO UPDATE YOUR ONLINE BANK
WE WILL START ASSEESSING LATE FEES FOR PAYMENTS. ONLINE BANKING PAYMENTS. NG LATE FEES ON 10/01/2021. **Amount**

77.50 0.00 24.40

47.80 5. 3 0

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

10/05/2021 **Due Date**

Amount Now Due, 5% Late Penalty if Not Received by Due Date

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Previous

Units

CONSUMPTION INFORMATION Gallons

Days

Gallons / Day

NO HISTORY AVAILABLE

Customer Name:

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

1 0 / 0 5 / 2 0 2 1 **Due Date:**

Current

Account: 0 0 4 - 0 1 5 1 2 - 0 1

Amount Now Due:

77.50

Amount

Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

For Service At:

3225 WILBUR AVE

PG&E

Please remit your payment to:

City of Antioch PO BOX 981476

West Sacramento, CA 95798

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511 - 01 For service at: WILBUR

CREATED ON 10/05/2021

Water Service From:

10/01/2021 **Units:** 2,064

COM ZONE 2

4.55 Zone Charge:

To:

դոհվ||ՄՈհուկՈլՈդույլ||ՄՈՈՈկհիՈՈլլլդի|ո|||Ոլ

P G & E

PRIOR

WATER USAGE 2 "WATER M

SEWER NON-RES

3 2 2 5 WILBUR ANTIOCH CA 94509-8546

BALANCE

WATER MAINT

Amount

, 4 8 5 . 5 0 , 3 9 1 . 2 0 9, 165.00

708.44

3 " BACKFLOW RP PLEASE NOTE NEW REMITTANCE ADDRESS FOR PAYMENTS.
BE SURE TO UPDATE YOUR ONLINE BANKING PAYMENTS.
WE WILL START ASSEESSING LATE FEES ON 10/01/2021.

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

FEE

10/26/2021

28,775.24

Amount Now Due, 5% Late Penalty if Not Received by Due Date

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

110455

Previous

Units 108391

2,064 2,147

Gallons

Days 3 0

CONSUMPTION INFORMATION

Due Date

Gallons / Day 51,462

1,543,872 53,531 1,605,956 3 0

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

10/26/2021

004-01511-01

Amount Now Due:

Account:

28,775.24

Amount

Paid: Payment must be <u>received</u> by the City,

on or before due date above to avoid 5% late penalty.

Customer Name: PG&E

For Service At: 3225 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 981476

West Sacramento, CA 95798

HaladlandardHarralabiliadlarradbiblarradbibliadrad

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billling, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

0 0 4 - 0 1 5 1 2 Account: - 0 1 For service at: WILBUR

CREATED ON 10/05/2021

Water Service From:

To: **Units:**

10/01/2021

Zone Charge:

ոլիկրկիկիրդիկիկիիրկիկոլկիոլիկոլիկոլիկո

PRIOR

FL DET

W A T E R U S A G E 5 / 8 " X 3 / 4 " M

3225 WILBUR ANTIOCH CA 9 4 5 0 9 - 8 5 4 6

BALANCE

СНК

MAINT

6

FEE

Amount

77.50

2 4 . 4 0 4 7 . 8 0 5.30

5 / 8 " X 3 / 4 " BACKFLW DC PLEASE NOTE NEW REMITTANCE ADDRESS FOR PAYMENTS. BE SURE TO UPDATE YOUR ONLINE BANKING PAYMENTS. LATE FEES ON 10/01/2021. WE WILL START ASSEESSING

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441. 10/26/2021

Amount Now Due, 5% Late Penalty if Not Received by Due Date

155.00

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

CONSUMPTION INFORMATION

Due Date

Previous Current Units Days

Gallons / Day

NO HISTORY AVAILABLE

For Service At:

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Gallons

1 0 / 2 6 / 2 0 2 1

Customer Name: PG&E

Account:

Due Date:

0 0 4 - 0 1 5 1 2 - 0 1

Amount Now Due: 155.00

Amount

Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

E004015120 E004015120

Please remit your payment to:

City of Antioch PO BOX 981476

West Sacramento, CA 95798

HaladlandardHarralabiliadlarradbiblarradbibliadrad

3225 WILBUR AVE

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billling, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511-0 For service at: 3225 WILBUR AV

CREATED ON 11/03/2021 Water Service From: 10/01/2021 To: 11/01/2021

Units: 2,030
COM ZONE 2
Zone Charge: 4.55

լեվ-կրգրիկայիգնորկը-կուկեկվիգոհիկոր-հիկիկաի

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE
PAYMENTS APPLIED
WATER USAGE
2 "WATER MAINT FEE
SEWER NON-RES
BACKFLOW RP 3 "
PLEASE NOTE NEW REMITTANCE ADDRESS FOR PAYMENTS.
BE SURE TO UPDATE YOUR ONLINE BANKING PAYMENTS.
WE WILL START ASSEESSING LATE FEES ON 11/01/2021.

Amount

28,775.24 28,775.24-9,236.50 165.00 2,663.90 25.10

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

11/24/2021

Amount Now Due, 5% Late Penalty if Not Received by Due Date

12,090.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current Previous 1 1 2 4 8 5 1 1 0 4 5 5

Units
2,030
1,728

CONSUMPTION INFORMATION

PG&E

Due Date

Gallons D

Days Gallons / Day
31 48,981
41,694

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Customer Name:

Due Date: 11/24/2021

Account: 004-01511-01

Amount 12,090.50

Amount \$ Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

1,292,544

For Service At: 3 2 2 5 WILBUR AVE

Please remit your payment to:

City of Antioch PO BOX 981476

West Sacramento, CA 95798

Haladhadaalllaaadabladhaaadblababall

Six Easy Ways to Pay

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$80.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

City of Antioch - Finance Department

Utility Service Billing - Customer Service (925) 779-7060

Account: 004-01512-0 For service at: 3225 WILBUR AVI

CREATED ON 11/03/2021 Water Service From: 10/01/2021 To: 11/01/2021

Units:

Zone Charge:

դդիհերդիրիկիրդութեդիենիրդութենիիիի

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE
PAYMENTS APPLIED
WATER USAGE
5/8"X3/4" MAINT FEE
FL DET CHK 6"
BACKFLW DC 5/8"X3/4"
PLEASE NOTE NEW REMITTANCE ADDRESS FOR PAYMENTS.
BE SURE TO UPDATE YOUR ONLINE BANKING PAYMENTS.
WE WILL START ASSEESSING LATE FEES ON 11/01/2021.

Amount

155.00 155.00-0.00 24.40 47.80 5.30

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

11/24/2021

Amount Now Due, 5% Late Penalty if Not Received by Due Date

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

Previous Units

CONSUMPTION INFORMATION

PG&E

Gallons

Days

Due Date

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

For Service At:

Account: 0 0 4 - 0 1 5 1 2 - 0 1

Amount 77.50

Amount \$ Paid:

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

City of Antioch PO BOX 981476

Please remit your payment to:

West Sacramento, CA 95798

lldalladadllaadddallallaadddaadddaladd

3225 WILBUR AVE

004015120100007750

Six Easy Ways to Pay

Through our Auto Draft program, you may have your monthly water utility bill automatically paid from your checking account or personal credit or debit/card with the following logos (Discover, MasterCard, Visa).

The City of Antioch does not charge for this service; however, your bank or credit card agency may charge you a fee for the transaction. Simply visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments and scroll down to print the Auto Pay Authorization Agreement form, complete and return this form in person or by mail to Finance Customer Service at 200 H St, Antioch, CA 94509.

To pay your bill online, visit our website at www.antiochca.gov, scroll down to the bottom right hand corner, click on Water Payments, log in and follow the simple prompts. A separate charge will appear on your statement for the convenience fee of \$1.00 (subject to change) payable to Municipal Online Payments. In addition, you may sign-up for FREE e-billing, see your account detail, transaction history, and change or update your phone number and view your consumption history. Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your bill by automated phone attendant, call Customer Service at (925) 779-7060 and follow the prompts to pay your EXTENDED CURRENT WATER Utility bill. This service is available 24 hours a day. Automated telephone payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

To pay your regular, non-delinquent bill by mail, checks or money orders may be mailed to:

City of Antioch PO BOX 6015 Artesia, CA 90702-6015

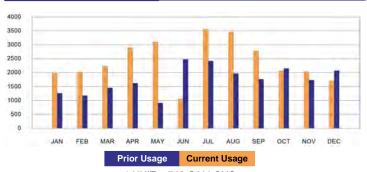
Please be sure to detach and return the bottom portion/stub of your water utility bill and write your account number in the memo field of your payment. Return your payment in our blue return envelope. Mail payment 7 days prior to due date to ensure timely delivery. No staples or paper clips please! For your protection, please do not mail cash.

Or you can always visit us in person at the City Hall building located at the corner of Third and H Streets, 200 H Street, on the ground floor, at the Customer Service Cashier's window. Our regular walk in business hours are 8:00 am - 5:00 pm, M - F. (subject to change), excluding weekends and holidays. Cash, check (except for deposits, arrangements or on a final or disconnection notice), money order, debit or credit cards (Discover, MasterCard, Visa with picture id) are accepted. To avoid long lines near payment deadlines, consider paying by one of our other convenient options.

You can use our convenient night drop box to pay by check or money order however checks are NOT accepted for deposits, extensions or on a final or disconnection notice. We have two boxes located at the City Hall building. One is a drive up box located mid parking lot at the center crosswalk. The other is located on the east side entrance to the right of the double glass entrance doors. Both are clearly marked as night drop boxes. Please be sure to include the water utility bill and write your prop Box account number in the memo field of your payment. Payments are promptly collected at 7:30 am each working weekday for processing the same business day. The City is **NOT** responsible for cash left in the night drop box. For your protection, we encourage you to purchase a cashier's check or money order instead.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$80.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. **Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	112485	114197	1712

SPECIAL MESSAGE

We will start assessing late fees Nov. 1st. Shutoffs due to nonpayment will resume Jan 1st. To set up a payment arrangement call 925-779-7060.

Pay your bill online with no fees visit https://www.municipalonlinepayments.com/antiochca

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 11/01/21 TO 12/01/21 **BILLING DATE:** 12/14/21

CURRENT CHARGES

WATER		\$7,789.60
USAGE TIER 1 = 1712 Units @ 4.55 / UNIT	\$7,789.60	
2 " WATER MAINT FEE		\$165.00
SEWER		\$2,247.32
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$12,090.50 TOTAL PAYMENTS (LAST PAYMENT 11/24/2021) (\$12,090.50)CURRENT CHARGES DUE 01/04/2022 \$10,227.02 **TOTAL BALANCE** \$10,227.02

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5%

LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01511-01 3225 Wilbur Ave 11/01/21 TO 12/01/21 12/14/21

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 01/04/2022** \$10,227.02 **TOTAL BALANCE** \$10,227.02

AMOUNT ENCLOSED

REMIT PAYMENT TO:

-|ՍլՍՍկՍԱվույլը|գրկլ|լ|ուկուՍ|||լուկիրգր|Ավլ||Ալ|

CITY OF ANTIOCH

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

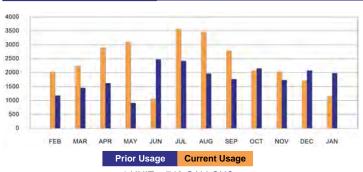
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current	Motor I	Information
Current	Merei	arnormation

<u>Meter</u>	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	114197	115362	1165

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 12/01/21 TO 01/01/22
BILLING DATE: 01/07/22

CURRENT CHARGES

WATER \$5,300.75
USAGE TIER 1 = 1165 Units @ 4.55 / UNIT \$5,300.75
2 " WATER MAINT FEE \$165.00
SEWER \$1,530.75
BACKFLOW DEVICE \$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$10,227.02

TOTAL PAYMENTS \$0.00

CURRENT CHARGES DUE 01/28/2022 \$7,021.60

TOTAL BALANCE \$17,248.62

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

004-01511-01 3225 Wilbur Ave 12/01/21 TO 01/01/22 01/07/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$10,227.02
CURRENT CHARGES DUE 01/28/2022 \$7,021.60
TOTAL BALANCE \$17,248.62

AMOUNT ENCLOSED

REMIT PAYMENT TO:

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 13

Exhibit 4 Quarterly Self-Monitoring Reports to DD, Notice of Violation/Corrective Action (Condition of Certification SOIL&WATER-4)

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 13

Exhibit 4a
Quarterly Self-Monitoring Reports to DD,
(Condition of Certification SOIL&WATER-4)

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

fectived 4/n/21

April 7, 2021

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending March 31, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2021, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Received asy

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

April 7, 2021

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending March 31, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2021, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in March 31, 2021

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business: PG&E Gateway Generating Station

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: 925-522-7805

Period Covered: Period ending: March 31, 2021

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisslom Date: Apr. 7, 2021

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun Fax # (925)756-1961	Pretreatment Phone: (925)756-1929
From: Tim Wisdom	Phone: (923)/30-1929
Company: Pacific Gas and Electric Company – C Period Covered: Period ending March 31, 2021	Sateway Generating Station
Industrial User Checklist for self –monitoring rep discharge permit issued by Delta Diablo Sanitation	- · · · · · · · · · · · · · · · · · · ·
Self-monitoring reports	
Flow discharge summary (Discharge Permi Calibration of flow meters, as required. (Sec SMR)	
Monitoring results- <u>All</u> required tests comp included, QA/QC, chain of custody (section	on F.7.) (See Attachment 8)
Violations (if applicable)	
All wastewater discharge exceedance are re Delta Diablo was contacted. (See Addition A follow-up report on characterization re-sa Corrective actions to resolve violation:	al Notes below)
Other violations - i.e. Reporting, spills to se	ewer, or prohibited discharges
Additional Notes: None	
Significant changes	
Anticipated changes that may alter the nature, qu	ality, or volume of the wastewater

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

PG&E Gateway Generating Station 0208841-C IU NAME: ID #: SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: **Power Generation Plant**

CITY: Antioch

DATE	3/1/2021	3/2/2021	3/2/2021	3/2/2021	3/2/2021		
TYPE	G	G	C24	G	G		
STATION	E-001	E-001	E-001	E-001	E-001		
SMP.BY	Muskan	Muskan	Muskan	Muskan	Muskan		
	Compliance	Compliance	Compliance	Compliance Semi-	Compliance		
PURPOSE	Quarterly (Q1)	Quarterly (Q1)	Quarterly (Q1)	annually (SA1)	Annually (A)		

Units: mg/L

PARAMETERS	<u>LIMITS</u>	G,						
FLOW, DAILY (gal)	51,120							
FLOW, MONTH (gal)								
рН	6-10 s.u.		7.91					
BOD				26.0				
COD				24.0				
TDS				610.0				
TSS				ND(<1.0)				
Arsenic	0.15			0.00084				
Cadmium	0.1			0.0016				
Chromium	0.5			ND(<0.0005)				
Copper	0.5			0.0039				
Iron				ND(<0.10)				
Lead	0.5			ND(<0.0005)				
Mercury	0.003			ND(<0.0002)				
Molybdenum				0.035				
Nickel	0.5			0.0020				
Selenium	0.25			ND(<0.0005)				
Silver	0.2			ND(<0.0005)				
Zinc	1.00			0.032				
Cyanide	0.2		0.0029					
Phenol	1.00		0.036					
Ammonia	200		46					
O&G Petro/Min (E1664A w/ Silica)	100	ND(<5.0)	ND(<5.0)					
O&G Animal/Vegetable Oil	300	ND(<5.1)	ND(<5.0)					
TTO EPA 608					ND(<0.0001)			
TTO EPA 624					0.00605			
TTO EPA 625					0.016099			
TTO	2.00				0.022149			
Sulfide						ND (<0.05)		
Sulfate						97		

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

January 2021-March 2021

		Industria	l Flow			Sanitary	Flow		
		-	Did it ever			Time Meter	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15	Daily Total (Gallons)	Instantaneous Flow (GPM)	went Bad Quality (minutes)	go over 35.5 GPM for 15	Daily Total (Gallons)	Site Total (Gallons)
			mins?			, ,	mins?		
1/1/2021	34.9	0.0	NO	22,615	0.0	0	NO		22,615
1/2/2021	36.9	0.0	NO	30,707	20.1	0	NO	358	31,066
1/3/2021	35.1 35.0	0.0	NO NO	23,494 33,455	0.0	0	NO NO		23,494
1/4/2021 1/5/2021	34.7	0.0	NO	38,982	19.5	0	NO	384	33,455 39,366
1/6/2021	37.6	0.0	NO	37,070	0.0	0	NO	304	37,070
1/7/2021	35.4	0.0	NO	34,696	19.6	0	NO	370	35,066
1/8/2021	35.3	1.0	NO	33,608	0.0	2	NO	0.0	33,608
1/9/2021	34.7	0.0	NO	48,247	0.0	0	NO		48,247
1/10/2021	34.7	0.0	NO	34,186	0.1	0	NO		34,186
1/11/2021	35.0	0.0	NO	27,847	19.5	0	NO	366	28,213
1/12/2021	34.8	0.0	NO	26,615	17.9	0	NO	359	26,974
1/13/2021	34.8	0.0	NO	31,715	0.0	0	NO	000	31,715
1/14/2021	34.7	0.0	NO	43,782	19.4	0	NO	368	44,149
1/15/2021 1/16/2021	34.6 34.9	0.0 0.0	NO NO	49,009 30,055	0.0	0	NO NO		49,009 30,055
1/17/2021	35.1	0.0	NO	19,478	19.4	0	NO	360	19,838
1/17/2021	34.7	0.0	NO	44,215	0.0	0	NO	300	44,215
1/19/2021	35.0	0.0	NO	19,223	19.7	0	NO	345	19,568
1/20/2021	34.8	0.0	NO	46,196	0.0	0	NO	0.0	46,196
1/21/2021	34.8	0.0	NO	32,105	18.1	0	NO	365	32,470
1/22/2021	34.7	0.0	NO	44,486	0.0	0	NO		44,486
1/23/2021	35.0	0.0	NO	16,877	20.3	0	NO	354	17,231
1/24/2021	34.9	0.0	NO	30,192	0.1	0	NO		30,192
1/25/2021	35.1	0.0	NO	16,216	0.1	0	NO	0.74	16,216
1/26/2021 1/27/2021	34.9	0.0	NO	21,201	19.7	0	NO	351	21,553
1/27/2021	34.7 34.5	0.0	NO NO	32,676 17,507	0.0 19.6	0	NO NO	362	32,676 17,869
1/29/2021	34.8	0.0	NO	49,007	0.0	0	NO	302	49,007
1/30/2021	41.1	8.0		34,059	19.8			366	34,425
1/31/2021	34.5	0.0	NO	25,587	0.0	0	NO	000	25,587
<u>'</u>	•			•		Max D	aily Flow (Lir	mit: 51,120):	49,009
								onthly Total:	999,816
2/1/2021	34.5	0.0	NO	14,747	0.0	0	NO	005	14,747
2/2/2021 2/3/2021	34.5 34.8	0.0	NO NO	32,428 42,666	20.2 0.0	0	NO NO	365	32,793 42,666
2/4/2021	34.8	0.0	NO	23,141	19.6	0	NO	369	23,510
2/5/2021	35.3	0.0	NO	23,070	0.1	0	NO	303	23,070
2/6/2021	35.1	0.0	NO	36,264	19.5	0	NO	363	36,628
2/7/2021	34.5	0.0	NO	43,969	0.1	0	NO	, , ,	43,969
2/8/2021	35.0	1.0	NO	31,364	0.0	2	NO		31,364
2/9/2021	35.3	0.0	NO	36,704	20.9	0	NO	371	37,075
2/10/2021	34.8	0.0	NO	38,730	0.0	0	NO	371	39,101
2/11/2021	35.1	0.0	NO	29,943	0.0	0	NO		29,943
2/12/2021	36.2	0.0	NO	35,276	19.5	0	NO	389	35,665
2/13/2021	34.5	0.0	NO	16,125	0.0	0	NO		16,125
2/14/2021 2/15/2021	34.5 34.8	0.0	NO NO	28,559 10,904	0.0	0	NO NO		28,559 10,904
2/15/2021	34.8	0.0	NO	35,875	19.1	0	NO	363	36,238
2/10/2021	34.8	0.0	NO	47,656	0.0	0	NO	303	47,656
2/17/2021	35.0	0.0	NO	45,329	17.9	0	NO	356	45,685
2/19/2021	35.3	0.0	NO	48,057	0.0	0	NO	300	48,057
2/20/2021	35.1	0.0	NO	14,664	0.0	0	NO		14,664

PG&E Gateway Generating Station

Discharge Flow Data

January 2021-March 2021

	Industrial Flow			Sanitary Flow					
			Did it ever			Time Meter	Did it ever		
	Instantaneous	Time Over	go over	Daily Total	Instantaneous	went Bad	go over	Daily Total	Site Total
Date	Flow (GPM)	35.5 GPM	35.5 GPM	(Gallons)	Flow (GPM)	Quality	35.5 GPM	(Gallons)	(Gallons)
	TIOW (GFIVI)	(minutes)	for 15	(Gallotis)	TIOW (GFIVI)	(minutes)	for 15	(Gallolis)	(Gallolis)
			mins?			(IIIIIutes)	mins?		
2/21/2021	35.3	0.0	NO	24,962	19.3	0	NO	350	25,312
2/22/2021	34.6	0.0	NO	49,005	0.0	0	NO		49,005
2/23/2021	34.7	0.0	NO	37,781	19.1	0	NO	371	38,152
2/24/2021	34.8	0.0	NO	43,652	0.0	0	NO		43,652
2/25/2021	34.5	0.0	NO	46,935	20.4	0	NO	373	47,307
2/26/2021	34.9	0.0	NO	42,645	0.0	0	NO		42,645
2/27/2021	34.5	0.0	NO	31,163	20.6		NO	349	31,512
2/28/2021	34.5	0.0	NO	48,996	0.0	0	NO		48,996
						Max D		mit: 51,120):	49,005
_								onthly Total:	965,002
3/1/2021	34.7	0.0	NO	48,787	20.2	0	NO	212	49,000
3/2/2021	34.6	0.0	NO	40,112	0.1	0	NO		40,112
3/3/2021	35.2	0.0	NO	18,973	21.3	0	NO	377	19,350
3/4/2021	35.1	0.0	NO	44,157	0.0	0	NO		44,157
3/5/2021	34.7	0.0	NO	38,701	20.2	0	NO	362	39,063
3/6/2021	35.1	0.0	NO	33,908	0.0	0	NO		33,908
3/7/2021	35.2	0.0	NO	31,953	0.0	0	NO		31,953
3/8/2021	34.5	1.0	NO	46,553	19.8	0		371	46,923
3/9/2021	35.3	0.0	NO	27,304	0.0	0	NO		27,304
3/10/2021	35.0	0.0	NO	48,327	19.6	0	NO		48,327
3/11/2021	34.6	0.0	NO	49,013	0.0	0	NO		49,013
3/12/2021	34.5	0.0	NO	48,626	19.5	0	NO	367	48,993
3/13/2021	34.7	0.0	NO	45,428	0.0	0	NO		45,428
3/14/2021	34.7	60.0	NO NO	42,032	0.0	60	NO	252	42,032
3/15/2021 3/16/2021	34.6 34.6	0.0 0.0	NO	48,625 49,003	18.4 0.0	0	NO NO	353	48,978 49,003
3/17/2021	34.6	0.0	NO	49,003	20.8	0	NO	370	48,233
3/17/2021	35.0	0.0	NO	15,347	0.0	0	NO	370	15,347
3/19/2021	35.1	0.0	NO	35,839	19.7	0		356	36,196
3/20/2021	35.1		NO	29,964	0.0			330	29,964
3/21/2021	35.6	0.0	NO	25,778	0.0		NO		25,778
3/22/2021	34.9	0.0	NO	41,405	19.5		NO	368	41,772
3/23/2021	35.0	0.0	NO	36,744	0.0	0	NO	000	36,744
3/24/2021	34.9	0.0	NO	33,831	19.5		NO	362	34,193
3/25/2021	35.1	0.0	NO	30,862	0.0	0	NO	002	30,862
3/26/2021	34.9	0.0	NO	33,322	0.0	0			33,322
3/27/2021	35.3	0.0	NO	23,414	19.3	0	NO	352	23,766
3/28/2021	35.2	0.0	NO	35,522	0.0	0			35,522
3/29/2021	35.5	0.0	NO	37,571	0.0	0			37,571
3/30/2021	35.4	0.0	NO	36,975	21.0	0		355	37,330
3/31/2021	35.2	0.0		49,008	0.1	0			49,008
			-	-,	J.	_		nit: 51 120):	40.012

Max Daily Flow (Limit: 51,120):

49,013

Monthly Total:

1,179,151

Note:

¹⁾ The plant PI system detected 60 minutes of blank data entry on 3/14/2021 corresponding to the DST time change, but no data was lost.

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name:	PG&E Gateway Generating Station
Address:	3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2021**

Month	Flow (gallons)	Due Date
January	999,816	4/15/2021
February	965,002	4/15/2021
March	1,179,151	4/15/2021
April		
May		
June		
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report January 2021 to March 2021

	WSAC Operation
Month	Hours of Operation
January-21	5.67
February-21	6.25
March-21	15.58
April-21	
May-21	
June-21	
July-21	
August-21	
September-21	
October-21	
November-21	
December-21	

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report January 2021 to March 2021

	WSAC Operation
Month	Average Daily Blowdown Cycles
1/17/20201	1.69
February-21	4.50
March-21	4.72
April-21	
May-21	
June-21	
July-21	
August-21	
September-21	
October-21	
November-21	
December-21	

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a Laboratory Results Annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2103073

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Annual Sampling (March 2021)

Project Received: 03/02/2021

Analytical Report reviewed & approved for release on 03/05/2021 by:

Jennifer Lagerbom

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: Annual Sampling (March 2021)

WorkOrder: 2103073

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Annual Sampling (March 2021)

WorkOrder: 2103073

Analytical Qualifiers

S Surrogate recovery outside accepted recovery limits.

c1 Surrogate recovery outside of the control limits due to the dilution of the sample.

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/03/2021

Project: Annual Sampling (March 2021)

WorkOrder: 2103073

Extraction Method: E300.1

Analytical Method: E300.1 **Unit:** mg/L

Inorganic Anions by IC										
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID				
E-001	2103073-001	B Water	03/02/2021	10:35	IC4 03042115.D	216496				
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		<u>Date Analyzed</u>				
Sulfate	97		10	100		03/03/2021 14:46				
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>							
Malonate	0	S	90-115			03/03/2021 14:46				
Analyst(s): AO			Analytical Com	ments: c1						

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 2103073

 Date Received:
 03/02/2021 12:45
 Extraction Method:
 SM4500-S⁻² D-2000

 Date Prepared:
 03/03/2021
 Analytical Method:
 SM4500 S⁻² D

Project: Annual Sampling (March 2021) Unit: mg/L

Total Sulfide - S

Client ID	Lab ID	Matrix Date Collected		Lab ID Matrix		Instrument	Batch ID
E-001	2103073-001A	Water	03/02/2021	03/02/2021 10:35 SPECTROPHOTOMETER		216570	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Dat</u>	e Analyzed	
Total Sulfide	ND		0.050	1	03/	03/2021 15:18	

Analyst(s): PHU

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 2103073

Date Prepared: 03/02/2021 BatchID: 216496

Date Analyzed: 03/02/2021 Extraction Method: F300.1

Date Analyzed:03/02/2021Extraction Method:E300.1Instrument:IC4Analytical Method:E300.1Matrix:WaterUnit:mg/L

Project: Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216496

	QC Sur	QC Summary Report for E300.1									
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC		IB SS imits		
Sulfate	ND		0.0440	0.100		-	-	-			
Surrogate Recovery											
Malonate	0.104					0.1	104	9	0-115		
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit		
Sulfate	1.00	1.01	1		100	101	85-115	0.457	20		
Surrogate Recovery											
Malonate	0.0995	0.0997	0.10		99	100	90-115	0.237	20		

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/03/2021 **Date Analyzed:** 03/03/2021

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Annual Sampling (March 2021)

WorkOrder: 2103073 **BatchID:** 216570

Extraction Method: SM4500-S⁻² D-2000

Analytical Method: SM4500 S⁻² D

Unit: mg/L

Sample ID: MB/LCS/LCSD-216570

2103073-001AMS/MSD

Analyte	MB Result	MDL	RL			
Total Sulfide	ND	0.00950	0.0500	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Sulfide	0.474	0.476	0.50	95	95	80-120	0.226	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Total Sulfide	1	0.146	0.144	0.50	ND	29,F1	29,F1	80-120	0.988	20

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Email

liantCada. PCFA

□HardCopy

WorkOrder: 2103073	ClientCode:	PGEA
--------------------	-------------	-------------

Detection Summary Excel

Dry-Weight

Report to:

Angel Espiritu
PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: A1HE@pge.com; J5Ld@pge.com; tlWY@p

□ EDF

PO:

□WaterTrax

Project: Annual Sampling (March 2021)

WriteOn

Angel Espiritu

Bill to:

PG&E Gateway Generating Station

3225 Wilbur Avenue

Antioch, CA 94509

Date Received:

☐ ThirdParty

Requested TAT:

03/02/2021

1 of 1

□ J-flag

5 days;

Date Logged: 03/02/2021

					Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4		5	6	7	8	9	10	11	12
2103073-001	E-001	Water	3/2/2021 10:35		В	Α	Α										

EQuIS

Test Legend:

1 300_1_W	2 PRDisposal Fee	3 SULFIDE_W	4
5	6	7	8
9	10	11	12

Project Manager: Angela Rydelius Prepared by: Nancy Palacios

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Annual Sampling (March 2021)	Work Order: 2103073
--------------	---------------------------------	----------	------------------------------	----------------------------

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments:

Date Logged: 3/2/2021

	Water ⁻	Trax WriteOn EDF	Exc	el EQuis	y Emai	l ⊟HardCop	y 📋	ThirdParty	J-flag	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Head Dry- Space Weigh		TAT	Test Due Date	Sediment Content	Hold SubOut
001A E-001	Water	SM4500S2D (Total Sulfide)	1	250mL HDPE w/ NaOH		3/2/2021 10:35	5 days	3/9/2021	Present	
001B E-001	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	250mL HDPE, unprsv.		3/2/2021 10:35	5 days	3/9/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

2103073

-		-						-	-			SERVICE OF THE PERSON NAMED IN	interior	-	- Contract		-	-			dibeats		_		menut	P	16	10	1		1	/				
	Web Tele	site: ephor	PI www.mcca ie: (877) 2	TTSBURG	OW PA	ASS ROA 14565-170 mail: ma	D 1 in @m Fax: (5	ecan 925)	1pbe 252	:II.co							RN A		OU	ND DF	TII	ME	PDI	F [RUS	H Ex	24 cel	HR	1 1	48 I Wr	HR ite	On	2 HR	W) [
	To: Angel	_				Bill To:	PG&	E G	atev	vay					L	_			_	Ar	aly	sis F	Requ	uest	_								Ren	nark	(S	
Compa	ny: PG&E	Gate	eway Gen	erating S	statio	n									-				1																	
E-Mail:	abe4@pge	com	ATHE	nge.com	. 151	danee	com.	ilw	Va	Dec.	con												-		İ											
THE RESERVE OF THE PARTY OF THE	25) 522-783	-	-			Fax: ()			I'A					1																					
	Name: A					ch	20	12	1))										1	1													
	Location:			Flow																		İ	- 1													
Sample	Signature		usken	Envi	ron	restal	Son	10-	4		L	1									1															
		Composite	SAMP	LING		2	Ma	trix	MI	ЕТНО	DD P	RES	ERV	VED							-															
SAMPLE ID	LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	Host.	NaOH	HAC	Zinc Acetate	Sulfide (EPA 376.2)	Sulfate (FPA 300 1)							-													
E-001		G	3/2/21	10:20	T	250-ml	X		H	X	X	+	+	X	X	+	+	+	+	+	+	+	+	+	+	-	-		-		-		-			
E-001		G				poly 250-ml	X		X	X	+	+	+	+		X	-	-	-	+	-	+	+	+	-	-				-	-				-	-
		-	3/2/2	10:33	-	poly	-	-		+	+	+	+	+		+	-	+	-+-	+	-	+	+	+	-								-	-		-
-					<u> </u>		 	-	\vdash	-	-	+	+	\vdash		-			-	-	1	+	-	1	-							_				
							_	-	H	-	-	-	-			-	1	_	-			-	-	-	-	_									-	
				7	_				\sqcup	-	1	+	-			_		-	1	-	-		1	1	-			_								
					_		_			-	+-	-	-	-		_		-	-	-		-	-	1	1											
										-	-	-	-			_			1	-			1	1	_								-			
										1	_	-	-						-	_			1	1												
											1	-	_			_		1				1		1	1											
										_	_							1																		
																		1					1													
	10																																			
Relinquist	red By:		Date:	Time:	(ived By:		1	-	1	,		29	7	-ICI	E/t°_	CONI	TIL)N	2	,0	C	se!	t A	M	•		CC	MM	ENT	rs:					
Reimquish	red By:		3/2/2\ Date:	Time:	-	ived By:	1	-		1	4	- 17	12	12	HE DE	CHL PRO	ORIN PRIA	E AB	SENT D IN ONT	LAE																
Relinquish	ed By:		Date:	Time:	Rece	ived By:											RVED		VOA		- 0&G		IET/		o	THE	ER									

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Annual Sampling (March 2021)			Date and Time Received: Date Logged:	3/2/2021 12:45 3/2/2021
-				Received by:	Lilly Ortiz
WorkOrder №: Carrier:	2103073 Matrix: Water Client Drop-In			Logged by:	Nancy Palacios
	Chain of C	ustody	/ (COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	•	No 🗆	
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗆	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
COC agrees with	Quote?	Yes		No 🗆	NA 🗹
	Sampl	le Rece	eipt Informati	<u>on</u>	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contained	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	•	No 🗌	
Sample container	rs intact?	Yes	•	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservation	on and	Hold Time (I	HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗆	NA 🗌
Samples Receive		Yes	✓	No 🗆	
	(Ісе Тур	e: WE	TICE)		
Sample/Temp Bla	ank temperature		Temp: 2°0	0	NA 🗔
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	•	No 🗌	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes		No 🗆	NA 🗸
UCMR Samples:				🗖	🗖
	acceptable upon receipt (200.8: ≤2; 525.3: ≤4; 3; 544: <6.5 & 7.5)?	Yes		No 🗌	NA 🗹
Free Chlorine to	ested and acceptable upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹
Comments:	=========			=======	=======

Attachment 8b Semi-annual Monitoring of Combined Site Stream (E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2103076

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Semi-Annual Sampling (March 2021)

Project Received: 03/02/2021

Analytical Report reviewed & approved for release on 03/10/2021 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/04/2021

Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3 **Unit:** µg/L

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	I	Date Coll	ected	Instrument	Batch ID
E-001	2103076-001D	Water	C	3/02/2021	10:35	GC20 03052137.D	216648
<u>Analytes</u>	Result		<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Aldrin	ND		0.00028	0.0010	1		03/05/2021 19:46
а-ВНС	ND		0.00031	0.0010	1		03/05/2021 19:46
b-BHC	ND		0.00069	0.0010	1		03/05/2021 19:46
d-BHC	ND		0.00014	0.0010	1		03/05/2021 19:46
g-BHC	ND		0.00045	0.0010	1		03/05/2021 19:46
Chlordane (Technical)	ND		0.0023	0.020	1		03/05/2021 19:46
p,p-DDD	ND		0.00011	0.0010	1		03/05/2021 19:46
p,p-DDE	ND		0.00018	0.0010	1		03/05/2021 19:46
p,p-DDT	ND		0.00017	0.0010	1		03/05/2021 19:46
Dieldrin	ND		0.00014	0.0010	1		03/05/2021 19:46
Endosulfan I	ND		0.00011	0.0010	1		03/05/2021 19:46
Endosulfan II	ND		0.00046	0.0010	1		03/05/2021 19:46
Endosulfan sulfate	ND		0.00033	0.0020	1		03/05/2021 19:46
Endrin	ND		0.00018	0.0010	1		03/05/2021 19:46
Endrin aldehyde	ND		0.00053	0.0010	1		03/05/2021 19:46
Heptachlor	ND		0.00041	0.0010	1		03/05/2021 19:46
Heptachlor epoxide	ND		0.00025	0.0010	1		03/05/2021 19:46
Toxaphene	ND		0.0020	0.020	1		03/05/2021 19:46
Aroclor1016	ND		0.0019	0.020	1		03/05/2021 19:46
Aroclor1221	ND		0.0024	0.020	1		03/05/2021 19:46
Aroclor1232	ND		0.0038	0.020	1		03/05/2021 19:46
Aroclor1242	ND		0.0028	0.020	1		03/05/2021 19:46
Aroclor1248	ND		0.0018	0.020	1		03/05/2021 19:46
Aroclor1254	ND		0.0015	0.020	1		03/05/2021 19:46
Aroclor1260	ND		0.0028	0.020	1		03/05/2021 19:46
PCBs, total	ND		NA	0.020	1		03/05/2021 19:46
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>			
Decachlorobiphenyl	73			60-130			03/05/2021 19:46
Analyst(s): CK							

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/03/2021

Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076

Extraction Method: E624.1

Analytical Method: E624.1

Unit: $\mu g/L$

Acrolein, Acrylonitrile, & 2-Chloroethyl Vinyl Ether

	, ,		·			
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2103076-001B	Water	03/02/202	1 10:35	GC45 03032106.D	216568
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Acrolein (Propenal)	ND		5.0	1		03/03/2021 10:23
Acrylonitrile	ND		2.0	1		03/03/2021 10:23
2-Chloroethyl Vinyl Ether	ND		1.0	1		03/03/2021 10:23
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	97		65-165			03/03/2021 10:23
Analyst(s): KF						

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/03/2021

Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076

Extraction Method: E624.1 **Analytical Method:** E624.1

Unit: μg/L

Volatile Organics

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2103076-001A	Water	03/02/2021	10:35	GC28 03032114.D	216576
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	ND		0.50	1		03/03/2021 15:58
Bromodichloromethane	2.2		0.50	1		03/03/2021 15:58
Bromoform	0.61		0.50	1		03/03/2021 15:58
Bromomethane	ND		0.50	1		03/03/2021 15:58
Carbon tetrachloride	ND		0.50	1		03/03/2021 15:58
Chlorobenzene	ND		0.50	1		03/03/2021 15:58
Chloroethane	ND		0.50	1		03/03/2021 15:58
Chloroform	0.94		0.50	1		03/03/2021 15:58
Chloromethane	ND		0.50	1		03/03/2021 15:58
Dibromochloromethane	2.3		0.50	1		03/03/2021 15:58
1,2-Dichlorobenzene	ND		0.50	1		03/03/2021 15:58
1,3-Dichlorobenzene	ND		0.50	1		03/03/2021 15:58
1,4-Dichlorobenzene	ND		0.50	1		03/03/2021 15:58
1,1-Dichloroethane	ND		0.50	1		03/03/2021 15:58
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		03/03/2021 15:58
1,1-Dichloroethene	ND		0.50	1		03/03/2021 15:58
trans-1,2-Dichloroethene	ND		0.50	1		03/03/2021 15:58
1,2-Dichloropropane	ND		0.50	1		03/03/2021 15:58
cis-1,3-Dichloropropene	ND		0.50	1		03/03/2021 15:58
trans-1,3-Dichloropropene	ND		0.50	1		03/03/2021 15:58
Ethylbenzene	ND		0.50	1		03/03/2021 15:58
Methylene chloride	ND		2.0	1		03/03/2021 15:58
1,1,2,2-Tetrachloroethane	ND		0.50	1		03/03/2021 15:58
Tetrachloroethene	ND		0.50	1		03/03/2021 15:58
Toluene	ND		0.50	1		03/03/2021 15:58
1,1,1-Trichloroethane	ND		0.50	1		03/03/2021 15:58
1,1,2-Trichloroethane	ND		0.50	1		03/03/2021 15:58
Trichloroethene	ND		0.50	1		03/03/2021 15:58
Trichlorofluoromethane	ND		0.50	1		03/03/2021 15:58
Vinyl chloride	ND		0.50	1		03/03/2021 15:58
Surrogates	REC (%)		<u>Limits</u>			
Dibromofluoromethane	104		70-130			03/03/2021 15:58
Toluene-d8	94		70-130			03/03/2021 15:58
4-BFB	96		70-130			03/03/2021 15:58
Analyst(s): TW						

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/02/2021

Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2103076-001C	Water	03/02/2021	10:35	GC17 03082112.D	216474
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acenaphthene	ND		0.048	10		03/08/2021 14:28
Acenaphthylene	ND		0.048	10		03/08/2021 14:28
Anthracene	ND		0.096	10		03/08/2021 14:28
Benzidine	ND		48	10		03/08/2021 14:28
Benzo (a) anthracene	ND		0.48	10		03/08/2021 14:28
Benzo (a) pyrene	ND		0.048	10		03/08/2021 14:28
Benzo (b) fluoranthene	ND		0.19	10		03/08/2021 14:28
Benzo (g,h,i) perylene	ND		0.19	10		03/08/2021 14:28
Benzo (k) fluoranthene	ND		0.096	10		03/08/2021 14:28
Bis (2-chloroethoxy) Methane	ND		9.6	10		03/08/2021 14:28
Bis (2-chloroethyl) Ether	ND		0.048	10		03/08/2021 14:28
Bis (2-chloroisopropyl) Ether	ND		0.48	10		03/08/2021 14:28
Bis (2-ethylhexyl) Phthalate	ND		1.9	10		03/08/2021 14:28
4-Bromophenyl Phenyl Ether	ND		9.6	10		03/08/2021 14:28
Butylbenzyl Phthalate	ND		0.48	10		03/08/2021 14:28
4-Chloro-3-methylphenol	ND		9.6	10		03/08/2021 14:28
2-Chloronaphthalene	ND		9.6	10		03/08/2021 14:28
2-Chlorophenol	ND		0.48	10		03/08/2021 14:28
4-Chlorophenyl Phenyl Ether	ND		9.6	10		03/08/2021 14:28
Chrysene	ND		0.096	10		03/08/2021 14:28
Dibenzo (a,h) anthracene	ND		0.096	10		03/08/2021 14:28
Di-n-butyl Phthalate	ND		0.48	10		03/08/2021 14:28
1,2-Dichlorobenzene	ND		9.6	10		03/08/2021 14:28
1,3-Dichlorobenzene	ND		9.6	10		03/08/2021 14:28
1,4-Dichlorobenzene	ND		9.6	10		03/08/2021 14:28
3,3-Dichlorobenzidine	ND		0.19	10		03/08/2021 14:28
2,4-Dichlorophenol	0.099		0.096	10		03/08/2021 14:28
Diethyl Phthalate	ND		0.48	10		03/08/2021 14:28
2,4-Dimethylphenol	ND		9.6	10		03/08/2021 14:28
Dimethyl Phthalate	ND		0.096	10		03/08/2021 14:28
2,4-Dinitrophenol	ND		19	10		03/08/2021 14:28
2,4-Dinitrotoluene	ND		0.48	10		03/08/2021 14:28
2,6-Dinitrotoluene	ND		0.48	10		03/08/2021 14:28
Di-n-octyl Phthalate	ND		0.48	10		03/08/2021 14:28
1,2-Diphenylhydrazine	ND		9.6	10		03/08/2021 14:28
Fluoranthene	ND		0.096	10		03/08/2021 14:28
Fluorene	ND		0.096	10		03/08/2021 14:28

(Cont.)

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/02/2021

Semi-Annual Sampling (March 2021) **Project:**

WorkOrder: 2103076

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Semi-Volatile Organics												
Lab ID	Matrix	Date Colle	ected	Instrument	Batch II							
2103076-001C	Water	03/02/2021	10:35	GC17 03082112.D	216474							
<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed							
ND		0.048	10		03/08/2021 14:28							
ND		0.096	10		03/08/2021 14:28							
ND		48	10		03/08/2021 14:28							
ND		0.48	10		03/08/2021 14:28							
ND		0.19	10		03/08/2021 14:28							
ND		19	10		03/08/2021 14:28							
ND		9.6	10		03/08/2021 14:28							
ND		0.48	10		03/08/2021 14:28							
ND		9.6	10		03/08/2021 14:28							
ND		48	10		03/08/2021 14:28							
ND		48	10		03/08/2021 14:28							
ND		9.6	10		03/08/2021 14:28							
ND		9.6	10		03/08/2021 14:28							
ND		2.4	10		03/08/2021 14:28							
ND		0.19	10		03/08/2021 14:28							
16		1.9	10		03/08/2021 14:28							
ND		0.096	10		03/08/2021 14:28							
ND		9.6	10		03/08/2021 14:28							
ND		48	10		03/08/2021 14:28							
ND		0.096	10		03/08/2021 14:28							
REC (%)		<u>Limits</u>										
40		20-130			03/08/2021 14:28							
25		20-130			03/08/2021 14:28							
77		30-130			03/08/2021 14:28							
80		40-130			03/08/2021 14:28							
74		40-130			03/08/2021 14:28							
58		40-130			03/08/2021 14:28							
	2103076-001C Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Result	Result RL ND 0.048 ND 0.096 ND 48 ND 0.48 ND 0.19 ND 19 ND 9.6 ND 9.6 ND 48 ND 48 ND 48 ND 9.6 ND 9.6 ND 9.6 ND 9.6 ND 0.19 16 1.9 ND 0.096 ND 9.6 ND 9.6 ND 0.096 REC (%) Limits 40 20-130 25 20-130 77 30-130 80 40-130 74 40-130	Result RL DE ND 0.048 10 ND 0.096 10 ND 48 10 ND 0.48 10 ND 0.19 10 ND 19 10 ND 19 10 ND 9.6 10 ND 9.6 10 ND 9.6 10 ND 48 10 ND 48 10 ND 9.6 10 ND 0.19 10 ND 0.19 10 ND 0.096 10 ND 9.6 10 ND 0.096 10 ND 0.096 10 ND 0.096 10 ND	Result RL DE ND 0.048 10 ND 0.096 10 ND 0.096 10 ND 48 10 ND 0.48 10 ND 0.19 10 ND 19 10 ND 19 10 ND 0.48 10 ND 0.48 10 ND 0.6 10 ND 48 10 ND 48 10 ND 48 10 ND 9.6 10 ND 9.6 10 ND 9.6 10 ND 0.19 10 ND 0.19 10 ND 0.096 10 ND 0.096 10 ND 48 10 ND 0.096 10 ND 0.096 10 ND							

Analyst(s): HD

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/04/2021

Date Analyzed: 03/05/2021

Instrument: GC20 **Matrix:** Water

Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076

BatchID: 216648

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

 $\textbf{Unit:} \hspace{1cm} \mu g/L$

Sample ID: MB/LCS/LCSD-216648

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Aldrin	ND	0.000280	0.00100	-	-	-
a-BHC	ND	0.000310	0.00100	-	-	-
b-BHC	ND	0.000690	0.00100	-	-	-
d-BHC	ND	0.000140	0.00100	-	-	-
g-BHC	ND	0.000450	0.00100	-	-	-
a-Chlordane	ND	0.000850	0.00100	-	-	-
g-Chlordane	ND	0.000150	0.00100	-	-	-
p,p-DDD	ND	0.000110	0.00100	-	-	-
p,p-DDE	ND	0.000180	0.00100	-	-	-
p,p-DDT	0.000497,J	0.000170	0.00100	-	-	-
Dieldrin	ND	0.000140	0.00100	-	-	-
Endosulfan I	ND	0.000110	0.00100	-	-	-
Endosulfan II	ND	0.000460	0.00100	-	-	-
Endosulfan sulfate	ND	0.000330	0.00200	-	-	-
Endrin	ND	0.000180	0.00100	-	-	-
Endrin aldehyde	ND	0.000530	0.00100	-	-	-
Endrin ketone	ND	0.000260	0.00100	-	-	-
Heptachlor	ND	0.000410	0.00100	-	-	-
Heptachlor epoxide	ND	0.000250	0.00100	-	-	-
Methoxychlor	ND	0.000120	0.00100	-	-	-
Toxaphene	ND	0.00200	0.0200	-	-	-
Aroclor1016	ND	0.00190	0.0200	-	-	-
Aroclor1221	ND	0.00240	0.0200	-	-	-
Aroclor1232	ND	0.00380	0.0200	-	-	-
Aroclor1242	ND	0.00280	0.0200	-	-	-
Aroclor1248	ND	0.00180	0.0200	-	-	-
Aroclor1254	ND	0.00150	0.0200	-	-	-
Aroclor1260	ND	0.00280	0.0200	-	-	-
Surrogate Recovery						
Decachlorobiphenyl	0.0366			0.05	73	60-130

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/04/2021

Date Analyzed: 03/05/2021

Instrument: GC20 **Matrix:** Water

Semi-Annual Sampling (March 2021) **Project:**

WorkOrder: 2103076

BatchID: 216648

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3 Unit:

Sample ID: MB/LCS/LCSD-216648

QC Summary Report for E608.3 w/ Florisil Clean-up **RPD Analyte LCS LCSD SPK LCS LCSD** LCS/LCSD RPD %REC Result Result Val %REC Limits Limit 0.0372 0.0385 0.050 74 77 60-130 3.52 20 Aldrin a-BHC 0.0516 0.0539 0.050 103 108 70-130 4.38 20 70-130 b-BHC 0.0391 0.0408 0.050 78 82 4.25 20 d-BHC 0.0389 0.0405 0.050 78 81 70-130 4.03 20 g-BHC 0.0357 0.0384 0.050 71 77 60-130 7.29 20 a-Chlordane 0.0361 0.0379 0.050 72 76 60-130 4.76 20 g-Chlordane 0.0347 0.0367 0.050 69,F2 73 70-130 5.61 20 p,p-DDD 0.0395 0.0430 0.050 79 86 70-130 8.50 20 20 p,p-DDE 0.0355 0.0374 0.050 71 75 70-130 5.15 p,p-DDT 0.0387 0.0408 0.050 77 82 70-130 5.36 20 82 88 20 Dieldrin 0.0408 0.0438 0.050 70-130 7.19 Endosulfan I 0.0369 0.0394 0.050 74 79 70-130 6.71 20 70-130 5.73 20 Endosulfan II 0.0360 0.0381 0.050 72 76 0.0364 0.0385 73 77 70-130 5.59 20 Endosulfan sulfate 0.050 88 70-130 20 Endrin 0.0415 0.0440 0.050 83 6.01 79 84 60-130 5.98 20 Endrin aldehyde 0.0396 0.0421 0.050 Endrin ketone 0.0376 0.0403 0.050 75 81 60-130 6.80 20 20 0.0467 0.0483 0.050 93 97 70-130 3.45 Heptachlor Heptachlor epoxide 0.0349 0.0361 0.050 70 72 70-130 3.25 20 0.0444 0.0475 0.050 89 95 70-130 6.70 20 Methoxychlor Aroclor1016 84 70-130 20 0.122 0.126 0.15 82 3.02 Aroclor1260 0.109 0.111 0.15 73 74 70-130 1.37 20 **Surrogate Recovery**

Decachlorobiphenyl 0.0323 0.0355 0.050 65 71 60-130 9.61 20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:03/03/2021Date Analyzed:03/03/2021Instrument:GC45Matrix:Water

Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076 **BatchID:** 216568

Extraction Method: E624.1 **Analytical Method:** E624.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-216568

2103076-001BMS/MSD

		QC Sur	nmary R	eport fo	r E624.1					
Analyte		MB Result		MDL	RL		SPK Val	MB SS %REC		IB SS imits
Acrolein (Propenal)		ND		1.50	5.00		-	-	-	
Acrylonitrile		ND		0.520	2.00		-	-	-	
2-Chloroethyl Vinyl Ether		ND		0.560	1.00		-	-	-	
Surrogate Recovery										
Dibromofluoromethane		23.8					25	95	7	6-110
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acrolein (Propenal)		18.9	19.4	20		95	97	71-140	2.42	20
Acrylonitrile		20.2	20.8	20		101	104	67-145	3.12	20
2-Chloroethyl Vinyl Ether		22.1	20.8	20		111	104	70-124	6.11	20
Surrogate Recovery										
Dibromofluoromethane		23.7	23.6	25		95	94	76-110	0.480	20
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acrolein (Propenal)	1	3.38	0.812	20	ND	17,F1	4,F1	24-149	123,F1	20
Acrylonitrile	1	20.0	18.7	20	ND	100	94	50-151	6.47	20
2-Chloroethyl Vinyl Ether	1	26.4	25.8	20	ND	132	129	66-140	2.53	20
Surrogate Recovery										
Dibromofluoromethane	1	24.4	24.3	25		98	97	78-112	0.277	20

Quality Control Report

Client: PG&E Gateway Generating Station

WorkOrder: 2103076 **Date Prepared:** 03/03/2021 **BatchID:** 216576 **Date Analyzed:** 03/03/2021 **Extraction Method:** E624.1 **Instrument:** GC28 **Analytical Method:** E624.1 **Matrix:** Unit: Water

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216576

2103076-001AMS/MSD

QC Summary Report for E624.1

t-Butyl alcohol (TBA) ND	0.0360 0.0270 0.210 0.270	0.500 0.500 0.500	SPK Val - -	MB SS %REC	MB SS Limits
Bromodichloromethane ND Bromoform ND Bromomethane ND t-Butyl alcohol (TBA) ND	0.0270 0.210 0.270	0.500 0.500	-		-
Bromoform ND Bromomethane ND t-Butyl alcohol (TBA) ND	0.210 0.270	0.500			
Bromomethane ND t-Butyl alcohol (TBA) ND	0.270			-	-
t-Butyl alcohol (TBA) ND			-	-	-
	0.00	0.500	-	-	-
Carbon tetrachloride ND	2.20	5.00	-	-	-
	0.0470	0.500	-	-	-
Chlorobenzene ND	0.0870	0.500	-	-	-
Chloroethane ND	0.160	0.500	-	-	-
Chloroform ND	0.0850	0.500	-	-	-
Chloromethane ND	0.0960	0.500	-	-	-
Dibromochloromethane ND	0.0830	0.500	-	-	-
1,2-Dibromoethane (EDB) ND	0.0750	0.500	-	-	-
1,2-Dichlorobenzene ND	0.0700	0.500	-	-	-
1,3-Dichlorobenzene ND	0.0840	0.500	-	-	-
1,4-Dichlorobenzene ND	0.0680	0.500	-	-	-
1,1-Dichloroethane ND	0.0720	0.500	-	-	-
1,2-Dichloroethane (1,2-DCA) ND	0.0180	0.500	-	-	-
1,1-Dichloroethene ND	0.0150	0.500	-	-	-
trans-1,2-Dichloroethene ND	0.110	0.500	-	-	-
1,2-Dichloropropane ND	0.0110	0.500	-	-	-
cis-1,3-Dichloropropene ND	0.100	0.500	-	-	-
trans-1,3-Dichloropropene ND	0.130	0.500	-	-	-
Ethylbenzene ND	0.0810	0.500	-	-	-
Methyl-t-butyl ether (MTBE) ND	0.120	0.500	-	-	-
Methylene chloride ND	1.00	2.00	-	-	-
Styrene ND	0.470	2.00	-	-	-
1,1,2,2-Tetrachloroethane ND	0.0350	0.500	-	-	-
Tetrachloroethene ND	0.0790	0.500	-	-	-
Toluene ND	0.190	0.500	-	-	-
1,2,4-Trichlorobenzene ND	0.200	0.500	-	-	-
1,1,1-Trichloroethane ND	0.0740	0.500	-	-	-
1,1,2-Trichloroethane ND	0.150	0.500	-	-	-
Trichloroethene	0.190	0.500	-	-	-
Trichlorofluoromethane ND	0.0980	0.500	-	-	-
Vinyl chloride ND	0.0520	0.500	-	-	-
m,p-Xylene ND	0.150	0.500	-	-	-
o-Xylene ND	0.0700	0.500	-	-	-

Water

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2103076Date Prepared:03/03/2021BatchID:216576Date Analyzed:03/03/2021Extraction Method:E624.1Instrument:GC28Analytical Method:E624.1

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216576

2103076-001AMS/MSD

QC Summary Report for E624.1										
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits				
Surrogate Recovery										
Dibromofluoromethane	24.7			25	99	70-130				
Toluene-d8	23.1			25	92	70-130				
4-BFB	2.30			2.5	92	70-130				

Matrix:

2103076

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

 Date Prepared:
 03/03/2021
 BatchID:
 216576

 Date Analyzed:
 03/03/2021
 Extraction Method:
 E624.1

 Instrument:
 GC28
 Analytical Method:
 E624.1

 Matrix:
 Water
 Unit:
 μg/L

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216576

2103076-001AMS/MSD

QC Summary Report for E624.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	4.09	4.15	4	102	104	60-130	1.39	20
Benzene	3.88	3.83	4	97	96	60-130	1.35	20
Bromodichloromethane	3.82	3.84	4	96	96	60-130	0.360	20
Bromoform	3.97	3.89	4	99	97	50-130	2.07	20
Bromomethane	3.74	3.64	4	93	91	50-130	2.63	20
t-Butyl alcohol (TBA)	16.6	16.3	16	104	102	50-130	2.17	20
Carbon tetrachloride	3.86	3.82	4	97	96	60-130	1.07	20
Chlorobenzene	4.04	3.93	4	101	98	60-130	2.75	20
Chloroethane	3.92	3.71	4	98	93	60-140	5.54	20
Chloroform	3.84	3.81	4	96	95	60-130	0.750	20
Chloromethane	3.31	3.16	4	83	79	50-130	4.47	20
Dibromochloromethane	3.69	3.66	4	92	92	50-130	0.816	20
1,2-Dibromoethane (EDB)	1.94	1.89	2	97	95	60-130	2.56	20
1,2-Dichlorobenzene	4.10	4.01	4	103	100	60-130	2.30	20
1,3-Dichlorobenzene	4.06	3.95	4	102	99	60-130	2.92	20
1,4-Dichlorobenzene	4.06	3.94	4	101	98	60-130	2.91	20
1,1-Dichloroethane	4.01	3.96	4	100	99	50-130	1.13	20
1,2-Dichloroethane (1,2-DCA)	3.86	3.85	4	96	96	60-130	0.351	20
1,1-Dichloroethene	3.94	3.87	4	99	97	60-130	1.89	20
trans-1,2-Dichloroethene	4.01	3.89	4	100	97	60-130	2.99	20
1,2-Dichloropropane	4.00	4.03	4	100	101	60-130	0.706	20
cis-1,3-Dichloropropene	4.00	3.95	4	100	99	60-130	1.26	20
trans-1,3-Dichloropropene	4.08	4.05	4	102	101	60-130	0.752	20
Diisopropyl ether (DIPE)	4.04	4.06	4	101	101	60-130	0.359	20
Ethylbenzene	4.14	4.07	4	104	102	60-130	1.66	20
Ethyl tert-butyl ether (ETBE)	4.07	4.15	4	102	104	60-130	1.98	20
Methyl-t-butyl ether (MTBE)	4.16	4.07	4	104	102	60-130	2.24	20
Methylene chloride	3.85	3.75	4	96	94	50-130	2.62	20
Styrene	3.92	3.85	4	98	96	60-130	1.78	20
1,1,2,2-Tetrachloroethane	3.77	3.68	4	94	92	60-130	2.28	20
Tetrachloroethene	3.82	3.72	4	96	93	60-130	2.67	20
Toluene	3.90	3.79	4	97	95	60-130	2.65	20
1,2,4-Trichlorobenzene	4.34	4.24	4	109	106	60-130	2.23	20
1,1,1-Trichloroethane	4.02	4.02	4	100	100	60-130	0.0491	20
1,1,2-Trichloroethane	4.03	4.00	4	101	100	60-130	0.703	20
Trichloroethene	4.15	4.05	4	104	101	60-130	2.38	20
Trichlorofluoromethane	4.09	4.00	4	102	100	60-130	2.16	20
Vinyl chloride	1.68	1.59	2	84	79	60-130	5.73	20

Quality Control Report

Client: PG&E Gateway Generating Station

WorkOrder: 2103076 **Date Prepared:** 03/03/2021 **BatchID:** 216576 **Date Analyzed:** 03/03/2021 **Extraction Method:** E624.1 **Instrument:** GC28 **Analytical Method:** E624.1 **Matrix:** Unit: Water μg/L

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216576

2103076-001AMS/MSD

QC Summary Report for E624.1

			_					
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
m,p-Xylene	8.02	7.83	8	100	98	60-130	2.41	20
o-Xylene	3.96	3.85	4	99	96	60-130	2.68	20
Surrogate Recovery								
Dibromofluoromethane	25.0	25.2	25	100	101	70-130	1.01	20
Toluene-d8	23.6	23.5	25	95	94	70-130	0.538	20
4-BFB	2.24	2.28	2.5	90	91	70-130	1.58	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Benzene	1	4.09	3.92	4	ND	102	98	60-140	4.39	20
Bromodichloromethane	1	6.26	6.01	4	2.216	101	95	60-140	4.06	20
Bromoform	1	4.53	4.35	4	0.6065	98	94	50-140	4.03	20
Bromomethane	1	3.99	3.72	4	ND	100	93	40-140	7.01	20
Carbon tetrachloride	1	4.02	3.88	4	ND	100	97	60-140	3.63	20
Chlorobenzene	1	3.79	3.64	4	ND	95	91	60-140	3.95	20
Chloroethane	1	4.13	4.26	4	ND	103	106	60-140	3.04	20
Chloroform	1	4.84	4.71	4	0.9378	98	94	60-140	2.82	20
Chloromethane	1	4.30	4.26	4	ND	108	107	60-140	0.921	20
Dibromochloromethane	1	6.30	6.05	4	2.341	99	93	50-140	3.98	20
1,2-Dichlorobenzene	1	3.78	3.63	4	ND	95	91	60-140	4.03	20
1,3-Dichlorobenzene	1	3.72	3.57	4	ND	93	89	60-140	3.95	20
1,4-Dichlorobenzene	1	3.74	3.55	4	ND	93	89	60-140	5.00	20
1,1-Dichloroethane	1	3.92	3.73	4	ND	98	93	60-140	4.98	20
1,2-Dichloroethane (1,2-DCA)	1	4.12	3.99	4	ND	103	100	60-140	3.23	20
1,1-Dichloroethene	1	4.07	3.94	4	ND	102	99	50-140	3.17	20
trans-1,2-Dichloroethene	1	3.72	3.54	4	ND	93	89	60-140	4.81	20
1,2-Dichloropropane	1	3.96	3.84	4	ND	99	96	60-140	3.25	20
cis-1,3-Dichloropropene	1	3.84	3.70	4	ND	96	92	60-140	3.87	20
trans-1,3-Dichloropropene	1	3.90	3.74	4	ND	98	93	60-140	4.37	20
Ethylbenzene	1	3.87	3.72	4	ND	97	93	60-140	3.77	20
Methylene chloride	1	3.59	3.49	4	ND	90	87	60-140	2.91	20
1,1,2,2-Tetrachloroethane	1	3.93	3.76	4	ND	98	94	60-140	4.52	20
Tetrachloroethene	1	3.67	3.50	4	ND	92	88	60-140	4.56	20
Toluene	1	3.66	3.54	4	ND	92	88	60-140	3.38	20
1,1,1-Trichloroethane	1	3.74	3.65	4	ND	94	91	60-140	2.50	20
1,1,2-Trichloroethane	1	3.89	3.70	4	ND	97	93	60-140	5.00	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:03/03/2021Date Analyzed:03/03/2021Instrument:GC28Matrix:Water

Project: Semi-Annual Sampling (March 2021)

WorkOrder: 2103076 **BatchID:** 216576

Extraction Method: E624.1 **Analytical Method:** E624.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-216576

2103076-001AMS/MSD

		QC Su	mmary R	eport fo	or E624.1					
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Trichloroethene	1	3.86	3.74	4	ND	96	94	60-140	3.11	20
Trichlorofluoromethane	1	3.81	3.62	4	ND	95	91	60-140	5.14	20
Vinyl chloride	1	1.44	1.37	2	ND	72	69	60-140	4.62	20
Surrogate Recovery										
Dibromofluoromethane	1	25.7	25.6	25		103	102	70-140	0.666	20
Toluene-d8	1	23.4	23.1	25		94	92	70-140	1.43	20
4-BFB	1	2.26	2.23	2.5		90	89	70-140	1.51	20

Quality Control Report

Client: PG&E Gateway Generating Station

WorkOrder: 2103076 **Date Prepared:** 03/02/2021 **BatchID:** 216474 **Date Analyzed:** 03/02/2021 **Extraction Method:** E625.1 **Instrument:** GC47 **Analytical Method:** E625.1 **Matrix:** Unit: Water

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216474

QC Summary Report for E625.1

Result		Q Summa	ry Report for 1	3020.1			
Acetochlor ND 0.0140 0.100 0.140 0.100 0.140 0.100 0.140 0.100 0.140 0.100 0.140 0.100 0.140 0.100 0.140 0.100 0.140 0.100 0.100 0.140 0.100 0.140 0.100 0.1	Analyte		MDL	RL	_		MB SS Limits
Acetochlor ND 0.140 1.00	Acenaphthene	ND	0.00280	0.00500	-	-	-
Anthracene ND 0.00440 0.0100	Acenaphthylene	ND	0.00170	0.00500	-	-	-
Benzidine ND 0.580 5.00 - - - Benzo (a) anthracene ND 0.0100 0.0500 - - - Benzo (b) fluoranthene ND 0.00500 0.0200 - - - Benzo (b) fluoranthene ND 0.00830 0.0200 - - - Benzo (k) fluoranthene ND 0.00830 0.0200 - - - Benzo (k) fluoranthene ND 0.00830 0.0200 - - - - Benzo (k) fluoranthene ND 0.00830 0.0100 - - - - Benzo (c) fluoranthene ND 0.00500 5.00 - - - - Benzo (c) fluoranthene ND 3.00 5.00 - - - - Benzo (c) fluoranthene ND 3.00 5.00 - - - - Benzo (c) fluoranthene ND 3.00 5.00 -	Acetochlor	ND	0.140	1.00	-	-	-
Benzo (a) anthracene ND 0.0100 0.0500 - - - Benzo (a) pyrene ND 0.00250 0.00500 - - - Benzo (b) fluoranthene ND 0.00500 0.0200 - - - Benzo (k) fluoranthene ND 0.00520 0.0100 - - - Benzo (k) fluoranthene ND 0.00520 0.0100 - - - Benzol Acid ND 3.00 5.00 - - - - Benzyl Alcohol ND 0.00990 0.0500 - - - - 1.1-Biphenyl ND 0.00990 0.0500 - - - - Bis (2-chloroethoxy) Methane ND 0.180 1.00 - - - - Bis (2-chloroethoxy) Methane ND 0.180 1.00 - - - - Bis (2-chlorosopropyl) Ether ND 0.0110 1.00 - <td>Anthracene</td> <td>ND</td> <td>0.00440</td> <td>0.0100</td> <td>-</td> <td>-</td> <td>-</td>	Anthracene	ND	0.00440	0.0100	-	-	-
Benzo (a) pyrene ND 0.00250 0.00500 - - - - - Benzo (b) fluoranthene ND 0.00500 0.0200 - - - - - Benzo (b) fluoranthene ND 0.00520 0.0100 -	Benzidine	ND	0.580	5.00	-	-	-
Benzo (b) fluoranthene ND 0.00500 0.0200 - - - Benzo (s), hi) perylene ND 0.00830 0.0200 - - - Benzo (k) fluoranthene ND 0.00520 0.0100 - - - Benzolk (k) fluoranthene ND 0.00520 0.0100 - - - Benzolk (k) fluoranthene ND 0.00520 0.0100 - - - Benzolk Acid ND 3.00 5.00 - - - Benzyl Alcohol ND 0.00990 0.0500 - - - Bis (2-chloroethy) Bethane ND 0.00990 0.0500 - - - Bis (2-chloroethy) Ether ND 0.0160 0.0500 - - - Bis (2-chloroethy) Ether ND 0.0160 0.0500 - - - Bis (2-chloroethy) Phthalate ND 0.0150 0.200 - - -	Benzo (a) anthracene	ND	0.0100	0.0500	-	-	-
Benzo (g,h,i) perylene ND	Benzo (a) pyrene	ND	0.00250	0.00500	-	-	-
Benzo (k) fluoranthene ND 0.00520 0.0100 - - - Benzol Acid ND 3.00 5.00 - - - Benzyl Alcohol ND 3.00 5.00 - - - 1,1-Biphenyl ND 0.00990 0.0500 - - - Bis (2-chloroethoxy) Methane ND 0.180 1.00 - - - Bis (2-chloroethoxy) Ether ND 0.0290 0.00500 - - - Bis (2-chlorosisopropyl) Ether ND 0.0160 0.0500 - - - Bis (2-chlyfhexyl) Adipate ND 0.0110 1.00 - - - Bis (2-ethyfhexyl) Phthalate ND 0.0150 0.200 - - - 4-Bromophenyl Phenyl Ether ND 0.0850 1.00 - - - 6-Athazole ND 0.0850 1.00 - - - 6-Carbazole	Benzo (b) fluoranthene	ND	0.00500	0.0200	-	-	-
Benzole Acid ND 3.00 5.00 - - - Benzyl Alcohol ND 3.00 5.00 - - - 1,1-Biphenyl ND 0.00990 0.0500 - - - Bis (2-chloroethoxy) Methane ND 0.180 1.00 - - - Bis (2-chloroethyl) Ether ND 0.0160 0.0500 - - - Bis (2-chloroisopropyl) Ether ND 0.0160 0.0500 - - - Bis (2-chlylkexyl) Adipate ND 0.0160 0.0500 - - - Bis (2-chlylkexyl) Phthalate ND 0.0150 0.200 - - - Bis (2-chlylkexyl) Phthalate ND 0.0150 0.200 - - - Bis (2-chlylkexyl) Phthalate ND 0.0850 1.00 - - - Bis (2-chlylkexyl) Phthalate ND 0.0850 1.00 - - - <td< td=""><td>Benzo (g,h,i) perylene</td><td>ND</td><td>0.00830</td><td>0.0200</td><td>-</td><td>-</td><td>-</td></td<>	Benzo (g,h,i) perylene	ND	0.00830	0.0200	-	-	-
Benzyl Alcohol ND 3.00 5.00 - - - - - -	Benzo (k) fluoranthene	ND	0.00520	0.0100	-	-	-
1,1-Biphenyl ND	Benzoic Acid	ND	3.00	5.00	-	-	-
Bis (2-chloroethoxy) Methane ND 0.180 1.00 - - - - Bis (2-chloroethyl) Ether ND 0.00290 0.00500 - - - - Bis (2-chlorosepropyl) Ether ND 0.0160 0.0500 - - - - Bis (2-chloroisopropyl) Ether ND 0.0160 0.0500 - - - - Bis (2-chlylhexyl) Adipate ND 0.110 1.00 - - - - Bis (2-chlylhexyl) Phthalate ND 0.0150 0.200 - - - - - - - - -	Benzyl Alcohol	ND	3.00	5.00	-	-	-
Bis (2-chloroethyl) Ether ND 0.00290 0.00500 - - - - -	1,1-Biphenyl	ND	0.00990	0.0500	-	-	-
Bis (2-chloroisopropyl) Ether ND 0.0160 0.0500 - - - - -	Bis (2-chloroethoxy) Methane	ND	0.180	1.00	-	-	-
Bis (2-ethylhexyl) Adipate ND 0.110 1.00 - - - Bis (2-ethylhexyl) Phthalate ND 0.0150 0.200 - - - 4-Bromophenyl Phenyl Ether ND 0.0850 1.00 - - - Butylbenzyl Phthalate ND 0.0880 0.0500 - - - Carbazole ND 0.320 1.00 - - - 4-Chloro-3-methylphenol ND 0.150 1.00 - - - 4-Chloropathilae ND 0.0150 1.00 - - - 4-Chlorophenyl Bether ND 0.0640 1.00 - - - 2-Chlorophenyl Phenyl Ether ND 0.00770 0.0500 - - - 4-Chlorophenyl Phenyl Ether ND 0.110 1.00 - - - Chrysene ND 0.00880 0.0100 - - - Dibenzo (a,h) anthracene </td <td>Bis (2-chloroethyl) Ether</td> <td>ND</td> <td>0.00290</td> <td>0.00500</td> <td>-</td> <td>-</td> <td>-</td>	Bis (2-chloroethyl) Ether	ND	0.00290	0.00500	-	-	-
Bis (2-ethylhexyl) Adipate ND 0.110 1.00 - - - Bis (2-ethylhexyl) Phthalate ND 0.0150 0.200 - - - 4-Bromophenyl Phenyl Ether ND 0.0850 1.00 - - - Butylbenzyl Phthalate ND 0.0880 0.0500 - - - Carbazole ND 0.320 1.00 - - - 4-Chloro-3-methylphenol ND 0.150 1.00 - - - 4-Chloropathilae ND 0.0150 1.00 - - - 4-Chlorophenyl Bether ND 0.0640 1.00 - - - 2-Chlorophenyl Phenyl Ether ND 0.00770 0.0500 - - - 4-Chlorophenyl Phenyl Ether ND 0.110 1.00 - - - Chrysene ND 0.00880 0.0100 - - - Dibenzo (a,h) anthracene </td <td></td> <td>ND</td> <td>0.0160</td> <td>0.0500</td> <td>-</td> <td>-</td> <td>-</td>		ND	0.0160	0.0500	-	-	-
Bis (2-ethylhexyl) Phthalate		ND	0.110	1.00	-	-	-
4-Bromophenyl Phenyl Ether ND 0.0850 1.00 Butylbenzyl Phthalate ND 0.00800 0.0500		ND	0.0150	0.200	-	-	-
Butylbenzyl Phthalate		ND	0.0850	1.00	-	-	-
Carbazole ND 0.320 1.00 -		ND	0.00800	0.0500	-	-	-
A-Chloroaniline	Carbazole		0.320	1.00	-	-	-
A-Chloroaniline	4-Chloro-3-methylphenol	ND	0.150	1.00	-	-	-
2-Chlorophenol ND 0.00770 0.0500 - </td <td>4-Chloroaniline</td> <td></td> <td></td> <td>0.00500</td> <td>-</td> <td>-</td> <td>-</td>	4-Chloroaniline			0.00500	-	-	-
2-Chlorophenol ND 0.00770 0.0500 - </td <td>2-Chloronaphthalene</td> <td>ND</td> <td>0.0640</td> <td>1.00</td> <td>-</td> <td>-</td> <td>-</td>	2-Chloronaphthalene	ND	0.0640	1.00	-	-	-
Chrysene ND 0.00880 0.0100 -	2-Chlorophenol	ND	0.00770	0.0500	-	-	-
Chrysene ND 0.00880 0.0100 -	4-Chlorophenyl Phenyl Ether	ND	0.110	1.00	-	-	-
Dibenzo (a,h) anthracene ND 0.00830 0.0100 - - - Dibenzofuran ND 0.200 1.00 - - - Di-n-butyl Phthalate ND 0.0140 0.0500 - - - 1,2-Dichlorobenzene ND 0.150 1.00 - - - 1,3-Dichlorobenzene ND 0.240 1.00 - - - 1,4-Dichlorobenzene ND 0.340 1.00 - - - 3,3-Dichlorobenzidine ND 0.00290 0.0200 - - - 2,4-Dichlorophenol ND 0.00290 0.0100 - - - Diethyl Phthalate ND 0.00920 0.0500 - - -		ND	0.00880	0.0100	-	-	-
Dibenzofuran ND 0.200 1.00 - - - Di-n-butyl Phthalate ND 0.0140 0.0500 - - - - 1,2-Dichlorobenzene ND 0.150 1.00 - - - - 1,3-Dichlorobenzene ND 0.240 1.00 - - - - 1,4-Dichlorobenzene ND 0.340 1.00 - - - - 3,3-Dichlorobenzidine ND 0.00290 0.0200 - - - - 2,4-Dichlorophenol ND 0.00290 0.0100 - - - - Diethyl Phthalate ND 0.00920 0.0500 - - - -		ND	0.00830	0.0100	-	-	-
Di-n-butyl Phthalate ND 0.0140 0.0500 - <t< td=""><td>Dibenzofuran</td><td>ND</td><td>0.200</td><td>1.00</td><td>-</td><td>-</td><td>-</td></t<>	Dibenzofuran	ND	0.200	1.00	-	-	-
1,2-Dichlorobenzene ND 0.150 1.00 -<	Di-n-butyl Phthalate			0.0500	-	-	-
1,3-Dichlorobenzene ND 0.240 1.00 -<	1,2-Dichlorobenzene				-	-	
1,4-Dichlorobenzene ND 0.340 1.00 -<	1,3-Dichlorobenzene				-		
ND 0.00290 0.0200 - - - 2,4-Dichlorophenol ND 0.00290 0.0100 - - - - Diethyl Phthalate ND 0.00920 0.0500 - - - -	1,4-Dichlorobenzene				-	_	-
2,4-Dichlorophenol ND 0.00290 0.0100 - - - - Diethyl Phthalate ND 0.00920 0.0500 - - - - -	,						
Diethyl Phthalate ND 0.00920 0.0500	<u>'</u>				-		
	•						
-, · 2							
Dimethyl Phthalate ND 0.00480 0.0100	Dimethyl Phthalate						

2103076

Quality Control Report

WorkOrder:

Client: PG&E Gateway Generating Station

 Date Prepared:
 03/02/2021
 BatchID:
 216474

 Date Analyzed:
 03/02/2021
 Extraction Method:
 E625.1

 Instrument:
 GC47
 Analytical Method:
 E625.1

 Matrix:
 Water
 Unit:
 μg/L

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216474

QC Summary Report for E625.1

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
4,6-Dinitro-2-methylphenol	ND	2.30	5.00	-	-	-
2,4-Dinitrophenol	ND	0.550	2.00	-	-	-
2,4-Dinitrotoluene	ND	0.0120	0.0500	-	-	-
2,6-Dichlorophenol	ND	0.00930	0.0500	-	-	-
2,6-Dinitrotoluene	ND	0.00480	0.0500	-	-	-
Di-n-octyl Phthalate	ND	0.0170	0.0500	-	-	-
1,2-Diphenylhydrazine	ND	0.130	1.00	-	-	-
Fluoranthene	ND	0.00430	0.0100	-	-	-
Fluorene	ND	0.00450	0.0100	-	-	-
Hexachlorobenzene	ND	0.000730	0.00500	-	-	-
Hexachlorobutadiene	ND	0.000910	0.0100	-	-	-
Hexachlorocyclopentadiene	ND	2.30	5.00	-	-	-
Hexachloroethane	ND	0.00720	0.0500	-	-	-
Indeno (1,2,3-cd) pyrene	ND	0.00780	0.0200	-	-	-
Isophorone	ND	1.00	2.00	-	-	-
1-Methylnaphthalene	ND	0.00140	0.00500	-	-	-
2-Methylnaphthalene	ND	0.00180	0.0100	-	-	-
2-Methylphenol (o-Cresol)	ND	0.320	1.00	-	-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	0.420	1.00	-	-	-
Naphthalene	ND	0.00550	0.0500	-	-	-
2-Nitroaniline	ND	0.310	5.00	-	-	-
3-Nitroaniline	ND	2.00	5.00	-	-	-
4-Nitroaniline	ND	1.30	5.00	-	-	-
Nitrobenzene	ND	0.300	1.00	-	-	-
2-Nitrophenol	ND	0.550	5.00	-	-	-
4-Nitrophenol	ND	1.60	5.00	-	-	-
N-Nitrosodimethylamine	ND	0.740	5.00	-	-	-
N-Nitrosodi-n-propylamine	ND	0.320	1.00	-	-	-
N-Nitrosodiphenylamine	ND	0.0900	1.00	-	-	-
n-Octadecane	ND	0.100	1.00	-	-	-
Pentachlorophenol	ND	0.0500	0.250	-	-	-
Phenanthrene	ND	0.00740	0.0200	-	-	-
Phenol	ND	0.0200	0.200	-	-	-
Pyrene	ND	0.00420	0.0100	-	-	-
Pyridine	ND	0.160	1.00	-	-	-
2,3,4,6-Tetrachlorophenol	ND	0.180	1.00	-	-	-
1,2,4-Trichlorobenzene	ND	0.0750	1.00	-	-	-
2,4,5-Trichlorophenol	ND	0.00200	0.0100	-	-	-

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2103076Date Prepared:03/02/2021BatchID:216474Date Analyzed:03/02/2021Extraction Method:E625.1Instrument:GC47Analytical Method:E625.1

Matrix: Water Unit: μg/

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216474

	QC Summar					
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
2,4,6-Trichlorophenol	ND	0.00350	0.0100	-	-	-
Surrogate Recovery						
2-Fluorophenol	4.49			5	90	50-130
Phenol-d5	4.92			5	98	60-130
Nitrobenzene-d5	4.30			5	86	60-130
2-Fluorobiphenyl	4.63			5	93	60-130
2,4,6-Tribromophenol	3.33			5	67	60-130
4-Terphenyl-d14	3.66			5	73	60-130

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2103076Date Prepared:03/02/2021BatchID:216474Date Analyzed:03/02/2021Extraction Method:E625.1

Instrument:GC47Analytical Method:E625.1Matrix:WaterUnit:μg/L

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216474

QC Summary Report for E625.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acenaphthene	0.215	0.230	0.25	86	92	70-130	6.60	25
Acenaphthylene	0.210	0.222	0.25	84	89	60-130	5.49	25
Anthracene	0.211	0.199	0.25	84	80	70-130	5.81	25
Benzidine	17.3	16.3	25	69	65	50-130	5.51	25
Benzo (a) anthracene	0.208	0.199	0.25	83	80	60-130	4.01	25
Benzo (a) pyrene	0.212	0.200	0.25	85	80	70-130	6.20	25
Benzo (b) fluoranthene	0.225	0.202	0.25	90	81	60-130	10.7	25
Benzo (g,h,i) perylene	0.207	0.195	0.25	83	78	70-130	5.85	25
Benzo (k) fluoranthene	0.223	0.220	0.25	89	88	70-130	1.42	25
Benzyl Alcohol	23.8	25.0	25	95	100	70-130	5.14	25
Bis (2-chloroethoxy) Methane	4.43	4.10	5	89	82	70-130	7.76	25
Bis (2-chloroethyl) Ether	0.212	0.220	0.25	85	88	60-130	3.54	25
Bis (2-chloroisopropyl) Ether	0.206	0.192	0.25	82	77	60-130	6.64	25
Bis (2-ethylhexyl) Adipate	3.96	3.71	5	79	74	60-130	6.56	25
Bis (2-ethylhexyl) Phthalate	0.182	0.165	0.25	73	66	60-130	9.77	25
4-Bromophenyl Phenyl Ether	5.76	4.74	5	115	95	70-130	19.4	25
Butylbenzyl Phthalate	0.195	0.180	0.25	78	72	60-130	7.80	25
Carbazole	4.73	4.59	5	95	92	70-130	2.91	25
4-Chloro-3-methylphenol	4.84	4.53	5	97	91	70-130	6.57	25
4-Chloroaniline	0.231	0.218	0.25	92	87	70-130	5.86	25
2-Chloronaphthalene	4.76	4.80	5	95	96	70-130	0.686	25
2-Chlorophenol	0.226	0.215	0.25	90	86	60-130	5.17	25
4-Chlorophenyl Phenyl Ether	4.58	5.65	5	92	113	70-130	20.9	25
Chrysene	0.236	0.223	0.25	94	89	70-130	5.55	25
Dibenzo (a,h) anthracene	0.191	0.187	0.25	76	75	70-130	2.20	25
Dibenzofuran	4.51	4.90	5	90	98	70-130	8.37	25
Di-n-butyl Phthalate	0.190	0.179	0.25	76	72	70-130	6.15	25
1,2-Dichlorobenzene	4.57	4.60	5	91	92	60-130	0.716	25
1,3-Dichlorobenzene	4.22	3.83	5	84	77	60-130	9.67	25
1,4-Dichlorobenzene	4.31	4.13	5	86	83	60-130	4.30	25
3,3-Dichlorobenzidine	0.182	0.172	0.25	73	69,F2	70-130	5.88	25
2,4-Dichlorophenol	0.252	0.239	0.25	101	96	70-130	5.19	25
Diethyl Phthalate	0.224	0.234	0.25	90	94	70-130	4.35	25
2,4-Dimethylphenol	4.61	4.51	5	92	90	70-130	2.08	25
Dimethyl Phthalate	0.209	0.225	0.25	84	90	70-130	7.41	25
4,6-Dinitro-2-methylphenol	20.8	20.2	25	83	81	70-130	2.87	25
2,4-Dinitrophenol	3.88	4.26	5	78	85	60-130	9.25	25
2,4-Dinitrotoluene	0.230	0.252	0.25	92	101	70-130	9.11	25

Instrument:

GC47

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Method: E625.1

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2103076Date Prepared:03/02/2021BatchID:216474Date Analyzed:03/02/2021Extraction Method:E625.1

Matrix: Water Unit: μg/I

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216474

OC Summary Report for E625.1

	QC Sui	шпагу К	eport for h	E023.1				
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
2,6-Dichlorophenol	0.233	0.217	0.25	93	87	70-130	6.86	25
2,6-Dinitrotoluene	0.222	0.235	0.25	89	94	70-130	5.48	25
Di-n-octyl Phthalate	0.191	0.173	0.25	76	69,F2	70-130	9.66	25
1,2-Diphenylhydrazine	4.25	4.02	5	85	80	70-130	5.55	25
Fluoranthene	0.211	0.203	0.25	84	81	70-130	3.88	25
Fluorene	0.225	0.240	0.25	90	96	70-130	6.41	25
Hexachlorobenzene	0.212	0.199	0.25	85	80	60-130	6.02	25
Hexachlorobutadiene	0.218	0.199	0.25	87	80	60-130	8.79	25
Hexachlorocyclopentadiene	20.5	21.3	25	82	85	60-130	4.05	25
Hexachloroethane	0.211	0.199	0.25	84	80	60-130	5.70	25
Indeno (1,2,3-cd) pyrene	0.198	0.188	0.25	79	75	70-130	5.26	25
Isophorone	4.27	4.05	5	85	81	70-130	5.21	25
1-Methylnaphthalene	0.224	0.214	0.25	90	86	70-130	4.73	25
2-Methylnaphthalene	0.228	0.227	0.25	91	91	60-130	0.563	25
2-Methylphenol (o-Cresol)	4.97	4.70	5	99	94	70-130	5.45	25
3 & 4-Methylphenol (m,p-Cresol)	5.10	4.96	5	102	99	70-130	2.85	25
Naphthalene	0.219	0.204	0.25	88	82	50-130	7.24	25
2-Nitroaniline	22.5	24.7	25	90	99	70-130	9.60	25
3-Nitroaniline	21.3	22.6	25	85	91	70-130	6.25	25
4-Nitroaniline	25.1	27.8	25	100	111	70-130	10.1	25
Nitrobenzene	4.46	4.22	5	89	84	70-130	5.43	25
2-Nitrophenol	23.3	21.1	25	93	84	70-130	9.76	25
4-Nitrophenol	21.2	23.3	25	85	93	50-130	9.31	25
N-Nitrosodimethylamine	20.6	19.7	25	83	79	60-130	4.80	25
N-Nitrosodi-n-propylamine	3.89	3.79	5	78	76	60-130	2.66	25
N-Nitrosodiphenylamine	4.61	4.43	5	92	89	70-130	3.99	25
n-Octadecane	3.90	3.81	5	78	76	70-130	2.33	25
Pentachlorophenol	1.14	1.08	1.25	91	86	60-130	5.56	25
Phenanthrene	0.211	0.201	0.25	84	81	70-130	4.66	25
Phenol	0.940	0.897	1	94	90	60-130	4.76	25
Pyrene	0.224	0.213	0.25	90	85	70-130	5.30	25
Pyridine	4.12	3.78	5	82	76	50-130	8.59	25
1,2,4-Trichlorobenzene	4.59	4.22	5	92	84	70-130	8.57	25
2,4,5-Trichlorophenol	0.230	0.238	0.25	92	95	70-130	3.43	25
2,4,6-Trichlorophenol	0.222	0.241	0.25	89	96	70-130	8.07	25

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 2103076

Date Prepared: 03/02/2021 BatchID: 216474

Pote Applyzod: 03/02/2021 Extraction Method: E625.1

 Date Analyzed:
 03/02/2021
 Extraction Method:
 E625.1

 Instrument:
 GC47
 Analytical Method:
 E625.1

 Matrix:
 Water
 Unit:
 μg/L

Project: Semi-Annual Sampling (March 2021) Sample ID: MB/LCS/LCSD-216474

QC Summary Report for E625.1								
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Surrogate Recovery								
2-Fluorophenol	4.57	4.39	5	91	88	50-130	4.04	25
Phenol-d5	5.06	4.93	5	101	99	60-130	2.58	25
Nitrobenzene-d5	4.88	4.62	5	98	92	60-130	5.56	25
2-Fluorobiphenyl	4.98	5.37	5	100	107	60-130	7.54	25
2,4,6-Tribromophenol	4.53	4.44	5	91	89	60-130	2.08	25
4-Terphenyl-d14	4.24	3.89	5	85	78	60-130	8.71	25

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

✓ Email

Page 1 of 1

workOrder: 21030/6 ChentCode: PGEA	WorkOrder:	2103076	ClientCode:	PGEA
------------------------------------	------------	---------	-------------	------

Dry-Weight Detection Summary Excel

Report to:

Angel Espiritu PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party:

☐ WaterTrax

PO: Project:

WriteOn

Semi-Annual Sampling (March 2021)

□EDF

Bill to: Angel Espiritu

EQuIS

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Date Received:

Date Logged:

Requested TAT:

□ ThirdParty

□HardCopy

03/02/2021 03/02/2021

☐ J-flag

5 days;

								Re	quested	l Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date F	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2103076-001	E-001	Water	3/2/2021 10:35		D	Α	В	С	Α							

Test Legend:

1 608_W [J]	2 624_W	3 624ACR+2CEVE_W	4	625_SCSM_W
5 PRDisposal F	ee 6	7	8	
9	10	11	12	

Prepared by: Lilly Ortiz **Project Manager: Angela Rydelius**

Comments:

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (March 2021) Work Order: 2103076

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 3/2/2021

	Water	Trax WriteOn EDF	Exce	EQuIS	S Email	HardCop	у 🗀	ThirdParty	J-flag	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Head Dry- Space Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
001A E-001	Water	E624.1 (VOCs) <1,1,1-Trichloroethane, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane (1,2-DCA), 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Bromoform, Bromomethane, Chloroform, Chloroethane, Chloroform, Chloromethane, cis-1,3-Dichloropropene, Dichlorodifluoromethane, Ethylbenzene, Methylene chloride, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Trichloroethene, Trichlorofluoromethane, Vinyl chloride, Xylenes, Total>		VOA w/ HCl		3/2/2021 10:35	5 days	3/9/2021	Present	
001B E-001	Water	E624.1 (ACRO, ACRY, & 2-CEVE) <acrolein (propenal),="" acrylonitrile=""></acrolein>	2	VOA, Unpres		3/2/2021 10:35	5 days	3/9/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (March 2021) Work Order: 2103076

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 3/2/2021

		Water	Γrax ☐WriteO	nEDF	Exc	el EQuIS	√ E	Email	HardCop	у 🔲	ThirdParty	J-flag	
LabID	ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	Head I Space W		Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
001C E-00		Water	E625.1 (SVOCs) <1, Trichlorobenzene, 1,2 1,2-Diphenylhydrazin Dichlorobenzene, 1,4 2,4,6-Trichloropheno Dichlorophenol, 2,4- 2,4-Dinitrophenol, 2, 2,6-Dinitrotoluene, 2 Chloronaphthalene, 2 Methylphenol (o-Cre 3,3-Dichlorobenzidin Phenyl Ether, 4-Chlo 4-Chlorophenyl Phen Nitrophenol, Acenaph Acenaphthylene, Ant Benzo (a) anthracene Benzo (b) fluoranthen perylene, Benzo (k) f chloroethoxy) Methan chloroethyl) Ether, B chloroisopropyl) Ethe ethylhexyl) Phthalate Phthalate, Chrysene, anthracene, Diethyl P Phthalate, Di-n-butyl octyl Phthalate, Fluor	ne, 1,3Dichlorobenzene, ne, 1,3Dichlorobenzene, l, 2,4- Dimethylphenol, 4-Dinitrotoluene, lChlorophenol, 2- sol), 2-Nitrophenol, ge, 4-Bromophenyl ro-3-methylphenol, yl Ether, 4- hthene, hracene, Benzidine, Benzo (a) pyrene, ne, Benzo (g,h,i) luoranthene, Bis (2- ine, Bis (2- ire, Bis (2- ire, Bis (2- jer,		1LA Narrow Mouth, Unpres			3/2/2021 10:35	5 days	3/9/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Semi-Annual Sampling (March 2021)	Work Order: 2103076
--------------	---------------------------------	----------	-----------------------------------	----------------------------

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 3/2/2021

		☐ Water ⁻	Trax WriteOn EDF	Exc	el EQuIS	y Ema	ail HardCop	у 🗀	ThirdPartyJ	-flag	
LabII	O ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Head Dry Space Weig		TAT	Test Due Date	Sediment Content	Hold SubOut
			Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno (1,2,3-cd) pyrene, Isophorone, Naphthalene, Nitrobenzene, N-Nitrosodimethylamine, N-Nitrosodi-n-propylamine, N- Nitrosodiphenylamine, Pentachlorophenol, Phenanthrene, Phenol, Pyrene>								
001D	E-001	Water	E608.3 (OC Pesticides+PCBs w/ Florisil Clean-up) <a-bhc_1, (technical)_1,="" aldehyde_1,="" aldrin_1,="" aroclor1016_1,="" aroclor1221_1,="" aroclor1232_1,="" aroclor1242_1,="" aroclor1248_1,="" aroclor1254_1,="" aroclor1260_1,="" b-bhc_1,="" chlordane="" d-bhc_1,="" dieldrin_1,="" endosulfan="" endrin="" endrin_1,="" epoxide_1,="" g-bhc_1,="" heptachlor="" heptachlor_1,="" i_1,="" ii_1,="" p,p-ddd_2,="" p,p-dde_2,="" p,p-ddt_2,="" pcbs,="" total_1,="" toxaphene_1=""></a-bhc_1,>	1	1LA Narrow Mouth, Unpres		3/2/2021 10:35	5 days	3/9/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

	W
[A
1	

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262

Fax: (925) 252 -9269

CHAIN OF CUSTODY RECORD

TURN AROUND TIME					
	RUSH	24 HR	48 HR	72 HR	5 DAY

Geo I racker EDF	PDF	Excel	Write On (DW)
	Check if s	ample is efflu	ent and "J" flag is required

Report To: Angel Espiritu					Bill To: PG&E Gateway								Analysis Request					Remarks									
Company	: PG&E G	atew	ay Genera	ating Sta	tion												9	П	T	1		T	П	T			
E-Mail: abed@pge.com, A1HE@pge.com, J5Ld@pge.com, tlWY@pge.com											TTO (USEPA 624-Volatile Organic Compounds)	TTO (USEPA 625- Semi Volatile Organic Compounds)	608 – Organochlorine PCBs)	П	1												
Tel: (925) 522-7838, (510) 861-1597 (Cell) Fax: ()											latife			П		- 1											
Project Name: Semi-Annual Sampling (March 202) Project Location: Combined Site Flow														4.v°	П		- 1										
									0						7 62	у 62	09 Pt			- 1							
Sampler S	Signature: N		an Envir	onmenta	San	npling	_	1	1	_		_	_	_	SEP	SEP	SEP les au	11		- 1							
		mposit	SAMP		*	Matrix METHOD PRESERVED					ED	TTO (1 Compo	TTO (I Organic	TTO (USEPA 6 Pesticides and I													
SAMPLE ID	LOCATION / Field Point Name	Sample Type Composite (Grab	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	NaOH	HCI	HNO,	Other													
E-001		G	3/2/21	10.35	2	43 ml VOA	X			Х		X			X			\sqcap	\top			\Box		\Box			
E-001		G		10:35	2	43 ml VOA	X		X	X		T	\vdash		X			\forall	+			+		Н			
E-001		G	3/2/21		1	H.	X		X	N	+	†	\vdash			X		†	+	_		+	+	+			
E-001		G			1	Amb 1L	X		X	X	+	+	\vdash	_	_		X	+	+	\rightarrow		+	-	H			
		_	3/2/21	10.35	-	Amb			+	+	\vdash	┝	\vdash	_	_	-		H	+	\rightarrow		+	+	H	_		
-			-		_			Н	+	+	\vdash	\vdash	\vdash	_		-		H	+	\rightarrow		+	+	Н	_		
		_			_	_		Н	+	+	\vdash	╀	\vdash	_				\vdash	+	-		+	\dashv	+			
								Н	4	+	\vdash	L	\vdash					Н	_	_		11	_	\sqcup			
									_	_	_	L						Ц				Ш					
												L						Ш				Ш					
																								П			
									T	T		Г	П					П	T			П		П			
										\top								\vdash	\top		-	\top	\top	\forall			
Relinquished	By:	Date: 3/2/21	Time:	Received By: 1245									45	ICE/t Z Owef GOOD CONDITION					C	COMMENTS:							
Religiquished	I By:	Date:	12'-49 Time:	Received By:										HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS							TTO (EPA 608), TTO (EPA 624), TTO (EPA 625) see ATTACHED Appendix A and analyze only listed						
Relinquished By:			Date:	Time:	Received By:										PRESERVED IN LAB compounds VOAS O&G METALS OTHER PRESERVATION pH<2												

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein
Acrylonitrile
Benzene
Bromodichloromethane (Dichlorobromomethane)
Bromform
Brommomethane (Methyl Bromide)
Carbon tetrachloride (Tetrachloromethane)
Chlorobenzene
Chloroethane (Ethyl Chloride)
2-Chloroethyl vinyl ether
Chloroform (trichloromethane)
Chloromethane (Methyl Chloride)
Dibromochloromethane (Chlorodibromomethane)
1, 2-Dichlorobenzene
1, 3-Dichlorobenzene
1, 4-Dichlorobenzene
1, 1-Dichloroethane
1, 2-Dichloroethane
1, 2-Dichloropropane
cis-1, 3-Dichloropropene
trans-1, 3-Dichloropropene
trans-1, 3-Dichloropropene
Ethylbenzene
Methylene Chloride (Dichloromethane)
1, 1, 2, 2, -Tetrachloroethane
Tetrachloroethene (PCE)
Toluene
1, 1, 1-Trichloroethane
1, 1, 2-Trichloroethane
Trichlorofluoromethane
Trichlorofluoromethane
Trichlorofluoromethane
Vinyl chloride (Chloroethylene)

EPA Method 625 Compounds

Acenaphthene
Acenaphthylene
Anthracene
Benzo (a) anthracene
Benzo (a) pyrene
Benzo (b) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzyl butyl phthalate
bis (2-Chloroethoxy) methane
bis (2-Chloroethoxy) methane
bis (2-Chloroethyl) ether
bis (2-Chloroisopropyl) ether
bis (2-Chloroisopropyl) ether
bis (2-Ethylhexyl) phthalate
4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol
2-Chloronaphthalene
2-Chlorophenyl
4-Chlorophenyl phenyl ether
Chrysene
Dibenzo (a, h) anthracene
1, 2-Dichlorobenzene
1, 3-Dichlorobenzene
1, 4-Dichlorobenzene
3, 3'-Dichlorobenzidine

2, 4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethylphthalate Di-n-butylphthalate 2, 4-Dinitrophenol 2, 4-Dinitrotoluene 2, 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diphenylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nitrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4,4 DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Toxaphene

12:45 Lety Oute 3/2/21/245

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	PG&E Gateway Ge	nerating Station			Date and Time Received:	3/2/2021 12:45								
Project:	Semi-Annual Samp	ling (March 2021)			Date Logged:	3/2/2021								
WorkOrder №:	2103076	Matrix: <u>Water</u>			Received by: Logged by:	Lilly Ortiz Lilly Ortiz								
Carrier:	Client Drop-In	water			Logged by.	Lily Offiz								
	Chain of Custody (COC) Information													
Chain of custody	present?		Yes	✓	No 🗆									
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌									
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌									
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆									
Date and Time of	collection noted by 0	Client on COC?	Yes	✓	No 🗌									
Sampler's name r	noted on COC?		Yes	✓	No 🗌									
COC agrees with	Quote?		Yes		No 🗆	NA 🗹								
		<u>Samp</u>	le Rece	eipt Informati	<u>on</u>									
Custody seals int	act on shipping conta	iner/cooler?	Yes		No 🗌	NA 🗹								
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗆									
Samples in prope	er containers/bottles?		Yes	✓	No 🗆									
Sample container	rs intact?		Yes	✓	No 🗌									
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌									
	Sample Preservation and Hold Time (HT) Information													
All samples recei	ved within holding tim	e?	Yes	✓	No 🗌	NA 🗌								
Samples Receive	ed on Ice?		Yes	✓	No 🗌									
		(Ice Typ	e: WE	TICE)										
Sample/Temp Bla	ank temperature			Temp: 2°	C	NA L								
	analyses: VOA meets Cs, TPHg/BTEX, RSh		Yes	✓	No 🗌	NA 🗌								
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌									
pH acceptable up <2; 522: <4; 218.		; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹								
UCMR Samples: pH tested and a 530: ≤7; 541: <	acceptable upon rece 3; 544: <6.5 & 7.5)?	ipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗆	NA 🗹								
Free Chlorine to	ested and acceptable	upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹								
=====	=====	=======			=======	=======								

Attachment 8c Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2103072

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (March 2021)

Project Received: 03/02/2021

Analytical Report reviewed & approved for release on 03/19/2021 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station **Project:** Quarterly Sampling (March 2021)

WorkOrder: 2103072

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

F6 LCS/LCSD recovery is above the acceptance limits; therefore, the result is reported as an estimate.

Case Narrative

Client: PG&E Gateway Generating Station Work Order: 2103072

Project: Quarterly Sampling (March 2021) March 09, 2021

EPA method 200.8: Metals

Our standard ICP-MS analytical procedure is to analyze selenium using a Hydrogen reaction and/or Helium collision mode.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/08/2021

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Extraction Method: E1664A_SG **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2103072-001A	Water	03/01/202	1 09:47	O&G	216939
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		03/09/2021 12:05

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	2103072-001B	Water	03/02/202	21 10:35	O&G	216939
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		03/09/2021 12:10

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/05/2021

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2103072-001A	Water	03/01/202	1 09:47	O&G	216852
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.1	1		03/08/2021 14:35

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2103072-001B	Water	03/02/202	1 10:35	O&G	216852
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		03/08/2021 14:40

Analyst(s): HN

Analytical Report

PG&E Gateway Generating Station **Client:**

Date Received: 03/02/2021 12:45

Date Prepared: 03/05/2021

Project: Quarterly Sampling (March 2021) WorkOrder: 2103072

Extraction Method: SM4500-NH3 BG Analytical Method: SM4500-NH3 BG

Unit: mg/L

Ammonia as N

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2103072-001C	Water	03/02/202	1 10:35	WC_SKALAR 03052021O1_76	216796
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date A	nalyzed
Ammonia, total as N	46		10	100	03/05/	2021 16:11

Analyst(s): JN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/03/2021

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Biochemical Oxygen Demand (BOD)

		• • •				
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	2103072-001E	Water	03/02/202	1 10:30	WetChem	216621
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
BOD	26		20	5		03/08/2021 18:52

Analyst(s): HAD

Analytical Report

PG&E Gateway Generating Station **Client:**

Date Received: 03/02/2021 12:45

Date Prepared: 03/05/2021

Project: Quarterly Sampling (March 2021) WorkOrder: 2103072

Extraction Method: SM4500-CN E Analytical Method: SM4500-CN CE

Unit: $\mu g/L$

$\boldsymbol{\alpha}$	• •	
T V9	niae	, Total
\sim $^{\circ}$	muc	, i viii

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	2103072-001D	Water	03/02/202	1 10:35	WC_SKALAR 03052021P1_28	216762
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date /	<u>Analyzed</u>
Total Cyanide	2.9		1.0	1	03/05/	/2021 14:21

Analyst(s): JN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/05/2021

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	2103072-001F	Water	03/02/202	1 10:30	SPECTROPHOTOMETER	216781
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Date</u>	e Analyzed
COD	24		10	1	03/0	05/2021 17:07

Analyst(s): PHU

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/02/2021

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

	, , , , , , , , , , , , , , , , , , ,			1		
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2103072-0011	Water	03/02/202	1 10:30	AA1 _31	216442
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Mercury	ND		0.20	1		03/08/2021 17:06

Analyst(s): MIG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/02/2021

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Metals							
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID	
E-001	2103072-001J	Water	03/02/2021	10:30	ICP-MS5 269SMPL.d	216490	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
Arsenic	0.84		0.50	1		03/03/2021 18:09	
Cadmium	1.6		0.50	1		03/03/2021 18:09	
Chromium	ND		0.50	1		03/03/2021 18:09	
Copper	3.9		0.50	1		03/03/2021 18:09	
Iron	ND		100	1		03/03/2021 18:09	
Lead	ND		0.50	1		03/03/2021 18:09	
Molybdenum	35		0.50	1		03/03/2021 18:09	
Nickel	2.0		0.50	1		03/03/2021 18:09	
Selenium	ND		0.50	1		03/03/2021 18:09	
Silver	ND		0.50	1		03/03/2021 18:09	
Zinc	32		20	1		03/03/2021 18:09	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>				
Terbium	106		70-130			03/03/2021 18:09	
Analyst(s): WV							

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/19/2021

Project: Quarterly Sampling (March 2021)

2103072 WorkOrder:

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: $\mu g/L$

Phenolics

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001	2103072-001C	Water	03/02/20	21 10:35	WC_SKALAR 03192021D1_1	6 217750
Analytes	Result		<u>RL</u>	<u>DF</u>	Date	<u>Analyzed</u>
Phenolics	36		2.0	1	03/19	9/2021 16:23

Analyst(s): JN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/04/2021

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Collected In		Instrument	Batch ID
E-001	2103072-001G	Water	03/02/202	1 10:30	WetChem	216725
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	610		10.0	1		03/05/2021 11:30

Analyst(s): PHU

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 2103072

 Date Received:
 03/02/2021 12:45
 Extraction Method:
 SM2540 D-1997

 Date Prepared:
 03/03/2021
 Analytical Method:
 SM2540 D-1997

Project: Quarterly Sampling (March 2021) Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Lab ID Matrix		Date Collected		Batch ID
E-001	2103072-001H	Water	03/02/2021	10:30	WetChem	216552
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Suspended Solids	ND		1.00	1		03/03/2021 16:41

Analyst(s): PHU

2103072

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:Date Prepared:03/09/2021BatchID:

Date Prepared:03/09/2021BatchID:216939Date Analyzed:03/09/2021Extraction Method:E1664A_SGInstrument:0&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (March 2021) **Sample ID:** MB/LCS/LCSD-216939

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
SGT-HEM	ND	0.720	5.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	8.69	8.81	10.42	83	85	64-132	1.27	30

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2103072Date Prepared:03/08/2021BatchID:216852Date Analyzed:03/08/2021Extraction Method:E1664AInstrument:O&GAnalytical Method:E1664A

Matrix:WaterUnit:mg/LProject:Quarterly Sampling (March 2021)Sample ID:MB/LCS/LCSD-216852

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
HEM	ND	1.30	5.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	18.5	17.6	20.83	89	84	78-114	4.86	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/05/2021

Date Analyzed: 03/05/2021 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

BatchID: 216796 **Extraction Method:** SM4500-NH3 BG

Analytical Method: SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-216796

	QC Summary Report for SM4500-NH3										
Analyte	MB Result	MDL	RL								
Ammonia. total as N	ND	0.0920	0.100	_		-					

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	4.04	5.12	4	101	128,F6	88-113	23.5,F2	20

Quality Control Report

Client: PG&E Gateway Generating Station

 Date Prepared:
 03/03/2021

 Date Analyzed:
 03/08/2021

 Instrument:
 WetChem

Matrix: Water

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

BatchID: 216621

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Sample ID: MB/LCS/LCSD-216621

QC Summary Report for BOD										
Analyte	MB Result	MDL	RL							
BOD	ND	4.00	4.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	198	228	198	100	115	80-120	14.1	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/05/2021

Date Analyzed: 03/05/2021 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

BatchID: 216762 **Extraction Method:** SM4500-CN E

Analytical Method: SM4500-CN E

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-216762

QC Summary Report for SM4500-CN ⁻ CE										
Analyte	MB Result	MDL	RL							
Total Cyanide	ND	0.770	1.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	39.0	41.2	40	98	103	80-120	5.30	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/05/2021 **Date Analyzed:** 03/05/2021

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072 **BatchID:** 216781

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-216781

2103072-001FMS/MSD

QC Summary Report for COD									
Analyte	MB Result	MDL	RL						
COD	ND	7.20	10.0	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	105	105	100	105	105	90-110	0	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
COD	1	125	125	100	24.00	101	101	80-120	0	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/02/2021 Date Analyzed: 03/08/2021 Instrument: AA1

Matrix: Water

Analyte

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

BatchID: 216442

Extraction Method: E245.2 **Analytical Method:** E245.2

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-216442

2103072-001IMS/MSD

QC Summary	Report for N	Aercury		
MB Result	MDL	RL		

Mercury ND 0.130 0.200 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	1.91	1.82	2	95	91	85-115	4.86	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Mercury	1	1.91	1.82	2	ND	95	91	80-120	4.64	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:03/02/2021Date Analyzed:03/03/2021Instrument:ICP-MS4Matrix:Water

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072 **BatchID:** 216490

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: μg/L

Sample ID: MB/LCS/LCSD-216490

QC Summary	Report for Metals

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.100	0.500	-	-	-
Cadmium	ND	0.240	0.500	-	-	-
Chromium	ND	0.350	0.500	-	-	-
Copper	ND	0.360	0.500	-	-	-
Iron	ND	37.0	100	-	-	-
Lead	ND	0.270	0.500	-	-	-
Molybdenum	ND	0.180	0.500	-	-	-
Nickel	ND	0.270	0.500	-	-	-
Selenium	ND	0.170	0.500	-	-	-
Silver	ND	0.260	0.500	-	-	-
Zinc	ND	14.0	20.0	-	-	-

Surrogate Recovery

Terbium 531 500 106 70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53.8	53.3	50	108	107	85-115	1.04	20
Cadmium	51.7	51.4	50	103	103	85-115	0.448	20
Chromium	51.4	50.9	50	103	102	85-115	0.860	20
Copper	53.6	51.7	50	107	103	85-115	3.59	20
Iron	5120	5110	5000	102	102	85-115	0.273	20
Lead	50.4	50.0	50	101	100	85-115	0.715	20
Molybdenum	49.7	50.4	50	99	101	85-115	1.47	20
Nickel	53.4	52.7	50	107	105	85-115	1.40	20
Selenium	53.5	53.9	50	107	108	85-115	0.676	20
Silver	49.2	48.5	50	98	97	85-115	1.35	20
Zinc	533	529	500	107	106	85-115	0.619	20
Surrogate Recovery								
Terbium	528	518	500	106	104	70-130	1.77	20

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2103072Date Prepared:03/19/2021BatchID:217750Date Analyzed:03/19/2021Extraction Method:E420.4Instrument:WC_SKALARAnalytical Method:E420.4

Matrix: Water

Project: Quarterly Sampling (March 2021) **Sample ID:** MB/LCS/LCSD-217750

QC Summary Report for E420.4									
Analyte	MB Result	MDL	RL						
Phenolics	ND	1.30	2.00	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	39.0	39.1	40	97	98	80-120	0.229	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/04/2021

Date Analyzed: 03/05/2021 **Instrument:** WetChem

Matrix: Water

Project:

Analyte

Quarterly Sampling (March 2021)

WorkOrder: 2103072 **BatchID:** 216725

Extraction Method: SM2540 C-1997

Analytical Method: SM2540 C-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-216725

QC Summary Repor	t for Total D	issolved Solid	.S	
MB	MDL	RL		
Result				

Total Dissolved Solids ND 10.0 - -

Analyse	1.00	LCCD	CDV.	1.00	1.000	1 00/1 000	RPD	DDD
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	KPD	RPD Limit
Total Dissolved Solids	994	1060	1000	99	106	80-120	6.24	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/03/2021

Date Analyzed: 03/03/2021 **Instrument:** WetChem

Matrix: Water

Analyte

Project: Quarterly Sampling (March 2021)

WorkOrder: 2103072

BatchID: 216552

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-216552

Q	C Summary Repor	t for Total Sus	spended Solid	ls	
	MB Result	MDL	RL		

Total Suspended Solids ND 1.00 1.00 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	95.0	100	100	95	100	80-120	5.13	10

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2103072

ClientCode: PGEA

■EQuIS ■Dry-Weight ■Email

HardCopy

☐ThirdParty ☐J-flag

Detection Summary

ary ___Excel

Report to:

Angel Espiritu
PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: A1HE@pge.com; J5Ld@pge.com; TIWY@

□ EDF

PO:

□WaterTrax

Project: Quarterly Sampling (March 2021)

WriteOn

Bill to:

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch. CA 94509 Date Received:

Requested TATs:

03/02/2021

5 days; 7 days;

Date Logged: 03/02/2021

								Re	quested	Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2103072-001	E-001	Water	3/1/2021 09:47			Α								Α		
2103072-001	E-001	Water	3/2/2021 10:30					Е		F	I	J			G	Н
2103072-001	E-001	Water	3/2/2021 10:35		В		С		D				С		_	

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	PRDisposal Fee

3	AMMONIA_W
7	HG_W
11	TDS_W

4	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Project Manager: Angela Rydelius Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Quarterly Sampling (March 2021)	Work Order: 2103072
--------------	---------------------------------	----------	---------------------------------	----------------------------

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments:

Date Logged: 3/2/2021

		Water	Trax WriteOn EDF	Exc	el EQuIS	y Email	⊟HardCop	ру 🗀	ΓhirdParty	J-flag	
LabII	O ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Head Dry- Space Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
001A	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	2	1LA w/ HCl		3/1/2021 9:47	5 days	3/9/2021	None	
001B	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	2	1LA w/ HCl		3/2/2021 10:35	5 days	3/9/2021	None	
001C	E-001	Water	E420.4 (Phenolics)	1	250mL aG w/ H2SO4		3/2/2021 10:35	5 days	3/9/2021	None	
			E350.1 (Ammonia)					5 days	3/9/2021	None	
001D	E-001	Water	SM4500-CN CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH		3/2/2021 10:35	5 days	3/9/2021	None	
001E	E-001	Water	SM5210B (BOD)	1	1L HDPE, unprsv.		3/2/2021 10:30	7 days	3/11/2021	None	
001F	E-001	Water	SM5220D (COD)	2	aVOA w/ H2SO4		3/2/2021 10:30	5 days	3/9/2021	None	
001G	E-001	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		3/2/2021 10:30	5 days	3/9/2021	None	
001H	E-001	Water	SM2540D (TSS)	1	1L HDPE, unprsv.		3/2/2021 10:30	5 days	3/9/2021	None	
001I	E-001	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3		3/2/2021 10:30	5 days	3/9/2021	None	
001J	E-001	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3		3/2/2021 10:30	5 days	3/9/2021	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

2102077

																							1	1	U)	012
	₩ebs	ite: w		WILLOV TSBURG, C	V PAS	S ROAD 565-1701 ail: mair		camp	bell	.com						TURN GeoTra		IND	T	M J	E PDF C	USH 24 Excel	HR		48 W	HR	CORD 7 TA R 72 HR 5 DAY e On (DW) "J" flag is required
Report To	: Angel Es	pirit	u		TI	Bill To:	PG&	E Ga	itev	vay					T		Analysi	s Re		-				Acceptance		_	Remarks
Company	: PG&E G	atew	ay Genera	ating Sta	tion									_	#			Π	T	T	T	i i	П		Γ	Γ	
E-Mail: a	bed@pge.c	om, /	AIHE@ps	ge.com, J	5Ld(a pge.co	m, tl	WY	a) pg	e.co	m	-		-	+	ith 0 CN-	enium) with	dnu	10.41	O-CHV	romiu nc)					
	522-7838,		The second second		_	Fax: ()								٦	d w sefo	l sel	V+90	clean	7 8	986	n, ch Iver, d ziu					
THE RESERVE OF THE PERSON NAMED IN	ame: Qua	-		THE RESERVE OF THE PERSON NAMED IN	of the latest designation in the	cch	2	02	1)				٦	ate l	and	1	l gel			cl, si		_			
Project Lo	cation: Co	mbir	ned Site Fl				_	0								sulf by	enic y rea	SEI	silic	5	9	cad nick	108	20D	00	ê	
Sampler S	ignature: l	Musk	kan Envir	onmental	Sam	pling	L	->	7							thio (guing)	A B) se	ont	cuo	(24	lead,	MS	M 52	125	1254	
		mposite	SAMP	LING		2	Ma	trix	MI	ЕТНО	OD P	RES	SER	VEI	9	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 ABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (USEPA 1664A) with	and with	Total Thenolies (USETA 420.4)	Mercury (245.2)	Metals (200.8 cadmium, chromium, copper, lead, nickel, silver, Molybdenum, iron, and zinc)	BOD (SM \$210B)	COD (SM 5220D)	TDS (SM2540C)	TSS (SM 2540D)	
SAMPLE ID	LOCATION / Field Point Name	Sample Type Composite	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H-SO.	NaOH	HCL	HNO,	Other												
E-001		G	3/1/21	09:47	2	1L Amb	X			Х	T	\top	X	T	7			X	T	T			П		Γ	Γ	
E-001		G	3/2/21		2	1L Amb	X			Х	T	T	X	T	7			X	T	T			П	Γ	Γ		
E-001		G	3/2/21	10:35	1	500ml Amb	X			Х	X	T	T	T	1			Г	7	× >			П				
E-001		G	3/2/21	10:36	-1	250-ml Poly	X			X	7	X	T	T	1	X		Г	T	T							
E-001		С	3/2/21	10:30	1	1L Poly	X		X	X	T	T	T	T	٦			Π	T	Τ			Χ				
E-001		C	3/2/21	10:30	2	43-ml VOA	X		П	X	X	T	T	T	7	Sratural Design of the Control of th		Т	T	T			П	Х	Γ		
E-001		С	3/2/21	1030	1	500-ml poly	X		Х	Х	T	T	T	T	7				T	T			П		X	Γ	
E-001		C	3/2/21	10:30	1	II. poly	X		Х	Х	T	1	1	T	1				T	T			П		Γ	X	
E-001		C	1	10:30	1	250-ml Poly	X		П	Х	T	1	1	X	1			Т	T	T	X		П				
E-001		C	3/2/21	The state of the s	_	250-ml poly	X			X	T			X			X			T		X					
											I	I	T	T					I	I							
	,										T																
Relinquished	B.:/		Date:	Time:	Rece	ived By	-		5				24			GOOD CO	NDITION	rel	4				C	OM	ME	NT	S:
Relinquiched		/	Date:			eived By:	th		2	h	5-3	1	2/	21	1	HEAD SPA DECHLOR APPROPRI PRESERVI	CE ABSE	NT_ IN LA		es_	_						
Relinquished	By:		Date:	Time:	Rece	ived By:										PRESERVA	ve		08	kG.	METALS pH<2_	OTHER					Page 29 of

Page 29 of 30

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Quarterly Sampling (March 2021)			Date and Time Received: Date Logged: Received by:	3/2/2021 12:45 3/2/2021 Lilly Ortiz
WorkOrder №: Carrier:	2103072 Matrix: Water Client Drop-In			Logged by:	Valerie Alfaro
	Chain of C	ustody	(COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	•	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
COC agrees with	Quote?	Yes		No 🗆	NA 🗹
	Sampl	le Rece	<u>ipt Informati</u>	<u>on</u>	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	•	No 🗌	
Samples in prope	er containers/bottles?	Yes	•	No 🗌	
Sample containe	rs intact?	Yes	•	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservation	on and	Hold Time (I	HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗆	NA 🗌
Samples Receive	ed on Ice?	Yes	•	No 🗆	
	(Ice Type	e: WE	TICE)		
Sample/Temp Bla	ank temperature		Temp: 2°0		NA 🗌
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	•	No 🗌	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes	✓	No 🗆	NA 🗆
UCMR Samples:					
	acceptable upon receipt (200.8: ≤2; 525.3: ≤4; 3; 544: <6.5 & 7.5)?	Yes		No 🗔	NA 🗹
Free Chlorine t	ested and acceptable upon receipt (<0.1mg/L)?	Yes		No 🗌	NA 🗸
		==:		=======	

Attachment 8d
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2103074

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Sanjiv Gill

Project P.O.:

Project: pH Sampling (March 2021)

Project Received: 03/02/2021

Analytical Report reviewed & approved for release on 03/08/2021 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: pH Sampling (March 2021)

WorkOrder: 2103074

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/02/2021 12:45

Date Prepared: 03/01/2021

Project: pH Sampling (March 2021)

WorkOrder: 2103074

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

рH

Client ID	Lab ID	Matrix	Date Collec	cted	Instrument	Batch ID
E-001	2103074-001A	Water	03/01/2021 0	9:49	WetChem	216874
<u>Analytes</u>	Result		<u>Accuracy</u>	<u>DF</u>		Date Analyzed
рН	7.91		±0.05	1		03/01/2021 09:50

Analyst(s): HAD

McCampbell Analytical, Inc.

PG&E Gateway Generating Station

FAX:

☐ WaterTrax

Email:

Project:

PO:

cc/3rd Party:

WriteOn

sanjivgill@comcast.net

Ph Sampling (March 2021)

□ EDF

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

3225 Wilbur Avenue

Antioch, CA 94509

(925) 459-7212

Report to:

Sanjiv Gill

CHAIN-OF-CUSTODY RECORD

Page 1 of 1	Page	1 o	f 1
-------------	------	-----	-----

WorkOrder: 2103074 ClientCode: PGEA

■ EQuIS ■ Dry-Weight ▶ Email HardCopy ThirdParty J-flag

Detection Summary Excel

Bill to: Requested TAT: 5 days;

Angel Espiritu

PG&E Gateway Generating Station

				Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2103074-001	E-001	Water	3/1/2021 09:49		Α	Α										

Test Legend:

1 PH_W_SANJIV	2 PRDisposal Fee	3	4
5	6	7	8
9	10	11	12

Project Manager: Angela Rydelius Prepared by: Lilly Ortiz

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Ph Sampling (March 2021) Work Order: 210	103074
--	--------

Client Contact: Sanjiv Gill QC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net Comments Date Logged: 3/2/2021

	Water ¯	Trax WriteOn	EDF	Exce	I EQuIS	y Email	HardCop	у 🔲	ThirdParty	I-flag
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	Head Dry- Space Weight		TAT	Test Due Date	Sediment Hold SubOut Content
001A E-001	Water	SM4500H+B (Field pH)		1	125mL HDPE, unprsv.		3/1/2021 9:49	5 days	3/9/2021	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: mala@mccampbell.com Telephone: (877) 252-9262

	CHAIN OF	CUSTODY	RECORD
TARABLE SET	A WIN O'D WITH VIEW WITH STREET		

TURN AROUND TIME

VOAS ONG METALS OTHER

BH<2

72 HR 5 DAY RUSH 24 HR 48 HR

GeoTracker EDF PDF Excel Write On (DW) Fax: (925) 252-9269 Check if sample is effluent and "J" flag is required Report To: Sanity Gill Bill To: Muskan Environmental Analysis Request Remarks Company: PG&E Gateway Generating Station E-Mail: sanilvail@comcast.net Tel: (408) 666-4494 (Cell) Project Name: pH Sampling (March 202 Project Location: PG&E GGS Antioch - E-801 Sampler Signature: Mus Kan Envisionmento SAMPLING Matrix METHOD PRESERVED Type Containers SAMPLE LOCATION S # Containers / Field Point Name Date Time H.SO. HC. None NA NA E-001 G Grab Time: 09', 49 3/1/21 09:49 Analysis Time: 09:50 Temperature: 18.400 pH: 7.91 Relinquished By: Date: Time: Received By: ICENT Quet COMMENTS: GOOD CONDITION 3/2/21 12:45 HEAD SPACE ABSENT Relinquished By: Dates Received By: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinguished By: Dates Time: Received By:

PRESERVATION

Logbook for Field pH Samples

Date/Time	Sample ID	Matrix	1 st Reading		2 nd R	eading	Ave	Standard		
	Sumple 12	Matrix	pН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)	Comments	Analysi
31. b) 10855	Cal. pH#	L	7.00	18.2	7.00	18.2	7.00			
11/21 /0855	Cal pH #	L	4.00	18.2	4.00	13.2	4.00			
3/1/21/08:55	Cal. pH#	L	10.00	18.2	10.00	18.2	10.00			
								3		
					M	eter	My	cror L	Onpany	
						11tra	1 .1	6222066	7 /	
							1 - 1	0222000		
						pH	reco-	ded on	OC 31	1/21
								2 PU	CEF La	fer m

Date and Time Received: 3/2/2021 12:45

Sample Receipt Checklist

Client Name:	PG&E Gateway Ge	nerating Station			Date and Time Received:	3/2/2021 12:45
Project:	Ph Sampling (Marc	h 2021)			Date Logged:	3/2/2021
Mankondan No.	0400074	Madrice Mater			Received by:	Lilly Ortiz
WorkOrder №: Carrier:	2103074 Client Drop-In	Matrix: <u>Water</u>			Logged by:	Lilly Ortiz
		Chain of C	Custody	y (COC) Infor	<u>mation</u>	
Chain of custody	present?		Yes	✓	No 🗆	
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌	
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆	
Date and Time of	f collection noted by 0	Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
COC agrees with	Quote?		Yes		No 🗆	NA 🗹
		Samp	le Rece	eipt Informati	<u>on</u>	
Custody seals int	act on shipping conta	niner/cooler?	Yes		No 🗆	NA 🗹
Shipping containe	er/cooler in good con	dition?	Yes	•	No 🗆	
Samples in prope	er containers/bottles?		Yes	✓	No 🗆	
Sample contained	rs intact?		Yes	✓	No 🗌	
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌	
		Sample Preservati	on and	Hold Time (I	HT) Information	
All samples recei	ved within holding tin	ne?	Yes		No 🗹	NA 🗌
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ice Typ	e: WE	TICE)		
Sample/Temp Bla	ank temperature			Temp: 2°0	C	NA 🗌
	analyses: VOA meets Cs, TPHg/BTEX, RSI		Yes		No 🗌	NA 🗸
Sample labels ch	ecked for correct pre	servation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.		; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹
UCMR Samples:					_	
	acceptable upon rece 3; 544: <6.5 & 7.5)?	ipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗆	NA 🗹
Free Chlorine to	ested and acceptable	upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹
=====						

Comments: Method SM4500H+B (Field pH) was received past its 0.25-day holding time.

Page 8 of 8

Trevortigson 7-12-21 Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 6, 2021

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2021, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Copy of Laboratory Results, and Annual Flowmeters Calibration.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 6, 2021

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2021, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Copy of Laboratory Results, and Annual Flowmeters Calibration.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in June 30, 2021

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 9: Annual Flowmeter Calibration

Attachment 1 Certification Statement

Certification Statement

Name of Business: PG&E Gateway Generating Station

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: 925-522-7805

Period Covered: Period ending: June 30, 2021

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisdom Date: July 6, 202

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun Fax # (925)756-1961	Pretreatment Phone: (925)756-1929						
From: Tim Wisdom Company: Pacific Gos and Floatric Company	Gataway Ganarating Station						
Company: Pacific Gas and Electric Company – Gateway Generating Station Period Covered: Period ending June 30, 2021							
Industrial User Checklist for self –monitoring discharge permit issued by Delta Diablo Sanita							
Self-monitoring reports							
Flow discharge summary (Discharge Permit Section E.1.h.) (See Attachment 4) Calibration of flow meters, as required. (Section E.1.g.) (See Attachment 9) Monitoring results- <u>All</u> required tests completed, results reviewed, results included, QA/QC, chain of custody (section F.7.) (See Attachment 8) Certification statement included (See Attachment 1)							
Violations (if applicable)							
All wastewater discharge exceedance are Delta Diablo was contacted. (See Additi A follow-up report on characterization re Corrective actions to resolve violation: Other violations - i.e. Reporting, spills to	onal Notes below) e-sampling was submitted on						
Additional Notes: None							
Significant changes							
	1'4 1 C41						

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	6/9/2021	6/10/2021	6/10/2021			
TYPE	G	G	C24			
STATION	E-001	E-001	E-001			
SMP.BY	Muskan	Muskan	Muskan			
PURPOSE	Compliance	Compliance	Compliance			
PURPUSE	Quarterly (Q2)	Quarterly (Q2)	Quarterly (Q2)	!		

Units: mg/L

FLOW, DAILY (gal) S1,120	<u>PARAMETERS</u>	<u>LIMITS</u>						
PH 6-10 s.u. 7.75 22.0	FLOW, DAILY (gal)	51,120						
BOD COD	FLOW, MONTH (gal)							
COD	рН	6-10 s.u.		7.75				
TDS	BOD				22.0			
TSS	COD				24.0			
Arsenic 0.15 0.00120 0.00120 0.15 0.00120 0.15 0.00120 0.15 0.00120 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.00150 0.15 0.15	TDS				648.0			
Cadmium 0.1 ND(<0.0005) Chromium 0.5 0.00150 Copper 0.5 0.0390 Iron 1.7	TSS				47			
Chromium 0.5 0.00150 0.00390 0.5 0.00390 0.5 0.00390 0.5 0.00390 0.5 0.00390 0.5 0.00390 0.5 0.0030 0.5 0.0030 0.5 0.00050 0.5 0.00050 0.5 0.00050 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.0043 0.5 0.5 0.0043 0.5 0.5 0.00050 0.5 0.5 0.0043 0.5 0.5 0.0043 0.5 0.5 0.00050 0.5 0.	Arsenic	0.15			0.00120			
Copper 0.5	Cadmium	0.1			ND(<0.0005)			
Iron	Chromium	0.5			0.00150			
Lead 0.5 ND(<0.0005)	Copper	0.5			0.0390			
Mercury 0.003 ND(<0.0002) Selenium Nickel 0.5 0.0043 Selenium Selenium 0.25 ND(<0.0005)	Iron				1.7			
Molybdenum 0.5 0.0043 0.0043 Selenium 0.25 ND(<0.0005)	Lead	0.5			ND(<0.0005)			
Nickel 0.5 0.0043 0.0043 Selenium 0.25 ND(<0.0005)	Mercury	0.003			ND(<0.0002)			
Selenium 0.25 ND(<0.0005) Silver 0.2 ND(<0.0005)	Molybdenum				0.084			
Silver 0.2 ND(<0.0005) Silver Silver 1.00 Silver O.140 Silver Silver </td <td>Nickel</td> <td>0.5</td> <td></td> <td></td> <td>0.0043</td> <td></td> <td></td> <td></td>	Nickel	0.5			0.0043			
Zinc 1.00 0.140	Selenium	0.25			ND(<0.0005)			
Cyanide 0.2 0.0046	Silver	0.2			ND(<0.0005)			
Phenol 1.00 0.020	Zinc	1.00			0.140			
Ammonia 200 13 <	Cyanide	0.2		0.0046				
O&G Petro/Min (E1664A w/ Silica) 100 ND(<5.0)	Phenol	1.00		0.020				
O&G Animal/Vegetable Oil 300 25 ND(<5.0)	Ammonia	200						
TTO EPA 608 TTO EPA 624 TTO EPA 625 TTO Quadratic Sulfide TTO EPA 625 TTO Quadratic Sulfide TTO EPA 625 TTO TTO TERE CONTROL TO THE CONTROL T	O&G Petro/Min (E1664A w/ Silica)	100						
TTO EPA 624 TTO EPA 625 TTO 2.00 Sulfide	O&G Animal/Vegetable Oil	300	25	ND(<5.0)				
TTO EPA 625	TTO EPA 608							
TTO 2.00	TTO EPA 624							
Sulfide Sulfide	TTO EPA 625							
	TTO	2.00						
Sulfate	Sulfide							
	Sulfate							

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

April 2021-June 2021

		Industria	l Flow						
			Did it ever			Sanitary	Did it ever		
		Time Over	go over			Time Meter	go over		
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
Date	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(illiliates)				(minutes)			
			mins?				mins?		
4/1/2021	34.6	0.0	NO	46,074	20.9	0	NO	376	46,450
4/2/2021	34.7	0.0	NO	45,575	0.0	0	NO		45,575
4/3/2021	34.8	0.0	NO	49,003	0.0	0	NO		49,003
4/4/2021	35.1	0.0	NO	46,614	0.0	0	NO		46,614
4/5/2021	35.3	0.0	NO	35,316	20.7	0	NO	373	35,689
4/6/2021	35.0	0.0	NO	34,245	0.1	0	NO		34,245
4/7/2021	35.3	0.0	NO	26,882	20.9	0	NO	372	27,254
4/8/2021	35.3	1.0	NO	23,655	0.0	2	NO	1	23,657
4/9/2021	35.0	0.0	NO	31,068	0.0	0	NO		31,068
4/10/2021	35.1	0.0	NO	31,109	21.4	0	NO		31,109
4/11/2021	35.2	0.0	NO	21,427	0.0	0	NO		21,427
4/12/2021	35.0	0.0	NO	41,830	0.0	0	NO		41,830
4/13/2021	35.1	0.0	NO	35,464	20.7	0	NO	379	35,842
4/14/2021	35.4	0.0	NO	23,401	0.0	0	NO	1	23,402
4/15/2021	35.1	0.0	NO	25,911	0.0	0	NO	·	25,911
4/16/2021	34.5	0.0	NO	43,074	21.3	0	NO	372	43,446
4/17/2021	35.1	0.0	NO	33,906	0.0	0	NO	012	33,906
4/18/2021	35.3	0.0	NO	45,730	0.0	0	NO		45,730
4/19/2021	35.2	0.0	NO	44,702	21.3	0	NO	368	45,070
4/20/2021	34.6	0.0	NO	37,126	0.1	0	NO	300	37,126
	35.5	0.0	NO		20.7	0	NO	352	
4/21/2021			NO	32,617			NO	352	32,969
4/22/2021	34.8	0.0		29,333	0.1	0			29,333
4/23/2021	35.1	0.0	NO	23,829	0.0	0	NO	070	23,829
4/24/2021	35.0	0.0	NO	30,645	20.5	0	NO	370	31,015
4/25/2021	34.5	0.0	NO	48,445	0.0	0	NO		48,445
4/26/2021	34.6	0.0	NO	28,391	0.0	0	NO	070	28,391
4/27/2021	35.2	0.0	NO	38,941	20.6	0	NO	379	39,320
4/28/2021	35.1	0.0	NO	48,468	0.0	0	NO		48,468
4/29/2021	34.9	0.0	NO	28,337	21.5	0	NO	357	28,694
4/30/2021	35.5	0.0	NO	15,198	0.1	0	NO	3	15,201
						Max D	aily Flow (Lir	•	49,003
	-							onthly Total:	1,050,020
5/1/2021	35.4			46,781	0.0				46,781
5/2/2021	34.6	0.0	NO	48,578	20.9		NO	414	48,992
5/3/2021	34.6	0.0	NO	46,103	0.1	0	NO	3	46,106
5/4/2021	40.7	3.0	NO	23,177	21.2	0	NO	367	23,544
5/5/2021	35.0	0.0	NO	18,851	0.1	0	NO		18,851
5/6/2021	0.1	0.0	NO		21.4	0	NO	369	369
5/7/2021	-0.3	0.0	NO		0.1	0	NO	4	4
5/8/2021	-0.4	1.0	NO		21.9	2	NO	399	399
5/9/2021	-0.3	0.0	NO		0.0	0	NO		-
5/10/2021	-0.3	0.0	NO		0.0	0	NO		-
5/11/2021	-0.4	0.0	NO		21.5	0	NO	371	371
5/12/2021	-0.4	0.0	NO		0.0		NO	0	0
5/13/2021	-0.5	0.0	NO		21.3	0	NO	386	386
5/14/2021	-0.4	0.0	NO		21.4	0	NO	378	378
5/15/2021	-0.4	0.0	NO		0.1	0	NO	4	4
5/16/2021	-0.4	0.0	NO		0.0	0	NO		<u></u>
5/17/2021	-0.4	0.0	NO		21.8	0	NO	375	375
5/18/2021	-0.4	2.0	NO		0.1	3	NO	1	1
5/19/2021	-0.5	0.0	NO		21.9			430	430
5/20/2021	-0.4	0.0	NO		21.9	0	NO	376	376

PG&E Gateway Generating Station

Discharge Flow Data

April 2021-June 2021

		Industria	l Flow						
Date	Instantaneous	Time Over 35.5 GPM	Did it ever go over 35.5 GPM	Daily Total	Instantaneous	Time Meter went Bad	Did it ever go over 35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15 mins?	(Gallons)	Flow (GPM)	Quality (minutes)	for 15 mins?	(Gallons)	(Gallons)
5/21/2021	-0.5	0.0	NO		0.1	0	NO		-
5/22/2021	-0.4	0.0	NO		0.1	0	NO		-
5/23/2021	0.1	3.0	NO		21.9	3	NO	385	385
5/24/2021	34.9	0.0	NO	6,918	0.0	0	NO		6,918
5/25/2021	0.1	0.0	NO		21.8	0	NO	369	369
5/26/2021	-0.3	0.0	NO		22.3	0	NO	357	357
5/27/2021	34.3	0.0	NO	13,033	0.0	0	NO		13,033
5/28/2021	35.2	0.0	NO	7,235	22.1	0	NO	431	7,667
5/29/2021	35.1	0.0	NO	23,965	0.1	0	NO		23,965
5/30/2021	34.5	0.0	NO	49,002	0.0	0	NO		49,002
5/31/2021	34.7	0.0	NO	48,648	21.8	0	NO	340	48,988
						Max D	aily Flow (Lii	mit: 51,120):	49,002
							M	onthly Total:	338,050
6/1/2021	34.8	0.0	NO	48,991	0.1	0	NO		48,991
6/2/2021	34.7	0.0	NO	48,620	21.9	0	NO	376	48,996
6/3/2021	34.6	0.0	NO	49,007	0.0	0	NO		49,007
6/4/2021	34.6	0.0	NO	48,485	21.6	0	NO	384	48,869
6/5/2021	34.8	0.0	NO	36,181	0.0	0	NO		36,181
6/6/2021	34.9	0.0	NO	49,006	0.0	0	NO		49,006
6/7/2021	35.1	0.0	NO	27,445	20.9	0	NO	80	27,525
6/8/2021	34.6	1.0	NO	38,399	20.5	2	NO	51	38,451
6/9/2021	40.0	1.0	NO	20,317	21.6	0	NO	787	21,104
6/10/2021	35.6	0.0	NO	40,234	0.0	0	NO	787	41,021
6/11/2021	34.6	0.0	NO	48,616	23.1	0	NO		48,616
6/12/2021	34.8	0.0	NO	42,037	0.0	0	NO		42,037
6/13/2021	34.5	0.0	NO	48,978	21.6	0	NO	29	49,007
6/14/2021	34.7	0.0	NO	44,679	21.9	0	NO	354	45,033
6/15/2021	35.3	0.0	NO	38,135	21.4	0	NO	363	38,498
6/16/2021	34.9	0.0	NO	37,169	0.0	0	NO		37,169
6/17/2021	34.8	0.0	NO	27,325	21.0	0	NO	384	27,708
6/18/2021	34.6	0.0	NO	48,996	0.0	0	NO	070	48,996
6/19/2021	34.5	0.0	NO	48,614	22.7	0	NO	378	48,992
6/20/2021	35.0	0.0		35,015	0.0				35,015
6/21/2021	34.9	0.0	NO	31,295	21.9		NO	365	31,661
6/22/2021	35.0	0.0	NO	33,750	0.0			225	33,750
6/23/2021	35.0	21.0	NO	27,834	21.3		NO	360	28,194
6/24/2021	35.1	0.0	NO	27,375	0.0		NO	004	27,375
6/25/2021	34.9	0.0	NO	31,908	21.4		NO	361	32,269
6/26/2021	35.1	0.0	NO	34,109	0.0		NO		34,109
6/27/2021	35.1	0.0	NO	49,013	0.0		NO	075	49,013
6/28/2021	34.5	0.0	NO	48,610	21.7	0	NO	375	48,985
6/29/2021		0.0		48,617	21.7	0		371	48,988
6/30/2021	34.9	0.0	NO	47,367	21.8	0	NO	370	47,737

Max Daily Flow (Limit: 51,120):

Monthly Total: 1,212,301

49,013

Note:

1) 6/23/2021: The Industrial and Sanitary flowmenters were calibrated. Both discharge valves were placed in off and closed positions during the calibration process.

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2021**

Month	Flow (gallons)	Due Date
January		
February		
March		
April	1,050,020	7/15/2021
May	338,050	7/15/2021
June	1,212,301	7/15/2021
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report April 2021 to June 2021

	WSAC Operation							
Month	Hours of Operation							
January-21								
February-21								
March-21								
April-21	91.08							
May-21	7.58							
June-21	323.00							
July-21								
August-21								
September-21								
October-21								
November-21								
December-21								

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report April 2021 to June 2021

	WSAC Operation							
Month	Average Daily Blowdown Cycles							
1/17/20201								
February-21								
March-21								
April-21	3.94							
May-21	4.62							
June-21	3.34							
July-21								
August-21								
September-21								
October-21								
November-21								
December-21								

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2106662

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (June 2021)

Project Received: 06/10/2021

Analytical Report reviewed & approved for release on 06/17/2021 by:

Susan Thompson

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

Analytical Qualifiers

b6 Lighter than water immiscible sheen/product is present

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06

Date Prepared: 06/16/2021

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

Extraction Method: E1664A_SG

Analytical Method: E1664A **Unit:** mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 (G)	2106662-001B	Water	06/09/2021	08:30	O&G	223676
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		06/17/2021 11:30

Analyst(s): HN

Analytical Comments: b6

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 (G)	2106662-002B	Water	06/10/202	21 09:10	O&G	223676
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		06/17/2021 11:35

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06

Date Prepared: 06/15/2021

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

Extraction Method: E1664A

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 (G)	2106662-001A	Water	06/09/202	21 08:30	O&G	223587
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		<u>Date Analyzed</u>
HEM	25		5.0	1		06/16/2021 12:45

Analyst(s): HN

Analytical Comments: b6

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 (G)	2106662-002A	Water	06/10/202	1 09:10	O&G	223587
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		06/16/2021 12:50

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06 **Date Prepared:** 06/11/2021

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 (G)	2106662-002C	Water	06/10/202	1 09:10	WC_SKALAR 061121b1_55	223256
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Date</u>	<u>Analyzed</u>
Ammonia, total as N	13		1.0	10	06/11	1/2021 09:57

Analyst(s): RB

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06

Date Prepared: 06/10/2021

Project: Quarterly Sampling (June 2021) WorkOrder: 2106662

Extraction Method: SM5210B Analytical Method: SM5210 B-2001

Unit: mg/L

Biochemical Oxygen Demand (BOD)

		• • •	`			
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 (C)	2106662-003A	Water	06/10/202	21 09:00	WetChem	223246
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
BOD	22		8.0	2		06/15/2021 19:03

Analyst(s): HAD

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06

Date Prepared: 06/16/2021

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

Cyanid	le,	T	otal
--------	-----	---	------

		,				
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001 (G)	2106662-002D	Water	06/10/20	21 09:10	WC_SKALAR 06162021A1_2	9 223604
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date	Analyzed
Total Cyanide	4.6		1.0	1	06/1	6/2021 12:09

Analyst(s): JN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06

Date Prepared: 06/11/2021

Project: Quarterly Sampling (June 2021) WorkOrder: 2106662

Extraction Method: SM5220 D-1997 Analytical Method: SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 (C)	2106662-003B	Water	06/10/202	1 09:00	SPECTROPHOTOMETER	223341
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Dat</u>	e Analyzed
COD	24		10	1	06/	11/2021 20:09

Analyst(s): NYG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06

Date Prepared: 06/11/2021

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

				Ι		
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 (C)	2106662-003E	Water	06/10/2021	09:00	AA1 _15	223191
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Mercury	ND		0.20	1		06/14/2021 18:40

Analyst(s): MIG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:06

Date Prepared: 06/11/2021

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662 Extraction Method: E200.8 Analytical Method: E200.8

Unit: $\mu g/L$

Metals							
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID	
E-001 (C)	2106662-003F	Water	06/10/2021	09:00	ICP-MS2 052SMPL.D	223192	
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed	
Arsenic	1.2		0.50	1		06/14/2021 14:16	
Cadmium	ND		0.50	1		06/14/2021 14:16	
Chromium	1.5		0.50	1		06/14/2021 14:16	
Copper	39		1.5	1		06/14/2021 14:16	
Iron	1700		100	1		06/14/2021 14:16	
Lead	ND		0.50	1		06/14/2021 14:16	
Molybdenum	84		0.50	1		06/14/2021 14:16	
Nickel	4.3		0.50	1		06/14/2021 14:16	
Selenium	ND		0.50	1		06/14/2021 14:16	
Silver	ND		0.50	1		06/14/2021 14:16	
Zinc	140		20	1		06/14/2021 14:16	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>				
Terbium	111		70-130			06/14/2021 14:16	
Analyst(s): AL							

Analytical Report

PG&E Gateway Generating Station **Client:**

Date Received: 06/10/2021 11:06

Date Prepared: 06/17/2021

Project: Quarterly Sampling (June 2021) WorkOrder: 2106662

Extraction Method: E420.4

Analytical Method: E420.4 Unit: $\mu g/L$

P	hen	ıol	ics

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001 (G)	2106662-002C	Water	06/10/20	21 09:10	WC_SKALAR 06172021A1_2	223726
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed
Phenolics	20		2.0	1	06/17	7/2021 13:45

Analyst(s): JN

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 2106662

 Date Received:
 06/10/2021 11:06
 Extraction Method:
 SM2540 C-1997

 Date Prepared:
 06/10/2021
 Analytical Method:
 SM2540 C-1997

Project: Quarterly Sampling (June 2021) Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 (C)	2106662-003C	Water	06/10/202	1 09:00	WetChem	223238
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	648		10.0	1		06/11/2021 12:40

Analyst(s): NYG

2106662

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder:

 Date Received:
 06/10/2021 11:06
 Extraction Method:
 SM2540 D-1997

 Date Prepared:
 06/14/2021
 Analytical Method:
 SM2540 D-1997

Project: Quarterly Sampling (June 2021) Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 (C)	2106662-003D	Water	06/10/2021 09:00		WetChem	223373
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Suspended Solids	47.0		5.00	5		06/14/2021 18:08

Analyst(s): HAD

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2106662Date Prepared:06/17/2021BatchID:223676Date Analyzed:06/17/2021Extraction Method:E1664A_SG

Instrument:O&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (June 2021) **Sample ID:** MB/LCS/LCSD-223676

QC Summary Report for E1664A									
Analyte	MB Result	MDL	RL						
SGT-HEM	ND	0.720	5.00	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	8.89	8.64	10.42	85	83	64-132	2.85	30

mg/L

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 2106662 **Date Prepared:** 06/16/2021 **BatchID:** 223587 **Date Analyzed:** 06/16/2021 **Extraction Method:** E1664A **Instrument:** O&G **Analytical Method:** E1664A **Matrix:** Water Unit:

Project: Quarterly Sampling (June 2021) **Sample ID:** MB/LCS/LCSD-223587

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
HEM	ND	1.30	5.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	17.3	17.7	20.83	83	85	78-114	2.46	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/11/2021

Date Analyzed: 06/11/2021 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

BatchID: 223256

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-223256

QC Summary Report for SM4500-NH3									
Analyte	MB Result	MDL	RL						

Ammonia, total as N ND 0.0920 0.100 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	3.84	3.81	4	96	95	88-113	0.868	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/10/2021 **Date Analyzed:** 06/15/2021 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (June 2021) WorkOrder: 2106662

BatchID: 223246

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Sample ID: MB/LCS/LCSD-223246

QC Summary Report for BOD										
Analyte	MB Result	MDL	RL							
BOD	ND	4.00	4.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	212	207	198	107	105	80-120	2.62	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/16/2021

Date Analyzed: 06/16/2021 **Instrument:** WC_SKALAR

Matrix: Water

Analyte

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

BatchID: 223604

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-223604

QC Summary Report for SM4500-CN ⁻ CE								
	MB Result	MDL	RL					

Total Cyanide ND 0.770 1.00 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	39.2	38.8	40	98	97	80-120	0.836	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/11/2021 **Date Analyzed:** 06/11/2021

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

BatchID: 223341

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-223341

QC Summary Report for COD										
Analyte	MB Result	MDL	RL							
COD	ND	7.20	10.0	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	97.0	91.0	100	97	91	90-110	6.38	20

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2106662Date Prepared:06/11/2021BatchID:223191Date Analyzed:06/14/2021Extraction Method:E245.2Instrument:AA1Analytical Method:E245.2

Instrument: AA1
Matrix: Water

Project: Quarterly Sampling (June 2021)

Sample ID: MB/LCS/LCSD-223191

2106662-003EMS/MSD

QC Summary Report for Mercury									
Analyte	MB Result	MDL	RL						
Mercury	ND	0.130	0.200	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	1.94	2.11	2	97	106	85-115	8.25	20

Analyte	MS	MS	MSD	SPK	SPKRef	MS	MSD	MS/MSD	RPD	RPD
, mary to	DF	Result	Result	Val	Val	%REC	%REC	Limits	5	Limit
Mercury	1	2.07	1.98	2	ND	104	99	80-120	4.72	20

Analyte	DLT Result	DLTRef Val	%D	%D Limit
Mercury	ND<1.00	ND	-	-

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/11/2021

Date Analyzed: 06/11/2021 - 06/14/2021 **Instrument:** ICP-MS2, ICP-MS4

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662 **BatchID:** 223192

BatchID: 223192 **Extraction Method:** E200.8

Analytical Method: E200.8

Unit:

Sample ID: MB/LCS/LCSD-223192

2106662-003FMS/MSD

	QC Summa	ry Report for	Metals			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.100	0.500	-	-	-
Cadmium	ND	0.240	0.500	-	-	-
Chromium	ND	0.350	0.500	-	-	-
Copper	ND	0.660	1.50	-	-	-
Iron	ND	37.0	100	-	-	-
Lead	ND	0.270	0.500	-	-	-
Molybdenum	ND	0.180	0.500	-	-	-
Nickel	ND	0.270	0.500	-	-	-
Selenium	ND	0.170	0.500	-	-	-
Silver	ND	0.260	0.500	-	-	-
Zinc	ND	14.0	20.0	-	-	-
Surrogate Recovery						
Terbium	530			500	106	70-130

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/11/2021

Date Analyzed: 06/11/2021 - 06/14/2021 **Instrument:** ICP-MS2, ICP-MS4

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

BatchID: 223192

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-223192

2106662-003FMS/MSD

QC Summary Report for Metals

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53.4	52.8	50	107	106	85-115	1.12	20
Cadmium	52.6	53.1	50	105	106	85-115	0.908	20
Chromium	51.1	51.5	50	102	103	85-115	0.626	20
Copper	53.4	52.9	50	107	106	85-115	0.860	20
Iron	5000	5080	5000	100	102	85-115	1.55	20
Lead	51.7	51.7	50	103	103	85-115	0.0928	20
Molybdenum	49.9	48.6	50	100	97	85-115	2.50	20
Nickel	52.4	51.6	50	105	103	85-115	1.71	20
Selenium	52.8	52.0	50	106	104	85-115	1.54	20
Silver	49.9	49.5	50	100	99	85-115	0.835	20
Zinc	527	531	500	105	106	85-115	0.631	20
Surrogato Pocovory								

Surrogate Recovery

Terbium 524 530 500 105 106 70-130 1.14 20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Arsenic	1	57.6	58.1	50	1.184	113	114	85-115	0.761	20
Cadmium	1	50.2	50.4	50	ND	100	101	85-115	0.318	20
Chromium	1	51.0	51.2	50	1.526	99	99	85-115	0.333	20
Copper	1	89.2	90.8	50	39.31	100	103	85-115	1.79	20
Iron	1	6640	6540	5000	1739	98	96	85-115	1.47	20
Lead	1	50.8	51.0	50	ND	101	101	85-115	0.334	20
Molybdenum	1	135	133	50	83.73	102	99	85-115	0.970	20
Nickel	1	56.5	56.5	50	4.346	104	104	85-115	0.0531	20
Selenium	1	55.5	55.2	50	ND	111	110	85-115	0.687	20
Silver	1	50.4	51.1	50	ND	101	102	85-115	1.46	20
Zinc	1	669	671	500	138.8	106	106	85-115	0.358	20

Terbium 1 546 547 500 109 109 70-130 0.183 20

Analyte	DLT Result	DLTRef Val	%D %D Limit
Arsenic	ND<2.50	1.184	
Cadmium	ND<2.50	ND	

(Cont.)

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/11/2021

Date Analyzed: 06/11/2021 - 06/14/2021 **Instrument:** ICP-MS2, ICP-MS4

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662 **BatchID:** 223192

SatchID: 223192

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: ug/L

Sample ID: MB/LCS/LCSD-223192

2106662-003FMS/MSD

QC Summary Report for Metals DLT **Analyte DLTRef** %D %D Result Val Limit Chromium ND<2.50 1.526 Copper 40.0 20 39.31 1.76 1900 1739 9.26 Iron Lead ND<2.50 ND Molybdenum 79.8 83.73 4.69 20 4.346 Nickel 3.98 8.42 Selenium ND<2.50 ND ND<2.50 Silver ND Zinc 0.144 139 138.8

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:06/17/2021Date Analyzed:06/17/2021Instrument:WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

BatchID: 223726

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-223726

2106662-002CMS/MSD

QC Summary Report for E420.4									
Analyte	MB Result	MDL	RL						
Phenolics	ND	1.30	2.00	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	38.8	40.1	40	97	100	80-120	3.34	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Phenolics	1	55.2	57.6	40	20.0	88	94	70-130	4.08	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/10/2021

Date Analyzed: 06/11/2021 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

BatchID: 223238

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-223238

Analyte	MB Result	MDL	RL			
Total Dissolved Solids	ND	10.0	10.0	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	1010	1030	1000	101	103	80-120	1.77	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/14/2021

Date Analyzed: 06/14/2021 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (June 2021)

WorkOrder: 2106662

BatchID: 223373

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-223373

QC Summary Report for Total Suspended Solids

Analyte	MB Result	MDL	RL			
Total Suspended Solids	ND	1.00	1.00	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	89.0	85.0	100	89	85	80-120	4.60	10

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

of 1

WorkOrder: 2106662

ClientCode: PGEA

HardCopy □ThirdParty

□ J-flag

5 days; 7 days;

Detection Summary

EQuIS

✓ Email Excel

Report to:

Angel Espiritu

PG&E Gateway Generating Station 3225 Wilbur Avenue

Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: a1he@pge.com; j5ld@pge.com;

WriteOn

□EDF

PO:

☐ WaterTrax

Project: Quarterly Sampling (June 2021) Bill to:

Angel Espiritu

Dry-Weight

PG&E Gateway Generating Station

3225 Wilbur Avenue

Antioch, CA 94509

Date Received:

Requested TATs:

06/10/2021

Date Logged: 06/10/2021

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2106662-001	E-001 (G)	Water	6/9/2021 08:30		В	Α								Α		
2106662-002	E-001 (G)	Water	6/10/2021 09:10		В	Α	С		D				С	Α		
2106662-003	E-001 (C)	Water	6/10/2021 09:00					Α		В	Е	F		A	С	D

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Prepared by: Lilly Ortiz **Project Manager: Angela Rydelius**

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (June 2021) Work Order: 2106662

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 6/10/2021

		Water	Trax WriteOn EDF	Exc	el EQuIS	S .	Email	☐HardCop	ру 🔲	ΓhirdParty	l-flag	
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
001A	E-001 (G)	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl			6/9/2021 8:30	5 days	6/17/2021	Present	
001B	E-001 (G)	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl			6/9/2021 8:30	5 days	6/17/2021	Present	
002A	E-001 (G)	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl			6/10/2021 9:10	5 days	6/17/2021	Present	
002B	E-001 (G)	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl			6/10/2021 9:10	5 days	6/17/2021	Present	
002C	E-001 (G)	Water	E420.4 (Phenolics)	1	250mL aG w/ H2SO4			6/10/2021 9:10	5 days	6/17/2021	Present	
			SM4500-NH3 BG (Ammonia Nitrogen)						5 days	6/17/2021	Present	
002D	E-001 (G)	Water	SM4500-CN CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH			6/10/2021 9:10	5 days	6/17/2021	Present	
003A	E-001 (C)	Water	SM5210B (BOD)	1	1L HDPE, unprsv.			6/10/2021 9:00	7 days	6/21/2021	Present	
003B	E-001 (C)	Water	SM5220D (COD)	2	aVOA w/ H2SO4			6/10/2021 9:00	5 days	6/17/2021	Present	
003C	E-001 (C)	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.			6/10/2021 9:00	5 days	6/17/2021	Present	
003D	E-001 (C)	Water	SM2540D (TSS)	1	1L HDPE, unprsv.			6/10/2021 9:00	5 days	6/17/2021	Present	
003E	E-001 (C)	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3			6/10/2021 9:00	5 days	6/17/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (June 2021) Work Order: 2106662

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 6/10/2021

	Water ⁻	Trax WriteOn EDF	Exce	el EQuIS	S	Email	HardCop	y 🔲 T	ΓhirdPartyJ	J-flag	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Head I Space W	•	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
003F E-001 (C)	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3			6/10/2021 9:00	5 days	6/17/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	Webs	ite: <u>n</u>		WILLO' TSBURG,	W PAS	S ROAD 565-1701 ail: mair	ı	camp	bell.	com						CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR GeoTracker EDF PDF Excel Write On (DV Check if sample is effluent and "J" flag is								□ () R 72 HR 5 DÂY te On (DW) □				
Report To	: Angel Es	pirit	u		I	Bill To:	PG&	E Ga	tew	ay				7		Analysi	s Req	ues	t						Remarks			
Company	: PG&E G	atew	ay Gener	ating Sta	tion							_				_	Г	П				П		П		T T		
E-Mail: a	he-laipge.c	000	AIHE@n	ec.com.	5Ld/	a pae.co	m, tl	WYG	pge	2.01	n			\dashv	CN.	enium	. 1664A) with	(F)	VIII3-G		chromium er, zinc)			П				
	522-7838,			7 (Cell)	I	fax: ()								(Pretreated with niosulfate before g) by SM 4500 (d sele	664A	P. 1-42	-005			П		П				
THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	ame: Qua				Z	nne	2	02	1)	_		7	freat Hate y SM	ic an eacti	4	USE	SM-			8	(-			
	ocation: Co	-	the second second second		I Can	nling		R				_		\dashv	(Preliosu	by n	(USEP	olics	18	145.2)	0.8 ca d, nic m, ir	5210	\$220I	240	C(01)			
Sampler	ignature.	Composite	SAMP		Jan		Ma	ıtrix	ME	тно	D PR	ESEI	RVE	D	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CN-ABCE.	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (U	Total Phenolics (USEPA 420.4)	Ammonia as N (SM 4500-NH3-G	Mercury (245.2)	Metals (200.8 cadm copper, lead, nickel Molybdenum, iron,	BOD (SM 5210B)	COD (SM 5220D)	TDS (SM2540C)	TSS (SM 2540D)			
SAMPLE ID	LOCATION / Field Point Name	Sample Type Cor	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE H.SO	NaOH	HCL.	HNO.	Other														
E-001	-	G	6/9/21	V8.56	2	II. Amb	X	\Box	+	X		X	1	1			X	H				H		H	_			
E-001		G	6/10/21	1	-	II. Amb	X	\Box	T	X	1	X	7	1			X	H				H		H				
E-001		G	15/01/21		1	500ml Amb	X		7	XX		П	7	7				Х	X			Н		H				
E-001		G	6/10/21	The same of the same of	1	250-ml Poly	X		1	X	X		7	7	X			H				П		T				
E-001		С	15/01/21	-	1	II. Poly	X	\Box	X	X		П	\forall	1				H				λ		H				
E-001			6/10/21		2	43-ml VOA	X	\Box	\dagger	XX	1	H	+	1				H				H	X	\forall				
E-001			6/10/21		1	500-ml	X	\Box	X	X	\vdash	H	\forall	7				H	-			H	-	X				
E-001		С	6/10/21		1	poly 11	X	\vdash	X	X	1	H	+	7				H				H	\dashv	+	X			
E-001		C	6/10/21		1	poly 250-ml	X	H	+	X	\vdash	H	X	+				H		X		H	-	\forall	_			
E-001			6/10/21		1	Poly 250-ml poly	X	H	\dagger	X		H	X	1		X		H			X	H	-	+	-			
			2122			7	1		1	T			1	1				H		MARIN CONTRACTOR		1		7		A CONTRACTOR OF THE PROPERTY O		
	/									L			T	I				П						I				
Relinquisher Rollinquisher			Date: //0/2 Date:	Time: //:/O Time:		ived By:	d			1:0				-	ICE/I°_ GOOD CON HEAD SPA DECHLOR APPROPRI	CE ABSENINATED I ATE CON	N LAE	3	.0	7. W	H	C	OMN	MEN	ITS	is .		
Relinquished	Ву:		Date:	Time:	Rece	ived By:				-			-		PRESERVE PRESERVA	vo		- 0&G		METALS	OTHER					Page 31 of		

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Ger Quarterly Sampling	_			Date and Tir Date Logged Received by		6/10/2021 11:06 6/10/2021 Tina Perez	
WorkOrder №: Carrier:	2106662 Client Drop-In	Matrix: <u>Water</u>			Logged by:		Lilly Ortiz	
		Chain of	Custody	/ (COC) Infor	mation			
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	f collection noted by C	Client on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
COC agrees with	Quote?		Yes		No 🗌	1	NA 🗸	
		Samı	ple Rece	eipt Informat	<u>ion</u>			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗌	1	NA 🗹	
Custody seals int	tact on sample bottles	?	Yes		No 🗌	1	NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	rs intact?		Yes	✓	No \square			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Preservat	tion and	Hold Time (HT) Information			
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌	1	NA 🗌	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ice Ty	pe: WE	TICE)				
Sample/Temp Bl	ank temperature			Temp: 1.9	9°C		NA L	
ZHS conditional a requirement (VO	analyses: VOA meets Cs, TPHg/BTEX, RSK	zero headspace ()?	Yes		No 🗌	1	NA 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
pH acceptable up <2; 522: <4; 218.		Nitrate 353.2/4500NO3:	Yes	✓	No 🗌	1	NA 🗌	
		ipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗌	1	NA 🗹	
Free Chlorine t	ested and acceptable	upon receipt (<0.1mg/L)?	Yes		No 🗌	1	NA 🗹	
Comments:			==:		=====		=====	

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

"When Quality Counts"

Analytical Report

WorkOrder: 2106668

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Sanjiv Gill

Project P.O.:

Project: PH Sampling (June 2021)

Project Received: 06/10/2021

Analytical Report reviewed & approved for release on 06/16/2021 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: PH Sampling (June 2021)

WorkOrder: 2106668

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/10/2021 11:10

Date Prepared: 06/09/2021

Project: PH Sampling (June 2021)

WorkOrder: 2106668

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

	-	-
-		
I)	•	

Client ID	Lab ID	Matrix	Date Collec	cted	Instrument	Batch ID
E-001	2106668-001A	Water	06/09/2021 0	8:35	WetChem	223279
Analytes	Result		<u>Accuracy</u>	<u>DF</u>		Date Analyzed
рН	7.75		±0.05	1		06/09/2021 08:36

Analyst(s): HAD

PG&E Gateway Generating Station

FAX:

☐ WaterTrax

Email:

Project:

PO:

cc/3rd Party:

WriteOn

sanjivgill@comcast.net

PH Sampling (June 2021)

□ EDF

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

3225 Wilbur Avenue

Antioch, CA 94509

(925) 459-7212

Report to:

Sanjiv Gill

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

□ J-flag

WorkOrder: 2106668 ClientCode: PGEA

EQuIS Dry-Weight **✓** Email □HardCopy □ ThirdParty

Detection Summary Excel

> Bill to: Requested TAT: 5 days;

Sanjiv Gil

Muskan Environmental Services

Date Received: 06/10/2021 1828 Nelda Ct. Date Logged: 06/10/2021

Yuba City, CA 95993

					Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date Ho	old 1	2	3	4	5	6	7	8	9	10	11	12
2106668-001	E-001	Water	6/9/2021 08:35	Α	Α										

Test Legend:

1	PH_W_SANJIV	2 PRDisposal Fee	3	4
5		6	7	8
9		10	11	12

Prepared by: Lilly Ortiz **Project Manager: Angela Rydelius**

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: PH Sampling (June 2021) Work Order: 2106668

Client Contact: Sanjiv Gill QC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net Comments Date Logged: 6/10/2021

	Water	Trax WriteOn	EDF	Exce	EQuIS	y Email	HardCop	у 🗀	ThirdParty	J-flag
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	Head Dry- Space Weight	Collection Date & Time	TAT	Test Due Date	Sediment Hold SubOut Content
001A E-001	Water	SM4500H+B (Field pH)		1	125mL HDPE, unprsv.		6/9/2021 8:35	5 days	6/17/2021	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

					-			_			_	-						_													2006	
6	M M	cC/	IMPB	ELL A	INA	LYT	ICA	L,	IN	C.										H	A	N	Ol	F	U	ST	O	DY	R	E	CORD	
	$\boldsymbol{\underline{\vee}}$		15. Pr	M WILL TISBURG	JW PA	4565-17I	D H								7	TUE	IN.	AR							Ę			Q			•	
	Wol	belto: :	WWW.Mccs	mpbelle	um Br	nelk m		есал	pbo	Loc											_				RU	SH	24	HR		48 I	HR 72 HR	5 DAY
`	14	abpea	te: (877) 2	152-9262		1	Pax: (925)	252	-921					G] eo'	Tra	ck	er I	ED	F	3	PI)F	₽	E	XC6		} '	Wr	ite On (DW) 📮
Dans	To: Sanity	Cin				om w									<u> </u>						!	1	Ch	eck	He	am;	le k	eff	ues	t en	d "J" flag is	
	By: PGAE					BIN To:		1	<u>. V</u>	TOR					_	_			·	4	122	74	Re	que	<u> </u>			,	,		Rem	rks
	BY: FORE	Gen	Way Gos		Mine	<u> </u>									l			1			1	l			1							
				·····	1	-Maft	- Henry				-				ł			1	j			1										
Tel: (4	00) 666-44	MIC	AD			Page (<i>ل</i> لا				-			•			1								1						
Projec	(Name: p	H Se	mpling (7			7)								1				1				l								
Project	Location:	PG& I	E GGS A	ntioch -	E-001	1		•	_				7)										l	l	1							
Semple	e Signature	12 V	lucka	a En	Nic	Du 200	1.		Z	-0	1/2		X			.	l															•
		T	1						T		0		-												ľ	١.						
		<u>\$</u>	SADE	PLING	I	.	Ma	etrix	M	THO	D PI	131	RV	10		l	1															
AMPL	LOCATION	34			1 2	1 5		T	h	Т	T	T	1											ĺ		İ						
ID	/ Floid Point	egyl sign		Í	ı,	Type Contain	Waste Wete	1 5			ı			1											l	İ						
	Name	E	Date	Time	Contain	S	3	1	Nose	نرا			۔ ا	3																		
		7	l		8	.	3		1		P	6	12	3	-	1		П														
		Ø.	<u> </u>		*	•		25	7	7.	Z		=		푔		L.															
E-001		G	6/9/21	12.70	NA	NA	X		X						X			П													Grab Time: ()	8:35
	ļ	-	0/ 1/61	00.33		ļ	ļ	-	dash	4	<u> </u>	\sqcup		Ц				Ш												\bot	Analysis Time:	<u> </u>
							L.			\perp								H													Temperature: \pH: 7.75	8.80
																		П											\neg	十		
							†		H	十		Н		H				H	_		-1		-	-			\dashv	+	-	\dashv		
							!		H	†	<u> </u>	H						\vdash			-	\dashv		-			一	+	-1	+		
							 	-	$\vdash \vdash$	+-	-	H	\vdash			-		\vdash										-	-+	+		
									$\vdash \vdash$	+-	_	H		-	-			$\vdash \downarrow$					-	_		ļ		-		4		
		-							\vdash	+		\vdash			\dashv			\sqcup		_	-	_	_	_	_	_	_	_	_	4		
									4	1		Ц	_		_				_		_									$oldsymbol{\perp}$		
																												T	T	T		
						\triangle								\neg					П			T	T				7	\top	T	1		*************
						77		/	Γ					7				\top	1	寸	7		1			1	寸	十	十	十		
Lethoque	By:		Dete:	Thme:	Rece			/ /		-	<u></u>	·1				r_												-6	OM	MEN	TS:	
	>		10/21	யுக	(ΔM	Y	1						I	COL	D S	TYO:	E A S	ON	T	_	1	١.					_		•	•	
	bed By:		Dates	Time:	Reput	red By:	4	7	abla						DEC	HL		ATI	ED B	NIA		-	_									
							\mathcal{L}	سا	ノ							ROP SER					VER!	3										
tellequie	hed By:		Deter	Thme:	Recal	red By:								7							_											
							•								PRE	SER	VAT		VO/	LS	04				0	THE	R					
															-		V 00 H						-	Di.								

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station PH Sampling (June 2021)			Date and Time Received: Date Logged: Received by:	6/10/2021 11:10 6/10/2021 Tina Perez
WorkOrder №: Carrier:	2106668 Matrix: Water Client Drop-In			Logged by:	Lilly Ortiz
	Chain of C	ustody	(COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	•	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	•	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted	by Client on COC?	Yes	✓	No 🗌	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name i	noted on COC?	Yes	✓	No 🗌	
COC agrees with	Quote?	Yes		No 🗌	NA 🗸
	Sampl	le Rece	ipt Informati	<u>on</u>	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗸
Custody seals int	act on sample bottles?	Yes		No 🗌	NA 🗸
Shipping contained	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	r containers/bottles?	Yes	✓	No 🗌	
Sample container	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time (I	HT) Information	
All samples recei	ved within holding time?	Yes		No 🗸	NA 🗆
Samples Receive	d on Ice?	Yes	✓	No 🗌	
	(Ice Type	e: WE	TICE)		_
Sample/Temp Bla	ank temperature		Temp: 1.9		NA 🗌
ZHS conditional a requirement (VO	nalyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗌	NA 🗸
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.	on receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes		No 🗆	NA 🗹
UCMR Samples:					
	acceptable upon receipt (200.8: ≤2; 525.3: ≤4; 3; 544: <6.5 & 7.5)?	Yes		No 🗌	NA 🗸
Free Chlorine to	ested and acceptable upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹
Comments:		==:			

Attachment 9 Annual Flowmeter Calibration

Gateway Generating Station				
Annual Flowmeter Accuracy Test	1	. 1 . 1	0	1/
Name and Signature of Tester:	Cesar	Valdez	Cinl	Un
Date of Test:	6-23	3-2021		

Follow the testing procedure (per manufacturer's -YokogawaCorporation of America's recomemdation) below.

Flowmeter ID	Coil Resist	tance Check	Flow Tube Resistance Check						
	Reading (ohm/s)	Within +/- 10% (Y/N)?	Electrode A Reading (ohm/s)	Electrode A Reading (ohm/s)	Within 20% Difference (Y/N)?				
Industrial Wastewater Flowmeter Tag No. 8WWC-FM-X001 Model No. Yokogawa AXF-100C Coil Resistance Value: 113.4 ohms	108.8 N	Yes	19.3 MJ	16.7 MA	yes				
Sanitary Wastewater Flowmeter Tag No. 8WWB-FM-X001 Model No. Yokogawa AXF 650C Coil Resistance Value: 116.8 ohms	1142	Yes	170 KA	116 KA	yes				

Procedure for testing AXF integral flowtubes

- 1. Remove power from the flow meter. Remove the display side cover from the meter electronics housing.
- 2. Remove three retaining screws with a Phillips head screwdriver used to hold the amplifier assembly in place,
- 3. Remove the white plastic connector (CN5) attached to the left side of the amplifier assembly. The connector has 3 wires (red, white & blue). Remove the white plastic connector (CN3) attached to the right side of the amplifier assembly. The connector has 2 wires (purple & yellow).
- 4. Remove the amplifier assembly and store it in a safe place.

Checking the coil circuits

- 5. Locate 2 wire connector (CN3). Measure the excitation coil resistance between the yellow wire and purple wire of connector CN3. The measured resistance should correspond to the resistance value shown above in table 2 within +/- 10%.
- 6. Confirm that there is more than 20 MOHMS resistance between each wire to the meter electronics housing. If leakage is detected consult Yokogawa at 800-524-SERV.

Checking the flow tube when filled with conductive liquid

- 7. Make certain that the meter flow tube is full of liquid with greater than one micro-siemen conductivity.
- 8. Locate connector CN5 (3 wire connector). Measure the resistance between the red wire (A) and the blue wire (C) of CN5. Record the value.
- 9. Measure the resistance between the white wire (B) and the blue wire (C) of CN5. Record the value.
- 10. Compare resistance readings obtained in steps 8 and 9 above. If the readings are less than 20% apart the meter flow tube is not suspect. Proceed to the reassembly instructions (step
- 13). If readings are greater than 20% apart proceed to step 11.

Checking the flow tube when empty and dry

- 11. Drain the meter flow tube of all conductive liquid. Measure the resistance between each electrode in the meter flow tube to CN5 red (A) or white (B). The resistance will be less than 3 Ohms for general purpose meters or 150 K ohms for FM approved meters.
- 12. Repeat steps 8 and 9 above. The resistance should be infinite. Any leakage measured maybe due to buildup of conductive material between the electrode and the meter tube. Clean
- 13. Replace the amplifier assembly and meter electronics housing cover.

10/14/2021 651)

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

October 14, 2021

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending September 30, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending September 30, 2021, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Copy of and Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

October 14, 2021

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending September 30, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending September 30, 2021, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Copy of and Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in September 30, 2021

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Certification Statement

Name of Business: PG&E Gateway Generating Station

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: 925-522-7805

Period Covered: Period ending: September 30, 2021

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wissom Date: Oct. 14 2021

Print Name: Tim Wisdom

Industrial User Compliance Report Form

Attn: Jason Yun	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	
Company: Pacific Gas and Electric Company – G	•
Period Covered: Period ending September 30, 202	21
Industrial User Checklist for self –monitoring repedischarge permit issued by Delta Diablo Sanitatio	
<u>Self-monitoring reports</u>	
Flow discharge summary (Discharge Permit Calibration of flow meters, as required. (Section 2021)	· ·
Monitoring results- <u>All</u> required tests compliancluded, QA/QC, chain of custody (section Certification statement included (See Attach	n F.7.) (See Attachment 8)
Violations (if applicable)	
All wastewater discharge exceedance are rep Delta Diablo was contacted. (See Additional	ll Notes below)
A follow-up report on characterization re-sa	mpling was submitted on
Corrective actions to resolve violation: Other violations - i.e. Reporting, spills to sev	wer, or prohibited discharges
Additional Notes: None	
Significant changes	
Anticipated changes that may alter the nature, qua discharged. Planned changes shall be submitted at	• •

and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC:

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

	9/1/2021	9/2/2021	9/2/2021	9/2/2021		
	G	G	C24	G		
	E-001	E-001	E-001	E-001		
	Muskan	Muskan	Muskan	Muskan		
	Compliance	Compliance	Compliance	Compliance Semi-		
Ē	Quarterly (Q3)	Quarterly (Q3)	Quarterly (Q3)	annually (SA2)		

4911

Units: mg/L

TYPE STATION SMP.BY PURPOSE

PARAMETERS	<u>LIMITS</u>	<i>3.</i>						
FLOW, DAILY (gal)	51,120							
FLOW, MONTH (gal)								
рН	6-10 s.u.		8.02					
BOD				ND (<2.0)				
COD				46.0				
TDS				756.0				
TSS				ND (<1.0)				
Arsenic	0.15			0.00140				
Cadmium	0.1			ND(<0.0005)				
Chromium	0.5			0.00370				
Copper	0.5			0.0063				
Iron				0.23				
Lead	0.5			ND(<0.0005)				
Mercury	0.003			ND(<0.0002)				
Molybdenum				0.047				
Nickel	0.5			0.0024				
Selenium	0.25			ND(<0.0005)				
Silver	0.2			ND(<0.0005)				
Zinc	1.00			0.110				
Cyanide	0.2		0.0038					
Phenol	1.00		0.0059					
Ammonia	200		67					
O&G Petro/Min (E1664A w/ Silica)	100	ND(<5.0)	ND(<5.0)					
O&G Animal/Vegetable Oil	300	ND(<5.0)	ND(<5.0)					
TTO EPA 608					ND(<0.0002)			
TTO EPA 624					0.01077			
TTO EPA 625					ND(<0.048)			
TTO	2.00				0.01077	<u> </u>		
Sulfide								
Sulfate								

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

July 2021-September 2021

		Industria	l Flow			Sanitary	Flow		
			Did it ever			_	Did it ever		
		Time Over	go over			Time Meter	go over		o
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
- 5.15	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(minutes)	mins?			(minutes)	mins?		
						_			
7/1/2021	35.1	0.0	NO	49,000	0.1	0	NO		49,000
7/2/2021	35.0	0.0	NO	44,645	21.7	0	NO	371	45,016
7/3/2021	35.0	0.0	NO	47,308	0.0	0	NO		47,308
7/4/2021	34.9	0.0	NO	41,412	21.6	0	NO	364	41,776
7/5/2021	35.1	0.0	NO	37,120	0.0	0	NO		37,120
7/6/2021	35.3	0.0	NO	27,884	22.3	0	NO	370	28,253
7/7/2021	34.8	0.0	NO	29,196	0.0	0	NO		29,196
7/8/2021	35.1	0.0	NO	40,408	21.4	0	NO	351	40,759
7/9/2021	35.0	0.0	NO	39,734	0.0	0	NO		39,734
7/10/2021	34.8	0.0	NO	33,914	21.4	0	NO		33,914
7/11/2021	35.1	0.0	NO	42,485	0.0	0	NO		42,485
7/12/2021	34.9	0.0	NO	47,801	23.2	0	NO	361	48,162
7/13/2021	34.9	0.0	NO	46,702	0.0	0	NO	337	46,702
7/14/2021	35.1	0.0	NO	41,557	21.4	0	NO	349	41,906
7/15/2021	34.8	0.0	NO	41,913	0.0	0	NO	545	41,913
7/16/2021	35.2	0.0	NO	38,728	22.7	0	NO	364	39,092
7/17/2021	35.0	0.0	NO	41,063	0.0	0	NO	304	41,063
7/17/2021	35.0	0.0	NO	47,293	0.0	0	NO		47,293
			NO			0	NO		
7/19/2021	35.0	0.0		29,695	0.0	-		200	29,695
7/20/2021	34.9	0.0	NO	32,858	22.9	0	NO	386	33,244
7/21/2021	34.5	0.0	NO	27,902	22.7	0	NO	347	28,249
7/22/2021	35.1	0.0	NO	31,454	0.0	0	NO	070	31,454
7/23/2021	34.9	0.0	NO	30,068	22.5	0	NO	370	30,438
7/24/2021	35.0	0.0	NO	37,118	0.0	0	NO		37,118
7/25/2021	35.0	0.0	NO	32,758	0.1	0	NO		32,758
7/26/2021	35.0	0.0	NO	35,471	23.5	0	NO	371	35,842
7/27/2021	35.2	0.0	NO	33,993	0.1	0	NO		33,993
7/28/2021	35.0	0.0	NO	32,229	22.8	0	NO	363	32,592
7/29/2021	34.9	0.0	NO	31,154	0.0	0	NO		31,154
7/30/2021	34.8	0.0	NO	26,987	0.0	0	NO		26,987
7/31/2021	34.9	0.0	NO	37,050	23.4	0	NO	382	37,432
						Max D	aily Flow (Lii	mit: 51,120):	49,000
							M	onthly Total:	1,161,648
8/1/2021	34.9	0.0	NO	27,473	0.0	0	NO		27,473
8/2/2021	34.5	0.0	NO	47,704	0.0	0	NO		47,704
8/3/2021	35.0	0.0	NO	27,467	23.4	0	NO	371	27,837
8/4/2021	35.0	0.0	NO	27,474	0.0	0	NO		27,474
8/5/2021	35.1	0.0	NO	33,890	22.5	0	NO	360	34,250
8/6/2021	34.9	0.0	NO	45,201	0.0	0	NO	300	45,201
8/7/2021	34.2	0.0	NO	49,209	0.0	0	NO	6	49,216
8/8/2021	34.3	0.0	NO	40,963	0.0	0	NO	10	40,973
8/9/2021	34.9	0.0	NO	31,737	22.2	0	NO	378	32,115
8/10/2021	35.0	0.0	NO	38,069	0.1	0	NO	378	38,447
8/11/2021	34.8	0.0	NO	48,429	23.0	0	NO	358	48,788
8/12/2021	35.0	0.0	NO	32,959	0.0	0	NO	330	32,959
	35.3		NO			0		255	
8/13/2021		0.0		31,430	21.4			355	31,785
8/14/2021	34.8	0.0	NO	31,440	0.1	0	NO		31,440
8/15/2021	34.9	0.0	NO	45,209	0.0	0	NO		45,209
8/16/2021	34.7	0.0		45,560	0.0	0	NO		45,560
8/17/2021	34.6	0.0	NO	46,400	20.7	0	NO	372	46,772
8/18/2021	35.0	0.0	NO	42,937	0.1	0	NO		42,937
8/19/2021	34.7	0.0	NO	48,629	21.2	0	NO	367	48,997

PG&E Gateway Generating Station

Discharge Flow Data

July 2021-September 2021

		Industrial Flow			Sanitary Flow				
			Did it ever			Time Meter	Did it ever		
1	Instantaneous	Time Over	go over	Daily Total	Instantaneous	went Bad	go over	Daily Total	Site Total
Date	Flow (GPM)	35.5 GPM	35.5 GPM	(Gallons)	Flow (GPM)	Quality	35.5 GPM	(Gallons)	(Gallons)
1	TIOW (GFIVI)	(minutes)	for 15	(Gallotis)	Tiow (GFIVI)	(minutes)	for 15	(Gallolis)	(Gallolis)
			mins?			(IIIIIIates)	mins?		
8/20/2021	34.7	0.0	NO	39,852	0.0	0	NO		39,852
8/21/2021	34.6	0.0	NO	48,636	22.7	0	NO	358	48,994
8/22/2021	34.6	0.0	NO	43,544	0.0	0	NO		43,544
8/23/2021	34.5	0.0	NO	47,035	0.0	0	NO		47,035
8/24/2021	34.8	0.0	NO	31,869	0.0	0	NO		31,869
8/25/2021	34.7	0.0	NO	42,995	22.8	0	NO	593	43,588
8/26/2021	34.6	0.0	NO	37,765	0.1	0	NO		37,765
8/27/2021	35.3	0.0	NO	24,990	0.0	0	NO		24,990
8/28/2021	35.0	0.0	NO	36,645	22.9	0	NO	364	37,009
8/29/2021	36.7	0.0	NO	34,526	0.0	0	NO		34,526
8/30/2021	34.4	0.0	NO	22,548	0.0		NO		22,548
8/31/2021	21.1	0.0	NO	20,174	0.0	0	NO		20,174
						Max D		mit: 51,120):	49,216
	1					1 _ 1		onthly Total:	1,177,030
9/1/2021	30.2	0.0	NO	31,352	22.8	0	NO		31,352
9/2/2021	34.3	0.0	NO	42,918	0.0	0	NO		42,918
9/3/2021	34.6	0.0	NO	31,653	23.3	0	NO	349	32,001
9/4/2021	34.4	0.0	NO	22,686	0.0	0	NO		22,686
9/5/2021	34.7	0.0	NO	32,239	0.0	0	NO		32,239
9/6/2021	35.3	0.0	NO	35,424	0.0	0	NO	0.40	35,424
9/7/2021	35.1	0.0	NO	36,474	22.6	0	NO	349	36,823
9/8/2021	35.1	0.0	NO	33,004	0.0	0	NO		33,004
9/9/2021	35.1	0.0	NO	38,549	0.0	0	NO		38,549
9/10/2021	35.0	0.0	NO NO	36,713	23.0	0	NO NO		36,713
9/11/2021	35.1 34.8	0.0	NO	33,912	0.0	0			33,912
9/12/2021 9/13/2021	35.0	0.0	NO	44,170 45,784	0.0 22.9	0	NO NO	383	44,170 46,167
9/13/2021	35.0	0.0	NO	30,552	0.0	0	NO	303	30,552
9/15/2021	34.6	0.0	NO	46,150	24.1	0	NO		46,150
9/16/2021	34.6	0.0	NO	42,980	0.1	0	NO		42,980
9/17/2021	35.1	0.0	NO	27,586	0.0	0	NO		27,586
9/18/2021	20.7	0.0	NO	22,889	0.0	0	NO		22,889
9/19/2021	30.3	0.0	NO	36,778	0.0		NO		36,778
9/20/2021	34.3	0.0	NO	47,988	0.0		NO		47,988
9/21/2021	35.1	0.0	NO	37,574	23.4	0	NO	385	37,959
9/22/2021	35.2	0.0	NO	26,846	0.0		NO	000	26,846
9/23/2021	35.4	0.0	NO	31,034	22.9	0	NO		31,034
9/24/2021	35.4	0.0	NO	31,781	0.0		NO		31,781
9/25/2021	35.2	0.0	NO	31,164	0.0		NO		31,164
9/26/2021	35.4	0.0	NO	20,870	22.1	0	NO		20,870
9/27/2021	35.1	0.0	NO	17,450	0.0	0	NO		17,450
9/28/2021	35.2	0.0	NO	33,924	23.1	0	NO	358	34,281
9/29/2021	35.1	0.0	NO	43,182	0.1	0	NO		43,182
	35.2	0.0	NO	34,864	22.7	0	NO		34,864
9/30/2021							aily Flow (Lir		

Max Daily Flow (Limit: 51,120):

Monthly Total: 1,03

1,030,315

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2021**

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July	1,161,648	10/15/2021
August	1,177,030	10/15/2021
September	1,030,315	10/15/2021
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report July 2021 to September 2021

	WSAC Operation
Month	Hours of Operation
January-21	
February-21	
March-21	
April-21	
May-21	
June-21	
July-21	348.25
August-21	354.75
September-21	305.67
October-21	
November-21	
December-21	

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report July 2021 to September 2021

	WSAC Operation						
Month	Average Daily Blowdown Cycles						
1/17/20201							
February-21							
March-21							
April-21							
May-21							
June-21							
July-21	2.33						
August-21	2.50						
September-21	2.89						
October-21							
November-21							
December-21							

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2109124

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (September 2021)

Project Received: 09/02/2021

Analytical Report reviewed & approved for release on 09/10/2021 by:

Susan Thompson

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/08/2021

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2109124-001A	Water	09/01/2021	1 09:27	O&G	229321
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		09/09/2021 13:50

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2109124-001B	Water	09/02/202	1 10:55	O&G	229321
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		09/09/2021 13:55

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/08/2021

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2109124-001A	Water	09/01/202	1 09:27	O&G	229315
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		09/09/2021 12:15

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	2109124-001B	Water	09/02/202	1 10:55	O&G	229315
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		09/09/2021 11:35

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50 **Date Prepared:** 09/03/2021

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2109124-001C	Water	09/02/202	1 10:55	WC_SKALAR 090321A1_42	229028
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed
Ammonia, total as N	67		1.0	10	09/03	3/2021 09:24

Analyst(s): RB

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/02/2021

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2109124-001E	Water	09/02/202	1 10:45	WetChem	228962
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
BOD	ND		2.0	0.508		09/07/2021 14:31

Analyst(s): HAD

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/09/2021

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

CTO	nida	T	atal
Cya	nide.	, т	viai

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	2109124-001D	Water	09/02/202	21 10:55	9 229345	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	<u>Analyzed</u>
Total Cyanide	3.8		1.0	1	09/09	9/2021 14:18

Analyst(s): JN

2109124

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder:

 Date Received:
 09/02/2021 13:50
 Extraction Method:
 SM5220 D-1997

 Date Prepared:
 09/03/2021
 Analytical Method:
 SM5220 D-1997

Project: Quarterly Sampling (September 2021) Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date C	Collected	Instrument	Batch ID
E-001	2109124-001F	Water	09/02/20	021 10:45	SPECTROPHOTOMETER	229075
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Da</u>	ate Analyzed
COD	46		10	1	09	/03/2021 14:48

Analyst(s): NYG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50 **Date Prepared:** 09/08/2021

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001	2109124-0011	Water	09/02/2021	1 10:45	AA1 _31	229210
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Mercury	ND		0.20	1		09/09/2021 16:01

Analyst(s): MIG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/02/2021

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

Metals								
Client ID	Lab ID	Matrix	Date Coll	Date Collected Instrument				
E-001	2109124-001J	Water	09/02/2021	10:45	ICP-MS4 148SMPL.d	228943		
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Arsenic	1.4		0.50	1		09/07/2021 22:21		
Cadmium	ND		0.50	1		09/07/2021 22:21		
Chromium	3.7		0.50	1		09/07/2021 22:21		
Copper	6.3		1.5	1		09/07/2021 22:21		
Iron	230		100	1		09/07/2021 22:21		
Lead	ND		0.50	1		09/07/2021 22:21		
Molybdenum	47		0.50	1		09/07/2021 22:21		
Nickel	2.4		0.50	1		09/07/2021 22:21		
Selenium	ND		0.50	1		09/07/2021 22:21		
Silver	ND		0.50	1		09/07/2021 22:21		
Zinc	110		20	1		09/07/2021 22:21		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Terbium	112		70-130			09/07/2021 22:21		
Analyst(s): AL								

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50 **Date Prepared:** 09/10/2021

Project: Quarterly Sampling (September 2021) WorkOrder: 2109124

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: $\mu g/L$

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
E-001	2109124-001C	Water	09/02/20	21 10:55	WC_SKALAR 09102021B1_2	23 229426
Analytes	Result		<u>RL</u>	<u>DF</u>	Date	e Analyzed
Phenolics	5.9		2.0	1	09/1	0/2021 13:21

Analyst(s): JN

2109124

Analytical Report

WorkOrder:

Client: PG&E Gateway Generating Station

 Date Received:
 09/02/2021 13:50
 Extraction Method:
 SM2540 C-1997

 Date Prepared:
 09/03/2021
 Analytical Method:
 SM2540 C-1997

Project: Quarterly Sampling (September 2021) Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001	2109124-001G	Water	09/02/2021	10:45	WetChem	229095
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	756		10.0	1		09/07/2021 04:15

Analyst(s): MGO

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 2109124

 Date Received:
 09/02/2021 13:50
 Extraction Method:
 SM2540 D-1997

 Date Prepared:
 09/03/2021
 Analytical Method:
 SM2540 D-1997

Project: Quarterly Sampling (September 2021) Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	ab ID Matrix		lected	Instrument	Batch ID
E-001	2109124-001H	Water	09/02/2021	l 10:45	WetChem	229032
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Suspended Solids	ND		1.00	1		09/03/2021 12:30

Analyst(s): HAD

Quality Control Report

Client: PG&E Gateway Generating Station

 Date Prepared:
 09/09/2021

 Date Analyzed:
 09/09/2021

 Instrument:
 O&G

Matrix: Water

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

BatchID: 229321

Extraction Method: E1664A_SG **Analytical Method:** E1664A

Unit: mg/L

QC Summary Report for E1664A								
Analyte	MB Result	MDL	RL					
SGT-HEM	ND	0.720	5.00	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	8.94	8.53	10.42	86	82	64-132	4.77	30

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2109124Date Prepared:09/09/2021BatchID:229315Date Analyzed:09/09/2021Extraction Method:E1664AInstrument:O&GAnalytical Method:E1664A

Matrix: Water Unit: mg/L

Project: Quarterly Sampling (September 2021) **Sample ID:** MB/LCS/LCSD-229315

QC Summary Report for E1664A								
Analyte	MB Result	MDL	RL					
HEM	ND	1.30	5.00	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	17.6	18.2	20.83	84	87	78-114	3.34	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/03/2021

Date Analyzed: 09/03/2021 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

BatchID: 229028

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

QC Summary Report for SM4500-NH3								
Analyte	MB Result	MDL	RL					
Ammonia, total as N	ND	0.0920	0.100	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	3.92	3.85	4	98	96	88-113	1.81	20

Quality Control Report

Client: PG&E Gateway Generating Station

 Date Prepared:
 09/02/2021

 Date Analyzed:
 09/07/2021

 Instrument:
 WetChem

Matrix: Water

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124 **BatchID:** 228962

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

QC Summary Report for BOD								
Analyte	MB Result	MDL	RL					
BOD	ND	4.00	4.00	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	176	193	198	89	97	80-120	8.93	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/09/2021

Date Analyzed: 09/09/2021 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

BatchID: 229345

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

QC Summary Report for SM4500-CN ⁻ CE								
Analyte	MB Result	MDL	RL					
Total Cyanide	ND	0.770	1.00	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	40.6	40.3	40	101	101	90-110	0.774	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/03/2021 **Date Analyzed:** 09/03/2021

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

BatchID: 229075

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

QC Summary Report for COD								
Analyte	MB Result	MDL	RL					
COD	ND	7.20	10.0	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	97.0	98.0	100	97	98	90-110	1.03	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2109124Date Prepared:09/08/2021BatchID:229210Date Analyzed:09/09/2021Extraction Method:E245.2Instrument:AA1Analytical Method:E245.2

Matrix:WaterUnit:μg/LProject:Quarterly Sampling (September 2021)Sample ID:MB/LCS/LCSD-229210

QC Summary Report for Mercury								
Analyte	MB Result	MDL	RL					
Mercury	ND	0.130	0.200	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	2.14	1.93	2	107	96	85-115	10.5	20

2109124

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Prepared: 09/02/2021 BatchID:

 Date Prepared:
 09/02/2021
 BatchID:
 228943

 Date Analyzed:
 09/03/2021
 Extraction Method:
 E200.8

 Instrument:
 ICP-MS4
 Analytical Method:
 E200.8

 Matrix:
 Water
 Unit:
 μg/L

Project: Quarterly Sampling (September 2021) Sample ID: MB/LCS/LCSD-228943

OC Summary	Report	for	Metals
	IXCDUL	IUI	Mictais

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.100	0.500	-	-	-
Cadmium	ND	0.240	0.500	-	-	-
Chromium	ND	0.350	0.500	-	-	-
Copper	ND	0.660	1.50	-	-	-
Iron	ND	37.0	100	-	-	-
Lead	ND	0.270	0.500	-	-	-
Molybdenum	ND	0.180	0.500	-	-	-
Nickel	ND	0.270	0.500	-	-	-
Selenium	ND	0.170	0.500	-	-	-
Silver	ND	0.260	0.500	-	-	-
Zinc	ND	14.0	20.0	-	-	-

Surrogate Recovery

Terbium 521 500 104 70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53.6	51.5	50	107	103	85-115	4.03	20
Cadmium	52.5	51.7	50	105	103	85-115	1.52	20
Chromium	52.9	51.5	50	106	103	85-115	2.55	20
Copper	52.9	51.1	50	106	102	85-115	3.37	20
Iron	5120	5000	5000	102	100	85-115	2.41	20
Lead	50.6	49.3	50	101	99	85-115	2.46	20
Molybdenum	50.1	50.5	50	100	101	85-115	0.798	20
Nickel	53.8	51.2	50	108	102	85-115	4.88	20
Selenium	53.0	51.7	50	106	103	85-115	2.35	20
Silver	50.0	49.5	50	100	99	85-115	0.965	20
Zinc	535	516	500	107	103	85-115	3.73	20
Surrogate Recovery								
Terbium	531	527	500	106	105	70-130	0.731	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:09/10/2021Date Analyzed:09/10/2021Instrument:WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124

BatchID: 229426

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-229426

2109124-001CMS/MSD

	QC Summary Rep	port for I	E 420.4			
Analyte	MB Result	MDL	RL			
Phenolics	ND	1.30	2.00	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	39.6	39.8	40	99	100	80-120	0.675	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Phenolics	1	46.4	47.0	40	5.92	101	103	70-130	1.30	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/03/2021

Date Analyzed: 09/07/2021
Instrument: WetChem

Matrix: Water

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124 **BatchID:** 229095

Extraction Method: SM2540 C-1997

Analytical Method: SM2540 C-1997

Unit: mg/L

	QC Summary Repo	rt for Total D	issolved S	olids		
Analyte	MB Result	MDL	RL			
Total Dissolved Solids	ND	10.0	10.0	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	1020	1000	1000	102	100	80-120	1.78	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/03/2021

Date Analyzed: 09/03/2021 **Instrument:** WetChem

Matrix: Water

Total Suspended Solids

An

Project: Quarterly Sampling (September 2021)

WorkOrder: 2109124 **BatchID:** 229032

Extraction Method: SM2540 D-1997

Analytical Method: SM2540 D-1997

Unit: mg/L

1.00

Sample ID: MB/LCS/LCSD-229032

QC Su	mmary Report for T	Fotal Sus	pended Solids
nalyte	MB Result	MDL	RL

1.00

Analyte LCS LCSD SPK LCS LCSD LCS/LCSD RPD RPD

ND

%REC %REC Result Result Val Limits Limit 10 **Total Suspended Solids** 99.0 102 100 99 102 80-120 2.99

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

1 of 1

WorkOrder: 2109124

ClientCode: PGEA

□WaterTrax □ EDF ☐ WriteOn

EQuIS Dry-Weight ✓ Email HardCopy ☐ ThirdParty □ J-flag

Detection Summary

Excel Bill to:

Requested TATs:

1 day; 5 days;

cc/3rd Party: A1HE@pge.com; tlWY@pge.com; J5Ld@p

abe4@pge.com

Angel Espiritu

7 days;

PG&E Gateway Generating Station 3225 Wilbur Avenue

PO:

Email:

PG&E Gateway Generating Station 3225 Wilbur Avenue

Date Received:

09/02/2021

Antioch, CA 94509 (925) 459-7212 FAX:

Angel Espiritu

Report to:

Project:

Quarterly Sampling (September 2021)

Antioch, CA 94509

Date Logged: 09/02/2021

								Red	quested	Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2109124-001	E-001	Water	9/1/2021 09:27		Α	Α								Α		
2109124-001	E-001	Water	9/2/2021 10:45					E		F	I	J	,		G	Н
2109124-001	E-001	Water	9/2/2021 10:55		В	В	С		D				С			

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Project Manager: Angela Rydelius

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (September 2021) Work Order: 2109124

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments:

Date Logged: 9/2/2021

		Water	Trax WriteOn EDF	Exc	el EQuIS	S √ Email		HardCop	ру 🔲	ΓhirdParty	-flag	
LabII	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
001A	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	2	1LA w/ HCl			9/1/2021 9:27	5 days	9/10/2021	Present	
001B	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	2	1LA w/ HCl			9/1/2021 10:55	5 days	9/10/2021	Present	
001C	E-001	Water	E420.4 (Phenolics)	1	250mL aG w/ H2SO4			9/1/2021 10:55	5 days	9/10/2021	Present	
			SM4500-NH3 BG (Ammonia Nitrogen)						5 days	9/10/2021	Present	
001D	E-001	Water	SM4500-CN CE (Cyanide, Total)	1	250mL HDPE w/ NaOH			9/1/2021 10:55	5 days	9/10/2021	Present	
001E	E-001	Water	SM5210B (BOD)	1	1L HDPE, unprsv.			9/1/2021 10:55	7 days	9/14/2021	Present	
001F	E-001	Water	SM5220D (COD)	2	aVOA w/ H2SO4			9/1/2021 10:55	5 days	9/10/2021	Present	
001G	E-001	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.			9/1/2021 10:55	5 days	9/10/2021	Present	
001H	E-001	Water	SM2540D (TSS)	1	1L HDPE, unprsv.			9/1/2021 10:55	5 days	9/10/2021	Present	
0011	E-001	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3			9/1/2021 10:55	5 days	9/10/2021	Present	
001J	E-001	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3			9/1/2021 10:55	5 days	9/10/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	Webs Telep	ite: <u>w</u> hone	PITT ww.mccam :: (877) 252	WILLOW SBURG, C	V PAS CA 945 Em	SS ROAD 565-1701 ail: main Fa	@mce x: (92	camp 25) 2:	bell 52 -	.con 926			,			TURN GeoTra	acker I	ND DF	TI	ME	E [RU PDF □	JSH 24 Excel	HR	,	48 W	□ 8 HR rite and	e On (DW) □ "J" flag is required
Report To	: Angel Es	pirit	1		I	Bill To:	PG&	E Ga	itev	ay					- 1		Analysi	s Req	ues	t						F	Remarks
Company	: PG&E G	atew	ay Genera	ting Sta	tion														П			í	П		Γ	П	
D M 11			HIPO		er 3/		417	1737	2			_	_	_	\dashv	CN-	nium de	with	₹.	H3-G		cadmium, chromium, nickel, silver, iron, and zinc)	П		ı		
	be4@pge.co					apge.co	m, u	WY	w pg	e.ce	m	_		-	Н	l with efore 4500	selei n mo	(USEPA 1664A) with	A 420	as N (SM 4500-NH3-		ı, chroi ver, 1 zinc)	П				
	ame: Qua	-				tem	ber	- 2	0:	21)					ate b	and	A 16	SEP	M 45		mium, el, silv n, and					
-	ocation: Co															osulf by	senic y rea	USEF	ics (1	S N (S	5.2)	8 cadmit , nickel, n, iron, a	210B	(CO2	Ş	100	
Sampler S	Signature: 1		an Enviro	nmental	San	npling	1	2							_	le (F rthic ving)	A. W. W. W. W. W. W. W. W. W. W. W. W. W.	ase (I	henol	ua a	3 (24	(200.3 lead, lenun	SMS	3M 52	30.14	M 25	
		Composite	SAMP	LING		2	Ma	trix	М	ЕТН	OD	PRE	SEF	RVE	D	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 ABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (Total Phenolics (USEPA 420.4)	Ammonia	Mercury (245.2)	Metals (200.8 cadmi copper, lead, nickel, Molybdenum, iron,	BOD (SM 5210B)	COD (SM 5220D)	TDS/SM2540C)	TSS (SM 2540D)	
SAMPLE ID	LOCATION / Field Point Name	ample Type	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H.SO.	NaOH	HCI.	HNO,	Other												
E-001		G	09/01/2	109:27	2	1L Amb	X			X	1		X					X	Γ				П		Г	П	
E-001		G	09/02/21			1L Amb	X			Х			X			ir II I		X	Г				П	Г	Γ		
E-001		G	09/02/21		1	500ml Amb	X		П	X	X		П						Х	Х			П		Γ	\Box	
E-001		G	09/02/21			250-ml Poly	Х		П	Х	7	X	\Box			X							П		Γ	Г	
E-001		С	09/02/21		1	1L Poly	X	\vdash	Х	Х	7		\Box						Τ				Х		T		
E-001		С	09/02/21		2	43-ml VOA	X		Т	Х	X		П						T				П	X	T	\vdash	
E-001		С	09/02/21		1	500-ml poly	X		Х	Х	7	٦	T						T				П		3		
E-001		С	09/02/21		1	1L poly	Х		Х	Х	7		T						T	Г			П		T	X	
E-001		С	09/02/21		-	250-ml Poly	X		Т	Х	7	\neg	\exists	X					T		X		П		T	Т	
E-001		С	09/02/21			250-ml	X			Х	7		П	X			Х		T			X	П		T	T	
			0 1100121	10.95		poly				H	+				Н				T				Н		十	\vdash	
						17				\forall	7				Н				T	T			H	Г	T	T	
Relinquishe	5		Date: 09/02/2\ Date:	Time: / 3.'50 Time:	0	eived By:	L			9	1-2	35	10			ICE/t° \. GOOD CO HEAD SPA DECHLOR APPROPR	NDITION ACE ABSE RINATED LATE CO	NT_ IN LA NTAIN		 s			L C	ОМ	ME	ENTS	I S:
Relinquishe	d By:		Date:	Time:	Rec	eived By:										PRESERV. PRESERV.	ve		0&		METALS pH<2	OTHER		21			Page 27 of 28

PG&E Gateway Generating Station

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received: 9/2/2021 13:50

Sample Receipt Checklist

Project: WorkOrder №: Carrier:	Quarterly Samplir 2109124 Client Drop-In	g (September 2021) Matrix: Water			Date Logged: Received by: Logged by:	9/2/2021 Adrianna Cardoza Adrianna Cardoza
		Chain of	Custod	y (COC) In	formation	
Chain of custody	present?		Yes	✓	No 🗆	
Chain of custody	signed when relind	uished and received?	Yes	•	No 🗌	
Chain of custody	agrees with sample	e labels?	Yes	•	No 🗌	
Sample IDs note	ed by Client on COC	?	Yes	✓	No 🗌	
Date and Time o	of collection noted by	Client on COC?	Yes	•	No 🗆	
Sampler's name	noted on COC?		Yes	•	No 🗌	
COC agrees with	n Quote?		Yes		No 🗌	NA 🗹
		<u>Sam</u> ı	ple Rece	eipt Inforn	nation	
Custody seals in	tact on shipping con	tainer/cooler?	Yes		No 🗆	NA 🗹
Custody seals in	tact on sample bottl	es?	Yes	•	No 🗌	NA \square
Shipping contain	ner/cooler in good co	ndition?	Yes	•	No 🗌	
Samples in prop	er containers/bottles	?	Yes	•	No 🗆	
Sample containe	ers intact?		Yes	✓	No 🗌	
Sufficient sample	e volume for indicate	ed test?	Yes	•	No 🗆	
		Sample Preservat	tion and	Hold Tim	e (HT) Information	
All samples rece	eived within holding t	ime?	Yes	✓	No 🗌	NA 🗆
Samples Receiv	ed on Ice?		Yes	✓	No 🗆	
		(Ice Ty	pe: WE	TICE)		
Sample/Temp B	lank temperature			Temp:	1.8°C	NA 🗌
	analyses: VOA mee Cs, TPHg/BTEX, R		Yes	✓	No 🗆	na 🗆
Sample labels cl	hecked for correct pr	reservation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: < .7: >8)?	2; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹
UCMR Samples:	<u>:</u>					
	acceptable upon red <3; 544: <6.5 & 7.5)	ceipt (200.8: ≤2; 525.3: ≤4; ?	Yes		No 🗌	NA 🗹
Free Chlorine	tested and acceptab	le upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹
Comments:					=======	

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

"When Quality Counts"

Analytical Report

WorkOrder: 2109192

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Sanjiv Gill

Project P.O.:

Project: pH Sampling (September 2021)

Project Received: 09/02/2021

Analytical Report reviewed & approved for release on 09/10/2021 by:

Susan Thompson

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: pH Sampling (September 2021)

WorkOrder: 2109192

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

(925) 252-9262

1534 Willow Pass Rd Pittsburg, CA 94565-1701 CHAIN-OF-CUSTODY RECORD

1 of 1

WorkOrder:	2109192
------------	---------

ClientCode: PGEA

	EQuIS
--	-------

Dry-Weight

✓ Email HardCopy ☐ ThirdParty

□ J-flag

5 days;

□WaterTrax CLIP EDF

Detection Summary

Excel

Report to: Sanjiv Gill

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: sanjivgill@comcast.net

cc/3rd Party:

PO:

Project: pH Sampling (September 2021) Bill to: Sanjiv Gil

Muskan Environmental Services

1828 Nelda Ct.

Yuba City, CA 95993

Date Received:

Requested TAT:

09/02/2021

Date Logged: 09/02/2021

							Re	questec	d Tests	(See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
2109192-001	E-001	Water	9/1/2021 09:25	Α	Α										

Test Legend:

1 PH_W_SANJIV	2 PRDisposal Fee	3	4
5	6	7	8
9	10	11	12

Project Manager: Angela Rydelius Prepared by: Adrianna Cardoza

Comments: Originally logged as MES, but that is bill-to only.

> NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	pH Sampling (September 2021)	Work Order: 2109192
--------------	---------------------------------	----------	------------------------------	----------------------------

Client Contact: Sanjiv Gill QC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net Comments: Originally logged as MES, but that is bill-to only. Date Logged: 9/2/2021

	Water1	Γrax	EDF	Excel	EQuIS	y Email	HardCopy	, <u>П</u> Т	hirdPartyJ	-flag
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	Head Dry- Space Weight	Collection Date & Time	TAT	Test Due Date	Sediment Hold SubOut Content
001A E-001	Water	SM4500H+B (Field pH)		1	125mL HDPE, unprsv.		9/1/2021 9:25	5 days	9/10/2021	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

			MDD	RTTA	NTA	T 1200		-	73.74						7								_	_							112	
	MO IAT	CC	MPBI	LLL A	LIVA	TA 11	ICA	L,	I	Ľ.										H	A	N	O!	F (CU	SI	O	DY	R	13(CORD	
\\ <u>\</u>				M WILLA											1	TU	RN	AR	ROI	UNI	DT	IM	E		[3	+	Q.		ς	1	凤
	Web	afte:	MAAN BICCS	mpbelle	m Er	nells me		ecen	nbel	Len	10														RU	SH	24	HR		48 I	HR 72 HR 5	DÂY
A	Tele	phor	e: (877) 2	52-9262		F	ax: (925)	252	-926	9				10	Geo	Tra	ack	er l	ED	F [3	P	F						Wr	ite On (DW)	1
															1						E	3	Ch	eck	ifs	2m:	ale i	s effi	ner	t er	ed "J" flag is req	nired
Report	To: Sanjiv	GHI			1	MIII To:	Musi	tan I	Lavi	reni	nei	tel			T						\pe								===		Remark	
Compa	y: PG&E	Gate	way Gen	erating S											1	T	T	Т	Т	T	T		Т	7	Ť	7-	T	Т			Actua: 2	-
															1	1	-		l					1			1		l	1	i	
					1	-Mail:	conti	veill.	2000	me	ert n	had	—		1	1	1	1						l						1 1	i	
Tel: (40	8) 666-449	4 (C	AD.			ax: (Vacan							1			1				l	1	1	1							
Project	Name: pl	H Se	mnling (D O		0.0	103	1 1				<u> </u>			ł		1			ł				l					1		i	
Project	Location: I	ACA!	R GGS A	- decite	E-001	exa	SUZ	1_							ł		1	1		1	l			1							i	
Sample	- Clanature	M.	10 A 1/A	E a	5 50	rannestal Samplino								ł		.	1						1	1			1				•	
Sear pec	Selvarente	B	W C KIN	1/1/	710	λw_N	لحمها		70	∞¥	11Y	4			4					1							ł					
		postte	SAMP	LING			M-	trix	ME	THE	in P	O ES	ED	VED					l					l	İ	-		1		l		
		8			I	i e	***						-	· 111	l	į			l	1				•	1							
SAMPLE	LOCATION	ءِ ڳ] g	Type Containers	1		П	Т	T	T	Т	Τ.	1	1		1														
ID	LOCATION / Field Point Name	윤			# Containers		Waste Water	喜				1				1	1				1		ļ	Ì							· · ·	
	Name	E	Date	Time		වී		Sower Water		د ا	4 8						1	ì		1	1		l	ł	1	1	1					
		결	1		8	<u> </u>	1 5	1	3	F 8	3	<u> </u>		HINC.	1				i					l	ļ				, /			
		Sample	į	Ī	#	2	⋛	3	4		4 2				7		1			İ			1		1	1						
E-001			m ()		NA	NA	X		X	十	+-	+	+	+	x	+	┿	+-	 	-	-	-	-	_	┝	┼-	-	1-1	_	H	Grab Time: (14)	0.5
			09/61/29	09:25					1				1		^							İ	İ	ĺ							Analysis Time:	25
					-			1	H	十	+-	+	+	╁	-	+	+-	+-	┝╌	-	-	\vdash	-	├	-	╁	├	\vdash		┝	Temperature: (B.	20
				<u> </u>					╟┼	+	\vdash	+	lacksquare	+	<u> </u>	╀-	+-	+-	_	_			<u> </u>	<u> </u>	L	_	_				PH: 8.02	
				<u> </u>					\vdash	+	╀	\downarrow	╀	╀-	_	↓_	╀	\perp					<u> </u>		L		_					
									\sqcup	1_	<u> </u>	丰	\perp	_	<u> </u>	↓_	1_	\perp					L.,	L_	L		L_					
									Ц	\bot		┸	\perp	<u> </u>		_																
									\sqcup	_	<u>L</u> .	丄																				
										1		\perp	L				$oldsymbol{ol}}}}}}}}}}}}}}}}}$	Ц														
										<u> </u>		\perp		L																		
									4	1		丄				$oldsymbol{ol}}}}}}}}}}}}}}$	丄															
									$oldsymbol{\perp}$	$oldsymbol{\perp}$												_							\Box			
												$oxed{\Box}$																		\exists		
																		П										T	\neg			
Relinquish	By:		Dates	Time:	Recei	ved By:				6	1.7		7		IC	E/t'_	1.8		لـــــ					_		<u>ا</u>		Ċ	MO:	MEN	VTS:	
		Date: Time: Received By: 9-2-21)	GO	COC	CON	DIT	ION	_											•							
Reflequish	ed By:		Dates	Time: Received By:							DF	AD!	SPAC LORI	æ A Nat	BSE Tr	NT_																
-								AP.	FRO	PRI	TE	CON	ITAI	NED	S																	
Dellpaniel	inquished By: Date: Time: Received By:								-	PR	ESE	RVE	DIN	LAI			_		-													
	~~ u y•			WINNES.	MCCC	Acc DA								ı					vo	140	^	G	MP	ra = ·	6	OTH	m (2					
		ليبي													PR	ESE	RVA'	TO	1		-		pH<		_	VIH	D-K					
		_								-	_	_	_			_	_	_	_					_	_	_		_	_			

Logbook for Field pH Samples

		24-4	1 st Re	ading	2 nd R	eading	Ave	Standard	Comments	Analyst
Date/Time	Sample ID	Matrix	pН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)		
09/01/21/08:45	Cal. pH # 700	L	7.09	20.1	7.06	20.0	7.08	bulk	calib-afed?	
09/01/21/08:45	Cal pH # 4.00	L	4.02	20.0	4.00	20.0	4.01	bulK_	alibratedy	04.00
09/01/21 / 08:45	Cal. pH #/0.00	L	10.05		10.05	20.0	10.05	bulk	calibrated	0 10.00
grown water										_
									(%)	
	· ·	ļ			-					
					-	Mete	M	yean L Co	00.4	
						1 1 1	Ara M		y	
		<u> </u>				261	1.	62220	66	
			-1			PH (on Co	DC 09/01/8		
						L	$\frac{1}{2}$	RE heren	V	

Page **43** of **100**

Client supplied pH data

Client Name: PG&E Gateway Generating Station WorkOrder №: 2109192

Project: pH Sampling (September 2021)

SampID ClientSampID pH

2109192-001A E-001 8.02 [analyzed: 9/2/2021 9:25:00 AM]

PG&E Gateway Generating Station

Comments: Method SM4500H+B (Field pH) was received past its 0.25-day holding time.

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received: 9/2/2021 13:50

Sample Receipt Checklist

Project:	pH Sampling (Sept	tember 2021)			Date Logged: Received by:	9/2/2021 Adrianna Cardoza
WorkOrder №: Carrier:	2109192 Client Drop-In	Matrix: <u>Water</u>			Logged by:	Adrianna Cardoza
		Chain of	Custody	(COC) Info	ormation	
Chain of custody	y present?		Yes	✓	No 🗆	
Chain of custody	y signed when relinqu	ished and received?	Yes	✓	No 🗆	
Chain of custody	y agrees with sample	labels?	Yes	✓	No 🗌	
Sample IDs note	ed by Client on COC?		Yes	✓	No 🗆	
Date and Time o	of collection noted by	Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
COC agrees with	h Quote?		Yes		No 🗆	NA 🗹
		Samı	ple Rece	eipt Informa	tion	
Custody seals in	ntact on shipping cont	ainer/cooler?	Yes		No 🗆	NA 🗹
Custody seals in	ntact on sample bottle	s?	Yes	✓	No 🗆	NA \square
Shipping contain	ner/cooler in good cor	ndition?	Yes	✓	No 🗌	
Samples in prop	er containers/bottles?	?	Yes	✓	No 🗌	
Sample containe	ers intact?		Yes	✓	No 🗌	
Sufficient sample	e volume for indicated	d test?	Yes	•	No 🗌	
		Sample Preservat	tion and	Hold Time	(HT) Information	
All samples rece	eived within holding tir	ne?	Yes		No 🗹	NA 🗌
Samples Receiv	red on Ice?		Yes	✓	No 🗌	
		(Ice Ty	pe: WE	TICE)		
Sample/Temp B	lank temperature			Temp: 1	_	NA 🗌
	analyses: VOA meet OCs, TPHg/BTEX, RS		Yes		No 🗌	NA 🗸
Sample labels cl	hecked for correct pre	eservation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218		2; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹
UCMR Samples	<u>:</u>					
pH tested and 537.1: 6 - 8)?	acceptable upon rece	eipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗌	NA 🗹
Free Chlorine [not applicable		e upon receipt (<0.1mg/L)	Yes		No 🗆	NA 🗹
					======	:======:

Attachment 8c Laboratory Results Semi-Annual Monitoring of Combined Site Stream (E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2109128

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Semi-Annual Sampling (September 2021)

Project Received: 09/02/2021

Analytical Report reviewed & approved for release on 09/10/2021 by:

Jennifer Lagerbom

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

Analytical Qualifiers

a2 Sample diluted due to cluttered chromatogram.

a3 Sample diluted due to high organic content interfering with quantitative/or qualitative analysis.

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 2109128

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2109128-001D	Water	09/02/2021	10:55	GC20 09072128.D	229043
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Aldrin	ND		0.010	10		09/07/2021 13:58
a-BHC	ND		0.010	10		09/07/2021 13:58
b-BHC	ND		0.010	10		09/07/2021 13:58
d-BHC	ND		0.010	10		09/07/2021 13:58
g-BHC	ND		0.010	10		09/07/2021 13:58
Chlordane (Technical)	ND		0.20	10		09/07/2021 13:58
a-Chlordane	ND		0.010	10		09/07/2021 13:58
g-Chlordane	ND		0.010	10		09/07/2021 13:58
p,p-DDD	ND		0.010	10		09/07/2021 13:58
p,p-DDE	ND		0.010	10		09/07/2021 13:58
p,p-DDT	ND		0.010	10		09/07/2021 13:58
Dieldrin	ND		0.010	10		09/07/2021 13:58
Endosulfan I	ND		0.010	10		09/07/2021 13:58
Endosulfan II	ND		0.010	10		09/07/2021 13:58
Endosulfan sulfate	ND		0.020	10		09/07/2021 13:58
Endrin	ND		0.010	10		09/07/2021 13:58
Endrin aldehyde	ND		0.010	10		09/07/2021 13:58
Endrin ketone	ND		0.010	10		09/07/2021 13:58
Heptachlor	ND		0.010	10		09/07/2021 13:58
Heptachlor epoxide	ND		0.010	10		09/07/2021 13:58
Toxaphene	ND		0.20	10		09/07/2021 13:58
Aroclor1016	ND		0.20	10		09/07/2021 13:58
Aroclor1221	ND		0.20	10		09/07/2021 13:58
Aroclor1232	ND		0.20	10		09/07/2021 13:58
Aroclor1242	ND		0.20	10		09/07/2021 13:58
Aroclor1248	ND		0.20	10		09/07/2021 13:58
Aroclor1254	ND		0.20	10		09/07/2021 13:58
Aroclor1260	ND		0.20	10		09/07/2021 13:58
PCBs, total	ND		0.20	10		09/07/2021 13:58
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	114		60-130			09/07/2021 13:58
Analyst(s): CK			Analytical Com	ments: a2	2	

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/03/2021

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

Extraction Method: E624.1

Analytical Method: E624.1

Unit: $\mu g/L$

	Acrolein, Acrylon	itrile, & 2-	Chloroethyl	Vinyl I	Ether	
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	2109128-001B	Water	09/02/2021	10:55	GC10 09032106.D	229161
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acrolein (Propenal)	ND		5.0	1		09/03/2021 11:40
Acrylonitrile	ND		2.0	1		09/03/2021 11:40
2-Chloroethyl Vinyl Ether	ND		1.0	1		09/03/2021 11:40
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			

Dibromofluoromethane

09/03/2021 11:40

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/08/2021

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

Extraction Method: E624.1 **Analytical Method:** E624.1

Unit: $\mu g/L$

Volatile Organics

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2109128-001A	Water	09/02/2021	10:55	GC28 09072132.D	229204
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	ND		0.20	1		09/08/2021 03:09
Bromodichloromethane	0.81		0.050	1		09/08/2021 03:09
Bromoform	8.7		0.50	1		09/08/2021 03:09
Bromomethane	ND		0.50	1		09/08/2021 03:09
Carbon tetrachloride	ND		0.050	1		09/08/2021 03:09
Chlorobenzene	ND		0.50	1		09/08/2021 03:09
Chloroethane	ND		0.50	1		09/08/2021 03:09
Chloroform	0.31		0.10	1		09/08/2021 03:09
Chloromethane	ND		0.50	1		09/08/2021 03:09
Dibromochloromethane	0.95		0.15	1		09/08/2021 03:09
1,2-Dichlorobenzene	ND		0.50	1		09/08/2021 03:09
1,3-Dichlorobenzene	ND		0.50	1		09/08/2021 03:09
1,4-Dichlorobenzene	ND		0.50	1		09/08/2021 03:09
1,1-Dichloroethane	ND		0.50	1		09/08/2021 03:09
1,2-Dichloroethane (1,2-DCA)	ND		0.020	1		09/08/2021 03:09
1,1-Dichloroethene	ND		0.010	1		09/08/2021 03:09
trans-1,2-Dichloroethene	ND		0.50	1		09/08/2021 03:09
1,2-Dichloropropane	ND		0.20	1		09/08/2021 03:09
cis-1,3-Dichloropropene	ND		0.50	1		09/08/2021 03:09
trans-1,3-Dichloropropene	ND		0.50	1		09/08/2021 03:09
Ethylbenzene	ND		0.50	1		09/08/2021 03:09
Methylene chloride	ND		2.0	1		09/08/2021 03:09
1,1,2,2-Tetrachloroethane	ND		0.020	1		09/08/2021 03:09
Tetrachloroethene	ND		0.20	1		09/08/2021 03:09
Toluene	ND		0.50	1		09/08/2021 03:09
1,1,1-Trichloroethane	ND		0.50	1		09/08/2021 03:09
1,1,2-Trichloroethane	ND		0.20	1		09/08/2021 03:09
Trichloroethene	ND		0.50	1		09/08/2021 03:09
Trichlorofluoromethane	ND		0.50	1		09/08/2021 03:09
Vinyl chloride	ND		0.0050	1		09/08/2021 03:09
Xylenes, Total	ND		0.50	1		09/08/2021 03:09

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/08/2021

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

Extraction Method: E624.1 **Analytical Method:** E624.1

Unit: $\mu g/L$

	Volatile Organics											
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID						
E-001	2109128-001A	Water	09/02/2021	10:55	GC28 09072132.D	229204						
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed						
Surrogates	REC (%)		<u>Limits</u>									
Dibromofluoromethane	103		70-130			09/08/2021 03:09						
Toluene-d8	89		70-130			09/08/2021 03:09						
4-BFB	87		70-130			09/08/2021 03:09						
Analyst(s): KF												

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/03/2021

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: μg/L

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	2109128-001C	Water	09/02/2021	10:55	GC21 09072160.D	229065
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Acenaphthene	ND		0.048	10		09/08/2021 12:40
Acenaphthylene	ND		0.048	10		09/08/2021 12:40
Anthracene	ND		0.095	10		09/08/2021 12:40
Benzidine	ND		48	10		09/08/2021 12:40
Benzo (a) anthracene	ND		0.48	10		09/08/2021 12:40
Benzo (a) pyrene	ND		0.048	10		09/08/2021 12:40
Benzo (b) fluoranthene	ND		0.19	10		09/08/2021 12:40
Benzo (g,h,i) perylene	ND		0.19	10		09/08/2021 12:40
Benzo (k) fluoranthene	ND		0.095	10		09/08/2021 12:40
Bis (2-chloroethoxy) Methane	ND		9.5	10		09/08/2021 12:40
Bis (2-chloroethyl) Ether	ND		0.048	10		09/08/2021 12:40
Bis (2-chloroisopropyl) Ether	ND		0.48	10		09/08/2021 12:40
Bis (2-ethylhexyl) Phthalate	ND		1.9	10		09/08/2021 12:40
4-Bromophenyl Phenyl Ether	ND		9.5	10		09/08/2021 12:40
Butylbenzyl Phthalate	ND		0.48	10		09/08/2021 12:40
4-Chloro-3-methylphenol	ND		9.5	10		09/08/2021 12:40
2-Chloronaphthalene	ND		9.5	10		09/08/2021 12:40
2-Chlorophenol	ND		0.48	10		09/08/2021 12:40
4-Chlorophenyl Phenyl Ether	ND		9.5	10		09/08/2021 12:40
Chrysene	ND		0.095	10		09/08/2021 12:40
Dibenzo (a,h) anthracene	ND		0.095	10		09/08/2021 12:40
Di-n-butyl Phthalate	ND		0.48	10		09/08/2021 12:40
1,2-Dichlorobenzene	ND		9.5	10		09/08/2021 12:40
1,3-Dichlorobenzene	ND		9.5	10		09/08/2021 12:40
1,4-Dichlorobenzene	ND		9.5	10		09/08/2021 12:40
3,3-Dichlorobenzidine	ND		0.19	10		09/08/2021 12:40
2,4-Dichlorophenol	ND		0.095	10		09/08/2021 12:40
Diethyl Phthalate	ND		0.48	10		09/08/2021 12:40
2,4-Dimethylphenol	ND		9.5	10		09/08/2021 12:40
Dimethyl Phthalate	ND		0.095	10		09/08/2021 12:40
4,6-Dinitro-2-methylphenol	ND		48	10		09/08/2021 12:40
2,4-Dinitrophenol	ND		19	10		09/08/2021 12:40
2,4-Dinitrotoluene	ND		0.48	10		09/08/2021 12:40
2,6-Dinitrotoluene	ND		0.48	10		09/08/2021 12:40
Di-n-octyl Phthalate	ND		0.48	10		09/08/2021 12:40
1,2-Diphenylhydrazine	ND		9.5	10		09/08/2021 12:40
Fluoranthene	ND		0.095	10		09/08/2021 12:40

(Cont.)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/02/2021 13:50

Date Prepared: 09/03/2021

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2109128-001C	Water	09/02/2021	10:55	GC21 09072160.D	229065
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Fluorene	ND		0.095	10		09/08/2021 12:40
Hexachlorobenzene	ND		0.048	10		09/08/2021 12:40
Hexachlorobutadiene	ND		0.095	10		09/08/2021 12:40
Hexachlorocyclopentadiene	ND		48	10		09/08/2021 12:40
Hexachloroethane	ND		0.48	10		09/08/2021 12:40
Indeno (1,2,3-cd) pyrene	ND		0.19	10		09/08/2021 12:40
Isophorone	ND		19	10		09/08/2021 12:40
Naphthalene	ND		0.48	10		09/08/2021 12:40
Nitrobenzene	ND		9.5	10		09/08/2021 12:40
2-Nitrophenol	ND		48	10		09/08/2021 12:40
4-Nitrophenol	ND		48	10		09/08/2021 12:40
N-Nitrosodimethylamine	ND		48	10		09/08/2021 12:40
N-Nitrosodiphenylamine	ND		9.5	10		09/08/2021 12:40
N-Nitrosodi-n-propylamine	ND		9.5	10		09/08/2021 12:40
Pentachlorophenol	ND		2.4	10		09/08/2021 12:40
Phenanthrene	ND		0.19	10		09/08/2021 12:40
Phenol	ND		1.9	10		09/08/2021 12:40
Pyrene	ND		0.095	10		09/08/2021 12:40
1,2,4-Trichlorobenzene	ND		9.5	10		09/08/2021 12:40
2,4,6-Trichlorophenol	ND		0.095	10		09/08/2021 12:40
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
2-Fluorophenol	34		20-130			09/08/2021 12:40
Phenol-d5	27		20-130			09/08/2021 12:40
Nitrobenzene-d5	74		30-130			09/08/2021 12:40
2-Fluorobiphenyl	54		40-130			09/08/2021 12:40
2,4,6-Tribromophenol	101		40-130			09/08/2021 12:40
Terphenyl-d14	76		40-130			09/08/2021 12:40
Analyst(s): KOS			Analytical Com	ments: a	3	

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/03/2021 **Date Analyzed:** 09/03/2021

Instrument: GC20 **Matrix:** Water

Project: Semi-Annual Sampling (September 2021)

WorkOrder: 2109128

BatchID: 229043

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3 **Unit:** μg/L

Sample ID: MB/LCS/LCSD-229043

	QC Summary Report f	or E608.3 w/ F	Florisil Clea	an-up		
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Aldrin	ND	0.000280	0.00100	-	-	-
a-BHC	ND	0.000310	0.00100	-	-	-
b-BHC	ND	0.000690	0.00100	-	-	-
d-BHC	ND	0.000140	0.00100	-	-	-
g-BHC	ND	0.000450	0.00100	-	-	-
a-Chlordane	ND	0.000850	0.00100	-	-	-
g-Chlordane	ND	0.000150	0.00100	-	-	-
p,p-DDD	ND	0.000110	0.00100	-	-	-
p,p-DDE	ND	0.000180	0.00100	-	-	-
p,p-DDT	ND	0.000170	0.00100	-	-	-
Dieldrin	ND	0.000140	0.00100	-	-	-
Endosulfan I	ND	0.000110	0.00100	-	-	-
Endosulfan II	ND	0.000460	0.00100	-	-	-
Endosulfan sulfate	ND	0.000330	0.00200	-	-	-
Endrin	ND	0.000180	0.00100	-	-	-
Endrin aldehyde	ND	0.000530	0.00100	-	-	-
Endrin ketone	ND	0.000260	0.00100	-	-	-
Heptachlor	ND	0.000410	0.00100	-	-	-
Heptachlor epoxide	ND	0.000250	0.00100	-	-	-
Methoxychlor	ND	0.000120	0.00100	-	-	-
Toxaphene	ND	0.00200	0.0200	-	-	-
Aroclor1016	ND	0.00190	0.0200	-	-	-
Aroclor1221	ND	0.00240	0.0200	-	-	-
Aroclor1232	ND	0.00380	0.0200	-	-	-
Aroclor1242	ND	0.00280	0.0200	-	-	-
Aroclor1248	ND	0.00180	0.0200	-	-	-
Aroclor1254	ND	0.00150	0.0200	-	-	-
Aroclor1260	ND	0.00280	0.0200	-	-	-
Surrogate Recovery						
Decachlorobiphenyl	0.0452			0.05	90	60-130

2109128

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

 Date Prepared:
 09/03/2021
 BatchID:
 229043

 Date Analyzed:
 09/03/2021
 Extraction Method:
 E608.3/SW3620B

Project: Semi-Annual Sampling (September 2021) Sample ID: MB/LCS/LCSD-229043

QC Summary Report for E608.3 w/ Florisil Clean-up

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.0374	0.0376	0.050	75	75	60-130	0.652	20
a-BHC	0.0494	0.0489	0.050	99	98	70-130	0.864	20
b-BHC	0.0471	0.0472	0.050	94	94	70-130	0.223	20
d-BHC	0.0469	0.0474	0.050	94	95	70-130	1.07	20
g-BHC	0.0486	0.0483	0.050	97	97	60-130	0.554	20
a-Chlordane	0.0404	0.0412	0.050	81	82	60-130	1.90	20
g-Chlordane	0.0430	0.0439	0.050	86	88	70-130	1.94	20
p,p-DDD	0.0594	0.0600	0.050	119	120	70-130	1.03	20
p,p-DDE	0.0452	0.0467	0.050	90	93	70-130	3.34	20
p,p-DDT	0.0577	0.0571	0.050	115	114	70-130	1.07	20
Dieldrin	0.0473	0.0474	0.050	95	95	70-130	0.179	20
Endosulfan I	0.0498	0.0496	0.050	100	99	70-130	0.315	20
Endosulfan II	0.0469	0.0486	0.050	94	97	70-130	3.42	20
Endosulfan sulfate	0.0447	0.0466	0.050	89	93	70-130	4.12	20
Endrin	0.0534	0.0532	0.050	107	106	70-130	0.456	20
Endrin aldehyde	0.0438	0.0460	0.050	88	92	60-130	4.77	20
Endrin ketone	0.0432	0.0450	0.050	86	90	60-130	4.16	20
Heptachlor	0.0468	0.0466	0.050	94	93	70-130	0.368	20
Heptachlor epoxide	0.0436	0.0442	0.050	87	88	70-130	1.46	20
Methoxychlor	0.0629	0.0610	0.050	126	122	70-130	3.02	20
Aroclor1016	0.179	0.177	0.15	120	118	70-130	1.35	20
Aroclor1260	0.184	0.183	0.15	122	122	70-130	0.0452	20
Surrogate Recovery								
Decachlorobiphenyl	0.0510	0.0508	0.050	102	102	60-130	0.556	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2109128Date Prepared:09/03/2021BatchID:229161Date Analyzed:09/03/2021Extraction Method:E624.1

Date Analyzed:09/03/2021Extraction Method:E624.1Instrument:GC10Analytical Method:E624.1Matrix:WaterUnit:μg/L

Project: Semi-Annual Sampling (September 2021) **Sample ID:** MB/LCS/LCSD-229161

QC Summary Report for E624.1									
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC		MB SS Limits
Acrolein (Propenal)	ND		1.50	5.00		-	-		-
Acrylonitrile	ND		0.520	2.00		-	-		-
2-Chloroethyl Vinyl Ether	ND		0.560	1.00		-	-		-
Surrogate Recovery									
Dibromofluoromethane	22.0					25	88		76-110
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acrolein (Propenal)	18.3	17.7	20	91	88	71-140	3.20	20
Acrylonitrile	18.4	18.0	20	92	90	67-145	2.24	20
2-Chloroethyl Vinyl Ether	20.1	19.4	20	100	97	70-124	3.44	20
Surrogate Recovery								
Dibromofluoromethane	21.6	21.8	25	86	87	76-110	1.26	20

Quality Control Report

 Client:
 PG&E Gateway Generating Station
 WorkOrder:
 2109128

 Date Prepared:
 09/07/2021
 BatchID:
 229204

 Date Analyzed:
 09/07/2021
 Extraction Method:
 E624.1

Instrument:GC28Analytical Method:E624.1Matrix:WaterUnit:μg/L

Project: Semi-Annual Sampling (September 2021) Sample ID: MB/LCS/LCSD-229204

	QC Summa	ry Report for l	E 624.1			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Benzene	ND	0.120	0.200	-	-	-
Bromodichloromethane	ND	0.0250	0.0500	-	-	-
Bromoform	ND	0.310	0.500	-	-	-
Bromomethane	ND	0.180	0.500	-	-	-
Carbon Disulfide	ND	0.180	0.500	-	-	-
Carbon tetrachloride	ND	0.0280	0.0500	-	-	-
Chlorobenzene	ND	0.110	0.500	-	-	-
Chloroethane	ND	0.200	0.500	-	-	-
Chloroform	ND	0.0910	0.100	-	-	-
Chloromethane	ND	0.280	0.500	-	-	-
Dibromochloromethane	ND	0.0260	0.150	-	-	-
1,2-Dichlorobenzene	ND	0.160	0.500	-	-	-
1,3-Dichlorobenzene	ND	0.120	0.500	-	-	-
1,4-Dichlorobenzene	ND	0.0930	0.500	-	-	-
Dichlorodifluoromethane	ND	0.290	0.500	-	-	-
1,1-Dichloroethane	ND	0.150	0.500	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0110	0.0200	-	-	-
1,1-Dichloroethene	ND	0.00940	0.0100	-	-	-
trans-1,2-Dichloroethene	ND	0.110	0.500	-	-	-
1,2-Dichloropropane	ND	0.0190	0.200	-	-	-
cis-1,3-Dichloropropene	ND	0.210	0.500	-	-	-
trans-1,3-Dichloropropene	ND	0.280	0.500	-	-	-
Ethylbenzene	ND	0.140	0.500	-	-	-
Methylene chloride	ND	0.740	2.00	-	-	-
1,1,2,2-Tetrachloroethane	ND	0.0110	0.0200	-	-	-
Tetrachloroethene	ND	0.160	0.200	-	-	-
Toluene	ND	0.170	0.500	-	-	-
1,1,1-Trichloroethane	ND	0.110	0.500	-	-	-
1,1,2-Trichloroethane	ND	0.110	0.200	-	-	-
Trichloroethene	ND	0.250	0.500	-	-	-
Trichlorofluoromethane	ND	0.140	0.500	-	-	-
Vinyl chloride	ND	0.00430	0.00500	-	-	-
Surrogate Recovery						
Dibromofluoromethane	24.8			25	99	70-130
Toluene-d8	22.3			25	89	70-130
4-BFB	2.20			2.5	88	70-130

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2109128Date Prepared:09/07/2021BatchID:229204Date Analyzed:09/07/2021Extraction Method:E624.1Instrument:GC28Analytical Method:E624.1

Matrix: Water Unit: μg/

Project: Semi-Annual Sampling (September 2021) Sample ID: MB/LCS/LCSD-229204

QC Summary Report for E624.1

	Q Summary Report for 202 iii									
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit		
Benzene	4.12	4.09	4	103	102	60-130	0.752	20		
Bromodichloromethane	4.19	4.15	4	105	104	60-130	0.781	20		
Bromoform	4.09	4.06	4	102	102	50-130	0.707	20		
Bromomethane	3.49	3.49	4	87	87	50-130	0.198	20		
Carbon Disulfide	4.28	4.23	4	107	106	60-130	1.35	20		
Carbon tetrachloride	3.99	3.94	4	100	98	60-130	1.28	20		
Chlorobenzene	4.15	4.07	4	104	102	60-130	2.00	20		
Chloroethane	3.55	3.65	4	89	91	60-140	2.68	20		
Chloroform	4.50	4.46	4	113	111	60-130	0.988	20		
Chloromethane	3.48	3.46	4	87	86	50-130	0.768	20		
Dibromochloromethane	4.03	4.00	4	101	100	50-130	0.819	20		
1,2-Dichlorobenzene	4.04	4.08	4	101	102	60-130	0.826	20		
1,3-Dichlorobenzene	4.12	4.15	4	103	104	60-130	0.740	20		
1,4-Dichlorobenzene	4.08	4.08	4	102	102	60-130	0.0556	20		
Dichlorodifluoromethane	3.05	3.04	4	76	76	40-140	0.395	20		
1,1-Dichloroethane	4.40	4.33	4	110	108	50-130	1.58	20		
1,2-Dichloroethane (1,2-DCA)	4.24	4.23	4	106	106	60-130	0.366	20		
1,1-Dichloroethene	4.32	4.28	4	108	107	60-130	1.10	20		
trans-1,2-Dichloroethene	4.15	4.15	4	104	104	60-130	0.121	20		
1,2-Dichloropropane	4.32	4.29	4	108	107	60-130	0.810	20		
cis-1,3-Dichloropropene	4.52	4.42	4	113	111	60-130	2.04	20		
trans-1,3-Dichloropropene	4.28	4.22	4	107	105	60-130	1.39	20		
Diisopropyl ether (DIPE)	4.36	4.34	4	109	108	60-130	0.448	20		
Ethylbenzene	4.27	4.21	4	107	105	60-130	1.31	20		
Ethyl tert-butyl ether (ETBE)	4.38	4.24	4	109	106	60-130	3.12	20		
Methylene chloride	3.38	3.39	4	85	85	50-130	0.167	20		
1,1,2,2-Tetrachloroethane	4.41	4.48	4	110	112	60-130	1.59	20		
Tetrachloroethene	4.09	4.01	4	102	100	60-130	2.13	20		
Toluene	4.12	4.04	4	103	101	60-130	2.16	20		
1,1,1-Trichloroethane	4.37	4.28	4	109	107	60-130	2.00	20		
1,1,2-Trichloroethane	4.30	4.28	4	107	107	60-130	0.540	20		
Trichloroethene	4.23	4.18	4	106	105	60-130	1.04	20		
Trichlorofluoromethane	3.98	3.90	4	99	97	60-130	2.11	20		
Vinyl chloride	1.79	1.79	2	90	89	60-130	0.282	20		

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2109128Date Prepared:09/07/2021BatchID:229204Date Analyzed:09/07/2021Extraction Method:E624.1Instrument:GC28Analytical Method:E624.1

Matrix: Water Unit: μg/

Project: Semi-Annual Sampling (September 2021) Sample ID: MB/LCS/LCSD-229204

QC Summary Report for E624.1										
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit		
Surrogate Recovery										
Dibromofluoromethane	24.6	25.0	25	99	100	70-130	1.28	20		
Toluene-d8	22.6	22.5	25	90	90	70-130	0.263	20		
4-BFB	2.21	2.21	2.5	89	88	70-130	0.264	20		

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 2109128

Date Prepared: 09/03/2021 BatchID: 229065

Date Applying 1 00/02/2021 Entropy of the Applying 1 00/02/2021

Date Analyzed:09/03/2021Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1Matrix:WaterUnit:μg/L

Project: Semi-Annual Sampling (September 2021) **Sample ID:** MB/LCS/LCSD-229065

QC Summary Report for E625.1

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Acenaphthene	ND	0.00280	0.00500			
Acenaphthylene	ND ND	0.00170	0.00500			
Anthracene	ND	0.00440	0.0100	_	_	-
Benzidine	ND	0.580	5.00		_	-
Benzo (a) anthracene	ND	0.0100	0.0500		_	-
Benzo (a) pyrene	ND	0.00250	0.00500	_	_	-
Benzo (b) fluoranthene	ND	0.00500	0.0200	-	_	_
Benzo (g,h,i) perylene	ND	0.00830	0.0200	-	_	_
Benzo (k) fluoranthene	ND	0.00520	0.0100	-	_	-
Benzyl Alcohol	ND	3.00	5.00	-	_	-
Bis (2-chloroethoxy) Methane	ND	0.180	1.00	-	_	-
Bis (2-chloroethyl) Ether	ND	0.00290	0.00500	-	_	-
Bis (2-chloroisopropyl) Ether	ND	0.0160	0.0500	-	_	-
Bis (2-ethylhexyl) Adipate	ND	0.110	1.00	-	-	-
Bis (2-ethylhexyl) Phthalate	ND	0.0150	0.200	-	-	-
4-Bromophenyl Phenyl Ether	ND	0.0850	1.00	-	-	-
Butylbenzyl Phthalate	ND	0.00800	0.0500	-	-	-
4-Chloroaniline	ND	0.00210	0.00500	-	-	-
4-Chloro-3-methylphenol	ND	0.150	1.00	-	-	-
2-Chloronaphthalene	ND	0.0640	1.00	-	-	-
2-Chlorophenol	ND	0.00770	0.0500	-	-	-
4-Chlorophenyl Phenyl Ether	ND	0.110	1.00	-	-	-
Chrysene	ND	0.00880	0.0100	-	-	-
Dibenzo (a,h) anthracene	ND	0.00830	0.0100	-	-	-
Dibenzofuran	ND	0.200	1.00	-	-	-
Di-n-butyl Phthalate	ND	0.0140	0.0500	-	-	-
1,2-Dichlorobenzene	ND	0.150	1.00	-	-	-
1,3-Dichlorobenzene	ND	0.240	1.00	-	-	-
1,4-Dichlorobenzene	ND	0.340	1.00	-	-	-
3,3-Dichlorobenzidine	ND	0.00290	0.0200	-	-	-
2,4-Dichlorophenol	ND	0.00290	0.0100	-	-	-
2,6-Dichlorophenol	ND	0.00930	0.0500	-	-	-
Diethyl Phthalate	ND	0.00920	0.0500	-	-	-
2,4-Dimethylphenol	ND	0.610	1.00	-	-	-
Dimethyl Phthalate	ND	0.00480	0.0100	-	-	-
4,6-Dinitro-2-methylphenol	ND	2.30	5.00	-	-	-
2,4-Dinitrophenol	ND	0.550	2.00	-	-	-
2,4-Dinitrotoluene	ND	0.0120	0.0500	-	-	-

Quality Control Report

 Client:
 PG&E Gateway Generating Station
 WorkOrder:
 2109128

 Date Prepared:
 09/03/2021
 BatchID:
 229065

 Date Analyzed:
 09/03/2021
 Extraction Method:
 E625.1

Date Analyzed:09/03/2021Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1Matrix:WaterUnit:µg/L

Project: Semi-Annual Sampling (September 2021) **Sample ID:** MB/LCS/LCSD-229065

QC Summary Report for E625.1

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
2,6-Dinitrotoluene	ND	0.00480	0.0500	-	-	-
Di-n-octyl Phthalate	ND	0.0170	0.0500	-	-	-
1,2-Diphenylhydrazine	ND	0.130	1.00	-	-	-
Fluoranthene	ND	0.00430	0.0100	-	-	-
Fluorene	ND	0.00450	0.0100	-	-	-
Hexachlorobenzene	ND	0.000730	0.00500	-	-	-
Hexachlorobutadiene	ND	0.000910	0.0100	-	-	-
Hexachlorocyclopentadiene	ND	2.30	5.00	-	-	-
Hexachloroethane	ND	0.00720	0.0500	-	-	-
ndeno (1,2,3-cd) pyrene	ND	0.00780	0.0200	-	-	-
1-Methylnaphthalene	ND	0.00140	0.00500	-	-	-
sophorone	ND	1.00	2.00	-	-	-
2-Methylnaphthalene	ND	0.00180	0.0100	-	-	-
2-Methylphenol (o-Cresol)	ND	0.320	1.00	-	-	-
8 & 4-Methylphenol (m,p-Cresol)	ND	0.420	1.00	-	-	-
Naphthalene	ND	0.00550	0.0500	-	-	-
2-Nitroaniline	ND	0.310	5.00	-	-	-
3-Nitroaniline	ND	2.00	5.00	-	-	-
1-Nitroaniline	ND	1.30	5.00	-	-	-
Nitrobenzene	ND	0.300	1.00	-	-	-
2-Nitrophenol	ND	0.550	5.00	-	-	-
1-Nitrophenol	ND	1.60	5.00	-	-	-
N-Nitrosodimethylamine	ND	0.740	5.00	-	-	-
N-Nitrosodiphenylamine	ND	0.0900	1.00	-	-	-
N-Nitrosodi-n-propylamine	ND	0.320	1.00	-	-	-
Pentachlorophenol	ND	0.0500	0.250	-	-	-
Phenanthrene	ND	0.00740	0.0200	-	-	-
Phenol	ND	0.0200	0.200	-	-	-
Pyrene	ND	0.00420	0.0100	-	-	-
Pyridine	ND	0.160	1.00	-	-	-
I,2,4-Trichlorobenzene	ND	0.0750	1.00	-	-	-
2,4,5-Trichlorophenol	ND	0.00200	0.0100	-	-	-
2,4,6-Trichlorophenol	ND	0.00350	0.0100	-	-	-

Water

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Unit:

 Client:
 PG&E Gateway Generating Station
 WorkOrder:
 2109128

 Date Prepared:
 09/03/2021
 BatchID:
 229065

 Date Analyzed:
 09/03/2021
 Extraction Method:
 E625.1

 Instrument:
 GC21
 Analytical Method:
 E625.1

Project: Semi-Annual Sampling (September 2021) Sample ID: MB/LCS/LCSD-229065

QC Summary Report for E625.1						
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Surrogate Recovery						
2-Fluorophenol	3.81			5	76	50-130
Phenol-d5	3.88			5	78	60-130
Nitrobenzene-d5	4.77			5	95	60-130
2-Fluorobiphenyl	4.20			5	84	60-130
2,4,6-Tribromophenol	3.86			5	77	60-130
Terphenyl-d14	3.76			5	75	60-130

Matrix:

Quality Control Report

 Client:
 PG&E Gateway Generating Station
 WorkOrder:
 2109128

 Date Prepared:
 09/03/2021
 BatchID:
 229065

 Date Analyzed:
 09/03/2021
 Extraction Method:
 E625.1

Date Analyzed:09/03/2021Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1Matrix:WaterUnit:µg/L

Project: Semi-Annual Sampling (September 2021) **Sample ID:** MB/LCS/LCSD-229065

QC Summary Report for E625.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acenaphthene	0.232	0.220	0.25	93	88	70-130	5.34	25
Acenaphthylene	0.308	0.291	0.25	123	116	60-130	5.76	25
Anthracene	0.235	0.217	0.25	94	87	70-130	7.93	25
Benzidine	19.2	17.7	25	77	71	50-130	8.02	25
Benzo (a) anthracene	0.250	0.229	0.25	100	92	60-130	8.69	25
Benzo (a) pyrene	0.216	0.202	0.25	86	81	70-130	6.81	25
Benzo (b) fluoranthene	0.284	0.270	0.25	114	108	60-130	5.29	25
Benzo (g,h,i) perylene	0.250	0.231	0.25	100	93	70-130	7.64	25
Benzo (k) fluoranthene	0.291	0.285	0.25	116	114	70-130	2.01	25
Benzyl Alcohol	18.1	16.8	25	72	67,F2	70-130	7.31	25
Bis (2-chloroethoxy) Methane	4.80	4.43	5	96	89	70-130	7.94	25
Bis (2-chloroethyl) Ether	0.232	0.215	0.25	93	86	60-130	7.61	25
Bis (2-chloroisopropyl) Ether	0.241	0.218	0.25	96	87	60-130	9.65	25
Bis (2-ethylhexyl) Adipate	4.28	3.94	5	86	79	60-130	8.30	25
Bis (2-ethylhexyl) Phthalate	0.235	0.217	0.25	94	87	60-130	8.19	25
4-Bromophenyl Phenyl Ether	4.60	4.11	5	92	82	70-130	11.1	25
Butylbenzyl Phthalate	0.245	0.224	0.25	98	89	60-130	9.12	25
4-Chloroaniline	0.321	0.302	0.25	129	121	70-130	6.29	25
4-Chloro-3-methylphenol	4.50	4.09	5	90	82	70-130	9.53	25
2-Chloronaphthalene	4.45	4.23	5	89	85	70-130	4.88	25
2-Chlorophenol	0.203	0.191	0.25	81	76	60-130	6.38	25
4-Chlorophenyl Phenyl Ether	4.29	4.11	5	86	82	70-130	4.35	25
Chrysene	0.292	0.266	0.25	117	106	70-130	9.10	25
Dibenzo (a,h) anthracene	0.218	0.205	0.25	87	82	70-130	6.17	25
Dibenzofuran	4.70	4.41	5	94	88	70-130	6.29	25
Di-n-butyl Phthalate	0.238	0.211	0.25	95	84	70-130	12.2	25
1,2-Dichlorobenzene	4.01	3.70	5	80	74	60-130	8.06	25
1,3-Dichlorobenzene	3.59	3.29	5	72	66	60-130	8.58	25
1,4-Dichlorobenzene	3.70	3.36	5	74	67	60-130	9.59	25
3,3-Dichlorobenzidine	0.280	0.263	0.25	112	105	70-130	6.25	25
2,4-Dichlorophenol	0.210	0.194	0.25	84	78	70-130	7.93	25
2,6-Dichlorophenol	0.225	0.211	0.25	90	85	70-130	6.35	25
Diethyl Phthalate	0.262	0.251	0.25	105	100	70-130	4.30	25
2,4-Dimethylphenol	4.65	4.55	5	93	91	70-130	2.25	25
Dimethyl Phthalate	0.256	0.244	0.25	103	98	70-130	4.99	25
4,6-Dinitro-2-methylphenol	26.9	25.4	25	108	101	70-130	5.90	25
2,4-Dinitrophenol	5.51	5.50	5	110	110	60-130	0.178	25
2.4-Dinitrotoluene	0.383	0.365	0.25	153,F2	146,F2	70-130	4.73	25

Quality Control Report

 Client:
 PG&E Gateway Generating Station
 WorkOrder:
 2109128

 Date Prepared:
 09/03/2021
 BatchID:
 229065

 Date Analyzed:
 09/03/2021
 Extraction Method:
 E625.1

Instrument: GC21 Extraction Method: E625.1
Matrix: Water Unit: µg/L

Project: Semi-Annual Sampling (September 2021) **Sample ID:** MB/LCS/LCSD-229065

QC Summary Report for E625.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
2,6-Dinitrotoluene	0.322	0.318	0.25	129	127	70-130	1.14	25
Di-n-octyl Phthalate	0.249	0.237	0.25	100	95	70-130	4.91	25
1,2-Diphenylhydrazine	4.41	4.03	5	88	81	70-130	9.16	25
Fluoranthene	0.260	0.236	0.25	104	95	70-130	9.57	25
Fluorene	0.267	0.253	0.25	107	101	70-130	5.37	25
Hexachlorobenzene	0.263	0.240	0.25	105	96	60-130	8.98	25
Hexachlorobutadiene	0.235	0.218	0.25	94	87	60-130	7.69	25
Hexachlorocyclopentadiene	19.6	18.3	25	78	73	60-130	6.53	25
Hexachloroethane	0.219	0.204	0.25	88	81	60-130	7.29	25
Indeno (1,2,3-cd) pyrene	0.256	0.238	0.25	102	95	70-130	7.43	25
1-Methylnaphthalene	0.244	0.238	0.25	98	95	70-130	2.63	25
Isophorone	4.66	4.28	5	93	86	70-130	8.46	25
2-Methylnaphthalene	0.337	0.306	0.25	135,F2	122	60-130	9.63	25
2-Methylphenol (o-Cresol)	4.42	4.05	5	88	81	70-130	8.65	25
3 & 4-Methylphenol (m,p-Cresol)	4.30	4.22	5	86	84	70-130	1.87	25
Naphthalene	0.239	0.221	0.25	96	88	50-130	7.75	25
2-Nitroaniline	22.7	21.4	25	91	86	70-130	5.84	25
3-Nitroaniline	24.7	23.0	25	99	92	70-130	7.19	25
4-Nitroaniline	23.3	21.4	25	93	85	70-130	8.71	25
Nitrobenzene	5.19	4.94	5	104	99	70-130	4.94	25
2-Nitrophenol	25.8	24.4	25	103	97	70-130	5.84	25
4-Nitrophenol	23.1	22.7	25	93	91	50-130	2.05	25
N-Nitrosodimethylamine	17.3	15.8	25	69	63	60-130	8.92	25
N-Nitrosodiphenylamine	4.76	4.35	5	95	87	70-130	8.92	25
N-Nitrosodi-n-propylamine	3.65	3.39	5	73	68	60-130	7.42	25
Pentachlorophenol	1.08	0.963	1.25	86	77	60-130	11.3	25
Phenanthrene	0.294	0.268	0.25	118	107	70-130	9.58	25
Phenol	0.846	0.772	1	85	77	60-130	9.13	25
Pyrene	0.292	0.266	0.25	117	106	70-130	9.44	25
Pyridine	2.77	2.45	5	55	49,F2	50-130	12.3	25
1,2,4-Trichlorobenzene	4.36	3.97	5	87	79	70-130	9.47	25
2,4,5-Trichlorophenol	0.247	0.233	0.25	99	93	70-130	6.05	25
2,4,6-Trichlorophenol	0.249	0.235	0.25	99	94	70-130	5.54	25

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2109128Date Prepared:09/03/2021BatchID:229065Date Analyzed:09/03/2021Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1

Matrix: Water Unit: μg/I

Project: Semi-Annual Sampling (September 2021) Sample ID: MB/LCS/LCSD-229065

	QC Sur	nmary R	eport for E62	5.1				
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Surrogate Recovery								
2-Fluorophenol	3.64	3.55	5	73	71	50-130	2.69	25
Phenol-d5	3.96	3.75	5	79	75	60-130	5.51	25
Nitrobenzene-d5	5.49	5.43	5	110	109	60-130	1.06	25
2-Fluorobiphenyl	4.91	4.82	5	98	96	60-130	1.85	25
2,4,6-Tribromophenol	4.86	4.64	5	97	93	60-130	4.80	25
Terphenyl-d14	5.24	4.94	5	105	99	60-130	6.00	25

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Excel

Page 1 of 1

WorkOrder: 2109128

ClientCode: PGEA

WaterTrax WriteOn EDF

EQuIS Dry-Weight

✓ Email HardCopy

☐ThirdParty ☐J-flag

Detection Summary

Bill to:

Requested TAT:

5 days:

Report to:

Angel Espiritu
PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: A1HE@pge.com; tlWY@pge.com; J5Ld@p

PO:

Project:

. ATHE@pge.com, IIV T@pge.com, Joeu@p

Semi-Annual Sampling (September 2021)

Angel Espiritu
PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 Date Received:

09/02/2021

Date Logged: 09/02/2021

								R	equeste	d Tests	(See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2109128-001	E-001	Water	9/2/2021 10:55		D	Δ	R	C	Δ							
2109120-001	L-001	vvalei	9/2/2021 10.55		ט	^	D	U	^							

Test Legend:

1	608_W
5	PRDisposal Fee
9	

2	624_W
6	
10	

3	624ACR+2CEVE_W
7	
11	

4	625_SCSM_W
8	
12	

Project Manager: Angela Rydelius

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Semi-Annual Sampling (September 2021)	Work Order: 2109128
--------------	---------------------------------	----------	---------------------------------------	---------------------

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments:

Date Logged: 9/2/2021

		Water	Trax WriteOn EDF	Exce	EQuI:	S Email	⊟HardCop	ру 🔲	ThirdParty	-flag	
LabII	O ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Head Dry- Space Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
001A	E-001	Water	E624.1 (VOCs) <1,1,1-Trichloroethane, 1,1,2-Trichloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane (1,2-DCA), 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Bromoform, Bromomethane, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Chloromethane, cis-1,3-Dichloropropene, Dibromochloromethane, Ethylbenzene, Methylene chloride, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Trichloroethene, Trichlorofluoromethane, Vinyl chloride, Xylenes, Total>		VOA w/ HCl		9/2/2021 10:55	5 days	9/10/2021	Present	
001B	E-001	Water	E624.1 (ACRO, ACRY, & 2-CEVE) <2- Chloroethyl Vinyl Ether, Acrolein (Propenal), Acrylonitrile>	- 2	VOA, Unpres		9/2/2021 10:55	5 days	9/10/2021	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Semi-Annual Sampling (September 2021)	Work Order: 2109128
--------------	---------------------------------	----------	---------------------------------------	----------------------------

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments:

Date Logged: 9/2/2021

HardCopy □WaterTrax WriteOn □ EDF Excel **EQuIS** ✓ Email ☐ ThirdParty ☐ J-flag LabID ClientSampID Matrix **Test Name Containers Bottle & Head Dry- Collection Date** TAT Test Due Date Sediment Hold SubOut /Composites Preservative Space Weight & Time Content 001C E-001 E625.1 (SVOCs) <1,2,4-9/2/2021 10:55 9/10/2021 Water 1LA Narrow Mouth, 5 days Present Trichlorobenzene, 1,2-Dichlorobenzene, Unpres 1,2-Diphenylhydrazine, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1-Methylnaphthalene, 2,4,5-Trichlorophenol, 2,4,6-Trichlorophenol, 2,4-Dichlorophenol, 2,4-Dimethylphenol, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dichlorophenol, 2,6-Dinitrotoluene, 2-Chloronaphthalene, 2-Chlorophenol, 2-Methylnaphthalene, 2-Methylphenol (o-Cresol), 2-Nitroaniline, 2-Nitrophenol, 3 & 4-Methylphenol (m,p-Cresol), 3,3-Dichlorobenzidine, 3-Nitroaniline, 4,6-Dinitro-2methylphenol, 4-Bromophenyl Phenyl Ether, 4-Chloro-3-methylphenol, 4-Chloroaniline, 4-Chlorophenyl Phenyl Ether, 4-Nitroaniline, 4-Nitrophenol, Acenaphthene, Acenaphthylene, Anthracene, Benzidine, Benzo (a) anthracene, Benzo (a) pyrene, Benzo (b) fluoranthene, Benzo (g,h,i) perylene, Benzo (k) fluoranthene, Benzyl Alcohol, Bis (2-chloroethoxy) Methane, Bis (2chloroethyl) Ether, Bis (2-

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: Client Contact:				Project:	Semi-Annual S	Sampling (Septe	ember 2021)		Work Order: QC Level:	
Contact's Email				Comment	s:				Date Logged:	
		Water ⁻	Trax WriteOn E	DF Exc	el <u>EQul</u>	S y Email	⊟HardCop	oyThirdPart	y J-flag	
LabID Clients	SampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Head Dry- Space Weight		TAT Test D	Oue Date Sediment Content	t Hold SubOu
			chloroisopropyl) Ether, Bis (2-ethylhexyl) Adipate, Bis (2-ethylhexyl) Phthalate, Butylbenzyl Phthalate, Chrysene, Dibenzo (a,h) anthracene, Dibenzofuran, Diethyl Phthalate, Dimethyl Phthalate, Dimethyl Phthalate, Din-octyl Phthalate, Fluoranthene, Fluorene, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno (1,2,3-cd) pyrene, Isophorone, Naphthalene, Nitrobenzene, N-Nitrosodimethylamin N-Nitrosodi-n-propylamine, N-Nitrosodiphenylamine, Pentachlorophenol, Phenanthrene, Phenol, Pyrene, Pyridine>							

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (September 2021) Work Order: 2109128

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments:

Date Logged: 9/2/2021

	Water	Trax WriteOn	EDF Ex	ccel EQuIS	y Email	HardCop	y 🔲	ThirdParty	J-flag	
LabID ClientSampID	Matrix	Test Name	Containers /Composite		Head Dry- Space Weight		TAT	Test Due Date	Sediment Content	Hold SubOut
001D E-001	Water	E608.3 (OC Pesticides+PCBs w/ I Clean-up) <a-bhc_1, a-chlordan<br="">Aldrin_1, Aroclor1016_1, Aroclor1221_1, Aroclor1232_1, Aroclor1242_1, Aroclor1248_1, Aroclor1254_1, Aroclor1260_1, b BHC_1, Chlordane (Technical)_1. BHC_1, Dieldrin_1, Endosulfan I Endosulfan II_1, Endosulfan sulfa Endrin aldehyde_1, Endrin ketone Endrin_1, g-BHC_1, g-Chlordane Heptachlor epoxide_1, Heptachlor Methoxychlor_1, p,p-DDD_1, p,p DDE_1, p,p-DDT_1, PCBs, total_ Toxaphene_1></a-bhc_1,>	e_1, - d1, te_1, _1, _1, _1,	1LA Narrow Mouth, Unpres		9/2/2021 10:55	5 days	9/10/2021	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

2109128

Page 27 of 29

Company E-Mail: a Tel: (925 Project N	Web Tele o: Angel Es o: PG&E G be4@pge.co) 522-7838, lame: Sen	pirite atew (510	ay Genera ATHE@ps 1 861-1597	4 WILLO TTSBURG, mpbell.co 52-9262 ating Star ge.com, J 7 (Cell) pling (CA 9 m En	ASS ROAI 4565-170 mail: mai F Bill To:	D 1 in@m cax: (9 PG&	ecam ()25) E Ga	apbei 252 atew	ll.co -920 ay	69						Tracke	CHA OUND T er EDF sis Reques	IME PDF Check] 24 HR e □		48 H Writ	IR te O	72 HR On (DW '' flag is	vĢ	
	ocation: Co				C	19		10								PA 62	PA 62 ompou	PA 60 and PC				1	П				
Sampler	Signature:		SAMP		Sar		Ma	trix	М	ETH	ю) PR	ESF	ERV	ED	TTO (USE)	TTO (USE) Organic Co	TTO (USEPA (Pesticides and l									
SAMPLE ID	LOCATION / Field Point Name	Sample Type Composite	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H.SO.	NaOH	HCL	HNO,	Other												
E-001	[2.4]	G	09/02/21	10:55	2	43 ml VOA	X		П	Х	Ť	T	X			X					\top	T	Ħ	1			
E-001		G	09/02/21		2	43 ml VOA	X		Х	Х	T	7	\neg			Х					1		\sqcap	T			
E-001		G	09/02/21		1	1L Amb	X		Х	X	1						X						П				
E-001		G	09/02/20		1	IL Amb	X		Х	Х	I							X					Π				
	1-1-1			- "					Ц	1	T	\dashv	7	\exists							Ţ	F	П	Ţ			
										1	†	\downarrow	1						廿			E	H	\pm			
									\forall	+	+	+	+	+				\vdash	+	-	+	\vdash	Н	+			_
										I	I												П				
						A	\vdash		Н	+	+	4	4	\dashv							4	L	Н	+			
Relinquished	I By:		Date:	Time:	Beco	eived By:	1				9.	2.13	2	10		GOOD HEAD DECHI APPRO		ION_ BSENT_ ED IN LAB_ CONTAINER	 ts			TT TT Ap	O (EI	PA 60 PA 62 lix A a	(5) see AT	(EPA 624). TTACHED ze only list)
Relinquished	і ву:		Date:	Time:	Rece	eived By:										PRESE	RVATIO		G META	LS OTHER	2					Page 27	of 29

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein Acrylonitrile Benzene Bromodichloromethane (Dichlorobromomethane) Bromform Brommomethane (Methyl Bromide) Carbon tetrachloride (Tetrachloromethane) Chlorobenzene Chloroethane (Ethyl Chloride)
2-Chloroethyl vinyl ether
Chloroform (trichloromethane)
Chloromethane (Methyl Chloride)
Dibromochloromethane (Chlorodibromomethane) 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethene (1, 1-dichloroethylene) trans-1, 2-Dichloroethene 1, 2-Dichloropropane cis-1, 3-Dichloropropene trans-1, 3-Dichloropropene Ethylbenzene Methylene Chloride (Dichloromethane) 1, 1, 2, 2,-Tetrachloroethane Tetrachloroethene (PCE) Toluene 1, 1, 1-Trichloreothane
1, 1, 2-Trichloroethane
Trichloroethene (TCE)
Trichlorofluoromethane
Vinyl chloride (Chloroethylene)

EPA Method 625 Compounds

Acenaphthene
Acenaphthylene
Anthracene
Benzo (a) anthracene
Benzo (a) pyrene
Benzo (b) fluoranthene
Benzo (b) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Benzo (k) fluoranthene
Bis (2-Chloroethoxy) methane
bis (2-Chloroethoxy) methane
bis (2-Chloroethoxy) phenyl ether
bis (2-Ethylhexyl) phthalate
4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol
2-Chlorophenyl
4-Chlorophenyl
4-Chlorophenyl
4-Chlorophenyl phenyl ether
Chrysene
Dibenzo (a, h) anthracene
1, 2-Dichlorobenzene
1, 3-Dichlorobenzene
1, 4-Dichlorobenzene
3, 3'-Dichlorobenzidine

2, 4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethylphthalate Di-n-butylphthalate 2, 4-Dinitirophenol 2, 4-Dinitrofoluene 4-Dinitrotoluene 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diphenylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nifrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4,4'DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Toxaphene

1 (02/2)

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Ge Semi-Annual Samp	nerating Station ling (September 2021)			Date and Time Received: Date Logged: Received by:	9/2/2021 13:50 9/2/2021 Adrianna Cardoza
WorkOrder №: Carrier:	2109128 Client Drop-In	Matrix: <u>Water</u>			Logged by:	Adrianna Cardoza
		Chain of C	Custody	/ (COC) Infor	mation	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆	
Date and Time o	f collection noted by 0	Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗌	
COC agrees with	Quote?		Yes		No 🗆	NA 🗹
		<u>Samp</u>	le Rece	eipt Informat	ion	
Custody seals int	tact on shipping conta	niner/cooler?	Yes		No 🗌	NA 🗹
Custody seals int	tact on sample bottles	9.	Yes	✓	No 🗆	NA \square
Shipping contain	er/cooler in good con	dition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No 🗌	
Sample containe	rs intact?		Yes	✓	No 🗆	
Sufficient sample	volume for indicated	test?	Yes	•	No 🗆	
		Sample Preservati	ion and	Hold Time (HT) Information	
All samples recei	ived within holding tim	ne?	Yes	✓	No 🗌	NA 🗆
Samples Receive	ed on Ice?		Yes	✓	No 🗆	
		(Ісе Тур	e: WE	•		
Sample/Temp Bl	ank temperature			Temp: 1.8		NA 🗌
	analyses: VOA meets Cs, TPHg/BTEX, RSI		Yes	✓	No 🗀	NA 🗌
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.		; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹
		ipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗆	NA 🗹
Free Chlorine t	ested and acceptable	upon receipt (<0.1mg/L)?	Yes		No	NA 🗹
Comments:		=	_=:	==	=	=

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 10, 2022

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference: Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject: Quarterly Self-Monitoring Report

(For Period Ending December 31, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending December 31, 2021, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in June 30, 2021

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 9: Annual Flowmeter Calibration

Attachment 1 Certification Statement

Certification Statement

PG&E Gateway Generating Station

Name of Business:

Address:	3225 Wilbur Avenue, Antioch, CA. 94509
Phone:	<u>925-522-7805</u>
Period Covered:	Period ending: December 31, 2021
direction or supervision personnel properly gathering the information belief, true, accurate	of law that this document and all attachments were prepared under my ion in accordance with a system designed to assure that qualified other and evaluate the information submitted. Based on my inquiry of s who manage the system, or those persons directly responsible for action, the information submitted is to the best of my knowledge and and complete. I am aware that there are significant penalties for mation, including the possibility of fine and imprisonment for knowing
	Date:

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	, ,
Company: Pacific Gas and Electric Com	pany – Gateway Generating Station
Period Covered: Period ending December	
Torrow Covered. Terrow chang December	201, 2021
Industrial User Checklist for self –monit	oring reports, as specified by the wastewater
discharge permit issued by Delta Diablo	
2. F	
<u>Self-monitoring reports</u>	
<u> </u>	
$\sqrt{}$ Flow discharge summary (Discharge	ge Permit Section E.1.h.) (See Attachment 4)
Calibration of flow meters, as requ	
$\sqrt{}$ Monitoring results- All required te	_ · · · · · · · · · · · · · · · · · · ·
	ly (section F.7.) (See Attachment 8)
√ Certification statement included (S	
<u> </u>	,
Violations (if applicable)	
•	
All wastewater discharge exceedan	ice are reported during this reporting period
Delta Diablo was contacted. (See	Additional Notes below)
A follow-up report on characteriza	tion re-sampling was submitted on
Corrective actions to resolve violat	ion:
Other violations - i.e. Reporting, sp	pills to sewer, or prohibited discharges
4.17.	
<u>Additional Notes</u> :	
None	
Cionificant changes	
Significant changes	

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	11/22/2021	11/23/2021	11/23/2021			
TYPE	G	G	C24			
STATION	E-001	E-001	E-001			
SMP.BY	Muskan	Muskan	Muskan			
PURPOSE	Compliance	Compliance	Compliance			
PURPUSE	Quarterly (Q4)	Quarterly (Q4)	Quarterly (Q4)			

Units: mg/L

FLOW, DAILY (gal) 51,120 8.61 PH 6-10 s.u. 8.61 9.00 BOD 25.0 9.00 COD 23.0 9.00 TDS 564.0 9.00 TSS 4.8 9.00 Arsenic 0.15 0.00072 Cadmium 0.1 ND(<0.0005) Chromium 0.5 ND(<0.0005) Copper 0.5 0.0081 Iron 0.32 9.00 Lead 0.5 ND(<0.0005) Mercury 0.003 ND(<0.0002) Molybdenum 0.036 9.0021 Nickel 0.5 0.0021 Selenium 0.25 ND(<0.0005) Zinc 1.00 0.068 Cyanide 0.2 0.0029 Phenol 1.00 0.0030	FLOW, MONTH (gal) pH BOD COD TDS TSS Arsenic Cadmium
pH 6-10 s.u. 8.61 BOD 25.0 COD 23.0 TDS 564.0 TSS 4.8 Arsenic 0.15 Cadmium 0.1 ND(<0.0005)	pH BOD COD TDS TSS Arsenic Cadmium
BOD	BOD COD TDS TSS Arsenic Cadmium
COD 23.0 TDS 564.0 TSS 4.8 Arsenic 0.15 Cadmium 0.1 Chromium 0.5 Chromium 0.5 Ion 0.32 Lead 0.5 Mercury 0.003 Molybdenum 0.036 Nickel 0.5 Selenium 0.25 ND(<0.0005)	COD TDS TSS Arsenic Cadmium
TDS 564.0 </td <td>TDS TSS Arsenic Cadmium</td>	TDS TSS Arsenic Cadmium
TSS 4.8 <td>TSS Arsenic Cadmium</td>	TSS Arsenic Cadmium
Arsenic 0.15 0.00072	Arsenic Cadmium
Cadmium 0.1 ND(<0.0005) Chromium 0.5 ND(<0.0005)	Cadmium
Chromium 0.5 ND(<0.0005) S Copper 0.5 0.0081 S Iron 0.32 S S Lead 0.5 ND(<0.0005)	
Copper 0.5 0.0081 0.32 Iron 0.32 0.003 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.00000	Clare en i
Iron	Chromium
Lead 0.5 ND(<0.0005)	Copper
Mercury 0.003 ND(<0.0002) Molybdenum 0.036 Nickel 0.5 0.0021 Selenium 0.25 ND(<0.0005)	Iron
Molybdenum 0.036 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0022 0.0025 0.0022 0.0025 0.0025 0.0022 0.0029 0.0022 0.0029 0.0022 0.00	Lead
Nickel 0.5 0.0021 Selenium 0.25 ND(<0.0005)	Mercury
Selenium 0.25 ND(<0.0005) Silver 0.2 ND(<0.0005)	Molybdenum
Silver 0.2 ND(<0.0005)	Nickel
Zinc 1.00 0.068 Cyanide 0.2 0.0029 Phenol 1.00 0.0030	Selenium
Cyanide 0.2 0.0029 Phenol 1.00 0.0030	Silver
Phenol 1.00 0.0030	Zinc
	Cyanide
	Phenol
	Ammonia
O&G Petro/Min (E1664A w/ Silica) 100 16 ND(<5.0)	G Petro/Min (E1664A w/ Silica)
O&G Animal/Vegetable Oil 300 22 ND(<5.0)	O&G Animal/Vegetable Oil
TTO EPA 608	TTO EPA 608
TTO EPA 624	TTO EPA 624
TTO EPA 625	TTO EPA 625
TTO 2.00	TTO
Sulfide	Sulfide
Sulfate	6.16.

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

October 2021-December 2021

		Industria	l Flow			Sanitary	Flow		
			Did it ever			Time Makes	Did it ever		
		Time Over	go over	5 "		Time Meter	go over	5 "	c:. -
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(mins?			(minutes)	mins?		
40/4/0004	05.0	0.0		07.054	0.1				07.05.4
10/1/2021	35.0	0.0	NO	27,654	0.1	0			27,654
10/2/2021	36.0	0.0	NO	27,685	0.0	0	NO		27,685
10/3/2021	35.2	0.0	NO	28,462	0.0	0			28,462
10/4/2021	35.9	0.0	NO	28,033	24.6	0	NO		28,033
10/5/2021	35.6	0.0	NO	24,501	0.0	0	NO		24,501
10/6/2021	91.9	14.0	NO	42,480	21.9	0			42,480
10/7/2021	61.8	3.0	NO	32,347	20.0	0	NO	94	32,442
10/8/2021	34.2	0.0	NO	44,972	22.1	0	NO	292	45,263
10/9/2021	34.0	0.0	NO	34,931	0.0	0	NO		34,931
10/10/2021	34.5	0.0	NO	35,826	0.0	0	NO		35,826
10/11/2021	38.0	0.0	NO	40,049	20.3	0	NO	320	40,369
10/12/2021	35.2	0.0	NO	40,898	15.2	0	NO		40,898
10/13/2021	34.0	0.0	NO	24,583	22.7	0		130	24,713
10/14/2021	31.4	0.0	NO	38,205	23.7	0	NO		38,205
10/15/2021	34.5	0.0	NO	37,496	0.1	0	NO		37,496
10/16/2021	34.6	0.0	NO	29,845	0.1	0	NO		29,845
10/17/2021	34.5	0.0	NO	43,446	0.1	0	NO		43,446
10/18/2021	34.5	0.0	NO	37,104	23.4	0	NO		37,104
10/19/2021	34.4	0.0	NO	24,546	0.0	0	NO		24,546
10/20/2021	34.6	0.0	NO	42,922	23.5	0	NO		42,922
10/21/2021	34.5	0.0	NO	41,650	22.9	0		374	42,024
10/22/2021	34.5	0.0	NO	48,996	0.1	0	NO		48,996
10/23/2021	34.5	0.0	NO	42,754	23.6	0	NO		42,754
10/24/2021	34.5	0.0	NO	47,831	0.0	0	NO		47,831
10/25/2021	43.8	5.0	NO	48,910	0.0	0	NO		48,910
10/26/2021	34.5	0.0	NO	48,620	22.3	0	NO		48,620
10/27/2021	34.7	0.0	NO	42,675	22.8	0	NO		42,675
10/28/2021	34.5	0.0	NO	45,076	0.0	0			45,076
10/29/2021	34.5	0.0	NO	43,816	21.9	0	NO		43,816
10/30/2021	34.8	0.0	NO	17,950	0.1	0	NO		17,950
10/31/2021	34.5	0.0	NO	14,905	22.9	0			14,905
. 0, 0 ., 202 .	00	0.0		,000				mit: 51,120):	48,996
						Wax D	, .	onthly Total:	1,130,378
11/1/2021	34.3	0.0	NO	1,030	0.0	0			1,030
11/2/2021	34.2	0.0	NO	34,073	21.5		NO		34,073
11/3/2021	34.4	0.0	NO	38,252	22.9			620	38,871
11/4/2021	34.5	0.0	NO	48,986	0.0			520	48,986
11/5/2021	34.5	0.0	NO	23,217	23.5	0		385	23,602
11/6/2021	34.7	0.0	NO	48,994	0.0	0		303	48,994
11/7/2021	34.7	1.0	NO	48,967	0.0				48,967
11/8/2021	34.5	0.0	NO	47,245	23.3	0		381	47,626
						0		301	
11/9/2021	34.5 34.3	0.0	NO NO	27,002 19,758	0.1 21.4				27,002
11/10/2021		0.0	NO						19,758
11/11/2021	34.6	0.0		23,001	0.0				23,001
11/12/2021	34.6	0.0	NO	28,622	23.4	0			28,622
11/13/2021	34.6	0.0	NO	44,149	0.1	0			44,149
11/14/2021	34.8	0.0	NO	39,133	0.0				39,133
11/15/2021	34.5	0.0	NO	31,614	21.6				31,614
11/16/2021	34.6	0.0	NO	37,248	0.1	0			37,248
11/17/2021	34.7	0.0	NO	15,772	21.5			387	16,159
11/18/2021	34.6	0.0	NO	32,354	0.0				32,354
11/19/2021	34.8	0.0	NO	36,555	0.0	0	NO		36,555

PG&E Gateway Generating Station

Discharge Flow Data

October 2021-December 2021

		Industria	l Flow			Sanitary	Flow		
		Time Over	Did it ever go over			Time Meter	Did it ever go over		
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
Dute	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(IIIIIaccs)	mins?			(minutes)	mins?		
11/20/2021	34.5	0.0	NO	48,905	20.9	0	NO		48,905
11/20/2021	34.7	0.0	NO	35,078	22.2	0	NO	94	35,172
11/21/2021	34.4	0.0	NO	39,521	23.4	0	NO	54	39,521
11/23/2021	34.6	0.0	NO	40,909	0.0	0	NO		40,909
11/24/2021	34.6	0.0	NO	40,322	23.1	0	NO		40,322
11/25/2021	34.8	0.0	NO	35,312	0.0	0	NO		35,312
11/26/2021	34.7	0.0	NO	45,224	0.0	0	NO		45,224
11/27/2021	34.7	0.0	NO	21,981	0.0	0	NO		21,981
11/28/2021	34.6	0.0	NO	24,387	23.4	0	NO	371	24,758
11/29/2021	34.6	0.0	NO	48,993	0.0	0	NO		48,993
11/30/2021	34.5	0.0	NO	26,559	0.1	0	NO		26,559
						Max D	aily Flow (Lii	mit: 51,120):	48,994
								onthly Total:	1,035,399
12/1/2021	34.7	0.0	NO	31,996	0.0	0	NO		31,996
12/2/2021	34.5	0.0	NO	48,617	24.5	0	NO		48,617
12/3/2021	34.4	0.0	NO	28,412	0.0	0	NO		28,412
12/4/2021	34.6	2.0	NO	24,687	23.7	4	NO	_	24,687
12/5/2021	34.6	0.0	NO	27,928	0.1	0	NO	3	27,932
12/6/2021	35.0	0.0	NO	25,787	0.0	0	NO		25,787
12/7/2021	34.6	0.0	NO	16,872	24.5	0	NO	375	17,247
12/8/2021	34.6	0.0	NO	25,073	22.6	0	NO	383	25,456
12/9/2021	34.7	0.0	NO	25,891	0.1	0	NO	4	25,895
12/10/2021	34.7	0.0	NO NO	35,423 17,224	0.0	0	NO	4	35,427
12/11/2021 12/12/2021	34.8 34.6	0.0 0.0	NO	29,468	0.0 23.6	0	NO NO		17,224 29,468
12/13/2021	34.0	0.0	NO	30,798	23.0	0	NO	366	31,164
12/13/2021	34.6	0.0	NO	20,595	0.0	0	NO	300	20,595
12/15/2021	34.5	0.0	NO	31,548	21.1	0	NO		31,548
12/16/2021	34.5	0.0	NO	25,772	0.1	0	NO		25,772
12/17/2021	34.8	0.0	NO	27,641	18.2	0	NO	396	28,037
12/18/2021	34.7	0.0	NO	26,719	0.0	0	NO	000	26,719
12/19/2021	34.8	0.0	NO	49,010	0.0	0	NO		49,010
12/20/2021	34.7	0.0	NO	40,496	21.1	0	NO		40,496
12/21/2021	34.8	0.0	NO	38,788	0.0		NO	3	38,791
12/22/2021	34.5	0.0	NO	21,315	7.0	0	NO		21,315
12/23/2021	35.0	0.0	NO	35,315	0.0		NO		35,315
12/24/2021	34.7	0.0	NO	37,321	0.0	0	NO		37,321
12/25/2021	34.8	0.0	NO	18,970	6.7	0	NO	400	19,370
12/26/2021	34.6	0.0	NO	35,580	0.0	0	NO		35,580
12/27/2021	34.4	0.0	NO	15,071	0.0	0	NO		15,071
12/28/2021	34.5	0.0	NO	22,382	5.5	0	NO	385	22,767
12/29/2021	34.8	0.0	NO	31,978	0.1	0	NO		31,978
12/30/2021	34.8	0.0	NO	38,484	8.1	0	NO		38,484
12/31/2021	34.7	0.0	NO	31,160	0.0	0	NO		31,160

Max Daily Flow (Limit: 51,120): 49,010

Monthly Total: 918,641

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2021**

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July		
August		
September		
October	1,130,378	1/15/2022
November	1,035,399	1/15/2022
December	918,641	1/15/2022

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report October 2021 to December 2021

	WSAC Operation
Month	Hours of Operation
January-21	
February-21	
March-21	
April-21	
May-21	
June-21	
July-21	
August-21	
September-21	
October-21	101.41
November-21	0.00
December-21	0.00

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report October 2021 to December 2021

WSAC Operation							
Month Average Daily Blowdown Cycles							
1/17/20201							
February-21							
March-21							
April-21							
May-21							
June-21							
July-21							
August-21							
September-21							
October-21	2.45						
November-21							
December-21							

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2111D10

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (November 2021)

Project Received: 11/23/2021

Analytical Report reviewed & approved for release on 12/02/2021 by:

Jennifer Lagerbom

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2111D10

Project: Quarterly Sampling (November 2021)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LOL Laboratory Control Sample
LOL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2111D10

Project: Quarterly Sampling (November 2021)

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05

Date Prepared: 11/30/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: E1664A_SG **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2111D10-001A	Water	11/22/202	1 08:40	O&G	234345
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	16		5.3	1		12/01/2021 13:10

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2111D10-001B	Water	11/23/202	21 10:30	O&G	234345
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		12/01/2021 13:15

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05

Date Prepared: 11/30/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 Grab	2111D10-001A	Water	11/22/202	1 08:40	O&G	234615
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	38		5.3	1		12/01/2021 12:35

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2111D10-001B	Water	11/23/202	1 10:30	O&G	234615
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		12/01/2021 12:40

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05 **Date Prepared:** 11/24/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

	TA. T
Ammonia	26 1
Allillivilla	asi

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 Comp	2111D10-001C	Water	11/23/2021 10:30		WC_SKALAR 112421A1_49	234346
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed
Ammonia, total as N	31		1.0	10	11/24	1/2021 11:15

Analyst(s): RB

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05

Date Prepared: 11/24/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: SM5210B **Analytical Method:** SM5210 B

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 Comp	2111D10-001E	Water	11/23/202	1 10:20	WetChem	234341
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
BOD	25		20	5		11/29/2021 13:00

Analyst(s): MGO

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05

Date Prepared: 11/30/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

$\boldsymbol{\alpha}$	• •	700 4 1
(V	anıde	, Total

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Comp	2111D10-001D	Water	11/23/202	1 10:30	WC_SKALAR 11302021B1_44	234567
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	<u>Analyzed</u>
Total Cyanide	2.9		1.0	1	11/30	/2021 15:13

Analyst(s): JN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05 **Date Prepared:** 11/24/2021

Project: Quarterly Sampling (November 2021) WorkOrder: 2111D10

Extraction Method: SM5220 D-1997

Analytical Method: SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Comp	2111D10-001F	Water	11/23/202	21 10:20	SPECTROPHOTOMETER	234383
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Dat</u>	e Analyzed
COD	23		10	1	11/2	24/2021 15:52

Analyst(s): NYG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05

Date Prepared: 11/23/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

	<i>u</i>					
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Comp	2111D10-001J	Water	11/23/2021	1 10:20	AA1 _26	234235
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Mercury	ND		0.20	1		11/24/2021 15:15

Analyst(s): MIG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05

Date Prepared: 11/23/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Metals									
Client ID	Lab ID	Matrix Water	Date Collected 11/23/2021 10:20		Instrument ICP-MS3 037SMPL.D	Batch ID			
E-001 Comp	2111D10-001I					234280			
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed			
Arsenic	0.72		0.50	1		11/24/2021 13:04			
Cadmium	ND		0.50	1		11/24/2021 13:04			
Chromium	ND		0.50	1		11/24/2021 13:04			
Copper	8.1		1.5	1		11/24/2021 13:04			
Iron	320		100	1		11/24/2021 13:04			
Lead	ND		0.50	1		11/24/2021 13:04			
Molybdenum	36		0.50	1		11/24/2021 13:04			
Nickel	2.1		0.50	1		11/24/2021 13:04			
Selenium	ND		0.50	1		11/24/2021 13:04			
Silver	ND		0.50	1		11/24/2021 13:04			
Zinc	68		20	1		11/24/2021 13:04			
Surrogates	<u>REC (%)</u>		<u>Limits</u>						
Terbium	113		70-130			11/24/2021 13:04			
Analyst(s): AL									

Analytical Report

PG&E Gateway Generating Station **Client:**

Date Received: 11/23/2021 12:05 **Date Prepared:** 12/02/2021

Project: Quarterly Sampling (November 2021) WorkOrder: 2111D10

Extraction Method: E420.4

Analytical Method: E420.4 Unit: $\mu g/L$

Phenolics

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
E-001 Comp	2111D10-001C	Water	11/23/20	21 10:30	WC_SKALAR 12022021C1_29	234746
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed	
Phenolics	3.0		2.0	1	12/02/	/2021 15:22

Analyst(s): JN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05

Date Prepared: 11/23/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001 Comp	2111D10-001G	Water	11/23/2021	10:20	WetChem	234333
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	564		10.0	1		11/24/2021 12:40

Analyst(s): NYG

CA ELAP 1644 • NELAP 4033ORELAP

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 11/23/2021 12:05 **Date Prepared:** 11/29/2021

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 Comp	2111D10-001H	Water	11/23/2021	10:20	WetChem	234451
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Suspended Solids	4.80		2.00	2		11/29/2021 15:00

Analyst(s): MGO

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2111D10Date Prepared:11/24/2021BatchID:234345Date Analyzed:11/24/2021Extraction Method:E1664A_SG

Instrument:O&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (November 2021) **Sample ID:** MB/LCS/LCSD-234345

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
SGT-HEM	ND	0.720	5.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	8.61	8.75	10.42	83	84	64-132	1.60	30

Water

Matrix:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

mg/L

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2111D10Date Prepared:12/01/2021BatchID:234615Date Analyzed:12/01/2021Extraction Method:E1664AInstrument:O&GAnalytical Method:E1664A

Project: Quarterly Sampling (November 2021) **Sample ID:** MB/LCS/LCSD-234615

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
HEM	ND	1.30	5.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	17.6	18.2	20.83	85	87	78-114	3.10	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 11/24/2021

Date Analyzed: 11/24/2021 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

BatchID: 234346

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-234346

QC Summary Report for SM4500-NH3										
Analyte	MB Result	MDL	RL							
Ammonia, total as N	ND	0.0920	0.100	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	3.92	3.96	4	98	99	88-113	1.10	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2111D10Date Prepared:11/24/2021BatchID:234341Date Analyzed:11/29/2021Extraction Method:SM5210BInstrument:WetChemAnalytical Method:SM5210 B

Matrix: Water Unit: mg/L

Project: Quarterly Sampling (November 2021) **Sample ID:** MB/LCS/LCSD-234341

QC Summary Report for BOD										
Analyte	MB Result	MDL	RL							
BOD	ND	4.00	4.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	210	175	198	106	88	80-120	18.4,F2	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 11/30/2021

Date Analyzed: 11/30/2021 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

BatchID: 234567

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-234567

QC Summary Report for SM4500-CN ⁻ CE										
Analyte	MB Result	MDL	RL							
Total Cyanide	ND	0.770	1.00	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	41.6	43.0	40	104	108	90-110	3.35	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 11/24/2021 **Date Analyzed:** 11/24/2021

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

BatchID: 234383

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-234383

QC Summary Report for COD										
Analyte	MB Result	MDL	RL							
COD	ND	7.20	10.0	-	-	-				

Anglyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
Analyte	Result	Result	Val	%REC	%REC	Limits	KPD	Limit
COD	102	101	100	102	101	90-110	0.985	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2111D10Date Prepared:11/23/2021BatchID:234235Date Analyzed:11/24/2021Extraction Method:E245.2Instrument:AA1Analytical Method:E245.2

Matrix: Water Unit: μg/

Project: Quarterly Sampling (November 2021) **Sample ID:** MB/LCS/LCSD-234235

QC Summary Report for Mercury									
Analyte	MB Result	MDL	RL						
Mercury	ND	0.130	0.200	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	1.86	1.86	2	93	93	85-115	0.211	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2111D10Date Prepared:11/23/2021BatchID:234280Date Analyzed:11/23/2021Extraction Method:E200.8Instrument:ICP-MS3Analytical Method:E200.8

Matrix: Water Unit: μg/

ND

ND

Project: Quarterly Sampling (November 2021) **Sample ID:** MB/LCS/LCSD-234280

	QC Summary Ro	eport for	Metals			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.100	0.500	-	-	-
Cadmium	ND	0.240	0.500	-	-	-
Chromium	ND	0.350	0.500	-	-	-
Copper	ND	0.660	1.50	-	-	-
Iron	ND	37.0	100	-	-	-
Lead	ND	0.270	0.500	-	-	-
Molybdenum	ND	0.180	0.500	-	-	-
Nickel	ND	0.270	0.500	-	-	-
Selenium	ND	0.170	0.500	-	-	-

Surrogate Recovery

Silver

Zinc

Terbium 515 500 103 70-130

0.260

14.0

0.500

20.0

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	50.2	49.9	50	100	100	85-115	0.580	20
Cadmium	49.3	48.9	50	99	98	85-115	0.815	20
Chromium	49.3	49.3	50	99	99	85-115	0.0406	20
Copper	50.6	50.3	50	101	101	85-115	0.654	20
Iron	4840	4820	5000	97	96	85-115	0.435	20
Lead	47.1	46.9	50	94	94	85-115	0.447	20
Molybdenum	47.1	46.0	50	94	92	85-115	2.34	20
Nickel	50.1	50.0	50	100	100	85-115	0.280	20
Selenium	50.2	50.6	50	100	101	85-115	0.694	20
Silver	46.5	46.7	50	93	93	85-115	0.365	20
Zinc	507	506	500	101	101	85-115	0.0395	20
Surrogate Recovery								
Terbium	511	517	500	102	103	70-130	1.11	20

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2111D10Date Prepared:12/02/2021BatchID:234746Date Analyzed:12/02/2021Extraction Method:E420.4Instrument:WC_SKALARAnalytical Method:E420.4

Matrix: Water

Project: Quarterly Sampling (November 2021) **Sample ID:** MB/LCS/LCSD-234746

QC Summary Report for E420.4									
Analyte	MB Result	MDL	RL						
Phenolics	ND	1.30	2.00	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	38.6	41.5	40	96	104	80-120	7.41	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 11/23/2021

Date Analyzed: 11/24/2021 - 11/29/2021

Instrument: WetChem

Matrix: Water

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10 **BatchID:** 234333

Extraction Method: SM2540 C-1997

Analytical Method: SM2540 C-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-234333

QC Summary Report for Total Dissolved Solids										
Analyte	MB Result	MDL	RL							
Total Dissolved Solids	ND	10.0	10.0	_	-	-				

Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
	Result	Result	Val	%REC	%REC	Limits	5	Limit
Total Dissolved Solids	1050	1060	1000	105	106	80-120	1.33	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 11/29/2021

Date Analyzed: 11/29/2021 **Instrument:** WetChem

Matrix: Water

Analyte

Project: Quarterly Sampling (November 2021)

WorkOrder: 2111D10

BatchID: 234451

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-234451

QC Summary Report for Total Suspended Solids								
MB Result	MDL	RL						

Total Suspended Solids ND 1.00 1.00 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	85.0	93.0	100	85	93	80-120	8.99	10

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Report to:

Angel Espiritu

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2111D10

ClientCode: PGEA

WaterTrax CLIP EDF EQuIS

ulS Dry-Weight

✓ Email

□HardCopy

☐ThirdParty ☐J-flag

Detection Summary Excel

Bill to:

Angel Espiritu

Requested TATs:

5 days; 7 days;

PG&E Gateway Generating Station

cc/3rd Party: A1HE@pge.com; J5Ld@pge.com; tlWY@p PO:

PG&E Gateway Generating Station 3225 Wilbur Avenue

Date Received:

11/23/2021

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX:

١٥.

Email:

Project: Quarterly Sampling (November 2021)

abe4@pge.com

Antioch, CA 94509

Date Logged:

11/23/2021

								Re	quested	l Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
		1				1	1					1				
2111D10-001	E-001 Comp	Water	11/23/2021 10:20					E		F	J	I		E	G	Н
2111D10-001	E-001 Comp	Water	11/23/2021 10:30				С		D				С			
2111D10-001	E-001 Grab	Water	11/22/2021 08:40		Α	Α								Α		
2111D10-001	E-001 Grab	Water	11/23/2021 10:30		В	В								В		

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Quarterly Sampling (November 2021)	Work Order: 2111D10
--------------	---------------------------------	----------	------------------------------------	---------------------

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments:

Date Logged: 11/23/2021

WaterTrax WriteOn □ EDF Excel **EQuIS ✓** Email HardCopy ☐ ThirdParty □J-flag LabID ClientSampID TAT Matrix **Test Name Containers** Bottle & Head Drv-**Collection Date** Test Due Date Sediment Hold SubOut /Composites Preservative Space Weight & Time Content 001A E-001 Grab Water 11/22/2021 8:40 12/2/2021 E1664A (HEM; Oil & Grease w/o S.G. 1LA w/ HCl 5 days None Clean-Up) E1664A (SGT- HEM; Non-polar 12/2/2021 5 days None Material) 001B E-001 Grab Water E1664A (HEM; Oil & Grease w/o S.G. 2 1LA w/ HCl 11/23/2021 10:30 5 days 12/2/2021 None Clean-Up) E1664A (SGT- HEM; Non-polar 12/2/2021 5 days None Material) E-001 Comp 11/23/2021 10:30 001C Water E420.4 (Phenolics) 500mL aG w/ 5 days 12/2/2021 None H2SO4 SM4500-NH3 BG (Ammonia Nitrogen) 12/2/2021 5 days None 5 days E-001 Comp Water SM4500-CN CE (Cyanide, Total) 1 250mL aHDPE w/ 11/23/2021 10:30 12/2/2021 001D None NaOH SM5210B (BOD) 1L HDPE, unprsv. 12/6/2021 001E E-001 Comp Water 1 11/23/2021 10:20 7 days None Water 2 12/2/2021 001F E-001 Comp SM5220D (COD) aVOA w/ H2SO4 11/23/2021 10:20 5 days None SM2540C (TDS) 500mL HDPE, 12/2/2021 001G E-001 Comp Water 1 11/23/2021 10:20 5 days None unprsv. 12/2/2021 001H E-001 Comp Water SM2540D (TSS) 1 11/23/2021 10:20 5 days 1L HDPE, unprsv. None 250mL HDPE w/ 001I E-001 Comp E200.8 (Metals) < Arsenic, Cadmium, 11/23/2021 10:20 12/2/2021 Water 1 5 days None HNO3 Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc>

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENER	RATING STATIC	N	Project:	Quarterly Sampli	ng (November	2021)		Work Order: 211	1D10
Client Contact:	Angel Espiritu								QC Level: LEV	VEL 2
Contact's Email:	abe4@pge.com			Comments:					Date Logged: 11/2	23/2021
	∏WaterTrax	WriteOn	□EDF	∏Excel	EQuIS	 Email	HardCopy	ThirdParty	☐ J-flag	

		Water	Γrax	EDF	Exce	el EQuIS	S Email	⊟HardCop	у 🔲	ThirdParty	J-flag	
LabII	O ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	Head Dry- Space Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold SubOut
001J	E-001 Comp	Water	E245.2 (Mercury)		1	250mL HDPE w/ HNO3		11/23/2021 10:20	5 days	12/2/2021	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	⊘ Websi	ite: w	1534 PITT	LL AN WILLOW ISBURG, C aphell.com 2-9262	PAS A 94	S ROAD 565-1701 ail: main		camp	bell	.com	,				TURN GeoTra	AROU	ND	TI	ME	RU PDF	ISH 24 Excel	HR C	3	48 W	HR rite	e On (DW) "J" flag is required	
Report To	: Angel Es	piritu	ı		I	Bill To:	PG&	E Ga	itev	ay						Analysis	Req	ues	t						F	Remarks	
Company	PG&E G	atew	ay Genera	ating Stat	ion							_				(c		Π			· í	П					
E-Mail: a	be4@pge.co	am. A	1HE@ns	e com. J	SLd6	a) nge.co	m. tl	WY	ng	6.00	m	_	_	-	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CN- ABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	1664A) with	6.6	as N (SM 4500-NH3-G		Metals (200.8 cadmium, chromium copper, lead, nickel, silver, Molybdenum, iron, and zinc)	П					
Secretary of the last of the l	522-7838,	and the same of				Fax: ()		225	-					e (Pretreated with thiosulfate before ing) by SM 4500	d sek	664A	PA 42	1500-7		m, ch ilver, nd zin						
Project N	ame: Qua	rterl	y Samplir	ng (N	2	emb	25	2) 2	1)				fate / SM	ic an	PA 1	USE	SM 4		dmiu kel, si on, ar	8	ء				
	cation: Co				-					_		_	_	_	(Pretreated niosulfate be g) by SM 4	rsen by re	(USEPA	olics	as N	Mercury (245.2)).8 ca d, nic m, ir	5210	52201	240	540D		
Sampler S	ignature: I		an Enviro	onmental	Sam	pling	_	2	~	_	_	_	-	_	E ringe	Is (A 0.8 ium	rease (I	Phen	onia	ury (2	ls (200 rr, lea bdenu	CSM	SM	SM2	SM2		
No. 2.1		Composite	SAMP	LING		Sis	Ma	trix	MI	тне	OD P	RES	ERV	ED	Cyanide sodium fi preservir ABCE	Metals (Arsenic and seleniu by 200.8 Selenium by reaction mode	Oil/Grease	Total Phenolics (USEPA 420.4)	Ammonia	Merc	Metal coppe Molyi	BOD (SM 5210B)	COD (SM 5220D)	TDS (SM 2540C)	TSS (SM 2540D)		
SAMPLE ID	LOCATION / Field Point Name	Sample Type Co Grah	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H-SO.	Naon	HCL	Other													
E-001		G	11/22/21	08:40	2	1L Amb	X	Г	П	X	T	T	X	T			X	П						Γ			
E-001		G	11/23/11	10:30	2	1L Amb	X		П	X	T	1	X	T		-	X	П				П		Г			
E-001		G	11/03/01	10:30	1	500ml Amb	X		П	X	x	十	T	T				Х	X					T	Г		
E-001		G	11/22/21	10:30	1	250-ml Poly	X		П	Х	Х	1	T	T	X					1=_				Г			
E-001		C	11/23/21	10:20	1	1L Poly	X		Х	X	\top	T	T	T				П				X		Г	П		
E-001		С	Hhaba	10:20	2	43-ml VOA	Х	\vdash	Н	X	X	†	十	t								П	X	T			
E-001		С	11/2/2	10.20	1	500-ml	X		Х	Х	+	Ť	T	T			Т	П				П		X	Г		
E-001		С	11/23/21		1	poly 1L	X		X	X	+	+	†	t								Н		T	X		
E-001		С	11/22/21	10:00	1	poly 250-ml	х		H	X	+	+	7					H	T	X		H		T			
E-001		С	11/23/21	10.20	1	Poly 250-ml poly	X		Н	Х	+	t	2	1		X		T			Х	П	_	T			
			1100 100	10.29		JAMY			П	1	T	1	T	T		1		П			71.	П		T	П		
	1						1		П	1	T	T	T	T	7-51			П				П		T	П		
Relinquished			Date: 11/23/21 Date:	Time:	F	eived By:		7	5			_			ICE/t° GOOD CO: HEAD SPA DECHLOR APPROPRI PRESERVI	CE ABSE INATED I ATE CON	NT_ N LA TAIN			r.D. =	NH	C	ОМ	IME	NTS	\$t	
Relinquished	By:		Date:	Time:	Rece	elved By:									PRESERVA	vo		0&0		METALS pH<2	OTHER					Page 29	of 30

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Quarterly Sampling (November 2021)			Date and Time Received: Date Logged: Received by:	11/23/2021 12:05 11/23/2021 Tina Perez
WorkOrder №: Carrier:	2111D10 Matrix: Water Client Drop-In			Logged by:	Valerie Alfaro
	Chain of C	ustody	(COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗆	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
COC agrees with	Quote?	Yes		No 🗆	NA 🗹
	Sampl	le Rece	ipt Informati	<u>on</u>	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗸
Custody seals int	act on sample bottles?	Yes		No 🗌	NA 🗸
Shipping contained	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample container	rs intact?	Yes	•	No 🗆	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservation	on and	Hold Time (H	HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗆	NA 🗆
Samples Receive	ed on Ice?	Yes	•	No 🗆	
	(Ice Type	e: WE	TICE)		_
Sample/Temp Bla	ank temperature		Temp: 4°0		NA 🗆
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	•	No 🗌	
pH acceptable up <2; 522: <4; 218.	on receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes	✓	No 🗌	NA 🗆
UCMR Samples: pH tested and a 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine to [not applicable	ested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗌	NA 🗹
Comments:		=			=======

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

"When Quality Counts"

Analytical Report

WorkOrder: 2111D12

Report Created for: Muskan Environmental Services

1828 Nelda Ct.

Yuba City, CA 95993

Project Contact:

Sanjiv Gil

Project P.O.:

Project: pH Sampling (November 2021)

Project Received: 11/23/2021

Analytical Report reviewed & approved for release on 12/01/2021 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Muskan Environmental Services

Project: pH Sampling (November 2021)

WorkOrder: 2111D12

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Muskan Environmental Services
Project: pH Sampling (November 2021)

WorkOrder: 2111D12

Analytical Qualifiers

H Samples were analyzed out of hold time

Analytical Report

Client: Muskan Environmental Services

Date Received: 11/23/2021 12:01 **Date Prepared:** 11/23/2021

Project: pH Sampling (November 2021)

WorkOrder: 2111D12

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

рH

Client ID	Lab ID	Matrix	Date Collec	cted	Instrument	Batch ID
E-001	2111D12-001A	Water	11/22/2021 0	8:55	WetChem	234313
<u>Analytes</u>	<u>Result</u>	Qualifiers	<u>Accuracy</u>	<u>DF</u>		Date Analyzed
рН	8.61	Н	±0.05	1		11/23/2021 19:00

Analyst(s): JRA

Quality Control Report

Client:Muskan Environmental ServicesWorkOrder:2111D12Date Prepared:11/23/2021BatchID:234313

Date Analyzed:11/23/2021Extraction Method:SM4500H+B-2000Instrument:WetChemAnalytical Method:SM4500H+BMatrix:WaterUnit:pH units @ 25°C

Project: pH Sampling (November 2021) **Sample ID:** CCV-234313

	QC Summary Report for	· pH
Analyte	CCV Result	CCV Limits
pH	7.05	6.9-7.1

(925) 252-9262

1534 Willow Pass Rd Pittsburg, CA 94565-1701 CHAIN-OF-CUSTODY RECORD

1 of 1

WorkOrder: 2111D12

ClientCode: MES

EQuIS Dry-Weight

□HardCopy

☐ ThirdParty ☐ J-flag

Detection Summary

∠ Email Excel

Bill to:

Requested TAT:

5 days;

Report to:

Sanjiv Gil

Muskan Environmental Services

1828 Nelda Ct.

Yuba City, CA 95993

(408) 666-4494

FAX: (530) 660-1814

sanjivgill@comcast.net

□ EDF

Email: cc/3rd Party:

□WaterTrax

PO:

Project: pH Sampling (November 2021)

CLIP

Sanjiv Gil Muskan Environmental Services

1828 Nelda Ct. Yuba City, CA 95993 Date Received:

11/23/2021

Date Logged: 11/23/2021

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hol	d 1	2	3	4	5	6	7	8	9	10	11	12
								_							
2111D12-001	E-001	Water	11/22/2021 08:55	Α	Α										

Test Legend:

1	PH_W_SANJIV
5	
9	

2	PRDisposal Fee
6	
10	

3	
7	
11	

4	
8	
12	

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	MUSKAN ENVIRONMENTAL SERVICES	Project:	pH Sampling (November 2021)	Work Order: 2111D12
Client Contact:	Sanjiv Gil			QC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net Comments: Date Logged: 11/23/2021

	WaterT	Γrax	EDF	Exc	el <u>EQuIS</u>	✓ Email	HardCopy	'T	「hirdParty	-flag
LabID ClientSampID	Matrix	Test Name		Containers /Composites		Head Dry- Space Weight	Collection Date & Time	TAT	Test Due Date	Sediment Hold SubOut Content
001A E-001	Water	SM4500H+B (Field pH)		0	<not received=""></not>		11/22/2021 8:55	5 days	12/2/2021	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

2111012

Panort '	○ Web	site: <u>w</u> phone		WILLO TSBURG, apbell.com	W PAS CA 94 n Em	S ROAD 565-1701 ail: mai	n@mc ax: (92	cam ₁ 25) 2	bell. 252 -	.com 9269		1				URI eoT		RO	UN ED	F [IM]	E PD	F	RUS	н Ех	24 F cel	IR	48 I Wr	The state of the s	
	y: PG&E		vov Cene	roting St			viuska	AH E	nvii	онш	enta			+			7		T	Alla	lysis	Ket	lucs				T	T	Kemarks	\neg
Compai	ly. I GCE	Gate	way Gene	iating 5	ation			-	-					\dashv																
					E	-Mail:	sanjiv	gill(con	ncas	t.net	1																		
Tel: (40	8) 666-449	4 (Cel	11)		_	ax: (_)																							
	Name: pl				mb	ex 2	150)						4																
Project	Location: I	PG&E	GGS An	tioch – I	E-001		1	_	1,	_	-	4		\dashv																T.
Sample	r Signature	2 1	MSKam	Envi	rur	mal	M	24	ph	7	1	5	_	\dashv																
		mposi	SAMP	LING		2	Mat	rix	ME	THOI	PRI	ESEI	RVE	D						-										
SAMPLE ID	LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	H,SO,	NaOH	HCL	HNO,	Zinc Acetate	hН															
E-001		G	11/22/21	08:55	NA	NA	Х		Х						Х														Grab Time: 08:55 Analysis Time: 08:55	5
																													Temperature: 19.9 pH: 8.61	°C
																													2111D12-001A PH_W_SANJIV	HT lavs
													-	1													_			
														1					_		_						_			
										\perp				4			_		-	-							-	-		
														1						-	-					_		1		
						0								1				_	-	-	_									
	1,					X)																- 1					
Relinquis	hed By:		Date:	Time:	Rece	ived By:		V							ICE	OD C	OND	ITIO	N		A	1-	. 6		0		CO	MMI	ENTS:	
Relinquis	hed By:		Date:	12:01 Time:	Rece	ived By:	MS	1	0	0				1	HE DE	AD SI CHLO PROF ESER	PACE DRIN PRIAT	ATE TE C	ENT D IN	LAB			_	W	+					
Relinquis	hed By:		Date:	Time:	Rece	ived By:								1		ESER		,		0	&G	ME pH		s	отн	ER				

2111012

Logbook for Field pH Samples

Date/Time	Sample ID	Matrix	1 st R	eading	2 nd R	eading	Ave	Standard		
,		Mana	pН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)	Comments	Analys
1/22/21/07:55 122/21/07:55 122/21/07:55	Cal. pH # 7.00	L	7.00	19.5	7.00	19.4	7-00	bulk		
122/21/07:55	Cal pH # 4.00	L	4.00	19.4	4.00		4.00	bulk		
122/21/07:55	Cal. pH # /0.00	L	10.00		10.00		10.00	bulk	A	
									No.	
				af-						
									-	
						Met	er 1	yron L Co	Inpan!	
						-UH		1-1		
						ser	ral	6227066	6	
-						PH	0~1	COC 11/2 Ph. SE a.	2/2/	
							1	0,6= 0	1	

Page **44** of **100**

Client supplied pH data

Client Name: Muskan Environmental Services WorkOrder №: 2111D12

Project: pH Sampling (November 2021)

SampID ClientSampID pH

2111D12-001A E-001 8.61 [analyzed: 11/22/2021 8:55:02 AM]

Sample Receipt Checklist

Client Name: Project: WorkOrder №:	Muskan Environmental Services pH Sampling (November 2021) 2111D12 Matrix: Water			Date and Time Received: Date Logged: Received by: Logged by:	11/23/2021 12:01 11/23/2021 Tina Perez Valerie Alfaro
Carrier:	Client Drop-In				
	Chain of	Custody	(COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time o	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
COC agrees with	n Quote?	Yes		No 🗌	NA 🗹
	<u>Sam</u> r	ole Rece	eipt Informati	<u>ion</u>	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Custody seals in	tact on sample bottles?	Yes		No 🗆	NA 🗸
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	•	No 🗌	
Sample containe	ers intact?	Yes	✓	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	•	No 🗆	
	Sample Preservat	ion and	Hold Time (HT) Information	
All samples rece	ived within holding time?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?	Yes	✓	No 🗆	
	(Ice Typ	oe: WE	TICE)		
Sample/Temp Bl	ank temperature		Temp: 4°	С	NA 🗆
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🗆	NA 🗹
UCMR Samples: pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine t [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗆	NA 🗹
Comments:	=========	==:			=======

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 13

Exhibit 4b Notice of Violation/Corrective Action (Condition of Certification SOIL&WATER-4)

There was no NOV issued to PG&E GGS during RY 2021.

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 13

Exhibit 5 HAZ-1 Appendix C: Table 8.12-4 (Condition of Certification HAZ-1), and Hazardous Materials Inventory as submitted to CUPA through CERS on 02/22/2021

HAZ-1 Appendix C Table 8.12-4 Hazardous Materials to be Added at Gateway Generating Station During the Operational Phase

Material CAS Number Purpose Location Container Hazardous Maximum Unit Regulatory Thresholds (lbs.) Characteristics Quantity On-Site Cal-ARP Federal Federal Federal RQ TPQ TQ Aqueous Ammonia (29%) 7664-41-7 SCR Ammonia Storage Facility Storage Tank (20,000 gal) Corrosive 285,000 lbs. 500 100 500 20,000 Trisodium Phosphate 7601-54-9 pH/Corrosion Control Northeast Corner of Admin Bulk Returnable Container Corrosive/Toxic 1,000 lbs. (or Pre-blended 1310-73-2 Building (Tote) with Hose Connections Phosphate/Caustic) Carbohydrazide 487-18-7 Oxygen Scavenger Between ST and ACC Bulk Returnable Container Toxic 500 gals. (Oxygen removal/metal (Tote) with Hose Connections passiavtion) Agueous Ammonia (19.4%) 7664-41-7 Boiler Feed pH Between ST and ACC Bulk Returnable Container Corrosive 330 gals. 500 (or ammonia 141-43-5 adjustment/corrosion (Northwest corner of ACC) (Tote) with Hose Connections control monoethanolamine blend) 3 Sodium Bisulfite 7631-90-5 Water treatment Fire Water Pump Enclosure Bulk Returnable Container Toxic 500 gals. feedwater (Tote) with Hose Connections dechlorinization Stabilized Bromine/Sodium 1310-73-2 Bacteria control for Fire Water Pump Enclosure Bulk Returnable Container Corrosive/Toxic 400 gals. feedwater tank/WSAC (Tote) with Hose Connections Hydroxide cooling water biocide Sulfuric Acid ' 7664-93-9 WSAC water pH Between ACC and WSAC Bulk Returnable Container Corrosive 50 gals. 1,000 adjustment and Warehouse (Storage) (Tote) with Hose Connections Corrosion/Scale 1310-73-2 Fire Water Pump Enclosure Drum Toxic 55 Scale and corrosion gals. Inhibitor/Sodium Hvdroxide inhibitor for closed loop cooling Between ACC and WSAC Bulk Returnable Container Scale Inhibitor/Sulfuric Acid 7664-93-9 Scale and corrosion Toxic 500 gals. inhibitor evaporative (Tote) with Hose Connections cooling system (WSAC) Sodium Hypochlorite 7681-52-9 Evaporative Cooling Between ACC and WSAC Bulk Returnable Container Corrosive/Toxic 500 gals. (WSAC) biocide (Tote) with Hose Connections 1333-74-0 Heat transfer medium for Storage (South of ACC), In Bulk Returnable Container 10,000 Hydrogen Gas Flammable 1,029 lbs. Process (CT1, CT2, ST) generators (Tube Trailer) & In Process Propylene Glycol 00057-55-6 Heat transfer fluid (Anti-Power Block Bulk Returnable Container Flammable 3,326 gals. (HMIS Flam-1) freeze) (Tube Trailer) & In Process 141-43-5 Monoethanolamine (30%-Corrosion Inhibitor Between ST and ACC Bulk Returnable Container (SS Corrosive/Toxic/ 400 gals. (Northwest corner of ACC) Metal Tote) with Hose Combustable Connections 1336-21-6 Between ST and ACC Bulk Returnable Container (SS Ammonium Hydroxide (15%) Corrosion Inhibitor Corrosive, Toxic 400 gals. & Monoethanolamine (8%) 141-43-5 (Northwest corner of ACC) Metal Tote) with Hose Connections Aluminum chloride hydroxide 39290-78-3 Flocculant Storm Water Treatment Bulk Returnable Container Corrosive 550 gals. sulfate (10-30%) System and Warehouse (Tote) with Hose Connections (Storage) Sodium Hydroxide (10-50%) 1310-73-2 Precipitate Transition (for Storm Water Treatment Bulk Returnable Container with Corrosive 80 gals. Hose Connections Iron) System

^{*} The aqueous ammonia (or ammonia monoethanolamine blend) and sulfuric acid are stored in catchments sized to meet all applicable codes.

			Hazardou	us Materials /	And Waste	s Inventory	y Matrix	Report						
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894				
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Air Cooled	d Condensei	r Gear Bo	oxes	Facility ID	07-000-773723	3			
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	2/2021 5:07 PM			
					Quantities		Annual Waste	Federal Hazard		Hazardous Components (For mixture only)				
DOT Code/Fire Haz. 0	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.			
Combustible Liquic	l, Class III-B	CAS No Map: Figure 2 Grid: C3	Liquid C	432 Storage Container Other Days on Site: 365	12	432 Pressue Ambient Temperature > Ambient	Waste Cod	de	1-DECENE, HOMOPOLYI HYDROGENATED	MER, 95 %	68037-01-4			

Printed on 2/23/2021 7:38 AM Page 1 of 48

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Alternate	Facility ID 07-000-773723					
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	22/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Componen (For mixture only)	ts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: D6	Liquid Type	656 Storage Container Other Days on Site: 365	656	656 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (Highly I Oil)	Refined Petro 100 %	;

Printed on 2/23/2021 7:38 AM Page 2 of 48

Hazardous Materials And Wastes Inventory Matrix Report										
ERS Business/Org.	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509	Chemical Location Ammonia and Scavenger Feed Skid						CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 2/22/2021 5:07 PM		
OT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
Corrosive	NALCO 5711 CAS No Map: Figure 2 Grid: C4	Liquid Type	400 Storage Container Plastic/Non-metal Days on Site: 365		400 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye	AMMONIA MEA	15 % 8 %	

Printed on 2/23/2021 7:38 AM Page 3 of 48

CERS Business/Org.	PG&E PG&E GAT	EWAY GENERATING STATION			Chemical Local	ition Ammonia St	torage Ta	nk	CERS ID Facility	10018894 D 07-000-773723	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	•
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	S
OOT Code/Fire Haz.		Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
OOT: 8 - Corrosive: Solids) Corrosive	s (Liquius anu	Aqua Ammonia (29%) CAS No 1336-21-6 Map: Figure 2 Grid: A6	Liquid Type	Storage Container Aboveground Tank Days on Site: 365	18020	Pressue Ambient Temperature Ambient	Waste Cod	- Health Acute Toxicity - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity - Health Hazard Not Otherwise Classified	Ammonia	30 %	√ 7664-41-7

Printed on 2/23/2021 7:38 AM Page 4 of 48

		Hazardou	ıs Materials A	And Waste	s Inventory	y Matrix	Report			
	&E &E GATEWAY GENERATING STATION 5 Wilbur Ave, Antioch 94509			Chemical Loca Behind (E		t Service E	Building and Sh	CERS ID nop Annex Facility ID Status	10018894 07-000-773723 Submitted on 2/22	
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	lazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.1 - Flammable Ga Flammable Gas	Acetylene, Compressed CAS No 74-86-2 Map: Figure 2 Grid: B4	Gas C	1740 torage Container Cylinder Days on Site: 365	145	1740 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Flammable - Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Acetylene	100 %	74-86-2
OOT: 2.1 - Flammable Ga	CAS No. 74-98-6 Map: Figure 2 Grid: B4	Liquid C	111 torage Container Cylinder Days on Site: 365	9.6	74 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Flammable - Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Propane	100 %	74-98-6
Combustible Liquid, Clas	Shell Turbo Oil DR46 CAS No Map: Figure 2 Grid: C4	Liquid S Type	110 torage Container steel Drum Days on Site: 365	55	110 Pressue Ambient Temperature Ambient	Waste Code		Highly Refined Petrole Proprietary Additives	um Oil 99 % 1 %	

Printed on 2/23/2021 7:38 AM Page 5 of 48

		Hazardo	us Materials /	And Waste	s Inventory	/ Matrix	Report			
	&E &E GATEWAY GENERATING STATION 5 Wilbur Ave, Antioch 94509			Chemical Local	ation ioxide Bulk	Storage		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/23	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammabl		Gallons State Liquid Type	2326 Storage Container Aboveground Tank Days on Site: 365	2326	2326 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Carbon Dioxide	100 %	124-38-9

Printed on 2/23/2021 7:38 AM Page 6 of 48

			Hazardo	us Materials A	And Waste	s Inventory	/ Matrix	Report			
Facility Name PG		VAY GENERATING STATION e, Antioch 94509			Combusti	ation on Turbine-	A		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/22	
DOT Code/Fire Haz. Class	s Co	ommon Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammal	able Gases Ca	arbon Dioxide, Liquid NS No 14-38-9 ap: Figure 2 Grid: B5	Liquid Type	•	2326	2326 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Carbon Dioxide	100 %	124-38-9

Printed on 2/23/2021 7:38 AM Page 7 of 48

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1003	L8894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Combusti	on Turbine-	A Lube C	Oil Reservoir	Facility ID 07-0	00-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status Subm	itted on 2/2	22/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		us Componen nixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Shell Turbo Oil T 32	Gallons	6000	6000	6000			Highly Refined Petroleum Oil	99 %	
Combustible Liquid	l, Class III-B	CAS No	State Liquid	Storage Container Other		Pressue Ambient	Waste Cod	le	Proprietary Additives	5 %	
		Map: Figure 2 Grid: C6	Type Mixture	Days on Site: 365		Temperature > Ambient					,

Printed on 2/23/2021 7:38 AM Page 8 of 48

			Hazardo	ous Materials /	And Waste	s Inventory	/ Matrix	Report			
Facility Name PC		EWAY GENERATING STATION Ave, Antioch 94509			Combusti	ation on Turbine-	В		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Codo/Fire Her. Class	_	Common Name	Unit	May Daily	Quantities	Aug Deilu	Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	
DOT Code/Fire Haz. Class DOT: 2.2 - Nonflamma	able Gases	Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: B5	Gallons State Liquid Type Pure	Max. Daily 2326 Storage Container Aboveground Tank Days on Site: 365	2326	Avg. Daily 2326 Pressue > Ambient Temperature Ambient	Amount Waste Cod	- Physical Gas - Under Pressure - Health Simple - Health Hazard - Health Hazard Not Otherwise Classified	Component Name Carbon Dioxide	% Wt 100 %	124-38-9

Printed on 2/23/2021 7:38 AM Page 9 of 48

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 100:	8894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Combusti	on Turbine	-B Lube C	il Reservoir	Facility ID 07-0	00-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status Subm	itted on 2/2	2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		us Componen nixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Shell Turbo Oil T 32	Gallons	s 6000	6000	6000			Highly Refined Petroleum Oil	99 %	
Combustible Liquic	I, Class III-B	CAS No	State Liquid	Storage Container Other		Pressue Ambient	Waste Cod	le	Proprietary Additives	5 %	
		Map: Figure 2 Grid: C5	Type Mixture	Days on Site: 365		Temperature > Ambient					,

Printed on 2/23/2021 7:38 AM Page 10 of 48

			Hazardo	us Materials <i>l</i>	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Construct	ion Power T	ransforn	ner	Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		zardous Component (For mixture only)	S
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		390 Storage Container Other	390	390 Pressue Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	ined 100 %	
Combustible Liquid	i, Class III-B	Map: Figure 2 Grid: B6	Туре	Days on Site: 365		Temperature > Ambient					

Printed on 2/23/2021 7:38 AM Page 11 of 48

			Hazardo	us Materials /	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Construct	ion Trailer T	ransforn	ner	Facility ID 07-000-773723		
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		azardous Component (For mixture only)	cs
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		402 Storage Container Other	402	402 Pressue Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	fined 100 %	
Combustible Liquic	I, Class III-B	Map: Figure 2 Grid: C8	Type Mixture	Days on Site: 365		Temperature > Ambient					

Printed on 2/23/2021 7:38 AM Page 12 of 48

		Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
	TEWAY GENERATING STATION Ave, Antioch 94509			CT A - PEE	EC and CT B	- PEEC		Facility ID 07	018894 -000-773723 omitted on 2/2	3 2/2021 5:07 PM
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Hazaro	dous Component r mixture only) % Wt	•
DOT: 8 - Corrosives (Liquids and Solids) Corrosive, Water Reactive, Class 2	Flooded Tubular Lead Acid	Gallons State Liquid Type Mixture	Storage Container Other Days on Site: 365	3	357 Pressue Ambient Temperature Ambient	Waste Code	- Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Lead, Lead Compounds Sulfuric Acid	62 % 7 %	7439-92-1 7664-93-9

Printed on 2/23/2021 7:38 AM Page 13 of 48

			Hazardoı	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	0018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-A Auxi	liary Transfe	ormer		Facility ID 0	7-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S u	bmitted on 2/2	2/2021 5:07 PM
	·			Annual Quantities Waste Federal Haza						rdous Componen or mixture only)	ts
DOT Code/Fire Haz. C	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	l, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C6	Liquid (6155 Storage Container Other Days on Site: 365	6155	6155 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (highly refin petroleum oil)	ed 100 %	

Printed on 2/23/2021 7:38 AM Page 14 of 48

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	0018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-A Excit	ation Trans	former		Facility ID 0	7-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S u	ibmitted on 2/2	2/2021 5:07 PM
	·				Quantities		Annual Waste	Federal Hazard		rdous Componen or mixture only)	ts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		Storage Container	414	414 Pressue	" Wasta Coa	la.	Dielectric Oil (highly refine petroleum oil)	ed 100 %	
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C6	Туре	Other Days on Site: 365		Ambient Temperature > Ambient	Waste Coo	1e			

Printed on 2/23/2021 7:38 AM Page 15 of 48

			Hazardou	s Materials /	And Waste	s Inventor	y Matrix	Report					
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID 1	0018894			
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-A Isola	tion Transf	ormer		Facility ID 0	7-000-77372	3		
	3225 Wilbur	Ave, Antioch 94509							Status Su	bmitted on 2/2	22/2021 5:07 PM		
				Annual Quantities Waste Federal Haza						Hazardous Components (For mixture only)			
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.		
		Mineral Oil	Gallons	1413	1413	1413			Dielectric Oil (highly refine	ed 100 %			
		CAS No		orage Container ther	•••	Pressue Ambient	Waste Cod	e	petroleum oil)				
Combustible Liquic	I, Class III-B	Map: Figure 2 Grid: C6	Type Mixture D	ays on Site: 365		Temperature > Ambient							

Printed on 2/23/2021 7:38 AM Page 16 of 48

	Hazardou	s Materials A	And Waste	s Inventory	Matrix	Report			
			Chemical Loca	ntion			CERS ID 10	018894	
ATEWAY GENERATING STATION			CT-A Mair	n Step-Up Tr	ansform	er	Facility ID 07	-000-77372	3
ur Ave, Antioch 94509							Status Su k	mitted on 2/2	2/2021 5:07 PM
									ts
Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Mineral Oil CAS No Map: Figure 2 Grid: C6	Liquid O	ther	12800	12800 Pressue Ambient Temperature	Waste Cod	e	Dielectric Oil (highly refined petroleum oil)	i 100 %	
ı	Common Name Mineral Oil CAS No	ATEWAY GENERATING STATION ur Ave, Antioch 94509 Common Name Unit Mineral Oil CAS No State Liquid Map: Figure 2 Grid: C6 Type	ATEWAY GENERATING STATION The state of the	Chemical Loca ATEWAY GENERATING STATION ur Ave, Antioch 94509 Common Name Unit Max. Daily Largest Cont. Mineral Oil CAS No State Liquid Other Map: Figure 2 Grid: C6 Type	Chemical Location CT-A Main Step-Up Tr Tr Ave, Antioch 94509 Common Name Unit Max. Daily Largest Cont. Avg. Daily Mineral Oil CAS No State Storage Container Liquid Other Map: Figure 2 Grid: C6 Chemical Location CT-A Main Step-Up Tr Quantities Quantities Avg. Daily Largest Cont. Avg. Daily Largest Cont. Avg. Daily Discrete Storage Container Liquid Other Ambient Temperature	Chemical Location CT-A Main Step-Up Transform Transform CT-A Main Step-Up Transform CT-A Main Step-Up Transform Quantities Common Name Unit Max. Daily Largest Cont. Avg. Daily Mineral Oil CAS No State Liquid CAS No Liquid CAS No State Liquid CAS No Temperature Chemical Location CT-A Main Step-Up Transform Annual Waste Amount Annual Waste Amount May: Figure 2 Grid: C6 Type CHEMICAL LOCATION Transform Annual Waste Annual Waste Amount Annual Waste Amount Temperature	ATEWAY GENERATING STATION ur Ave, Antioch 94509 Tommon Name Unit Max. Daily Largest Cont. Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Federal Hazard Annual Waste Categories Temperature Waste Code Type Temperature	Chemical Location ATEWAY GENERATING STATION or Ave, Antioch 94509 Common Name Unit Max. Daily Largest Cont. Annual Waste Federal Hazard Component Name Mineral Oil CAS No State Storage Container Liquid Other Map: Figure 2 Grid: C6 Common State Storage Container Liquid Chemical Location CT-A Main Step-Up Transformer Facility ID OT- Annual Waste Federal Hazard Waste Federal Hazard Component Name Component Name Dielectric Oil (highly refined petroleum oil) Dielectric Oil (highly refined petroleum oil)	CERS ID 10018894 ATEWAY GENERATING STATION CT-A Main Step-Up Transformer Facility ID 07-000-77372: Status Submitted on 2/2 Status Submitted on 2/2 Max. Daily Largest Cont. Avg. Daily Amount Categories Component Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Mineral Oil CAS NO State Storage Container Liquid Other Map: Figure 2 Grid: C6 Type Chemical Location CT-A Main Step-Up Transformer Annual Waste Federal Hazard Waste Federal Hazard Waste Federal Hazard Component Name Masse Federal Hazard Waste Categories Component Name Waste Code Waste Code Waste Code Temperature

Printed on 2/23/2021 7:38 AM Page 17 of 48

			Hazardou	ıs Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report				
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID 1	0018894		
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Auxi	liary Transf	ormer		Facility ID 07-000-773723			
	3225 Wilbur	Ave, Antioch 94509							Status S t	ubmitted on 2/2	22/2021 5:07 PM	
				Annual Quantities Waste Federal Ha					Hazardous Components (For mixture only)			
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.	
		Mineral Oil	Gallons	6155	6155	6155			Dielectric Oil (highly refin	ed 100 %		
		CAS No		torage Container Other		Pressue Ambient	Waste Cod	e	petroleum oil)			
Combustible Liquid	i, Class III-B	Map: Figure 2 Grid: C5	Type Mixture D	Days on Site: 365		Temperature > Ambient						

Printed on 2/23/2021 7:38 AM Page 18 of 48

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report					
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	0018894			
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Excit	ation Trans	former		Facility ID 07-000-773723				
	3225 Wilbur	Ave, Antioch 94509							Status St	ubmitted on 2/2	2/2021 5:07 PM		
	de (Fire Hea Clear			Annual Quantities Waste Federal Hazar						Hazardous Components (For mixture only)			
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.		
		Mineral Oil	Gallons State	414 Storage Container	414	414 Pressue			Dielectric Oil (highly refin petroleum oil)	ed 100 %	,		
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C5	Туре	Other Days on Site: 365		Ambient Temperature > Ambient	Waste Cod	de					

Printed on 2/23/2021 7:38 AM Page 19 of 48

			Hazardou	ıs Materials A	And Waste	s Inventory	/ Matrix	Report				
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID 1	0018894		
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Isola	tion Transfo	ormer		Facility ID 07-000-773723			
	3225 Wilbur	Ave, Antioch 94509							Status Su	bmitted on 2/2	2/2021 5:07 PM	
				Annual Quantities Waste Federal Hazar					Hazardous Components (For mixture only)			
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.	
Combustible Liquic	I, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C5	Liquid C	1413 torage Container Other Days on Site: 365	1413	1413 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (highly refin	ed 100 %		

Printed on 2/23/2021 7:38 AM Page 20 of 48

ATEWAY GENERATING STATION			Chemical Loca							
			CHEHIICAI LOCA	tion			CERS ID 1	L0018894		
	CT-B Main Step-Up Transformer						Facility ID 0	07-000-773723		
ur Ave, Antioch 94509							Status S	Submitted on 2/22	2/2021 5:07 PM	
							Hazardous Components (For mixture only)			
Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.	
Mineral Oil CAS No Map: Figure 2 Grid: C5	Liquid C	Other	12800	12800 Pressue Ambient Temperature	Waste Code	2	Dielectric Oil (highly refir petroleum oil)	ned 100 %		
	Common Name Mineral Oil CAS No	Common Name Unit Mineral Oil Gallons CAS No State State Liquid C Map: Figure 2 Grid: C5 Type	Common Name Unit Max. Daily Mineral Oil Gallons 12800 CAS No State Storage Container Liquid Other	Common Name Unit Max. Daily Max. Daily Largest Cont. Mineral Oil Gallons 12800 12800 CAS No State Liquid Storage Container Uiquid Other Map: Figure 2 Grid: C5 Type	Common Name Unit Max. Daily Largest Cont. Avg. Daily Mineral Oil Gallons 12800 12800 12800 CAS No State Storage Container Pressue Liquid Other Ambient Map: Figure 2 Grid: C5 Type Temperature	Name Unit Max. Daily Largest Cont. Avg. Daily Amount	Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Mineral Oil Gallons 12800 12800 12800 CAS No State Storage Container Liquid Other Ambient Map: Figure 2 Grid: CS Type Temperature Annual Waste Federal Hazard Categories Federal Hazard Categories Amount Categories Amount Categories Federal Hazard Categories Amount Categories Federal Hazard Categories Amount Categories Fressue Ambient Temperature	Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Component Name Mineral Oil Gallons 12800 12800 12800 CAS No State Storage Container Liquid Other Ambient Map: Figure 2 Grid: C5 Type Temperature Annual Waste Federal Hazard Component Name Largest Cont. Avg. Daily Amount Categories Component Name Pressue Waste Code Waste Code Temperature	Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Component Name % Wt Mineral Oil Gallons 12800 12800 12800 CAS No State Liquid Other Pressue Liquid Other Ambient Map: Figure 2 Grid: C5 Type Temperature Annual Waste Federal Hazard Component Name Categories Component Name % Wt Pressue Waste Code Map: Figure 2 Grid: C5 Type Temperature	

Printed on 2/23/2021 7:38 AM Page 21 of 48

			Hazardoı	us Materials	And Waste	s Inventory	y Matrix	Report			
Facility Name P		EWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Gas Cond	ation itioning Stat	tion		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/22	
DOT Code/Fire Haz. Clas:	ss	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflamma	able Gases	Helium, Compressed CAS No 7440-59-7 Map: Figure 2 Grid: D4	Gas C		292	1168 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Helium	100 %	7440-59-7

Printed on 2/23/2021 7:38 AM Page 22 of 48

			Hazardo	ous Materials /	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GAT	EWAY GENERATING STATION			Hazardou	s Mat/Was	te Storage	e (M9)-Wareh	ouse Facility II	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	ts
DOT Code/Fire Haz. C	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
OOT: 4.1 - Flammal	ble Solids	Waste Flamable Solids, Organic	Pound	s 100	500	66	250	- Physical	Flamable Solid, Organ	nic 100 %	
-1 11 6 11 1		CAS No	State	Storage Container			••	Flammable			
Flammable Solid			Solid	Steel Drum		Ambient	352				
		Grid: B8, C3	Туре			Temperature					
			Waste	Days on Site: 365		Ambient					

Printed on 2/23/2021 7:38 AM Page 23 of 48

			Hazardo	ous Materials	And Waste	s Inventory	/ Matrix I	Report		
CERS Business/Org.		TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Hazardou	s Mat/Wast	e Storage	Area	CERS ID Facility Status	10018894 D 07-000-773723 Submitted on 2/22/2021 5:07 PM
OOT Code/Fire Haz. C	Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt EHS CAS No.
		Non-RCRA Mixed Oil	Gallons	•	55	26 Pressue	40 Waste Code	<u> </u>	Oil	
		CAS No Map: Figure 2 Grid: B8, C3	Liquid Type	Steel Drum		Ambient Temperature	221			
			Waste	Days on Site: 90	F00	Ambient	3570			
		Non-RCRA Solids (Oily Debris) CAS No	Pounds State Solid	Storage Container Steel Drum	500	1056 Pressue Ambient	Waste Code 223			
		Map: Figure 2 Grid: B8, C3	Type Waste	Days on Site: 90		Temperature Ambient				
		RCRA Liquid Lab Bench Waste	Gallons State	Storage Container	30	25 Pressue	101 Waste Code	- Health Skin Corrosion	Sulfuric Acid	
		CAS No Map: Figure 2 Grid: B8, C3	Liquid Type	Plastic/Non-metal	ic Drum	Ambient Temperature	791	Irritation - Health Serious		
		iviap. Figure 2 Oriu. Do, C3	Waste	Days on Site: 90		Ambient		Eye Damage Eye Irritation		

Printed on 2/23/2021 7:38 AM Page 24 of 48

		lazarao	us Materials /	and waste.	3 IIIVCIICOI y	, iviatilix i	Сероге				
	TEWAY GENERATING STATION			Chemical Loca HRSGs (Ho		y Steam G	ienerators) - A	and B		10018894 D 07-000-773723	/2024 5 07 024
3225 Wilbur	Ave, Antioch 94509			Quantities		Annual Waste	Federal Hazard		Status	Submitted on 2/22 Hazardous Components (For mixture only)	
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Na	me		EHS CAS No.
OT: 2.2 - Nonflammable Gases	Argon, Compressed Gas CAS No Map: Figure 2 Grid: B5	Gas Type	t 1344 Storage Container Cylinder Days on Site: 365	336	1344 Pressue > Ambient Temperature Ambient	Waste Code	 Physical Gas Under Pressure Health Simple Asphyxiant Health Hazard Not Otherwise Classified 	Argon		100 %	
OT: 2.2 - Nonflammable Gases	EPA Protocol Gas (Carbon Monoxide/Nitrogen Mixture) CAS No Map: Figure 2 Grid: B5	Gas Type	t 1440 Storage Container Cylinder Days on Site: 365	144	1440 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Carbon Mono	oxide	88 % 13 %	7727-37-9 630-08-0
OOT: 2.2 - Nonflammable Gases	EPA Protocol Gas Carbon Monoxide 11/Nitric/Nitrogen Mixture CAS No Map: Figure 2 Grid: B5	Gas Type	t 864 Storage Container Cylinder Days on Site: 365	144	864 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Nitric Oxide Carbon Mond	oxide	99 % 1 % 10 %	7727-37-9 10102-43- <u>9</u> 630-08-0
OT: 2.2 - Nonflammable Gases	1 0	Gas Type	t 864 Storage Container Cylinder Days on Site: 365	144	864 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Nitric Oxide Carbon Mond	oxide	99 % 1 % 20 %	7727-37-9 10102-43-9 630-08-0
OT: 2.2 - Nonflammable Gases		State Gas Type	t 576 Storage Container Cylinder Days on Site: 365	144	576 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Nitric Oxide		99 % 2 %	7727-37-9 10102-43-9
OOT: 2.2 - Nonflammable Gases		Gas Type	t 1152 Storage Container Cylinder Days on Site: 365	144	1152 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Oxygen		99 % 20 %	7727-37-9 7782-44-7
OOT: 2.2 - Nonflammable Gases		Gas Type	t 1344 Storage Container Cylinder Days on Site: 365	336	1344 Pressue > Ambient Temperature Ambient		- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Helium		100 %	7440-59-7

Printed on 2/23/2021 7:38 AM Page 25 of 48

			Hazardo	us Materials <i>i</i>	And Waste	s Inventory	y Matrix	Report				
Facility Name PC		EWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca HRSGs (H		y Steam	Generators) - A	and B	CERS ID Facility IE Status	10018894 07-000-773723 Submitted on 2/22	
OOT Code/Fire Haz. Class	s	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Na		Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammal	able Gases	Oxygen, Compressed CAS No 7782-44-7	Cu. Fee		281	1124		- Physical Gas le Under Pressure - Physical Oxidize	Oxygen		100 %	7782-44-7
		Map: Figure 2 Grid: B3, B5	Type Pure	Days on Site: 365		Temperature Ambient		 Health Hazard Not Otherwise Classified 				

Printed on 2/23/2021 7:38 AM Page 26 of 48

			Hazardo	us Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report				
CERS Business/Org. Facility Name		EWAY GENERATING STATION Ave, Antioch 94509			•		-	Generators) - A	A and B,	CERS ID Facility IE Status	10018894 07-000-773723 Submitted on 2/22	
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Na		Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflam	mable Gases	CAS No 7727-37-9 Map: Figure 2 Grid: B5,C4,C5,C6	Gas Type	t 3263 Storage Container Cylinder Days on Site: 365	251	3263 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas Le Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Nitrogen		100 %	7727-37-9

Printed on 2/23/2021 7:38 AM Page 27 of 48

		Hazardoı	us Materials	And Waste	s Inventory	y Matrix	Report			
,	ATEWAY GENERATING STATION ur Ave, Antioch 94509			Chemical Local Hydrogen	ntion Bulk Storag	де		CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 2/22/2021 5:0		
OT Code/Fire Haz. Class	Common Name	•					Federal Hazard	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.1 - Flammable Gases	Hydrogen, Compressed CAS No 1333-74-0 Map: Figure 2 Grid: D1	Cu. Feet State S Gas C Type	Max. Daily 134000 Storage Container Other Days on Site: 365	134000	Avg. Daily 134000 Pressue > Ambient Temperature Ambient	Amount Waste Code	- Physical - Physical Gas - Physical Gas - Under Pressure - Health Simple - Health Hazard Not Otherwise Classified	Hydrogen	100 %	1333-74-0

Printed on 2/23/2021 7:38 AM Page 28 of 48

		ŀ	Hazardou	s Materials /	And Waste	s Inventory	/ Matrix	Report			
Facility Name PG	G&E G&E GATEWAY GEN l 25 Wilbur Ave, Antioch 94				Chemical Loca Nitrogen	ation Bulk Storage	9		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/22	
DOT Code/Fire Haz. Class	Common Name	1	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammab		Compressed	Cu. Feet State St Gas C Type	10944 torage Container ylinder ays on Site: 365	304	10944 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas	Nitrogen	100 %	7727-37-9

Printed on 2/23/2021 7:38 AM Page 29 of 48

		Hazardo	us Materials A	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca				CERS ID		
Facility Name	PG&E GATEWAY GENERATING STATION			Phosphat	e Feed Skid			Facility I	D 07-000-773723	
	3225 Wilbur Ave, Antioch 94509							Status	Submitted on 2/2	2/2021 5:07 PM
				Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	es .
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	NALCO BT-3400	Gallons	400	400	400		- Health Skin	Sodium Hydroxide	5 %	1310-73-2
	CAS No		Storage Container Tote Bin	 .	Pressue Ambient	Waste Cod	Irritation	Proprietary	99 %	
	Map: Figure 2 Grid: B4	Type Mixture	Days on Site: 365		Temperature Ambient		 Health Serious Eye Damage Eye Irritation 			

Printed on 2/23/2021 7:38 AM Page 30 of 48

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org. Facility Name		EWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Plant Serv	rices Buildir	ng		CERS ID Facility Status	10018894 ID 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. (DOT: 8 - Corrosives Solids) Corrosive, Water R 2	(Liquids and	GNB Flooded HCT 37 Lead Acid Battery CAS No Map: Figure 2 Grid: B4	Unit Gallons State Liquid Type Mixture	Max. Daily 8 834 Storage Container Other Days on Site: 365	Quantities Largest Cont. 14	Avg. Daily 834 Pressue Ambient Temperature Ambient	Annual Waste Amount Waste Code	Federal Hazard Categories - Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Component Name Lead Sulfuric Acid Lead Dioxide	Hazardous Component (For mixture only) % Wt 52 % 44 % 21 %	EHS CAS No. 7439-92-1 7664-93-9 1309-60-0

Printed on 2/23/2021 7:38 AM Page 31 of 48

		Hazardo	ous Materials A	nd Waste	s Inventory	y Matrix I	Report			
CERS Business/Org. Facility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca	Treatment			CERS ID Facility I Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz.	Class Common Name Sodium Bisulfite CAS No Map: Figure 2 Grid: C2	Unit Gallons State Liquid Type Mixture		Quantities Largest Cont. 50	Avg. Daily 50 Pressue Ambient Temperature Ambient	Annual Waste Amount Waste Code	Federal Hazard Categories - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Component Name Sodium Bisulfite	Hazardous Component (For mixture only) % Wt 20 %	EHS CAS No. 763-90-5
Corrosive	Sodium Hydroxide CAS No Map: Figure 2 Grid: C2	Gallons State Liquid Type Pure	Storage Container Aboveground Tank Days on Site: 365	75	75 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	SODIUM HYDROXIDE	100 %	1310-73-2

Printed on 2/23/2021 7:38 AM Page 32 of 48

		Hazardou	s Materials	And Waste	s Inventory	y Matrix	Report			
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Sodium H		(Elect Ed	uipment) Brea	CERS ID kers Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases	SF6 CAS No 2551-62-4 Map: Figure 2 Grid: C5,C6,D4,D5,D6	Gas O	2043 torage Container Other Days on Site: 365	639	2043	Waste Cod	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Sulfur Hexafluoride	100 %	2551-62-4

Printed on 2/23/2021 7:38 AM Page 33 of 48

			Hazardo	us Materials <i>l</i>	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 100	.8894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			ST Electro	-Hydraulic (Control S	ystem	Facility ID 07-000-773723		
	3225 Wilbur	Ave, Antioch 94509							Status Subn	itted on 2/	22/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		us Componer nixture only)	nts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	l, Class III-B	Hydraulic Oil CAS No Map: Figure 2 Grid: C4		130 Storage Container Other	130	130 Pressue Ambient Temperature	Waste Cod	le	Highly refined mineral oil (C1 C50)	5 - 99 %	
		Map. Figure 2 Stid. C4		Days on Site: 365		> Ambient					

Printed on 2/23/2021 7:38 AM Page 34 of 48

			Hazardo	us Materials /	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			ST Excitat	ion Transfo	rmer		Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard	На	azardous Componen (For mixture only)	rs .
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	I, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C4	Liquid Type	414 Storage Container Other Days on Site: 365	414	414 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (highly ref petroleum oil)	fined 100 %	

Printed on 2/23/2021 7:38 AM Page 35 of 48

			Hazardo	us Materials <i>l</i>	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			ST Main S	tep-Up Tran	sformer		Facility ID 07-000-773723		
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard	н	lazardous Component (For mixture only)	S
DOT Code/Fire Haz. O	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C4		14143 Storage Container Other	14143	14143 Pressue Ambient Temperature	Waste Cod	le	Dielectric Oil (highly re petroleum oil)	fined 100 %	
		. 5		Days on Site: 365		> Ambient	•				

Printed on 2/23/2021 7:38 AM Page 36 of 48

			Hazardo	ous Materials A	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 100	18894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Steam Tu	rbine Lube	Oil Reser	voir	Facility ID 07-000-773723		
	3225 Wilbur	Ave, Antioch 94509							Status Sub	mitted on 2/2	22/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		ous Componen mixture only)	ts
DOT Code/Fire Haz. O	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Refined Petroleum Oil	Gallons	4800	4800	4800			Highly Refined Petroleum C	il 99 %	
Combustible Liquic	l, Class III-B	CAS No		Storage Container Other	 .	Pressue Ambient	Waste Cod	le	Proprietary Additives	5 %	
	Map: Figure 2 Grid: C4			Type Temperature Mixture Days on Site: 365 > Ambient							,

Printed on 2/23/2021 7:38 AM Page 37 of 48

		Hazardou	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Facility Name	PG&E PG&E GATEWAY GENERATING STATION			Chemical Loca	etion ter Treatme	nt Systen	n	CERS ID 100 Facility ID 07-)18894 000-77372	3
	3225 Wilbur Ave, Antioch 94509			O		Annual		Hazard	mitted on 2/2 ous Componen mixture only)	2/2021 5:07 PM
DOT Code/Fire Haz.	Class Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Waste Amount	Federal Hazard Categories	Component Name	% Wt	EHS CAS No.
Corrosive	HaloKlear BHR-50 CAS No Map: Figure 2 Grid: C9	Liquid Type	275 Storage Container Tote Bin Days on Site: 365	275	275 Pressue Ambient Temperature Ambient	Waste Cod	- Physical Corrosive To le Metal - Health Serious Eye Damage Eye Irritation	Aluminum chloride hydroxi sulfate	de 30 %	39290-78-3

Printed on 2/23/2021 7:38 AM Page 38 of 48

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventory	y Matrix I	Report			
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Switchyar	d			Facility I	D 07-000-773723	
		Ave, Antioch 94509							Status	Submitted on 2/22	
		,					Annual		010100	Hazardous Components	
					Quantities		Waste	Federal Hazard		(For mixture only)	
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 8 - Corrosives	(Liquids and	KCR-7 Lead Calcium Batteries	Gallons	90	1.5	90		- Physical	Lead Calcium	52 %	7439-92-1
Solids)		CAS No	State	Storage Container		Pressue		Explosive			
Corrosive, Water Re	eactive. Class	CAS NO.	Liquid	Other		Ambient	Waste Code		Sulfuric Acid	44 %	√ 7664-93-9
2		Map: Figure 2 Grid: D4	Type			Temperature		Corrosive To	Lead Dioxide	21 %	1309-60-0
			Mixture	Days on Site: 365		Ambient		Metal			
								- Health Carcinogenicity			
								- Health Acute			
								Toxicity			
								- Health			
								Reproductive			
								Toxicity			
								- Health Skin			
								Corrosion			
								Irritation			
								- Health			
								Respiratory Skin			
								Sensitization			
								- Health Serious			
								Eye Damage Eye			
								Irritation - Health Specific			
								Target Organ			
								Toxicity			
								ιολίτιτη			

Printed on 2/23/2021 7:38 AM Page 39 of 48

		Hazardou	ıs Materials <i>I</i>	And Waste	s Inventor	y Matrix I	Report			
acility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca				Facility ID 07 -		3 2/2021 5:07 PM
	, , , , , , , , , , , , , , , , , , , ,			Quantities		Annual Waste	Federal Hazard	Hazardous Components (For mixture only)		
OT Code/Fire Haz. Cl	Gas Turbine Compressor Clea	•	Max. Daily 264	Largest Cont.	Avg. Daily 264	Amount Waste Code	Categories	Cleaning Fluid	% Wt	EHS CAS No.
	Fluid CAS No	Liquid T Type	torage Container Tote Bin		Pressue Ambient Temperature	waste code				
	Map: Figure 2 Grid: B8-9 HaloKlear BHR-50	Gallons	Days on Site: 365 275	275	Ambient 275		- Physical Corrosive To	Aluminum chloride hydroxic	e 30 %	39290-78-3
orrosive	CAS No	Liquid T Type	torage Container Tote Bin Days on Site: 365	•••	Ambient Temperature Ambient	Waste Code	Metal - Health Serious Eye Damage Eye	surface		
	NALCO BT-3400 CAS No	Gallons State S	55 torage Container Plastic/Non-metali	55 ic Drum	55 Pressue Ambient	Waste Code	"Irritation	Sodium Hydroxide Proprietary	5 % 99 %	1310-73-2
	Map: Figure 2 Grid: B8-9	<u>Type</u> Mixture [Days on Site: 365		Temperature Ambient		- Health SeriousEye Damage EyeIrritation			
	NALCO Trac107 CAS No Map: Figure 2 Grid: B8-9		55 torage Container Plastic/Non-metali	55 ic Drum	55 Pressue Ambient Temperature	Waste Code	"Irritation - Health Serious	Sodium Hydroxide Inorganic Salt Proprietary	1 % 5 % 99 %	1310-73-2
	Petroleum Distillate	Mixture [Days on Site: 365 55	55	Ambient 55		Eye Damage Eye Irritation	Severely Hydrotreated Naph	thenic 100 %	64742-53-6
ombustible Liquid,	Class III-B Map: Figure 2 Grid: B8-9	Liquid S Type	torage Container Steel Drum Days on Site: 365		Pressue Ambient Temperature Ambient	Waste Code		Petroleum Oil BHT	0 %	128-37-0
orrosive	Sodium Hydroxide (10-50%) CAS No 1310-73-2 Map: Figure 2 Grid: B8-9	Gallons State S Liquid F Type	55 torage Container Plastic/Non-metali Days on Site: 365	55 ic Drum	55 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye	SODIUM HYDROXIDE	50 %	1310-73-2

Printed on 2/23/2021 7:38 AM Page 40 of 48

		Hazardo	ous Materials A	And Waste	s Inventor	y Matrix I	Report			
	ATEWAY GENERATING STATION our Ave, Antioch 94509			Chemical Loca Warehous		ous Mat/V	Vaste Storage	Facility ID 0	0018894 7-000-773723 ubmitted on 2/22	
						Annual			ardous Components	
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Waste Amount	Federal Hazard Categories	Component Name	or mixture only) % Wt	EHS CAS No.
Tot code/File Haz. Class	NON-RCRA Hazardous Solids	Pound	•	500	10	30	categories	Empty Drums	100 %	LIIS CAS NO.
	(Empty Drums)	State	Storage Container	300	Pressue	Waste Code		r-7		
		Solid	Steel Drum	 .		512				
	CAS No	Type			Temperature					
	Grid: B8, C3	Waste	Days on Site: 365							
	NON-RCRA Hazardous Waste	Gallon	s 96	55	63	96		Oil, Water	100 %	
	Liquid (Oil, Water)	State	Storage Container	•••	Pressue	Waste Code				
	CAS No	Liquid	Steel Drum		Ambient	223				
		Type	5		Temperature					
	Grid: B8, C3	Waste	Days on Site: 365		Ambient			011 111 1 21 1		
	NON-RCRA Hazardous Waste	Gallon		1600	1056	2550		Oil, Water, Sludge	100 %	
	Liquid (Oil, Water, Sludge)	State	Storage Container Tank Wagon		Pressue	Waste Code 222				
	CAS No	Liquid	Talik Wagoli		Ambient					
	Crist DO CO	Type Waste	Days on Site: 365		Temperature Ambient					
	Grid: B8, C3	Gallon		55	27	89		Waste Paint, Liquids		
	RCRA Waste Paint, Liquids	State	Storage Container	33	Pressue	Waste Code		vvasce i amit, ziquias		
	CAS No	Liquid	Steel Drum		Ambient	352				
	Map: Figure 2 Grid: B8, C3	Туре			Temperature					
		Waste	Days on Site: 90		Ambient					
	Shell Tellus Oil 32	Gallon	s 550	55	55			Highly refined mineral oil	s and	
	CAS No	State	Storage Container		Pressue	Wasta Cada		additives		
Combustible Liquid, Class III-B		Liquid	Steel Drum		Ambient	Waste Code				
Joinbustible Liquiu, Class III-b	Map: Figure 2 Grid: B8	Type	Davis as Cita 205		Temperature Ambient					
		wiixture	Days on Site: 365		Ambient					
	Shell Turbo Oil DR46	Gallon	s 55	55	55			Highly Refined Petroleum		
Combustible Liquid, Class III-B	CAS No	State	Storage Container		Pressue	Waste Code		Proprietary Additives	1 %	
Combustible Liquid, Class III-b		Liquid	Steel Drum		Ambient					
	Map: Figure 2 Grid: B8	Type Mixture	Days on Site: 365		Temperature Ambient					
	Universal Waste - eWaste	Pound		500	330	1070				
	CAS No	State	Storage Container		Pressue	Waste Code	•••			
		Solid	Steel Drum		Ambient	181				
	Map: Figure 2 Grid: B8, C3	Туре			Temperature					
	WASTE CAMP DI ACT CAMP TO THE	Waste	Days on Site: 90		Ambient	1100				1
	WASTE SAND BLAST SAND NON-			500	264	1100				
	RCRA	State Solid	Storage Container Steel Drum	•••	Pressue Ambient	Waste Code 181				
	CAS No	Type	Sectionalii		Temperature					
	Map: Figure 2 Grid: B8, C3	Waste	Days on Site: 365		Ambient					
	iviap. Figure 2 Gilu. Bo, C3		,							

Printed on 2/23/2021 7:38 AM Page 41 of 48

			Hazardo	us Materials A	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Facility Name		FEWAY GENERATING STATION Ave, Antioch 94509				se, Behind (•		cers ID 10018 uilding and Facility ID 07-00 Mat/Waste Status Submit	0-77372	3 2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard	(For mix	Component cture only)	
DOT Code/Fire Haz. C		Shell S3 BA 150 CAS No		Max. Daily 100 Storage Container Plastic Bottle or Jug	Largest Cont.	Avg. Daily 67 Pressue Ambient	Amount Waste Code	Categories	Component Name HIGHLY REFINED BASE OILS	% Wt 99 %	EHS CAS No. 64742-54-7
		Map: Figure 2 Grid: C4, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient			HIGHLY REFINED BASE OILS	99 %	64742-54-7
Combustible Liquid	I, Class III-B	Shell T68 CAS No		50 Storage Container Plastic Bottle or Jug	.	33 Pressue Ambient	Waste Code	<u></u>	HIGHLY REFINED BASE OILS	99 %	64742-54-7
		Map: Figure 2 Grid: C4, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient					
Combustible Liquid	I, Class III-B	CAS No Map: Figure 2 Grid: C4, B8-9	Liquid Type	50 Storage Container Plastic Bottle or Jug Days on Site: 365	5	33 Pressue Ambient Temperature Ambient	Waste Code	<u>.</u>	Highly refined mineral oils and additives		
Combustible Liquid	I, Class III-B	Shell Turbo Oil T 46 CAS No Map: Figure 2 Grid: C4, B8-9	Liquid Type	50 Storage Container Plastic Bottle or Jug Days on Site: 365	5	33 Pressue Ambient Temperature Ambient	Waste Code		HIGHLY REFINED BASE OIL	90 %	64741-97-5

Printed on 2/23/2021 7:38 AM Page 42 of 48

		Hazardo	ous Materials	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca	ntion			CERS ID 1001	8894	
Facility Name	PG&E GATEWAY GENERATING STATION			Warehou	se, Behind F	Plant Ser	vices Building	Facility ID 07-0	00-77372	3
	3225 Wilbur Ave, Antioch 94509							Status Subm	itted on 2/2	2/2021 5:07 PM
				Quantities		Annual Waste	Federal Hazard		is Componen ixture only)	ts
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Gear Lubricant (Shell Omala S4 GX 320) CAS No	Liquid	Storage Container Plastic/Non-meta	5 lic Drum	170 Pressue Ambient Temperature	Waste Coo	de	Highly Refined Petroleum Oil Proprietary Additives	99 % 1 %	
	Map: Figure 2 Grid: B8-9, C4	Type Mixture	Days on Site: 365		Ambient	••				,

Printed on 2/23/2021 7:38 AM Page 43 of 48

		Hazardo	us Materials /	And Waste	s Inventor	y Matrix	Report			
acility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509		Chemical Location Warehouse, Stormwater Treatment System			CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 2/22/2021 5:07				
			_	Quantities		Annual Waste	Federal Hazard		azardous Components (For mixture only)	
OOT Code/Fire Haz. Cla	Sodium Hydroxide (10-50%)	Unit Gallons	Max. Daily	Largest Cont.	Avg. Daily 15	Amount	- Physical	SODIUM HYDROXIDE	% Wt 50 %	1310-73-2
orrosive	CAS No		Storage Container Plastic Bottle or Ju	g	Pressue Ambient	Waste Code	Metal			
	Map: Figure 2 Grid: C9, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient		- Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation			

Printed on 2/23/2021 7:38 AM Page 44 of 48

		Hazardo	ous Materials A	nd Waste	s Inventory	y Matrix I	Report				
	ATEWAY GENERATING STATION ur Ave, Antioch 94509			Chemical Local Water Tre		ilding / Fir	e Water Pump	House	CERS ID Facility Status	10018894 ID 07-000-773723 Submitted on 2/2	
OT Code/Fire Haz. Class Combustible Liquid, Class II	Common Name Diesel Fuel CAS No 68476-34-6 Map: Figure 2 Grid: C1	Unit Gallons State Liquid Type Mixture	Max. Daily	Quantities Largest Cont. 500	Avg. Daily 500 Pressue Ambient Temperature Ambient		Federal Hazard Categories - Physical Flammable - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Specific Target Organ Toxicity - Health Aspiration Hazard	Component I Diesel Fuel		Hazardous Component (For mixture only) % Wt 100 %	EHS CAS No.
OOT: 8 - Corrosives (Liquids ar Solids) Corrosive, Water Reactive, Cla	Battery	State Liquid Type	Storage Container Other Days on Site: 365	4.5	9 Pressue Ambient Temperature Ambient	" Waste Code	- Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Reproductive Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Sulfuric Aci	d	35 %	√ 7439-92-1

Printed on 2/23/2021 7:38 AM Page 45 of 48

CERS Business/Org. Facility Name	Hazardous Materials And Wastes Inventory Matrix Report PG&E PG&E GATEWAY GENERATING STATION Water Treatment Chemical Storage								CERS ID Facility	10018894 D 07-000-773723	
OOT Code/Fire Haz. (ur Ave, Antioch 94509 Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Status Component Name	Submitted on 2/22 Hazardous Components (For mixture only) % Wt	•
		NALCO 7408 CAS No Map: Figure 2 Grid: C2	Liquid Type	65 Storage Container Plastic/Non-metal Days on Site: 365	65 lic Drum	65 Pressue Ambient Temperature Ambient	Waste Code	- Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	Sodium Bisulfite Proprietary	60 % 70 %	7631-90-5
Corrosive		NALCO Stabrex ST20 CAS No Map: Figure 2 Grid: C2	Liquid Type	65 Storage Container Plastic/Non-metal Days on Site: 365	65 ic Drum	65 Pressue Ambient Temperature Ambient	Waste Code	- Physical	Sodium Hydroxide Proprietary	5 % 99 %	1310-73-2

Printed on 2/23/2021 7:38 AM Page 46 of 48

	Hazardous Materials And Wastes Inventory Matrix Report										
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GAT	EWAY GENERATING STATION			WSAC Che	em Feed Ski	d		Facility I	D 07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	2/2021 5:07 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	S
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 8 - Corrosives Solids)	s (Liquids and	NALCO 3D TRASAR 3DT447 CAS No	Gallons State	S 110 Storage Container	110	110 Pressue		- Health Skin Corrosion	Phosphoric Acid	5 %	7664-38-2
Corrosive		Map: Figure 2 Grid: C3	Liquid Type Mixture	Plastic/Non-meta Days on Site: 365		Ambient Temperature Ambient		<u>le</u> Irritation	Sulfuric Acid Tolyltriazole	5 % 5 %	✓ 7664-93-9 29385-43-1

Printed on 2/23/2021 7:38 AM Page 47 of 48

CERS Business/Org.	PG&E			Chemical Loca				CERS ID		_
acility Name	PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509	WSAC Chemical Feed Skid					Facility ID 07-000-773723 Status Submitted on 2/22/2021 5:07 PM			
				Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	
OT Code/Fire Haz. C	NALCO Stabrex ST70 CAS No Map: Figure 2 Grid: C3	Liquid Type	Max. Daily 110 Storage Container Plastic/Non-metal Days on Site: 365	110 ic Drum	Avg. Daily 110 Pressue Ambient Temperature Ambient	Waste Code	categories - Physical - Corrosive To Metal - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye	Component Name Sodium Hydroxide Proprietary	% Wt 5 % 99 %	EHS CAS No. 1310-73-2

Printed on 2/23/2021 7:38 AM Page 48 of 48

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 13

Exhibit 6 Copy of Notice of Intent (NOI) and Revised SWPPP (October 2018) to comply with the requirements of Industrial General Permit (SOIL & WATER-3) No changes relative to submitted Exhibit 6 in ACR #12

State Water Resources Control Board

NOTICE OF INTENT

GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITY (WQ ORDER No. 2014-0057-DWQ)

(Excluding Construction Activities)

WDID: 5S07	021950	Sta	tus: Active
Operator Info	ormation	Ty	ype: Private Business
Address: _	Pacific Gas Electric Company PO Box 770000	Title:	Tim Wisdom Plant Manager
	San Francisco CA 94177		925-522-7812 T1WY@pge.com
Facility Inform	mation	Le	evel:
Site Name:	Diana Furman Gateway Generating Station 3225 Wilbur Ave	Title:	Environmental Compliance Manager
City/State/Zip: _ County: _	Antioch CA 94509 Contra Costa 38.01228 Longitude: -121.75859	Email Address: _ Site Size: _ osed to Storm Water: _	22 Acres
2	formation		
Additional In			
	Water: San Joaqu ystem: Group:		Flow: Indirectly
	diction: Region 5S - Sacramento	Email	r5s_stormwater@waterboards.ca.gov
Phone: _ Certification	916-464-3291	Email: _	r5s_stormwater@waterboards.ca.gov
Name: <u>/</u>	Alvin Thoma Senior Plant Manager	Date: <u>C</u>	October 12, 2016

Stormwater Pollution Prevention Plan

Gateway Generating Station

WDID#: 5S07I021950

Facility Address: 3225 Wilbur Avenue, Antioch, CA 94509

Facility Contact:
Angel B. Espiritu, Environmental Compliance Manager
Pacific Gas & Electric Company
(925) 522-7838

Prepared for

Storm Water Quality Group 3401 Crow Canyon Road, San Ramon, CA Jeremy Laurin, Storm Water Work Supervisor (925) 719-4466

Initial Preparation Date: December 2014

Revision Date: October 2018

EXECUTIVE SUMMARY

This storm water pollution prevention plan (SWPPP) was prepared in accordance with the requirements of the California State Water Resources Control Board (SWRCB) Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ) which was adopted on April 1, 2014. This permit replaces Order No. 97-03-DWQ which had been in effect from August 1, 1997 through June 30, 2015.

This SWPPP identifies and evaluates all sources of pollutants that may affect the quality of industrial storm water discharges and authorized non-storm water discharges, identifies and describes the minimum best management practices (BMPs) and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized non-storm water discharges.

Pacific Gas and Electric Company shall fully implement this SWPPP by July 1, 2015. The SWPPP will be revised whenever necessary and will be certified and submitted electronically to the SWRCB via the Storm Water Multi-Application and Report Tracking System (SMARTS).

TABLE OF CONTENTS

			Page
LIST	CUTIV FOF TA		i iv iv
1.	INTI	RODUCTION	1
	1.1	Background and Requirements	1
	1.2	SWPPP Performance Standards	2
	1.3	SWPPP Implementation and Revisions	2
	1.4	General Facility Information	2 2 2 3
	1.5	Pollution Prevention Team	
2.	SITE	LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)	5
3.	LIST	OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)	7
	3.1	List of Industrial Materials Handled at the Facility	7
4.		CRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X	
	AND	(\mathbf{G})	12
	4.1	Industrial Processes	12
	4.2	Material Receiving, Shipping, and Handling	13
	4.3	Dust and Particle Generating Activities	14
	4.4	Significant Spills and Leaks	14
	4.5	Non-Storm Water Discharges Erodible Surfaces	14 15
	4.6	Erodible Surfaces	13
5.	ASSI	ESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.	G.2)16
	5.1	Narrative Assessment of Likely Pollutants Present in Storm Water Discharges	16
	5.2	Identification of Additional BMPs	16
	5.3 5.4	Identification of Drainage Areas with No Exposure Identification of Additional Parameters	16 16
			10
6.	STO	RM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)	17
	6.1	Minimum BMPs (PERMIT SECTION X.H.1)	17
		6.1.1 Good Housekeeping	17
		6.1.2 Spill and Leak Spill and Leak Prevention	18
		6.1.3 Spill and Leak Response	18
		6.1.4 Material Handling and Waste Management	19
		6.1.5 Erosion and Sediment Controls6.1.6 Employee Training Program	19 19
		6.1.7 Quality Assurance and Record-Keeping	20
	6.2	Advanced BMPs (Permit Section X.H.2)	20
	0.2	6.2.1 Exposure Minimization BMPs	20
		6.2.2 Storm Water Containment and Discharge Reduction BMPs	20
		6.2.3 Treatment Control BMPs	20

TABLE OF CONTENTS

		Page
	6.2.4 Other Advanced BMPs	21
7.	TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)	22
8.	BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)	23
9.	MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)	25
10.	ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)	29
REF	ERENCES	30
TAB: FIGU	LES URES	
APP	ENDIX A - General Permit for Storm Water Discharges Associated with Industrial Act (Order No. 2014-0057-DWQ)	tivities
APP	ENDIX B – Permit Registration Documents	
APP	ENDIX C – SWPPP Amendment Form	
	ENDIX D – Training Log	
APP	ENDIX E – Industrial Storm Water Facility Inspection and Visual Observation Form	
	- Annual Evaluation Form	
	- Sampling Log	
APP	ENDIX F – General Permit Attachment H "Sample Collection and Handling Instructio	ns" and

APPENDIX H – ERA Evaluation(s) and Report(s)

Example Chain of Custody Form

APPENDIX I – Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log

LIST OF TABLES

Table No.	Title
I	Pollution Prevention Team
II	Industrial Materials Handled at the Facility
III	BMP Summary
IV	NAL Values

LIST OF FIGURES

Figure No.	Title
1	Site Location Map
2	Facility Details
3	Storm Water Flow and BMP Map

ACRONYMS AND ABBREVIATIONS

AST Aboveground Storage Tank
BMP Best Management Practice
CFR Code of Federal Regulations

COC Chain of Custody
CWA Clean Water Act

DDT Dichlorodiphenyltrichloroethane

ECM Environmental Compliance Manager

ELAP Environmental Laboratory Accreditation Program

ELG Effluent Limitation Guideline ERA Exceedance Response Action

General Permit Industrial Storm Water Permit for Discharges Associated with Industrial Activity

HMBP Hazardous Materials Business Plan

LRP Legally Responsible Person

mg/L Milligrams per liter
NAL Numeric Action Level

NEC No Exposure Certification

NOI Notice of Intent

NOT Notice of Termination

NPDES National Pollutant Discharge Elimination System

NSWD Non-Storm Water Discharge

OSHA Occupational Health and Safety Administration

PG&E Pacific Gas and Electric Company

PPT Pollution Prevention Team

PRDs Permit Registration Documents

QISP Qualified Industrial Storm Water Practitioner

QSE Qualifying Storm Event

RWQCB Regional Water Quality Control Board

SIC Standard Industrial Classification

SMARTS Storm Water Multi-Application and Report Tracking System

SPCC Spill Prevention Control and Countermeasure

SWPPP Storm Water Pollution Prevention Plan SWRCB State Water Resources Control Board

WDID Waste Discharge Identification

STORM WATER POLLUTION PREVENTION PLAN SIGNATURE AND CERTIFICATION

I am duly authorized to sign reports required by the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tim Wisdom, Sr. Plant Manager

Feb. 10, 2017

1. INTRODUCTION

This industrial storm water pollution prevention plan (SWPPP) for Pacific Gas and Electric Company's (PG&E) Gateway Generating Station (facility) was prepared in accordance with the requirements of the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity ("General Permit," Order NPDES No. CAS000001). A copy of the General Permit (Order No. 2014-0057-DWQ) dated April 1, 2014, is attached as Appendix A.

This SWPPP will be modified whenever there is a change in operation, maintenance or construction which may affect the discharge of pollutants to surface water. It will also be amended if it is found ineffective in achieving the stated objectives listed in the General Permit.

1.1 Background and Requirements

The Federal Clean Water Act (CWA) prohibits discharges from point sources to waters of the United States, unless the discharges are in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. In 1987, the CWA was amended to establish a framework for regulating municipal storm water discharges and discharges associated with industrial activity under the NDPES program. Industrial storm water discharges are regulated pursuant to CWA section 402(p)(3)(A). This provision requires NPDES permits for industrial storm water discharges to comply with technology-based effluent limitations and water quality-based limitations, as well as implement best management practices (BMPs).

On April 17, 1997, the California State Water Resources Control Board (SWRCB) issued NPDES General Permit for Industrial Storm Water Discharges, Excluding Construction Activities, Water Quality Order 97-03-DWQ (previous permit). The current General Permit, Order 2014-0057-DWQ, rescinds the previous permit and serves as the statewide general permit for industrial storm water discharges. The General Permit requires dischargers to:

- Eliminate unauthorized non-storm water discharges (NSWDs);
- Develop and implement SWPPPs that include BMPs;
- Implement minimum BMPs, and advanced BMPs as necessary, to achieve compliance with the effluent and receiving water limitations of this General Permit;
- Conduct monitoring, including visual observations and analytical storm water monitoring for indicator parameters;
- Compare monitoring results for monitored parameters to applicable numeric action levels (NALs) derived from the U.S. EPA 2008 Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (2008 MSGP) and other industrial storm water discharge monitoring data collected in California;
- Perform the appropriate Exceedance Response Actions (ERAs) when there are exceedances of the NALs; and
- Certify and submit all permit-related compliance documents via the Storm Water Multiple Application and Report Tracking System (SMARTS). Dischargers shall certify and submit these documents which include, but are not limited to, Permit Registration Documents (PRDs) including Notices of Intent (NOIs), No Exposure Certifications (NECs), and SWPPPs, as well as Annual Reports, Notices of Termination (NOTs), Level 1 ERA Reports, and Level 2 ERA Technical Reports.

Copies of all PRDs are included in Appendix B.

1.2 SWPPP Performance Standards

This SWPPP identifies and evaluates all sources of pollutants from the facility that may affect the quality of industrial storm water discharges and authorized NSWDs. Additionally, this SWPPP identifies and describes the minimum BMPs and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs. BMPs will be selected to achieve compliance with this General Permit and will identify and describe conditions or circumstances which may require future revisions to be made to the SWPPP. A copy of the SWPPP shall be maintained at the facility.

1.3 SWPPP Implementation and Revisions

PG&E shall fully implement this SWPPP by July 1, 2015. The SWPPP shall be revised whenever necessary and will be certified and submitted electronically to the SWRCB via SMARTS within 30 days whenever the SWPPP contains significant revisions. Minor revisions are not required to be entered into SMARTS more than once every three months within a given reporting year. A log of all SWPPP revisions is included in Appendix C.

1.4 General Facility Information

Facility Name: Gateway Generating Station

Facility Address: <u>3225 Wilbur Avenue</u>, Antioch CA 94509

Telephone Number: (925) 522-7838

Standard Industrial Classification (SIC) Code: 4911 (Electric Power Generating Facility)

Waste Discharge Identification (WDID) Number: 5S07I021950

Scheduled Facility Operating Hours: 24 hours/7 days (2 shifts)

Size of Facility: Approximately 32.5 acres

The facility is located in unincorporated Contra Costa County (within the City of Antioch's Sphere of Influence), on Wilbur Avenue, 1 mile northeast of Antioch, on the southern shore of the San Joaquin River (Figure 1). The operating portion of the site area is approximately 22 acres. The facility is a natural gas-fired, combined cycle, combustion turbine power plant with a nominal generation capacity of 530 megawatts. The facility includes the following building structures and areas:

- Two Combustion Turbine Electrical Generators;
- Steam Powered Electrical Generator:
- Wet Surface Air Cooler (Wet SAC);
- Fin Fan (Close-loop Cooling System);
- Air Cooled Condenser;
- Plant Services Building;
- Laydown Area for Equipment/Parts Staging;
- Warehouse;

- Hazardous Materials Storage Shed;
- Hazardous Waste Accumulation Storage Shed; AND
- Water Treatment Building.

Percent Impervious: ~28%

Facility Contact: Name: Angel Espiritu

Title: Environmental Compliance Manager Company: Pacific Gas and Electric Company

Phone: (925)522-7838 Email: ABE4@pge.com

Street Address: 3225 Wilbur Ave

City: Antioch State: California Zip Code: 94509

1.5 Pollution Prevention Team

PG&E has identified a Pollution Prevention Team responsible for assisting with the implementation of this SWPPP and for conducting all monitoring required under the General Permit. The specific individuals (and job title) that are responsible for developing, implementing, and revising this SWPPP and conducting monitoring are identified in the Table 1.

Table I Pollution Prevention Team

Name of Person	Title/Position	Responsibilities, Duties, and Activities		
Jeremy Laurin	Water Quality Subject Matter Expert	Supervise SWPPP development and implementation; provide support and training the ECM and Plant Manager; review of any documents uploaded to SMARTS; interface verthe Regional and/or State Water Quality Cont Boards when necessary.		
Angel Espiritu	Environmental Compliance Manager (ECM)	Facility lead for storm water permit compliance, monitoring, and reporting; conduct employee training; supervise and/or conduct inspections and sampling, record and report maintenance; record and report spills and leaks; file documents in SMARTS; BMP Implementation, emergency response coordinator, spill cleanup coordination.		
Name of Person	Title/Position	Responsibilities, Duties, and Activities		
Steve Royall	Director, Fossil Generation	Legally Responsible Party (LRP); responsible for certification of Notice of Intent (NOI) within SMARTS.		
Tim Wisdom	Sr. Plant Manager	Duly Authorized Representative (DAR); responsible for certification of documents within SMARTS.		
Aman Singh	Maintenance Supervisor	BMP Implementation and maintenance.		
David J. Hammond	Operations Supervisor	BMP Implementation and maintenance.		

David Thurston	Plant Engineer	Engineering guidance, supervision and review of BMPs.
Doug Welch or available on-shift Power Plant Technician	Plant Chemist or available on shift power plant technician	Storm water inspections and sampling.

In the event that the Environmental Compliance Manager or other positions responsible for SWPPP implementation are temporarily unavailable to conduct storm water activities due to vacation, illness, out of town business or other absences, backup personnel will implement the SWPPP and conduct required monitoring. PG&E will train all backup personnel so they are familiar with storm water requirements.

The Environmental Compliance Manager, through the Operations or Maintenance Supervisor, will notify the backup PPT member of any expected absences. If the backup PPT member is unavailable, a tertiary individual will be selected and trained to perform the tasks necessary during the primary and secondary PPT member's absence. The backup PPT member has been trained to complete Environment Compliance Manager's tasks when the ECM is unexpectedly absent.

PG&E will ensure that this SWPPP is implemented and revised as necessary to be consistent with applicable municipal, state, and federal requirements that pertain to the requirements in the General Permit.

2. SITE LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)

PG&E has prepared three figures illustrating the information required by the General Permit. These include Figure 1 Site Location Map, Figure 2 Facility Details Map, and the Figure 3 Storm Water Flow and BMP Map. The maps present the following information where applicable:

- Site location;
- North arrow;
- Facility boundary;
- Drainage areas;
- Portions of any drainage area impacted by discharges from surrounding areas;
- Direction of flow within each drainage area;
- On-facility surface water bodies;
- Areas of soil erosion;
- Nearby water bodies (e.g., rivers, lakes, wetlands);
- Municipal storm drain inlets;
- Location of storm water collection and conveyance systems;
- Points of discharge;
- Sampling locations;
- Structural control measures;
- Impervious areas;
- Locations of directly exposed materials;
- Locations of significant spills and leaks;
- Areas of industrial activity;
- Industrial storage areas/storage tanks;
- Shipping and receiving areas;
- Fueling areas;
- Vehicle and equipment storage/maintenance areas;
- Material handling/processing areas;
- Waste treatment and disposal areas;
- Dust or particulate generating areas;
- Cleaning and material reuse areas; and
- Other areas of industrial activity.

Storm water in Drainage Area A is generally conveyed from the south to the north. Surface run-off travels to drain inlets and/or rock-lined ditches which connect to a covered drainage conveyance into a concrete structure with flow valves. The valves on the outlet structure are typically left open to allow the discharge of stormwater in the wet season. The valves are typically left closed in the dry season to

provide an additional measure to capture potential pollutants if a spill occurred. Stormwater in Drainage Area B is contained in a depression centrally located in the drainage area and does not discharge. Additionally, there is no industrial activity in Drainage Area B. The facility details are shown on Figure 2.

3. LIST OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)

3.1 List of Industrial Materials Handled at the Facility

The following table lists the industrial materials stored or handled at the facility (as detailed in the Hazardous Materials Business Plan):

Table II Industrial Materials Handled at the Facility

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Aqueous Ammonia (29%)	Aboveground Storage Tank (AST)	Weekly	Aqueous Ammonia Storage Area	18,000 gallons
Pre-blended Phosphate/Caustic (Soap)	Tote	Daily	Plant Services Building	460 gallons
Sodium Bisulfite	Tote	Monthly	Water Treatment Building	50 gallons
Stabilized Bromine/Sodium Hydroxide	Tote	Monthly	Water Treatment Building and Wet SAC	110 gallons
Sulfuric Acid	Tote	Semi-annual	Wet SAC	35 gallons
Corrosion/Scale Inhibitor/Sodium Hydroxide	Tote	Semi-annual	Wet SAC	110 gallons
Chlorine Scavenger	Tote	Monthly	Water Treatment Building	65 gallons
Mineral Oil	Transformers	As needed	Transformers (throughout the site) and the inlet chiller	58,000 gallons
Diesel Fuel No. 2	AST	Weekly	Water Treatment Building	500 gallons
Turbine Oil	Within Turbines / Drums	As needed	Combustion Turbines, Steam Turbine, Hazardous Materials / Waste Storage Shed	17,000 gallon

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Mixed Oil	Drum	As needed	Hazardous Materials / Waste Storage Shed	55 gallon
Hydraulic Oil	Steam Turbine	As needed	Steam Turbine	130 gallons
Liquid Carbon Dioxide	Cylinder	As needed	Combustion Generators and CO2 Bulk Storage	36,000 gallons
Argon	Cylinder	As needed	Combustion Turbines	1,344 cubic feet
EPA Protocol Gases (Carbon Monoxide / Nitrogen / Oxygen / Nitric Oxide)	Cylinder	As needed	Combustion Turbines	4,896 cubic feet
Helium	Cylinder	As needed	Combustion Turbines and Gas Conditioning Station	2,200 cubic feet
Oxygen	Cylinder	As needed	Combustion Turbines	1,124 cubic feet
Hydrogen	Cylinder	As needed	Tube Trailer and Gas Conditioning Station	134,200 cubic feet
Nitrogen	Cylinder	As needed	Combustion Turbines, Steam Turbine, Inlet Chiller	8,735 cubic feet
Propane	Cylinder	As needed	Combustion Turbines and Plant Services Building	60 pounds
Acetylene	Cylinder	As needed	Plant Services Building	1,700 cubic feet
Petroleum Distillates	Within Transformer	As needed	Spare GSU Transformer	14,000 gallon
Refined Petroleum Oil	Drum	As needed	Spare GSU Transformer	55 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Dielectric Fluid	Transformer housing	As needed	Plant Services Building Transformers, Water Treatment Building, Combustion Turbines, Main Electrical Control Enclosure and Inlet Chiller	4,800 gallons
Gear Lubricant	Gear Boxes (36) and Drums	As needed	Air Cooled Condenser Gear Boxes (36), Warehouse and Hazardous Materials / Waste Storage Shed	540 gallons
Lead Acid Batteries	Within Electrical Equipment	As needed	Combustion Turbines	48,000 pounds
Lead Calcium Batteries	Within Electrical Equipment	As needed	Switchyard	90 gallons
Sulfur Hexafluoride	Internally within breakers	As needed	Sulfur Hexafluoride Breakers	774 pounds
Carbon Dioxide, Gas	Cylinders	As needed	Stormwater Treatment System	6,620 cubic feet
HaloKlear BHR-50	Plastic Tote	As needed	Stormwater Treatment System	275 gallons
Yardney 3660 Media Filter (glass media beads)	Within Equipment	As needed	Stormwater Treatment System	6,300 pounds
Sodium Hydroxide	Plastic Container	As needed	Stormwater Treatment System	30 gallons
Non-hazardous trash	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Metal scraps for recycling	Roll-off bin with tarp cover	Weekly	Laydown area	20 yards

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Wood Pallets	Outside	Daily	Laydown	50 to 100 total
Plastics	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Recyclables	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Cardboard	In enclosed cardboard compactor	Daily	Laydown in roofed area	3 yards
RCRA Waste (i.e., waste absorbent)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Non-RCRA Waste (i.e. oily debris)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Universal Waste (i.e., batteries and fluorescent light bulbs)	Bins	As needed	Hazardous Materials / Waste Storage Sheds	5 pounds
Monoethanolamine (30%-60%)	Tote	As needed	Northeast corner of Air Cooled Condenser (ACC)	400 gallons
Cooling Water Inhibitor (3DTRASAR)	Tote	As needed	Water Treatment Building	110 gallons
Antiscalant (Avista Vitec)	Drum	As needed	Water Treatment Building	60 gallons
Antifungal/bacteria/slime (Stabrex)	Tote	As needed	Water Treatment Building	110 gallons
Simple Green	2.5 gallon Containers	As needed	East of the Plant Services Building	10 gallons
Reclaimed water	Tanks	Daily	East of the Water Treatment Building	140,000 gallons
Wastewater	Tank	Daily	East of the Water Treatment Building	40,000 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Turbine Cleaning Fluid	Tote	As needed	Parts and Miscellaneous Storage Building	250 gallons
Various solvents, degreasers, paints, adhesives, etc.	Fire Cabinet	As needed	East of the Plant Service Building	Typically less than 1 gallon each

4. DESCRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.F AND G)

4.1 Industrial Processes

Gateway Generating Station facility manufactures electricity through the use of two natural gas fired combustion turbines and a steam powered generator. The industrial materials utilized throughout the facility are detailed in Table II. All industrial processes associated with manufacturing occur at locations denoted on Figure 2.

Industrial materials imported to the site are imported directly into the warehouse, directly to aqueous ammonia storage tank, the water treatment plant and the wet surface air cooler. Handling, shipping and receiving of hazardous materials including waste occurs at the frequencies denoted in Table II above. Storage areas identified in Table II are also denoted in Figure 2. These areas are further described as follows.

The aqueous ammonia is stored in an area that houses two 20,000 gallon capacity tanks. These tanks sit above grade within a secondary containment unit and a sump. This area has sufficient storage capacity to meet the facility's Risk Management Plan requirements. Storm water that collects in this sump is discharged to the sanitary sewer per a separate permit. This storage area has its own loading ramp that drains to the secondary containment sump below the tanks.

The hazardous materials storage shed, hazardous waste storage shed and hazardous materials accumulation shed are all covered sheds with secondary containment that meets the facilities hazardous materials business plan (HMBP) and SPCC plan requirements. The various oils the facility uses are stored within these sheds in 55 gallon drums. In addition to those drums universal waste and used absorbent is also stored within these sheds. Materials and wastes are moved using services vehicles.

All hazardous materials associated with the water treatment plant including the diesel fuel used for the emergency fire water system are housed in a roofed water treatment building. Secondary containment for these materials is provided. All of the ASTs within this area are filled by bulk delivery.

There are various transformers throughout the facility. These transformers are filled with dielectric oil and are housed in secondary containment that meets the facility's SPCC plan requirements.

Various hazardous materials are stored adjacent to the wet surface air cooler. These materials are all stored in sealed tanks within secondary containment. These tanks are filled by bulk delivery.

Trash, recyclable materials, and cardboard are accumulated in three separate dumpsters. The dumpsters have lids which are closed when the dumpsters are not actively used. To further isolate the dumpsters from exposure to storm water, they are housed under a roof.

Metals for recycling are accumulated in a roll off bin or bins and are covered when not actively in-use.

Various pressurized gases are stored throughout the facility for various uses. These pressurized gases are stored according to all applicable HMBP requirements.

Various batteries are stored throughout the facility for various uses. These batteries are stored in roofed buildings and according to all applicable HMBP requirements.

4.2 Material Receiving, Shipping, and Handling

Receiving

The facility receives regular deliveries of the materials listed in Table II. The materials stored in larger tanks are delivered by service trucks and are directly loaded into the respective vessels. Receiving and loading of materials (e.g., fuels, fuel additives, oils, and ammonia) is performed at the respective material storage areas. Other sources include smaller quantities of oils used in transformers, sulfuric acid used in batteries, and oils used in miscellaneous equipment and machines which are delivered to their various storage locations throughout the facility, including but not limited to the warehouse, plant services building, parts and miscellaneous storage building, and the water treatment building.

Material Handling

The primary function of the power plant facility is to generate electricity through a combined-cycle process utilizing natural gas as fuel. The potential pollutants at the facility are used in ancillary functions such as lubricants, aqueous ammonia for emissions control, and other various maintenance fluids. Most materials and wastes are transported via on-site pipe networks. For example, potable water is piped to the facility from a municipal water purveyor to the water treatment area and then transferred from the treatment plant to the boilers and other heat exchange equipment. Used water is conveyed to the sanitary sewer. Small quantities of other materials and wastes, typically for maintenance activities, are moved using services vehicles. There is a seldom used parts cleaning machine that is located outdoors, immediately east of the plant services building.

Waste

General trash is accumulated in dumpsters located north of the inlet chiller. The waste dumpster area is equipped with a storm resistant shelter. Trash is transferred to a collection facility by a service vendor.

Metals for recycling are accumulated in two dumpsters that are equipped with lids. One metal disposal dumpster is located near the trash dumpsters and the other is located east of the parts and miscellaneous storage building. Occasionally, roll-off dumpsters are placed near the warehouse during maintenance and repair operations.

Hazardous waste is temporarily stored onsite in storage sheds located east of the plant service building and the south-east corner of the warehouse. The majority of hazardous waste produced at the facility is waste oil sludge and used lubricating oil. Hazardous waste is picked up by a waste disposal vendor as necessary, though typically picked up more frequently; the hazardous waste vendor is on 90-day maximum schedule. An industrial service vendor visits the site weekly to perform a required weekly inspection and schedule waste pick-up.

The water-side effluent from the oil/water separator is conveyed to the sanitary sewer along with other waste water generated from plant operation. The oily sludge effluent is transported offsite for proper disposal.

Portable toilets are commonly placed onsite in various locations for construction and maintenance projects and are serviced regularly by a service vendor.

Shipping

The industrial product produced at the facility is electricity and therefore shipping of industrial products does not occur at this facility. The electricity generated at the facility is transmitted through the substation located west of the facility.

4.3 Dust and Particle Generating Activities

PG&E does not conduct any activities that generate dust and/or particles. The vents located on the combustion turbines are designed only for heat dissipation. The active areas of the site are paved or covered in gravel to prevent dusting.

4.4 Significant Spills and Leaks

Significant spills and leaks include any toxic chemicals identified in 40 Code of Federal Regulations (CFR) Section 302 that are discharged into the facilities' storm water conveyance system as reported on U.S. EPA Form R, as well as spills or leaks of oil and hazardous substances in excess of reportable quantities (40 CFR §§ 110, 117, and 302). PG&E contracts with a service vendor to respond to any significant spills of fuels, oil or other materials. During the routine monthly inspections, PG&E will evaluate the facility in areas where spills and leaks could potentially occur during material delivery, unloading, loading, transport, storage/containment, or use. There have not been any significant spills or leaks of industrial materials at this facility in the last five years that had potential to be discharged from the facility.

In accordance with the facility SPCC Plan and the General Permit, in the event that significant spills or leaks occur in the future, for each potential discharge PG&E will record and document the following information: the location, characteristics, and approximate quantity of the materials spilled or leaked; approximate quantity of the materials discharged from the facility's storm water conveyance system; the cleanup or remedial actions that have occurred or are planned; the approximate remaining quantity of materials that have the potential to be discharged; and the preventive measures taken to ensure spills or leaks of the material do not reoccur.

4.5 Non-Storm Water Discharges

A NSWD is any water discharged at the Facility which is not the direct result of a rain event. Examples include process water, cooling water, wash water, and sanitary wastewater. Certain limited categories of NSWDs are considered to be authorized by the General Permit (as long as they are not in violation of any Basin Plan, municipal agency ordinance, or other statewide water quality control plans or policy requirements), including: fire hydrant flushing; potable water sources; drinking fountain water; refrigeration, air conditioning, and compressor condensate; irrigation drainage and landscape watering; uncontaminated natural springs, groundwater, and foundation/footing drainage; seawater infiltration; and incidental windblown mist from cooling towers.

Authorized NSWDs at the Gateway Generating Station facility are expected to be prevented or minimized and would occur at an unknown frequency if they arise with the exception of the fire system flushing. The fire system is flushed annually and the quantity of water would be equal to the amount in the system or necessary to flush the system. Expected authorized NSWDs include:

- Fire system flushing water;
- Irrigation water;
- Eve wash system flushing and testing water; and
- Air conditioning or compressor condensate.

The NSWDs listed above are authorized by the General Permit if all of the following conditions are met:

- The NSWDs are in compliance with Regional Water Quality Control Board (RWQCB) requirements;
- The NSWDs are in compliance with local agency ordinances and/or requirements;
- BMPs are specifically included in the SWPPP to (1) prevent or reduce the contact of NSWDs with significant materials or equipment and (2) minimize, to the extent practicable, the flow or volume of NSWDs;
- The NSWDs do not contain significant quantities of pollutants;
- The monitoring program includes quarterly visual observations of each NSWD and its sources to ensure that BMPs are being implemented and are effective; and
- The NSWDs are reported and described annually as part of the Annual Report.

As part of the routine monthly site inspections, PG&E will conduct an evaluation of the facility to identify any NSWDs, sources, and drainage areas. The inspection will include an evaluation of all storm drain inlets to identify connections to the storm water conveyance system; and a description of any NSWDs and how any which have occurred and have been eliminated. In the event that NSWDs are discovered, they will be described on the inspection form located in Appendix E of the SWPPP. This description will include the source, quantity, frequency, and characteristics of the NSWDs, associated drainage area, and whether it is an authorized or unauthorized NSWD.

Potential unauthorized NSWDs at the Gateway Generating Station Facility include:

- Secondary containment failure;
- Pipeline leak, rupture, or failure;
- Contaminated water in sumps;
- Leaks or spills from portable restrooms; and
- Leaks or spills from service vehicles or portable equipment.

Unauthorized NSWDs have been eliminated or prevented through the use of sumps, secondary containment structures, an oil/water separator, drains that convey waste to the oil/water separator, controlled site access, and the placement and maintenance of numerous spill clean-up kits throughout the facility.

4.6 Erodible Surfaces

There are three vegetated areas (Figure 3) that may be considered erodible surfaces at the facility. The only unpaved areas within the active facility exposed to storm water are flat gravel-capped surfaces between structures and adjacent to roadways, and three vegetated surfaces on the northeastern edge of the property.

The southern portion of the facility is inactive and self-contained, with a berm which surrounds the entire perimeter. This area has also been graded into a depression and decompacted to help increase infiltration of any storm water that lands within the area.

5. ASSESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.G.2)

5.1 Narrative Assessment of Likely Pollutants Present in Storm Water Discharges

PG&E conducts frequent preventive maintenance to ensure that plant machinery, equipment and storage vessels are in good working order. The most likely potential pollutants in storm water discharges are the materials listed in Table II. Approximately 28 storm water catch basins drain the site and are located throughout the facility and in proximity to material storage areas. PG&E has implemented BMPs to control the offsite migration of potential pollutants by following good housekeeping, requiring immediate cleanup of spills, and by installing filter screens (Dandy Pops®) in storm water catch basins on the site, as appropriate. The filter screens are cleaned and/or replaced as needed.

5.2 Identification of Additional BMPs

In the event that conditions change or monitoring results indicate a need, PG&E will consider identifying additional BMPs to address the changed conditions or constituents of concern.

5.3 Identification of Drainage Areas with No Exposure

There is one drainage area at the facility with no exposure, as indicated on Figure 2. The southern area meets the requirements for no exposure, as there are no industrial activities occurring within it.

5.4 Identification of Additional Parameters

In addition to the standard parameters required for all industrial facilities (pH, oil & grease, and total suspended solids), PG&E will continue to analyze for total iron, as per the SIC code 4911 requirements of Table 1 and Attachment A of the General Permit.

The facility drains to the Delta Waterways (western portion) which is in the HUC 10 watershed of the site. The 303(d) listed impairments for the Delta include: Chlordane; Chlorpyrifos; Dichlorodiphenyltirchloroethane (DDT); Diazinon; Dieldrin; Dioxin; Dioxin compounds (including 2,3,7,8-TCDD); Disulfoton; Electrical Conductivity; Escherichia coli (E. coli); Furan Compounds; Group A Pesticides; Invasive Species; Mercury; Organic Enrichment/Low Dissolved Oxygen; Oxygen, Dissolved; Low Dissolved Oxygen; Pathogens; PCBs (Polychlorinated biphenyls) (dioxin-like); PCBs (Polychlorinated biphenyls); Selenium; and Unknown Toxicity. The sources of the impairments listed are primarily caused by agricultural sources or mineral resource extraction and the Gateway Generating Station does not have the potential to discharge most of the pollutants; however, electrical conductivity may be an exception.

Electrical Conductivity is a measure of the ability of water to pass an electrical current. Conductivity in water is affected by the presence of inorganic dissolved solids such as chloride, nitrate, sulfate, and phosphate anions (ions that carry a negative charge) or sodium, magnesium, calcium, iron, an aluminum cations (ions that that carry a positive charge). Though the General Permit does not have a Numeric Action Level for electrical conductivity, the facility has the potential to discharge inorganic dissolved solids and analytical results may be beneficial as an indicator of other pollutant concerns; therefore, the facility will also collect and analyze samples for electrical conductance.

6. STORM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)

This section describes the BMPs implemented and maintained as a result of the activities assessment in Section 4. The current BMPs, when properly maintained, are effective for the operations at the facility. BMPs are divided into minimum and advanced measures.

6.1 Minimum BMPs (PERMIT SECTION X.H.1)

6.1.1 Good Housekeeping

- Monthly Visual Inspections. Once per calendar month, PG&E inspects all outdoor areas associated with industrial activity, including storm water discharge locations, drainage areas, conveyance systems, waste handling/disposal areas, and perimeter areas impacted by off-facility materials or storm water run-on to determine housekeeping needs. Any identified debris, waste, spills, tracked materials, or leaked materials identified during the inspections are cleaned and disposed of properly.
- **Tracking Control.** Although there is low potential for tracking of sediment at the facility, paved surfaces are swept on a monthly basis. Additionally sweeping will occur as needed.
- **Dust Control.** PG&E's power generation process does not generate dust, and the surface of the site is either paved, has a gravel cap, or is vegetated. Therefore, there is no need to implement dust control at this facility.
- Cleaning Areas Impacted by Rinse/Wash Waters. No washing or rinsing of equipment is performed at the facility. Parts are washed within an enclosed parts washer, within the roofed Plant Services building.
- Industrial Materials Storage Control. The facility stores all materials and performs all activities that involve hazardous materials under roofed areas (buildings or storage containers), within secondary containment, or during dry weather, if possible.
- Control of Non-Solid Industrial Materials/Wastes. The facility contains all stored non-solid industrial materials or wastes (e.g., fuel, waste oil) that can be transported or dispersed by wind or contact with storm water. Spill kits are maintained appropriately and allow for immediate response to spills. In addition, all materials are stored within secondary containment to prevent any spilled or leaked material from being transported by storm water. Numerous secondary containment structures have been designed and constructed throughout the facility to contain spills, leaks, or ruptures from various tanks and oil filled equipment. The secondary containment structures have been designed per SPCC requirements to contain the capacity of either 100 percent of the largest tank or 10 percent of all tanks or containers stored within the containment. Additional material and waste control information is included in the facility's Spill Prevention Control and Countermeasure (SPCC) Plan.
- Control of Rinse/Wash Water Disposal. No washing or rinsing is performed at the facility. The facility prevents the disposal of any industrial materials into the storm water conveyance system by maintaining spill kits appropriately and immediately responding to spills.
- Minimize Storm Water Discharges from Non-Industrial Areas. A non-industrial area exists within the facility, as denoted on Figure 2. This area is self-contained, with a berm surrounding the entire perimeter of this portion. This area has also been graded into a

- depression and decompacted to help increase infiltration of any storm water that lands within the area, as described in Section 4.5.
- Minimize Authorized NSWDs from Non-Industrial Areas. A non-industrial area exists within the facility and no authorized NSWDs occur from it.

6.1.2 Spill and Leak Spill and Leak Prevention

The facility implements the following preventative maintenance measures:

- PG&E has identified the following outdoor equipment at the Facility which may spill or leak pollutants, as follows:
 - Containment areas, tanks and containers storing hazardous materials or wastes
 - Oil-filled electrical equipment and oil-filled operating equipment in the Radiator Area, and Transformer Yard
 - Service vehicles (when transporting materials such as drums of waste oil)
- Monthly observations of containment areas, tanks, equipment and systems are conducted to detect leaks, or identify conditions that may result in the development of leaks.
- The facility maintains a schedule for conducting routine maintenance of identified equipment and systems. There is a daily inspection of all equipment at the facility, monthly preventative maintenance and periodic servicing. Daily inspections are informal visual inspections by operators, and are not documented. Service vehicles are not washed on site.
- The facility has defined procedures for prompt maintenance and repair of equipment, and maintenance of systems when conditions exist that may result in the development of spills or leaks.
- The facility utilizes forklifts and golf carts that are loaned to the facility from PG&E Fleet. Fleet vehicles are repaired and maintained by the Fleet group.
- The manufacturer of the power generation equipment requires maintenance of equipment after a specified number of operating hours and therefore the facility conducts two shutdowns per year to maintain the facility's power generation equipment.

6.1.3 Spill and Leak Response

PG&E has established the following protocols to respond to spills and leaks:

- The facility has developed procedures to minimize spills and leaks. The facility has a SPCC Plan that addresses storage of materials and wastes.
- The facility has established spill and leak response procedures to prevent industrial materials from discharging through the storm water conveyance system. Spilled or leaked industrial materials are cleaned up promptly and disposed of properly.
- The facility has identified and described all necessary and appropriate spill and leak response equipment, locations of spill and leak response equipment, and spill/leak response equipment maintenance procedures, in the facility's HMBP and SPCC plans. Spill kits are maintained throughout the facility and denoted in maps located in the facility's HMBP.

- The facility has designated and trained appropriate spill and leak response personnel, identified as the PPT in Table 1 above. Spill and leak response personnel are trained annually, at a minimum. Plant operations personnel are responsible for spill cleanup; an outside vendor is used to respond to significant spills. Spill response personnel receive OSHA hazard communication training and spill training consistent with the hazardous materials business plan and SPCC plan.
- Powered industrial truck maintenance shall be performed on tarps or other impervious materials to capture spills.

6.1.4 Material Handling and Waste Management

PG&E has a robust program for addressing material handling and waste management, as follows:

- The facility minimizes the handling of industrial materials or wastes that can be readily mobilized by contact with storm water during storm events through the use of awnings at loading docks.
- The facility appropriately contains stored non-solid industrial materials or wastes (e.g., lubricant oil) that can be transported or dispersed by the wind or contact with storm water by storing these materials in secondary containment with water tight lids.
- Industrial waste disposal containers (dumpsters and metal waste recycling bins) and industrial material storage containers that contain industrial materials are covered with lids or plastic tarps when not in use.
- Site run-on and storm water generated from within the facility is diverted away from material storage areas.
- Spills of industrial materials or wastes that occur during handling are cleaned up in accordance with the spill response procedures.
- Outdoor material or waste handling equipment or containers that can be contaminated by contact with industrial materials or wastes are inspected and cleaned, as appropriate.

6.1.5 Erosion and Sediment Controls

Erosion is not a significant issue at the site because approximately 28 percent is paved and the remainder is covered with a gravel cap or is vegetated (Figure 3). Therefore, erosion is not a problem at the site, and the facility does not implement erosion and sediment controls.

6.1.6 Employee Training Program

PG&E employees responsible for implementing the storm water program at the Facility will receive annual storm water training. The facility has identified which personnel require training (per Section 1.5), their responsibilities, and the type of training they will receive, and will prepare or acquire appropriate training materials and establish a schedule for providing the training. All participants will sign a Training Log that will be kept in Appendix D. This documentation will be maintained with the SWPPP. Annual training is required once every calendar year. At a minimum, training will cover the following topics:

- BMP implementation;
- BMP effectiveness evaluations:
- Visual observations; and

Monitoring activities.

In the event the Facility enters Level 1 status (see Section 9), appropriate team members will be trained by a Qualified Industrial SWPPP Practitioner (QISP). A QISP must complete a SWRCB-approved training course and assist in the preparation of ERAs for Level 1 and 2 status designations which are described in further detail in Section 9 of this SWPPP.

6.1.7 Quality Assurance and Record-Keeping

PG&E has done [and will continue to perform] the following to retain proper quality assurance and record-keeping:

- The facility has developed and implemented management procedures to ensure that appropriate staff implements all elements of the SWPPP, including the Monitoring Implementation Plan;
- The facility has developed a method of tracking and recording the implementation of BMPs identified in the SWPPP, through the monthly inspection process; and
- The facility will maintain the BMP implementation records, training records and records related to any spills and clean-up related response activities for a minimum of five years.

6.2 Advanced BMPs (Permit Section X.H.2)

In addition to the minimum BMPs described above in Section 6.1 and in Section X.H.1 of the General Permit, the facility will, to the extent feasible, implement and maintain any advanced BMPs necessary to reduce or prevent discharges of pollutants in its storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

6.2.1 Exposure Minimization BMPs

The facility has installed permanent storm resistant shelters to prevent contact of storm water with certain kinds of materials. These areas include the hazardous materials/waste storage sheds, and the Laydown area (e.g., for waste and recycling dumpsters).

6.2.2 Storm Water Containment and Discharge Reduction BMPs

These BMPs include structures that divert, infiltrate, reuse, contain, retain, or reduce the volume of storm water runoff. As described in Section 4.5, the facility includes gravel caps to areas that haven't been paved or are not roofed which may increase infiltration at the site and prevent erosion. Additional BMPs will be explored and implemented as needed.

6.2.3 Treatment Control BMPs

• Oil/Water Separator. The site is equipped with an oil/water separator; however, since the effluent from the oil/water separator is conveyed to the municipal sanitary sewer (which is permitted through the publicly owned treatment works), this water is not considered storm water discharge. The oil (if any) is separated and sent offsite for proper disposal. The coalescer packs are inspected regularly and cleaned if indicated by inspection.

- **Parts Cleaner.** The site is equipped with a parts cleaner that is located outdoors on the east side of the maintenance shop. The manufacturer inspects the washer and replaces the solvent as necessary.
- **Drain Inlet Filters.** Filter screens (Dandy Pops®) are installed in storm water catch basins on the site, as appropriate, to capture sediment. The filter screens are cleaned and/or replaced as needed.
- Stormwater Chemical Treatment/Filtration System. The site is equipped with a standard chemical treatment and filtration system for the stormwater prior to discharge. The treatment system is located immediately adjacent to the existing outfall, E-006, to allow treatment of all of Gateway Generating Station's stormwater prior to discharge into the river. The system is expected to reduce the total iron content of the storm water effluent to less than or equal to 1 ppm.

Design of the system was precluded by volume-based calculations to meet the provisions of the IGP (see memo dated October 12, 2016 found in Appendix H). The volume of runoff produced from an 85th percentile 24-hour storm event and 85th Percentile Hourly Rainfall Intensity per the IGP, as determined from local, historical rainfall records produces a maximum of 229,562 gallons. The design volume processing rate of the treatment system is 468,895 gallons, both meeting and exceeding the volume-based calculations of the IGP.

Treatment steps for the treatment system are as follows:

- 1. The storm water is pH adjusted to allow the iron to precipitate out of the stormwater,
- 2. A chemical flocculating agent is added to clump the iron particles together,
- 3. The stormwater is settled and pumped over a series of small weirs to capture the solids,
- 4. Stormwater is then passed through the media filters for finer particulate removal,
- 5. The water is monitored real-time to assure it meets discharge criteria, if it does not meet pH or turbidity criteria, it is recirculated, and,
- 6. The treated stormwater is discharged into the San Joaquin River.

6.2.4 Other Advanced BMPs

At this time, the Facility does not implement other advanced BMPs. In the event that conditions change or monitoring results indicate a need, PG&E will consider additional advanced BMPs to address the changed conditions or constituents of concern.

7. TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)

PG&E's Gateway Generating Station operates two shifts, seven days a week. The facility does not have any plans to suspend industrial activities for ten or more consecutive calendar days in any given year. Therefore, this section of the General Permit is not applicable.

8. BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)

The following table summarizes each identified area of industrial activity, the associated industrial pollutant sources, the industrial pollutants, and the BMPs implemented. The approximate boundaries of Drainage Areas A and B are shown on Figure 2. The PPT identified in Section 1.5 is responsible for implementing all BMPs at the site. Some of the BMPs described below require the use of mechanical equipment, such as forklifts, in order to perform maintenance activities on the BMPs. PPT members are authorized to use the required equipment or to obtain the help of other facility staff to maintain the BMPs onsite. The facility mechanics are responsible for maintaining the mechanical equipment throughout the facility.

To retain effectiveness during and after significant weather conditions, certain BMPs need to be inspected more frequently than monthly. These BMPs will be informally inspected by PPT members during large rain events or following rain events.

Table III BMP Summary

Drainage Area	BMPs Implemented	Associated Industrial	Potential Industrial	Frequency of BMP
	Implementeu	Pollutant Sources	Pollutants	Implementation
	Spill kit	Oil Filled Equipment (Transformers)	Petroleum hydrocarbons, heavy metals	As needed
Combustion turbines	Secondary containment	Aqueous Ammonia for exhaust system	Aqueous Ammonia	As needed
	Check dams	All facility pollutants	Suspended Sediment	As needed
0.1 111 . 1	Spill kits	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Oil and Universal Waste Storage Used Oil /	Parts Cleaner	Part Cleaning	Solvents, lubricants, metals	As needed
Hazardous Waste Storage	Spill kits and secondary containment	Spills during shipping and receiving	Petroleum hydrocarbons, heavy metals	As needed
	Covered forklift parking	Forklift	Vehicle related pollutants	Daily
Water Treatment	Spill kit	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Plant	Spill kits and secondary containment	Spills during shipping and receiving	Diesel, various chemicals	As needed
	Fueling Sump	Fuel	Petroleum	Permanent
Trash and Scrap Metal Dumpsters	Dumpsters have lids, roll offs are tarped	Spills during shipping and receiving	Metals and non- petroleum waste	Cover daily when not in use
wiciai Dumpsiers	Storm resistant shelter	Waste	Metals, oils, suspended solids	Permanent

Warehouse	Run-on diversions	Run-on from neighboring facilities	Iron	Permanent
Discharge Location	Valves and Concrete Containment	All facility pollutants	All potential pollutants	Permanent
Location	Treatment and filtration	ponutants	poliutants	As needed
	Drain inlet filters	All pollutant sources	All potential pollutants	Permanent
	Rock-lined ditches	All pollutant sources	Suspended solids	Permanent
	Site has access control and security 24 hours a day, 7 days a week	All pollutant sources	All potential pollutants	As needed
All Drainage	Oil/Water Separator	All pollutants	Oils and Grease	Daily
Areas	Oil absorbent socks around various drain inlets	All pollutant sources	Oils and Grease	Daily
	Powder coated drain inlet grates	Rusting grates	Iron	Permanent
	"No Dumping, Drains to Delta Signs"	Illicit dumping	All potential pollutants	Permanent

9. MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)

As described above in Section 1.5, PG&E has assembled a PPT that includes members assigned to conduct storm water monitoring. The facility has one industrial discharge location which is also the sampling location. The discharge location (Sample Location E-006) is located at the northern perimeter of the facility. Analytical monitoring and visual observations will be conducted at the sampling location shown on Figure 2.

Procedures for Monthly Visual Observations

PG&E will conduct visual observations within the drainage area at the facility at least once per calendar month, which will include an evaluation of:

- Presence or indications of prior, current, or potential unauthorized NSWDs and their sources;
- Authorized NSWDs, sources, and associated BMPs; and
- Outdoor industrial equipment and storage areas, outdoor industrial activities areas, BMPs, and all other potential source of industrial pollutants.

Monthly visual observations will be conducted during daylight hours of scheduled facility operating hours and on days without precipitation. Visual observations will be recorded on the form provided in Appendix E. Information to be recorded will include the date, approximate time, locations observed, presence and probable source of any observed pollutants, name of person(s) that conducted the observations, and any response actions and/or additional SWPPP revisions necessary in response to the visual observations. To ensure adequate documentation of response action completion, a PPT member will initial and date the documented response action when the action is complete. If a monthly visual observation is not conducted, PG&E will provide an explanation in the Annual Report.

Procedures for Sampling Event Visual Observations

PG&E will conduct visual observations at the same time sampling occurs at a discharge location. At each discharge location where a sample is obtained, PG&E will observe the discharge of storm water associated with industrial activity and record these observations on the form provided in Appendix E. The same types of information will be recorded as for the monthly inspections. The following items will be observed and recorded:

- The appearance of storm water discharged from containment sources (e.g., secondary containment or sumps) at the time that the discharge is sampled;
- The presence or absence of floating and suspended materials, oil and grease, discolorations, turbidity, odors, trash/debris, and source(s) of any discharged pollutants.

In the event that a discharge location is not visually observed during a sampling event, PG&E will record which discharge locations were not observed during sampling or that there was no discharge from the discharge location and will provide an explanation in the Annual Report for uncompleted sampling event visual observations. PG&E will revise BMPs as necessary if the visual observations indicate pollutant sources have not been adequately addressed in the SWPPP. If any response actions are noted during Sampling Event Visual Observations, a PPT member will initial and date the documented response action when the action is complete.

Sampling and Analysis

Samples will be collected during Qualifying Storm Events (QSE). A QSE is defined as a precipitation event that produces a discharge for at least one drainage area and is preceded by 48 hours with no discharge from any Facility drainage area. PG&E will collect and analyze storm water samples from two QSEs within the first half of each reporting year (July 1 to December 31), and two QSEs within the second half of each reporting year (January 1 to June 30). Samples will be collected within four hours of the start of discharge at the E006 discharge/sampling location shown on Figure 2. The sampling point at E006 is upstream from the actual discharge into the San Joaquin River (Outfall), due to the comingling of our discharge with the neighboring industrial facility just after E006 and prior to Outfall.

Sampling will be performed in accordance with requirements of the General Permit. Use caution when collecting samples at night and do not collect samples without sufficient lighting. Samples will be collected and analyzed for pH, oil and grease, total suspended solids, and total iron (based on the facility's SIC code listed in Table 1 of the General Permit for additional analytical parameters). Sampling results will be compared to two types of NAL values based on the specific parameter to determine whether either type of NAL has been exceeded for each applicable parameter. Annual NAL exceedances are based on analytical results for the entire facility for the reporting year, while Instantaneous NAL exceedances are based on analytical results from each distinct sample. The table below describes test methods, reporting units, and NAL values:

Table IV NAL Values

Parameter	Test Method	Reporting Units	Annual NAL	Instantaneous Maximum NAL
pН	Portable instrument*	pH units	N/A	<6.0 or >9.0
Oil and Grease	EPA 1664A	mg/L	15	25
Total Suspended Solids	SM 2540-D	mg/L	100	400
Total Iron	EPA 200.7	mg/L	1.0	
Electrical Conductivity			N/A	N/A

^{*}The pH screen will be performed as soon as practicable, but no later than 15 minutes after the sample is collected and will be analyzed using a calibrated portable instrument for pH.

All instruments used for pH measurement will be properly calibrated in accordance with the manufacturer's instructions and recommended frequency, and copies of the calibration records will be maintained onsite. Samples for total iron, total suspended solids, oil and grease, and electrical conductivity will be analyzed by an analytical laboratory that is Environmental Laboratory Accreditation Program (ELAP)-certified. All samples will be collected in accordance with Attachment H of the General Permit ("Sample Collection and Handling Instructions") and handled under proper Chain-of-Custody (COC) protocols. General Permit Attachment H and an example COC are included in Appendix F.

Though there are Effluent Limitation Guidelines (ELGs) for Electric Power Generation facilities, which require copper and chlorine analysis, the regulation only applies to runoff from coal storage piles and therefore the ELGs for Electric Power Generation do not apply to this facility because coal is not stored or used at the facility.

Exceedance Response Actions

ERAs are required when an NAL exceedance occurs for any parameter. At the beginning of NOI coverage, PG&E will enter as a Baseline status for all parameters designated in Table IV above. If sampling results indicate an NAL exceedance [either annual or instantaneous] for any parameter listed in Table IV, the status will move up to Level 1 for that parameter on July 1st following the reporting year during which the exceedance occurred (i.e., if there was an instantaneous exceedance on September 30, 2015, Level 1 would begin on July 1, 2016). Moving to Level 1 status triggers two actions: a Level 1 ERA Report, both prepared with assistance of a QISP.

- A Level 1 ERA Evaluation, due by October 1 following commencement of Level 1 status, consists of completing an evaluation of the industrial pollutant sources at the facility that may be related to the NAL exceedance and evaluate all BMPs to determine if revisions are necessary to prevent future NAL exceedances.
- A Level 1 ERA Report, due by January 1 following commencement of Level 1 status, is prepared after the Level 1 ERA Evaluation and consists of revising the SWPPP as necessary to implement any additional BMPs identified in the Evaluation and submitting via SMARTS the Level 1 ERA Report with details regarding SWPPP revisions and the results of the Evaluation.

A Level 1 status for any exceeded parameter will return to Baseline status once the Level 1 ERA Report has been completed, additional BMPs have been implemented, and results from four consecutive QSEs indicate no additional NAL exceedances for that parameter.

The status for any exceeded parameter will change to Level 2 if sampling results indicate an NAL exceedance for that same parameter while in Level 1 (i.e., if Level 1 was implemented on July 1, 2015 and an exceedance occurred on December 1, 2015, Level 2 would be triggered on July 1, 2016). Moving to Level 2 status triggers two actions: a Level 2 ERA Action Plan and a Level 2 ERA Technical Report, both prepared with assistance of a QISP.

- A Level 2 ERA Action Plan, due by January 1 following the reporting year during which the NAL exceedance occurred, consists of a schedule and description of implementing a particular demonstration, as described in the Level 2 Technical Report, in response to the NAL exceedance.
- A Level 2 ERA Technical Report, due by January 1 of the reporting year following the submittal of the Level 2 ERA Action Plan, describes one or more of the demonstrations in response to the NAL exceedance: Industrial Activity BMPs Demonstration, Non-Industrial Pollutant Source Demonstration, and/or Natural Background Pollutant Source Demonstration (as described in the General Permit Section XII.D.2).
- A Level 2 ERA Technical Report may be prepared and submitted at any time, whether or not the Facility is required to submit such a report.

A new Level 2 NAL exceedance is any Level 2 NAL exceedance for 1) a new parameter in any drainage area, or 2) the same parameter that is being addressed in an existing Level 2 ERA Action Plan in a different drainage area.

NAL exceedances, in and of themselves, are not violations of the General Permit. Failure to comply with the Level 1 status and/or Level 2 status ERA requirements is in violation of the General Permit.

PG&E Gateway Generation Station ERA Status

Reporting	ERA Level	Parameter	Level 1 ERA	Level 1 ERA	Level 2 ERA	Level 2 ERA
Year	Status		Evaluation	Report	Action Plan	Technical
			Completion	Submittal	Submittal	Report
			Date	Date	Date	Submittal
						Date

2015-	Baseline	N/A	N/A	N/A	N/A	N/A
2016						
2016-	Level 1	Iron, Total	09/27/2016	12/30/2016	N/A	N/A
2017						

See Appendix H for the ERA Evaluation(s) and Report(s)

Reporting

PG&E will submit all sampling and analytical results via SMARTS within 30 days of obtaining all results for each sampling event. In the event a sample's analytical result is reported by the laboratory as non-detect or less than the method detection limit, the method detection limit will be provided. A value of zero will not be reported.

PG&E will provide the sample analytical results reported by the laboratory as below the minimum level (often referred to as the reporting limit) but above the method detection limit. Reported analytical results from multiple discharge points will be averaged automatically by SMARTS. For any calculations required by this General Permit, SMARTS will assign a value of zero for all results less than the minimum level as reported by the laboratory.

10. ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)

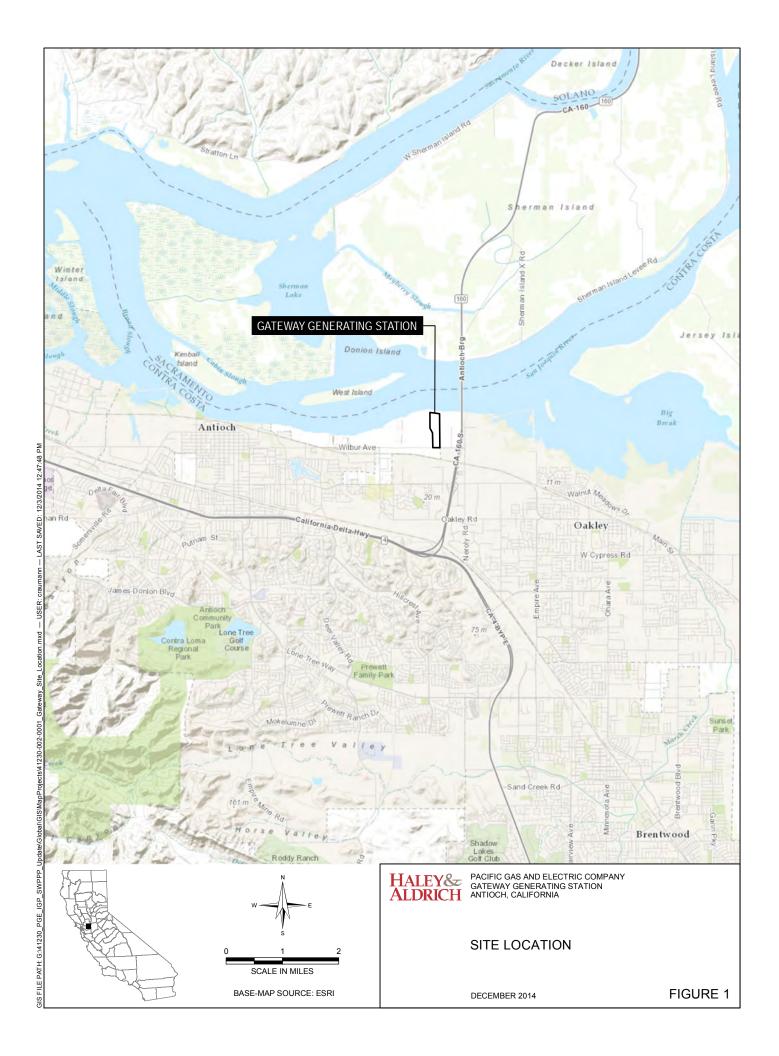
PG&E will conduct an Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) each reporting year (July 1 to June 30). If the Annual Evaluation is conducted fewer than eight months, or more than sixteen months, after the previous Annual Evaluation, the facility will document the justification for doing so. Within 90 days of the Annual Evaluation, PG&E will revise the SWPPP, as appropriate, and implement the revisions. At a minimum, the Annual Evaluation will cover the following:

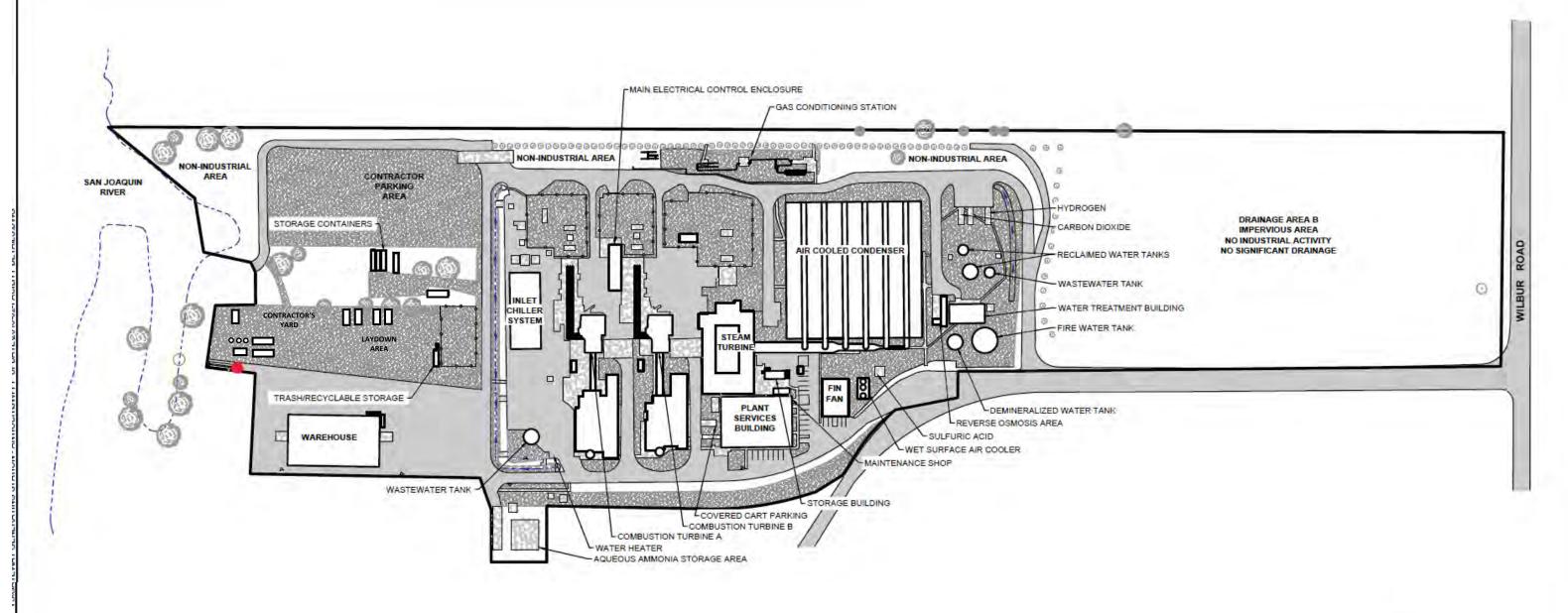
- Review of all sampling, visual observation, and inspection records conducted during the previous reporting year;
- Inspection of all areas of industrial activity and associated potential pollutant sources for evidence of, or the potential for, pollutants entering the storm water conveyance system;
- Inspection of all drainage areas previously identified as having no exposure to industrial activities and materials in accordance with the definitions in Section XVII;
- Inspection of equipment needed to implement the BMPs;
- Inspection of all site BMPs;
- Review and effectiveness assessment of all BMPs for each area of industrial activity and associated potential pollutant sources to determine if the BMPs are properly designed, implemented, and are effective in reducing and preventing pollutants in industrial storm water discharges and authorized NSWDs; and
- Assessment of any other factors needed to comply with the requirements in Section XVI.B.

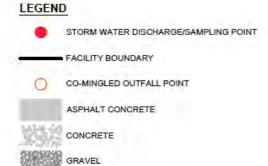
Information gathered during the Annual Evaluation will be recorded on the form provided in Appendix E.

Annual Report

PG&E will certify and submit via SMARTS an Annual Report no later than July 15th following each year. The Annual Report will be created by the Environmental Compliance Manager, reviewed by the Subject Matter Expert, and certified by the Legally Responsible Party. The Annual Report will include the following:


- A Compliance Checklist that indicates compliance with all applicable requirements of the General Permit;
- An explanation for any non-compliance of requirements within the reporting year;
- Identification of all revisions made to the SWPPP within the reporting year; and
- The date of the Annual Evaluation.


Copies of the Annual Report are included in Appendix G.


REFERENCES

- 1. California State Water Resources Control Board. Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ). 2014.
- 2. Excerpts from Gateway Generating Facility Hazardous Materials Business Plan.
- 3. Spill Prevention, Control, and Countermeasures Plan for Gateway Generating Station, initially prepared by CH2MHill January 12, 2009 and revised August 2, 2013.

@ TREENEGETATION

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

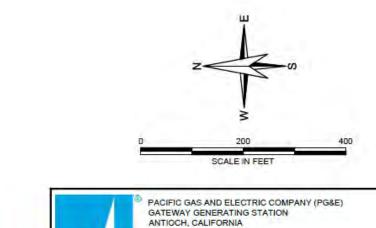
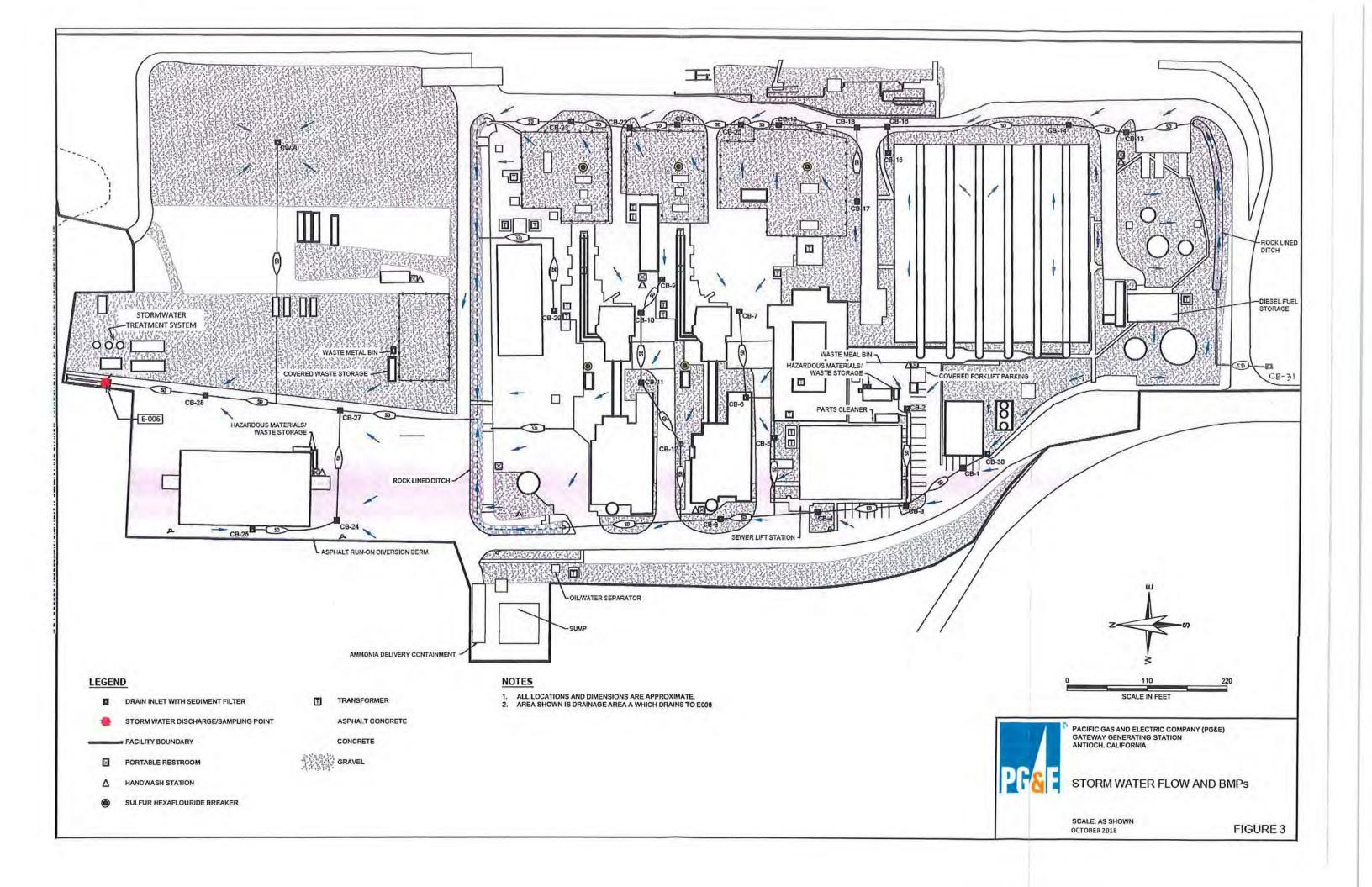



FIGURE 2

APPENDIX A

General Permit for Storm Water Discharges Associated with Industrial Activities (State Water Resources Control Board Order 2014-0057-DWQ)

APPENDIX B

Permit Registration Documents

State Water Resources Control Board

NOTICE OF INTENT

GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITY (WQ ORDER No. 2014-0057-DWQ)

(Excluding Construction Activities)

WDID: 5S07l021950			Status: Active			
Operator Information				Type:	Private Busines	S
Name:	Pacific G	Sas Electric Company	Contact Name	e:	Tim Wis	dom
Address:	P	O Box 770000	Title	e:	Plant Ma	nager
			Phone Number	r:	925-522-	7812
City/State/Zip:	San F	rancisco CA 94177	Email Address	s:	T1WY@p	ge.com
Federal Tax ID:						
Facility Infor	mation			Level:		
Contact Name:		Angel Espiritu	Title	:: <u>En</u>	vironmental Com	pliance Manager
Site Name:	Gateway Gene	rating Station				
Address:	3225 Wilbur Av	e				
City/State/Zip:	Ar	ntioch CA 94509	Site Phone #	<u> </u>	925-522-	7838
County:		Contra Costa	Email Address	s:	abe4@PG	E.com
Latitude:	38.01228	Longitude: -121.75859	Site Size	:	32.5 Ac	cres
		Industrial Area Expo	osed to Storm Water	:	22 Ac	res
	Per	cent of Site Impervious	(Including Rooftops)	:	28 %	6
SIC Code Ir	formation					
1 4911			Electric Services			
Additional Ir	normation					
Receiving		San Joaqu			Flow:	Indirectly
Compliance	Group:					
RWQCB Juris	diction: Regio	n 5S - Sacramento				
Phone:		916-464-3291	Email	: <u>r5s</u>	_stormwater@wa	terboards.ca.gov
Certification						
			_			
	stephen royall		Date	: <u>June 1</u>	4, 2017	
Title:	Senior Plant Ma	anager				

State Water Resources Control Board

NOTICE OF INTENT

GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITIES (WQ ORDER No. 2014-0057-DWQ) (Excluding Construction Activities)

WDID: 5S07l021950 Status: Active

Operator Information Type: Private Business

Name: Pacific Gas Electric Company Contact Name: Benjamin Stanley

Address: PO Box 770000 Title: Senior Plant Manager

Address 2: Phone #: 925-522-7812

City/State/Zip: San Francisco CA 94177 Email: BESN@pge.com

Federal Tax ID: 94-0742640

Facility Information Level:

Site Name: Gateway Generating Station Contact Name: Angel Espiritu

Address: 3225 Wilbur Ave Title: Environmental Compliance Manag

City/State/Zip: Antioch CA 94509 Site Phone #: 925-522-7838

County: Contra Costa Email: ABE4@PGE.com

Latitude: 38.01228 Longitude: -121.75859 Emergency:

Total Site Size: 32.5 Acres Percent of Site Impervious (including rooftops): 28 %

Industrial Area exposed to Storm Water: 22 Acres

SIC Code(s)

Primary SIC: 4911 Electric Services

Secondary SIC:

Tertiary SIC:

Additional Information

Receiving Water: San Joaquin River Water Flow: Indirectly

Storm drain system: Compliance Group:

RWQCB Jurisdiction: Region 5S - Sacramento

Phone: 916-464-3291 Email: r5s_stormwater@waterboards.ca.gov

Certification

Name Benjamin Stanley Date: June 03, 2015

Title: Senior Plant Manager

Attachments Meta Data Information:

Attachment ID	File Name	File Description	File Hash	File Size	Date Attached	Attachment Type
1393445			e4101d3683ba9ccd e463ee75ce71789 3ca19ad7dfa27b69 cde4b24692d959		2015-05-04 07:10:34.0	Other

APPENDIX C

SWPPP Amendment Form

SUMMARY OF SWPPP AMENDMENTS OR REVISIONS

Section and Page	Summary of Revision	Date	Name/Title
Entire Document	Preparation of the SWPPP under the 2014 IGP	Dec-14	Nancy E. Gardiner, CPESC, QSD/QSP Haley & Aldrich, Inc.
Various	Subsequent to performing a stormwater compliance assessment for the vacility, revisions, additions, and updates were made to the SWPPP and site maps.	3/14/2016	Alicia Brenner, CPESC, CESSWI, QSD/P, QISP BTConsulting, Inc.
Cover page, Section 1.4 (pg 3), Section 1.5 (pg 3), Appendix B NOI	Update contact information: Facility Contact, Plant Manager & Operations Supervisor	6/23/2016	Diana Furman, ECM
Section 3.1, Table II (pg. 7), Section 4.1 (pg. 11)	Removed anhydrous ammonia, this is no longer used or stored at the facility	6/23/2016	Diana Furman, ECM
Section 5.4 (pg. 15)	Reviewed and evaluated the site for the updated 303(d) listed impairments. SWPPP updated and now includes all 303(d) impairments listed on SMARTS.	7/1/2016	Diana Furman, ECM
\$ 6.1.6 pg18	Include clarification for annual training	11/14/16	DIANA FURMAN, EC
AppendixE	Revised from Visual observation form template	12/8/2016	DIANA FURMAN ECM
SISTable I pa	3 Updated contact info for plant manager	- 12/30/2016	DIANA FURMAN ECM
red; 1.4(p.7)	Facility Contract into & tollition Dervention Team were updated	5/31/2017	Angel ESPIRITY,
P.3 Fig. 3	- hodeld Revision date - updated Table 1 - updated map	10/3/2016	Angel Espirita

APPENDIX D

Training Log, including training material

SWPPP Training Log

Name of Trainer:		
Location of Training:	Date of Training:	
Signature of Trainer:		
Topics covered:		
☐ SWPPP Compliance Responsibilities		
☐ BMP Implementation and Maintenance		
☐ BMP Effectiveness Evaluations		
☐ Visual Observations		
☐ Monitoring Activities		
☐ SMARTS Reporting		

Name	Title	Company	Signature
- 100000			

APPENDIX E

Industrial Storm Water Facility Inspection and Visual Observation Form Annual Evaluation Form Sampling Log

Industrial Storm Water Facility Inspection and Visual Observation Form

			General Inf	Cormation			
Facility I	Name	Gateway	Generating Stati	on			
WDID N	0.	5S07I021	950				
Date of I	nspection			Start/End Time			
Inspecto	r's Name(s)						
Inspecto	r's Title(s)						
Inspecto	r's Contact Information						
Inspecto	r's Qualifications						
Inspecto	r's Signature						
Type of l	Inspection ^{1,2}	☐ Mon	nthly Visual Obs	ervation	mpling Event Visual	Observation	
			Weather In	formation			
☐ Clear☐ Other:	Weather at time of this inspection? □ Clear □ Cloudy □ Rain □ Sleet □ Fog □ Snow □ High Winds □ Other: Temperature:						
	a sampling event visual of Time Storm Began:	observation,	Rain Gauge		Rain Gauge II	D:	
Date and	Time Discharge Began:		Previous Dis	scharge Ended Greater	Than 48 Hours: □Y	es □No	
			Visual Obs	ervations			
Are there If yes, de	e any spills/leaks observe scribe:	ed at the tim	e of inspection	? □Yes □No			
Have any If yes, de	y previously unidentified scribe:	discharges	of pollutants oc	ccurred since the last	inspection? □Yes	□No	
If yes, no ☐ Floatin	e any discharges occurring the the presence of any of the materials Sheen all checked above:	the followir	ng:		h/Debris 🗖 Other:		
			Outfall Obs	servations			
Outfall No.	Observations	Is NSWD Present?	Potential Source(s) of NSWD	Corrective Action	Person Contacted	Date Corrective Action Completed	
E-006		□Yes □No					
		□Yes □No					
		□Yes □No					

¹ Monthly visual observations will be conducted during daylight hours of normally scheduled facility operation and on days without precipitation. Sampling event visual observations will be recorded at the same time sampling occurs at a discharge location.
² For monthly visual observations, pages 1-5 need to be completed. For sampling event visual observations, pages 1-2 need to be completed.

BMP Control Measures

- Number the structural storm water control measures identified in your SWPPP below (add as many control measures as are implemented on-site).
- Describe corrective actions initiated, date completed, and note the person that completed the work.

	Structural Control Measure	Control Measure is Operating Effectively?	If No, In Need of Maintenance, Repair, or Replacement?	Corrective Action Needed and Notes (identify needed maintenance and repairs, or any failed control measures that need replacement)	Date Corrective Action Completed	Initials of Person Responsible for the Correction Action
1	Drain Inlets	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
2	Secondary Containment: Transformers	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
3	Secondary Containment: Turbines/Oil-filled Equipment	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
4	Secondary Containment: Firewater Pump Bldg	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
5	Secondary Containment: Hazardous Material/Waste Sheds	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
6	Trash/Scrap Dumpsters	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
7	Oil/Used Oil Storage	□Yes □No	☐ Maintenance ☐ Repair ☐ Replacement			
8	Ditches/Outfall	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
9	Iron Treatment System	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
10		□Yes □No	☐ Maintenance ☐ Repair ☐ Replacement			

Areas of Industrial Materials or Activities exposed to storm water

Below is a list of areas that should be assessed during routine inspections. Customize this list as needed for the specific types of industrial materials or activities at your facility.

	Area/Activity	Inspected?	Controls Adequate (appropriate, effective, and operating)?	Corrective Action Needed and Notes	Date Corrective Action Completed	Initials of Person Responsible for the Correction Action
1	Material loading/unloading and storage areas	□Yes □No □ N/A	□Yes □No			
2	Equipment operations and maintenance areas	□Yes □No □ N/A	□Yes □No			
3	Fueling areas	□Yes □No □ N/A	□Yes □No			
4	Outdoor vehicle and equipment washing areas	□Yes □No □ N/A	□Yes □No			
5	Waste handling and disposal areas	□Yes □No □ N/A	□Yes □No			
6	Erodible areas/construction	□Yes □No □ N/A	□Yes □No			
7	Non-storm water/ illicit connections*	□Yes □No □ N/A	□Yes □No			
8	Dust generation and vehicle tracking	□Yes □No □ N/A	□Yes □No			
9	General Housekeeping	□Yes □No □ N/A	□Yes □No			
10		□Yes □No □ N/A	□Yes □No	and characteristics of the non-sto		

^{*}Include a description of the source, quantity, frequency, and characteristics of the non-storm water discharges, associated drainage area, and whether it is an authorized or unauthorized non-storm water discharge.

BMP Implementation Tracking and Recording

Describe all BMP implementation and/or maintenance that occurred since the last inspection here.

Non-Compliance			
Describe any incidents of non-compliance observed and not described above:			
Additional Control Measures** Describe any additional control measures needed to comply with the permit requirements:			
Describe any additional control measures needed to comply with the permit requirements.			
**Additional Control Measures include the following categories as described in the General Permit:			
TO THE COUNTY OF THE COUNTY OF THE COUNTY OF THE PROPERTY OF T			
Minimum BMPs: Good Housekeeping; Preventative Maintenance; Spill and Leak Protection; Material Handling and Waste Management; Erosion and Sediment Controls; Employee Training; and Quality Assurance and Record			
Keeping			
Advanced BMPs: Exposure Minimization; Storm Water Containment and Discharge Reduction; and Treatment			
Control			
Notes			
Notes Use this space for any additional notes or observations from the inspection:			
ose and space for any additional notes of observations from the hispection.			

Annual Compliance Evaluation Form

General Information					
Facility Name:		Evaluation Date:			
Facility Location:		WDID#:			
Is the SWPPP Onsite?	Yes No NA NA	Is the NOI Onsite?	Yes No NA		
	Document Review Info	ormation			
Have all sampling r	Yes No No	NA 🗆			
Document any trends, concerns, or notable information about sampling records here.					
Have all visual observiewed?	ervation and inspection records from the previous	reporting year been	Yes No No N	NA 🗖	
Document any trends, concerns, or notable information about inspection records here.					
Have all industrial activity areas and associated potential pollutant sources been inspected for evidence of or the potential for, pollutants entering the storm water conveyance system?					
Document any trends, concerns, or notable information about industrial areas and pollutants here.					
Have all drainage areas previously identified as having no exposure to industrial activities and materials been inspected?					
Document any trends, concerns, or notable information about no exposure areas here.					
				NA 🗆	
Docume	nt any trends, concerns, or notable information ab	out BMP implementatio	n equipment here.		

Annual Compliance Evaluation Form

Have all BMPs been inspected?	Yes No No	NA 🗆			
Document any trends, concerns, or notable information about BMPs here.					
Has a review and effectiveness assessment of all BMPs been condindustrial activity and associated pollutant potential sources to determine properly designed, implemented, and are effective in reducing and industrial storm water discharges and authorized non-stormwater of		NA 🗆			
Document any trends, concerns, or notable information about BMP effectiveness here.					
Has the SWPPP been reviewed to ensure the information within is operations and personnel?	accurate for current	Yes 🗆 No 🗀	NA 🗆		
Document any trends, concerns, or notable information about SWPPP revisions here.					
Have any other factors needed to comply with the requirements of assessed?	Yes No No	NA 🗆			
Document any other trends, concerns, or notable information here.					
Inspector Information					
Evaluator Name:	Evaluator Title:				
Signature:		Report Date:			

Sampling Field Log

General Information					
Facility Name:	_ 				
Date:		Event Start Time:			
Sampler:		Rainfall Amount:	☐ Today ☐ Storm		
Sampling Event Type:	☐ Storm Water	☐ Non-storm water	Storm Water & NSWD		
	pH Sampl	ing Information			
	Litmus Paper Test Kit Portable Instrument	Portable Instrument Calibration Date/Time:			
	Field pH and Tu	rbidity Measurements			
Were field dupliates taken?	⊡s	□ No			
Discharge Location	% Total Daily Flow	рН	Time		
Sum % Flow (Must = 100)	0				
рН	Calculated Average:	#NUM!			
	Other Paramete	ers (check those collected)			
Oil and Grease	Oth	ner:			
Total Suspended Solids (TSS)	Oth	ner:			
Other:	Oth	ner:			
Other:	Oth	ner:			
Was a chain of custody completed? ☐s N☐					
Additional Sampling Notes/Exception Documentation					
Estimated Event End:					

APPENDIX F

General Permit Attachment H "Sample Collection and Handling Instructions" and Example Chain of Custody Form

ATTACHMENT H

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

For more detailed guidance, Dischargers should refer to the U.S. EPA's "Industrial Stormwater Monitoring and Sampling Guide," dated March 2009, available at: http://www.epa.gov/npdes/pubs/msgp_monitoring_guide.pdf and the "NPDES Storm Water Sampling Guidance Document," dated July 1992, available at: http://www.epa.gov/npdes/pubs/owm0093.pdf.

- 1. Identify the sampling parameters required to be tested and the number of storm water discharge points that will be sampled. Request the analytical testing laboratory to provide the appropriate number and type of sample containers, sample container labels, blank chain of custody forms, and sample preservation instructions.
- 2. Determine how samples will be transported to the laboratory. The testing laboratory should receive samples within 48 hours of the physical sampling (unless otherwise required by the laboratory). The Discharger may either deliver the samples to the laboratory, arrange for the laboratory to pick up the samples, or overnight ship the samples to the laboratory. All sample analysis shall be done in accordance with 40 Code of Federal Regulations part 136. Samples for pH have a holding time of 15 minutes.¹
- 3. Qualified Combined Samples shall be combined by the laboratory and not by the Discharger. Sample bottles must be appropriately labeled to instruct the laboratory on which samples to combine.
- 4. Unless the Discharger can provide flow weighted information, all combined samples shall be volume weighted.
- 5. For grab samples, use only the sample containers provided by the laboratory to collect and store samples. Use of any other type of containers may contaminate samples.
- 6. For automatic samplers that are not compatible with bottles provided by the laboratory, the Discharger is required to send the sample container included with the automatic sampler to the laboratory for analysis.

-

¹ 40 C.F.R. section 136.3, Table II - Required Containers, Preservation Techniques, and Holding Times.

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

- 7. The Discharger can only use automatic sampling device to sample parameters that the device is designed to. For pH, Dischargers can only use automatic sampling devices with the ability to read pH within 15 minutes of sample collection.
- 8. The Discharger is prohibited from using an automatic sampling device for Oil and Grease, unless the automatic sampling device is specifically designed to sample for Oil and Grease.
- 9. To prevent contamination, do not touch inside of sample container or cap or put anything into the sample containers before collecting storm water samples.
- 10. Do not overfill sample containers. Overfilling can change the analytical results.
- 11. Tightly screw on the cap of each sample container without stripping the threads of the cap.
- 12. Complete and attach a label for each sample container. The label shall identify the date and time of sample collection, the person taking the sample, and the sample collection location or discharge point. The label should also identify any sample containers that have been preserved.
- 13. Carefully pack sample containers into an ice chest or refrigerator to prevent breakage and maintain temperature during shipment. Remember to place frozen ice packs into shipping containers. Samples should be kept as close to 4 degrees Celsius (39 degrees Fahrenheit) as possible until arriving to the laboratory. Do not freeze samples.
- 14. Complete a Chain of Custody form for each set of samples. The Chain of Custody form shall include the Discharger's name, address, and phone number, identification of each sample container and sample collection point, person collecting the samples, the date and time each sample container was filled, and the analysis that is required for each sample container.
- 15. Upon shipping/delivering the sample containers, obtain both the signatures of the persons relinquishing and receiving the sample containers.
- 16. Dischargers shall designate and train personnel to collect, maintain, and ship samples in accordance with the sample protocols and laboratory practices.
- 17. Refer to Table 1 in the General Permit for test methods, detection limits, and reporting units.
- 18. All sampling and sample preservation shall be in accordance with 40 Code of Federal Regulations part 136 and the current edition of "Standard Methods for

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

the Examination of Water and Wastewater" (American Public Health Association). All monitoring instruments and equipment (including Discharger field instruments for measuring pH or specific conductance if identified as an additional sampling parameter) shall be calibrated and maintained in accordance with manufacturers' specifications to ensure accurate measurements. All laboratory analyses shall be conducted according to approved test procedures under 40 Code of Federal Regulations part 136, unless other test procedures have been specified by the Regional Water Quality Control Board. All metals shall be reported as total metals. Dischargers may conduct their own field analysis of pH (or specific conductance if identified as an additional sampling parameter) if the Discharger has sufficient capability (qualified and trained employees, properly calibrated and maintained field instruments, etc.) to adequately perform the field analysis. With the exception of field analysis conducted by Dischargers for pH (or specific conductance if identified as an additional sampling parameter), all analyses shall be sent to and conducted at a laboratory certified for such analyses by the California Department of Public Health. Dischargers are required to report to the Water Board any sampling data collected more frequently than required in this General Permit (Section XXI.J.2)

GGS Stormwater Treatment System Operations Recordkeeping Log

Discharge	Discharge Date/Time		Discharge Volume - Flow Meter Readings (100 gal)			Levels (ppm /L)	Discharg	ge pH Probe (Turbio	lity Probe (N		Operator	Comments
Start	End	Initial	Final	Total	Date/Time	Bench Kit Reading	Date/Time	Handheld Reading	Probe Reading	Date/Time	Handheld Reading	Probe Reading	Initials	Comments

Flow Meter Readings to be taken prior to beginning of discharge and after discharge ends.

Discharge if iron level is less than 1 ppm.

Perform accuracy checks on pH and turbidity probes at least twice per discharge event. Do not perform accuracy checks during backwash; meters are inaccurate during this time.

Accuracy for pH ±0.5 s.u.

Accuracy for turbidity ±15-20 NTU

Allowable pH discharge range: 6.0-9.0 s.u.

Normal pH range at pretreatment probe (i.e. weir tank): 8.8-9.3 s.u.

CHAIN OF CUSTODY FORM

Client Name:						ANALYSIS REQUIRED																
Laboratory: Laboratory Contact:																				Field readings: (Include units) Time of readings pH pH unit		
Sampler: Sample Sample Container # of				Contact:						Total Iron												Field readings QC: Checked by: Date
Description	Matrix	Туре	# of Cont.	Sample I.D.	Sampling Date/Time	Preservative	Bottle #	Total Suspended	O % S	To												Comments
Outfall 001	W																					
Outfall 002	W																					
Outfall 003	W																					
Duplicate	W																					
Relinquished By Date/Time:							Received E	Received By Date/Time:							2	Turn-around time: (Check) 24 Hour: 72 Hour: 10 Day: 48 Hour: 5 Day: Normal:						
Relinquished By Date/Time:							Received E	ceived By Date/Time:								Sample Integrity: (Check) Intact: On Ice:						
Relinquished By Date/Time:							Received E	<u></u> Зу														

APPENDIX G

Annual Reports

APPENDIX H

ERA Evaluations and Reports

APPENDIX I

Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 13

Exhibit 7
Biological Record Summaries
(BIO-2)

Gateway Generating Station California Energy Commission 2021 Annual Biological Compliance Report

PREPARED FOR: Angel Espiritu/PG&E Gateway Generating Station Compliance Manager

PREPARED BY: Gateway Generating Station Designated Biologist

Richard Crowe/Jacobs

COPIES: Jerry Salamy/Jacobs Project Manager

Amy Krisch Co-Designated Biologist/PG&E

DATE: March 10, 2022

Introduction

This Gateway Generating Station (GGS) Annual 2021 Biological Resources Compliance Report fulfills the California Energy Commission (CEC) requirement of Condition of Certification (COC) BIO-2. Condition BIO-2 Verification states; "During project operation, the Designated Biologist shall submit record summaries in the Annual Compliance Report."

On December 19, 2006, Pacific Gas and Electric Company (PG&E) filed a petition (TN 38720) with the CEC requesting to amend the Energy Commission Decision to eliminate the use of San Joaquin River water as the cooling source for the GGS Project (formerly known as the Contra Costa Power Plant Unit 8 Project). The petition also proposed ten associated project design changes at the project site. The 530-megawatt project was originally certified by the Energy Commission on May 30, 2001. Construction of the facility started late in 2001 and was suspended in February of 2002 due to financial difficulties, with approximately 7 percent of construction completed. On July 19, 2006, the Energy Commission approved¹ the addition of PG&E as co-owner of the project with Mirant Delta, LLC. On December 4, 2006, PG&E filed a petition² to remove Mirant as a co-owner and change the name of the facility to the Gateway Generating Station. Construction was restarted in January 2007 with PG&E as the project proponent.

After PG&E became the project owner/operator, the project was re-designed to avoid biological resource impacts to the extent feasible through development of mitigation and protection measures for the new design. These mitigation and protection measures reduced biological resource impacts so that no agency permits were required. These changes resulted in Conditions BIO-7, 10 and 11 being eliminated; also, additional minor changes were made to Conditions 5, 6 and 9.³

¹ http://docketpublic.energy.ca.gov/PublicDocuments/Compliance/00-AFC-1C/2006/Jul/TN%2037478%2007-19-

<u>06%20Filing%20of%20Notice%20of%20Decision%20in%20compliance%20with%20Public%20Resources%20Code%20Section%2021080.5%20and%20Title%2020%20Ca%20.pdf</u>

² http://docketpublic.energy.ca.gov/PublicDocuments/Compliance/00-AFC-1C/2006/Dec/TN%2038529%2012-04-06%20PG-

E's%20Petition%20for%20Minor%20Amendment%20to%20Clarify%20it%20is%20the%20Sole%20Owner.pdf

³ http://docketpublic.energy.ca.gov/PublicDocuments/Compliance/00-AFC-1C/2007/Aug/TN%2041809%2008-01-

GGS construction, including restoration activities, was completed in June 2009.

2021 Monitored Activities and Wildlife Interaction

PG&E has complied with the biological resource COCs, including having the Designated Biologists (DB) or an alternative Biologist perform pre-disturbance surveys, and when necessary, evaluate/demarcate nesting bird activity and other measures as appropriate within the facility. All new employees and contract workers employed at the site received the CEC-approved Worker Environmental Awareness Program training (WEAP) via video or lecture and daily tailgate training with the DB or the PG&E GGS Compliance Manager Angel Espiritu (CM). The DB remained on-call throughout 2021.

The on-call monitoring and compliance efforts for the 2021 calendar year are documented in chronological order below and within Appendix A, Site Photos.

February 3rd, the DB and CO DB received a request from the GGS CM concerning the need for a predisturbance survey in support of planned mowing and herbicide application. The mowing and herbicide application was scheduled to begin February 22 with the disturbance area being mainly in the southern portion of the GGS site (Photo 1).

February 18th, the CO DB surveyed the areas of disturbance in support of the planned mowing and herbicide application. The CO DB reported that no nesting birds or mammals were observed in the planned areas of disturbance.

February 23rd, the landscape contractor performing the planned mowing and herbicide application reported to GGS staff that they had observed an Anna's hummingbird (*Calypte anna*) nest in a redwood tree (Photo 2). The GGS personnel marked off the tree and nest area with protective exclusion flagging (Photo 3). Work in the nest area was suspended until nesting has been completed.

March 22nd, the DB and CO DB received a request to resurvey the hummingbird nest area and the other previously surveyed areas because work was scheduled in the nest area for April 26th. The CO DB scheduled a follow-up survey of the nest area for April 21st.

April 21st, the CO DB conducted a pre-disturbance survey of the planned disturbance area (Photo 1). The pre-disturbance survey results were negative for nesting birds and mammals and the Anna's hummingbird nest that was discovered on February 23rd was empty (Photo 4).

May 11th, the DB received an e-mail from the GGS Maintenance Supervisor Aman Prakash Singh (GGS MS) concerning the observation of a single pigeon (*Columba livia*) egg observed on top of a barrel (Photo 5). The egg was described as cold to the touch, no nest structure was observed with the single egg and no adult was observed in the area. The DB asked GGS personnel to dispose of the egg and noted that the observation would be documented in the annual compliance report.

June 8th, the DB received an e-mail from the GGS MS concerning the observation of a mourning dove (*Zenaida macroura*) nest that was observed on the north side of the control room (Photo 6). The GGS MS stated that the nest was not in a critical area and that GGS personnel had already erected protective exclusion flagging around the nest site (Photo 7).

July 20th, the DB was informed by GGS personnel that the nesting mourning dove was still being observed in the nest area north of the control room.

September 7th, the DB received an e-mail with a photo of the empty mourning dove nest that was observed north of the control room (Photo 8). The DB requested that the nest be removed from the area and that the exclusion tape be removed from the area.

 $[\]frac{07\%200 rder\%20 Amending\%20 the\%20 CEC\%20 Decision\%20 to\%20 Eliminate\%20 the\%20 use\%20 of\%20 Cooling.pdf}{2000 CECM20 Decision\%20 Cooling.pdf}$

Conclusion

The Gateway Generating Station complied with all biological resource COCs and the mitigation/avoidance measures specified in the BRMIMP during the year 2021.

Appendix A Site Photos

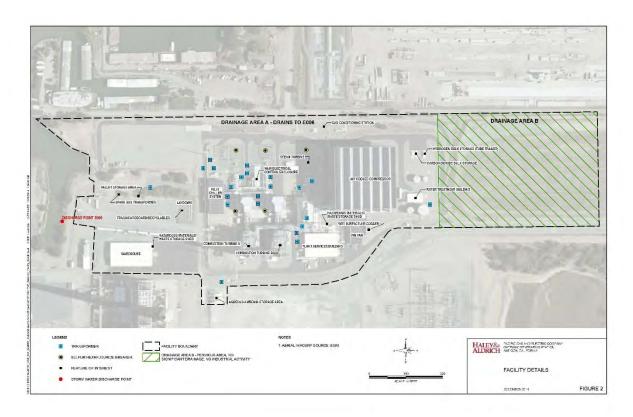


Photo 1, site plan for pre-disturbance nesting bird survey, green hash marks represent area of disturbance, 2-3-21.

Photo 2, of hummingbird nest observed in redwood tree, 2-23-21

Photo 3, of hummingbird nest with protective flagging in place, 2-23-21.

Photo 4, close-up of empty hummingbird nest, 4-21-21.

Photo 5, of single pigeon egg observed on a barrel with no nest structure, 5-11-21.

Photo 6, of mourning dove nest observed in out building just north of control room, 6-8-21.

Photo 7, of protective flagging identifying area with a mourning dove nest, 6-8-21.

Photo 8, of dove nest after mourning dove fledged. 9-7-21.