DOCKETED	
Docket Number:	21-IEPR-03
Project Title:	Electricity and Natural Gas Demand Forecast
TN #:	241525
Document Title:	Transcript - IEPR COMMISSIONER WORKSHOP ON ENERGY DEMAND ANALYSIS
Description:	IEPR COMMISSIONER WORKSHOP ON ENERGY DEMAND ANALYSIS
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Energy Commission
Submission Date:	2/11/2022 9:22:58 AM
Docketed Date:	2/11/2022

STATE OF CALIFORNIA

CALIFORNIA ENERGY COMMISSION

)

In the Matter of:)
2021 Integrated Policy Report)
(2021 IEPR))
)

Docket No. 21-IEPR-03

RE: Energy Demand Analysis

IEPR COMMISSIONER WORKSHOP ON

ENERGY DEMAND ANALYSIS

REMOTE VIA ZOOM

TUESDAY, DECEMBER 16, 2021

1:00 P.M.

Reported by:

Susan Palmer

APPEARANCES

COMMISSIONERS

J. Andrew McAllister, 2021 IEPR Lead Commissioner

Siva Gunda, Vice Chair, Lead Commissioner for Energy Demand in the 2021 IEPR

Patricia Monahan, Commissioner

CEC STAFF

Quentin Gee

Matt Coldwell

Raquel Kravitz

Patty Pham

Stephanie Bailey

Rosemary Avalos

Denise Costa

Mark Palmere

PRESENTERS

Lynn Marshall, CEC

Nick Fugate, CEC

Michael Kenney, CEC

Ingrid Neumann, Ph.D., CEC

Heidi Javanbakht, CEC, Moderator

PUBLIC COMMENT

Christian Lambert, Cal Advocates

INDEX

Introduction		
• Heather Raitt	4	
Opening Remarks • J. Andrew McAllister, 2021 IEPR Lead Commissio	oner	5
 Siva Gunda, Vice Chair Patty Monahan, Commissioner 	8 12	
1. 2021 Annual Electricity and Gas Demand Forecast:		
• Lynn Marshall, CEC	14	
• Discussion	25	
 Zoom Q&A, Moderated by Heidi Javanbakht 	33	
2. 2021 Hourly & Peak Electricity Demand Forecast:		
• Nick Fugate, CEC	34	
• Discussion	56	
• Zoom Q&A, Moderated by Heidi Javanbakht	76	
3. SB 350 Background and Update Analysis:		
• Michael Kenny, CEC	80	
• Ingrid Neumann, CEC	84	
• Discussion	118	
Public Comments	123	
Closing Remarks		
Adjourned	126	

1	P R O C E E D I N G S
2	1:00 P.M.
3	THURSDAY, DECEMBER 16, 2021
4	MS. RAITT: All right. Well folks are
5	logging on. Good afternoon, everybody. Welcome
6	to today's 2021 IEPR Commissioner Workshop on
7	Energy Demand Analysis. I'm Heather Raitt, the
8	program manager from the Integrated Energy Policy
9	Report, which we refer to as the IEPR. The
10	Workshop is being held remotely consistent with
11	Assembly Bill 361 to improve and enhance public
12	access to state agency meetings during the
13	COVID-19 pandemic by allowing teleconferencing
14	options. The public can participate consistent
15	with the directions provided in the notice for
16	this workshop.
17	All IEPR workshops are recorded, and the
18	recording will be linked to the CEC website
19	shortly after the workshop, and a written
20	transcript will be available in about a month.
21	To follow along, the schedule and slide decks for
22	today have been docketed, and they're posted on
23	the CEC's website. Just go to the 2021 IEPR page
24	and you can find them there.

1 Attendees may participate in the workshop today in a variety of ways. For those joining 2 through the online Zoom platform, the Q&A feature 3 is available for you to submit questions. You 4 may also upload a question submitted by someone 5 6 else. To do that, click the thumbs up icon. 7 Questions with the most upvotes are moved to the top of the queue. We will reserve a few minutes 8 9 after each presentation to take a few questions 10 but may not have time to address all the 11 questions submitted.

Alternatively, attendees may make Alternatively, attendees may make comments during the public comment period at the end of the day. Please note that we will not be responding to questions during the public comment period.

Written comments are also welcome, and instructions for doing so are in the workshop notice and they are due on December 30th. And with that, I'm happy to turn it over to Commissioner Andrew McAllister, who is the lead for the 2021 IEPR. Go ahead. Thank you, Commissioner.

24 COMMISSIONER MCALLISTER: Great. Thank25 you very much, Heather. Appreciate that.

1 Looking forward to today's workshop; and I don't 2 have a huge amount of comments to make. Just as 3 everyone knows, this effort is really 4 foundational to what the Energy Commission, to the Energy Commission's role as the Energy Policy 5 6 and Planning Agency in the State of California. 7 The forecast is really foundational to much of 8 the planning that goes on in the state. And this 9 is, today's sort of suite of topics is an update 10 to the preliminary work that we heard some months ago on both the electric and the gas side, and 11 12 then also on the hourly and peak electricity 13 demand forecast, which is a relatively new 14 product that I'm sure Vice LEAD COMMISSIONER 15 Gunda will discuss in more depth. 16 But really, I want to just thank the whole team for developing, and Vice LEAD 17 18 COMMISSIONER Gunda's leadership on this as well, 19 for developing the suite of kind of updated 20 products that are needed to inform our planning for reliability, primarily in the state in the 21 22 years to come. And certainly the temporal aspect 23 of the analysis and sort of the granularity of 24 the analysis and just improvements all around 25 that we'll hear about today are key to sort of

> California Reporting, LLC (510) 313-0610

1 being as relevant and sort of as substantive as 2 possible so that we can inform the decisions that 3 have to be made in terms of investment and 4 resource planning of all types.

5 So with so I want to thank again Heather 6 for, and the whole team, Raquel and Stephanie and 7 the whole team, for putting together the 8 workshop, the Assessments Division staff who 9 we'll hear from, Lynn and Nick, Michael and 10 Ingrid, as well as Mark Kootstra, and the whole 11 team that's kind of behind here.

12 Often -- and then just to remind people, 13 the reason we're doing this in December is that 14 we kind of have to get through the peak summer 15 and get the data in order to be able to do the analysis and be fully up to date. And so it's 16 17 always kind of a mad dash to the finish line 18 here. And so we're hearing about a fairly 19 well-developed snapshot today. So we're looking 20 forward to that.

21 And then also getting an update on SB 350 22 and the updated analysis to round us out at the 23 end of the afternoon. So thank you all for being 24 here.

I really want to say we look forward to

25

1 your comments on this and any observations or 2 additions or tweaks you might suggest. It is 3 really helpful to hear that from knowledgeable 4 stakeholders that are tuning in.

5 And want to thank all the staff again and 6 EAD for the incredibly hard work and just the level of professionalism that they bring to this 7 8 every day. And it's a, you know, it's a moving 9 it's kind of, in a way you know, with reliability 10 and climate, it's a little bit of a moving 11 target. So it requires a lot of all hands on 12 deck, it seems like all the time.

Anyway, with that, I'll wrap up my Anyway, with that, I'll wrap up my comments and pass it on to the Lead Commissioner on the Forecast and the Assessment Division, Vice LEAD COMMISSIONER Siva Gunda. So Vice LEAD COMMISSIONER Gunda.

18 VICE CHAIR GUNDA: Thank you,
19 Commissioner McAllister, thanks for setting the
20 stage. I will try not to repeat some of the
21 things you mentioned. I would also just want to
22 say nice to have Commissioner Monahan on the dais
23 and other stakeholders as usual. This is a
24 wonderful process that we have.

25

California Reporting, LLC (510) 313-0610

So I think Commissioner McAllister

mentioned this, but just want to reiterate that 1 2 the CEC's California Energy Demand Forecast, 3 which we call the CED, is actually a set of several forecasting products that are used in 4 various planning proceedings across the state. 5 6 They include CPUC's work in the IRP, includes the 7 transmission planning, and the CAISO, and so on. 8 So it really underpins a lot of the state's work 9 and hence it requires a lot of coordination 10 between the agencies on figuring out the 11 methodological improvements and consistency and 12 the data and the assumptions. So it's usually done through a very coordinated process over the 13 14 year on a weekly basis where staff meet and 15 discuss the different elements of the forecast. 16 So just want to thank the interagency 17 team for the continued coordination through the 18 Joint Agency Steering Committee forum and then 19 kind of moving the forecasting products forward 20 carefully through the year.

There's also a second element outside of these public workshops we have, which is called the DAWG, the Demand Analysis Working Group, that also plays a pivotal role with a number of stakeholders, including the utilities, the LSEs,

1 and a number of data providers and entities that 2 are watching and are interested in the technical 3 details typically are part of. And that's also a 4 very important element in developing the 5 forecast.

6 So the -- there are several different 7 forms of energy use in California. Obviously 8 when we talk about energy demand, we talk about 9 electricity, natural gas, gasoline, diesel and 10 many other fuels. And really the forecast is 11 supposed to be a data driven product that 12 develops a reasonable assessment of where we are 13 going to be in the next 10 years. So that sets 14 the stage for some of the planning processes.

15 Here I would like to just remind that 16 this is the second of the workshops on the 17 Forecasting results. The first one was on 18 December 2nd where staff were able to present 19 some high level details on the Transportation 20 Energy Demand Forecast, the Additional Achievable 21 Energy Efficiency and Fuel Substitution, and also 22 introduce the CEC's Demand Scenarios Project. 23 And a couple of important things that we heard 24 during that conversation: you know, Commissioner 25 Monahan's suggestion on really thinking about

1 this as an integrated work across many sectors 2 and having the opportunity to ensure that the 3 forecasting is done in a way that the metrics are transferable between policy ideation and 4 5 discussion in different sectors, whether it be 6 CO2 emissions, air quality and so on. So how do we think about the Forecast, you know, in a BTU 7 8 sense, you know, specific to sectors, but also we 9 can talk through the different sectors for policy 10 situation.

11 And there's also the recognition that 12 forecasting is not anymore a siloed effort, and 13 it has to cross-cut many of our programs, many of 14 our divisions. So just want to thank again for 15 the staff for doing that. And then also the 16 words we heard from Commissioner McAllister and 17 Commissioner Monahan to really do that as we move 18 forward.

So just want to finally acknowledge the forecasting team before I hand it over to Commissioner Monahan for opening comments. These two years have been extremely challenging for all of us and definitely not in any small measure, the forecasting team. We had retirements, we had losses on the forecasting team, and more

recently, we have staff that are able to -- that 1 2 had to go on extended leave. So it has been a 3 continued difficulty in adapting our work to the 4 needs of what we need to do at the loss of resources and the way we work typically. So I 5 6 just want to thank Matt Coldwell, Heidi Javanbakht, Chris -- sorry, Matt - sorry Nick 7 8 Fugate, Mark Palmere, and a number of Lynn 9 Marshall and many others behind the scenes: 10 Ingrid Neumann who are working tirelessly to make 11 this happen. They typically put towards the end 12 of the end of the year put, you know 50, 60 hours a week to get this done. So I just want us to 13 14 all be grateful and recognize the effort that the staff put in as we provide feedback and, you 15 16 know, opportunities for improvement.

With that, thank you again to everybody
for being here and helping us move this forward.
So pass it on to Commissioner Monahan if you have
any opening comments.

21 COMMISSIONER MONAHAN: Well thank you,
22 and I want to just emphasize what Vice LEAD
23 COMMISSIONER Gunda just said around the analysis
24 that EAD has been shepherding and the sort of
25 challenges that you faced in staffing this year

California Reporting, LLC (510) 313-0610

1 and the fact that here it is the holidays, and 2 this is when you're still working many hours to 3 get this product to the finish line. So I just 4 also want to acknowledge all the hard work that's 5 going into this.

6 And I do think that, you know, every year 7 we are evolving in our understanding of the 8 systems integration aspects of our forecast. And 9 I just appreciate Vice Chair Gunda's thought 10 leadership and Commissioner McAllister in terms 11 of just really I think being able to connect the 12 dots and also the staff who is just continuously 13 trying to refine the analysis, improve it, learn 14 from what we're seeing in the marketplace. And 15 one of the most dramatic transitions, as I've 16 said before, is happening in the transportation 17 sector and we are just scratching the surface of 18 our understanding.

19 There is no shortage of research in this 20 space, and you know, what is the electrification 21 pathway? How fast? How do we make it equitable? 22 How do we make it good for the grid? You know, 23 these are all really important foundational 24 questions that I think California is at a 25 leadership position to inform not just what's

happening across the United States, but across 1 the globe. And I think that that's this, you 2 3 know we are, California is such a leader on clean transportation and how do we continue to be that 4 leader, not just in our regulatory arena, but 5 6 also in the analysis and research that we do. 7 So just looking forward to today and I've 8 really learned a lot through this whole process. 9 So kick it back over to our leader, Heather, who 10 is ably stewarding all these pieces. 11 MS. RAITT: Great. Thank you, 12 Commissioner. Thank you. 13 So yeah, our first presenter this afternoon 14 is Lynn Marshall, and she'll be presenting on the 15 2021 Annual Electricity and Gas Demand Forecast, 16 and she's one of the lead forecasters in the 17 Energy Assessment Division. So go ahead Lynn. 18 Thanks. 19 MS. MARSHALL: Good afternoon, 20 Commissioners. Okay. Next slide. So this shows 21 the suite of products that was just being 22 discussed. So today I'll be presenting the 23 Annual Forecast of Electricity Consumption and Sales and Our Natural Gas Forecast, as well as 24 25 Managed Electricity and Sales Forecast. Nick

1 will be covering the peak and hourly forecast
2 later and then after this workshop we'll be
3 working on getting forms showing those annual
4 electricity sales results posted, as well as
5 developing the LSC and Balancing Authority tables
6 that are used by our sister agencies. Next
7 slide.

8 So at this point, we've had to have hours 9 and hours of workshops discussing all of the 10 modeling and data changes to our forecast, so I 11 just want to highlight a few of the key inputs. 12 There's a link down at the page from Heidi's 13 presentation two weeks ago that has a good 14 summary of when different topics were covered, so 15 people can refer to that. But the changes with 16 the biggest forecast impact: first is, you know 17 forecasting off of 2020 actuals, and of course, 18 that's something we do every year but because of 19 the -- it's particularly impactful this year 20 because of the challenges of forecasting, what 21 would happen with 2020 and in some cases 22 thingsare significantly different. Updated 23 economic drivers, and then on our -- among our 24 load modifiers, the largest impact is from our electric vehicle additions: light, medium and an 25

1 increased heavy-duty demand.

2 We have some significant changes to our 3 self-generation forecast, which I'll come back to, and then we've included incremental effects 4 5 from 2019 and 2020 efficiency programs and our 6 Title 24 and 20 building and appliance standards. And then, of course, we're doing both additional 7 8 achievable energy efficiency and additional fuel 9 substitution so that building electrification is 10 showing up in that AA fuel substitution portion. 11 Next slide.

So this summarizes the demands -- the 12 13 various demand scenarios that cover our baseline 14 economic forecast, and then we have high and low 15 economic and demographic projections, and our 16 high energy demand with high EV adoptions. And conversely, low EV adoptions and higher rates in 17 18 the low case. Now let's move forward to the next 19 slide.

All right. So the economic and demographic projections over the long term, they're fairly similar, but there are some changes. Overall, population and household projections are lower. And in the near term, there's a little different impact. So the

1 previous forecast was forecasting a large drop in 2 personal income in the near term; that didn't happen. On the other hand, on the employment 3 side, if we could and go to the next slide, 4 please. So employment dropped more than was 5 6 forecasted, and in particular in some sectors. 7 And the forecasted recovery is a little more 8 gradual, so that has an impact on our forecast 9 trajectory. Next slide.

10 And then this shows, going back to our Transportation Electrification, the scenarios 11 that have been discussed at the previous 12 13 workshops. So in the mid-case, we're adding 14 about 31,000 gigawatt hours for vehicle 15 electrification by 2035. Two-thirds of that is 16 in nonresidential sector, heavily concentrated in commercial. So that's a big impact on that 17 18 sector. Next slide.

Okay, so we'll start with our Consumption results at the statewide level. So this is all consumption, even that -- including that served by self-generation. So at the statewide level we're pretty -- the forecast is pretty consistent in the near term. You do see that higher growth, in particular due to the economic recovery in

1 certain sectors and transportation

2 electrification. But the differences are much 3 more significant when we go to individual 4 planning area levels or in individual sectors. 5 Next slide.

6 So looking at residential now, what we 7 saw in 2021 was a significant increase ranging from 9 to 12% increase in use per household than 8 9 in 2020. Our forecast is assuming that much of 10 that higher use per household persists through 11 the forecast period. So we have a lower growth 12 rate there, but we're still quite a bit higher 13 than our previous forecast. And that does 14 include some vehicle electrification, which about 15 40% of that is offset by building and appliance 16 standards. Next slide.

17 So looking at the Commercial Consumption 18 we have a different situation. There was a large 19 drop in 2020 and we're slowly recovering from 20 that with a gradual rebound in employment. So 21 that increasesthe growth rate in the near term 22 and then as we move out towards 2035 the vehicle 23 electrification is increasing our growth rate to 24 3% annually, so it's significantly higher than 25 our previous forecast. Next slide.

1 So looking at the Industrial Consumption, 2 the economic outlook is fairly similar, a little 3 lower in some sectors. We do have higher 4 electricity rates in that forecast, so we do have 5 a slightly lower growth rate overall. Next 6 slide.

7 And then our AG and Water Pumping sector. 8 So this includes three things: water pumping for 9 the water projects like DWR and MWD that slightly 10 lower and it reflects a long-term trend towards 11 lower demand in that area. Also, the core 12 agricultural activities, there's a slightly lower 13 outlook in that sector, but then on the cannabis 14 production, we have a slightly higher forecast, 15 so we end up with, we have a higher starting 16 point overall. So next slide.

17 So that's the consumption sectors. Now as we move to self-generation, we made extensive 18 19 updates to the self-generation model. Everything 20 from new interconnection data, modeling of the 21 NEM 3.0, updated rate assumptions, the ITC 22 extension, revised Title 24 modeling, POU net 23 billing, and we did include the recently adopted 24 2022 Title 24 standards for non-residential PV. 25 So some of those are increasing, would tend to

increase the forecast, some of them would
 decrease it and the combined impacts of those, in
 particular the rate assumptions, are going to
 vary by planning area and sector.

5 So overall that we have a slightly higher forecast, two and a half percent by 2035, but it 6 varies significantly by utility and sector. So 7 8 for example, in the Edison residential sector, 9 the forecasted growth consumption is quite a bit 10 lower, on the other hand, PG&E is higher. In the 11 public utility areas such as Burbank and LADWP, 12 you do see a larger increase. So that's going to impact the sales forecast that we'll show next. 13 14 Next slide.

15 Okay, so statewide sales and again, at 16 the statewide level, it looks like not much has 17 changed. Slightly higher growth rate, much lower 18 than our consumption forecast because we've got 19 additional self-generation. But I'm going to 20 move on now to the planning areas. Next slide. 21 Let's start with that PG&E planning area. 22 So there was a large decline in commercial usage 23 in 2020 that's not forecasted to come back fully 24 for several years. So we end up with a higher 25 growth rate, but we're still lower overall than

California Reporting, LLC (510) 313-0610

1 our previous forecasts, and again, PG&E had an 2 increase. We increased our forecast of self-3 generation in the PG&E planning area, so we have 4 a lower forecast overall. And then now we can 5 show this. This is our unmanaged forecast. So 6 if we go to the next slide we have the managed 7 forecast.

8 And what we're doing here is starting 9 with our unmanaged forecast and combining this 10 with the Additional Achievable Energy and Fuel 11 Substitution Scenarios that Ingrid presented two 12 weeks ago. So she had -- there was a range of 13 scenarios, 1 through 6, with 5 and 6 being fairly 14 ambitious. So for our managed cases that we use for planning, some of the candidate options are: 15 2, the lowest; 3, the mid-case; and 4, which is 16 17 The mid-case is usually what we use for high. 18 system planning. So you can see with that 19 mid-energy efficiency and the fuel substitution, 20 we're now lowering the net amount of additional 21 achievable adjustment because the fuel 22 substitution is offsetting the energy efficiency. 23 So while the -- so we started with a 24 lower unmanaged forecast, and it's lower, the 25 managed forecast is lower in the near term. As

we go further out, we now have a higher forecast
 out in 2030. So next slide.

3 Edison, we have the opposite situation. Edison had about a 12% increase in residential 4 use per household, among the largest of the 5 6 planning areas. So we do see that higher 7 starting point in that level persisting. And then adding the commercial electrification, and 8 9 the lower self-generation forecast, we have guite 10 a bit higher forecast; 5% higher by 2030. So if 11 we go to the next slide with the Managed 12 forecast, that difference is even larger because, 13 we'll we're subtracting energy efficiency, we're 14 adding fuel substitution. So 7% higher mid-mid 15 managed case by 2030. Okay.

And then finally we go to, among the IOUS, we'll show the San Diego. Their 2020 residential and commercial changes offset, kind of like the state as a whole. So we only have a Slightly higher forecast here, same starting point, again reflecting the commercial transportation electrification.

Now, the next slide shows that the San Diego Managed Forecast and that our managed forecast is now higher because of the impact of

1 the fuel substitution and less AA.

So next slide I'm going to combine all three of those to show the CAISO mid-managed case and the PG&E and Edison forecast kind of balance out. We're almost unchanged in the near term for 2023, but by 2030 we have a 4% higher managed case. Next slide.

8 And we'll go -- move on to a couple of 9 the public utilities. LADWP, they had a really 10 large drop in commercial consumption; I think 11 among the largest, 11% in 2020. So we've got a 12 much lower starting point there. But there also 13 have the projections for additional vehicle 14 electrification, much of it is concentrated in the LADWP; in particular, heavy-duty and medium-15 16 duty. So by 2035, almost 13% of their 17 consumption is serving that EV load. So next 18 slide.

We can show the Managed Forecast with relatively more energy efficiency potential. But we'll still have a higher mid-mid case, although there's a more dramatic effect compared to the unmanaged case; 9% lower in 2035. Next slide we will go to SMUD.

25 Thank you. Okay. SMUD had -- did not

1 have the -- as large of impact in the pandemic. 2 In fact they had increased industrial use. When you combine that with electrification's fairly 3 robust economic growth, we have slightly -- this 4 was slightly higher than forecast. I think we 5 had a one and a half percent annual in the 2020 6 7 update, with two percent annual now. So going to 8 the next slide, which shows the SMUD Managed 9 Forecast.

10 And again, that reduces -- let's back up 11 one more. Okay.

12 So the forecast is reduced from like 2%, 13 annual growth rate to 1.3%. And I think looking 14 at the forecast, that SMUD filed with us for this 15 IEPR, I think these, couple of these managed 16 cases are more in line with what they've 17 forecasted. So now I'll move on to the Natural 18 Gas Forecast.

19 So we see here most of this growth, we 20 have a slightly higher growth rate, but really 21 that's reflecting this big drop in commercial 22 sector consumption. It comes back gradually over 23 the next, few years. And then we have, most 24 sectors have really minimal growth rate; like a 25 third of a percent per year. So this is

unmanaged. So now we can take our energy
 efficiency and fuel substitution and on the next
 slide look at a managed forecast, Managed Natural
 Gas Forecast.

5 And that fuel substitution has a pretty 6 significant impact on the gas side. So the 7 natural gas consumption is reduced by almost 12% 8 by 2035. Would be some tons of carbon if we had 9 our emission factors handy.

10 And I think that is all I have, so I will
11 open it up to questions.

12 LEAD COMMISSIONER MCALLISTER: I had a, 13 just --

14 MS. MARSHALL: I can't hear.

15 LEAD COMMISSIONER MCALLISTER: Can you 16 hear me now?

17 MS. MARSHALL: Yeah.

18 UNKNOWN SPEAKER: Yeah. Go ahead,

19 Commissioner McAllister.

LEAD COMMISSIONER MCALLISTER: Okay, great. No, I just had a quick question, more for the IEPR team. You know, this is obviously very dense. Really appreciate the analysis that goes behind that and juggle, you know, juggling the counter billing tendencies in terms of increased

1 electrification and increased efficiency as well. 2 So I want to just make sure that these 3 presentations are already on the docket and already circulated so that people --4 5 MS. RAITT: Yes. 6 LEAD COMMISSIONER MCALLISTER: -- can 7 dwell on some of the -- so they can open it for 8 themselves and dwell on some of the graphics, 9 even though the presenter themself might move on. 10 MS. RAITT: Right. Yeah. Commissioner, 11 they're all --12 LEAD COMMISSIONER MCALLISTER: Yeah. 13 MS. RAITT: -- all the presentations done 14 today are docketed. 15 LEAD COMMISSIONER MCALLISTER: Yeah. Okay, great. I just want to invite people to do 16 17 that so they can focus on the slides that are most important to them because it's hard to take 18 19 in the firehose of information without a little bit of calm. So I just want to encourage people 20 21 to do that if they so desire. 22 But thanks a lot, Lynn, for that. That 23 was -- that was really good. Notable, the 24 difference is from just a year ago. I mean, 25 really quite remarkable.

1 VICE CHAIR GUNDA: Yeah. So Lynn, I 2 think just from my side, I think, you know, thank 3 you again for all the briefings. I know you guys 4 are trying to keep everybody up to date internally. But just, you know, for the broader 5 6 stakeholders that are in attendance today, could you just talk a little bit about the kind of the 7 way we are capturing the economic variable? 8 9 Yeah, economic variables that we depend on others 10 but, you know kind of like to the extent that you 11 see how the pandemic is being captured and you know how directly or indirectly we captured it. 12 13 I think it would be a good thing for the broader 14 stakeholders to hear.

15 MS. MARSHALL: Yeah. So we're 16 using -- we used Moody's economic demographic 17 forecast and you know they are attempting, we're 18 using the May version, they're attempting as best 19 they can to model out the impacts of the 20 recession. They've done the pandemic. They've 21 done quite a few scenarios. It's obviously been 22 pretty challenging. The forecast we're using 23 right now, it does have, you know, a fair bit of 24 recovery in employment, but obviously there's a 25 lot of impacts that are different that have been

California Reporting, LLC (510) 313-0610

1 difficult to predict and models.

2 So we're using things like their 3 employment, industrial output, personal income. 4 You know, so for the last forecast, like where the personal income forecast was way off because 5 6 they didn't anticipate all of the stimulus that was -- would go out. And I think some of the 7 individual like sector levels, because of how 8 9 things played out with supply chains and which 10 industries increased production and which 11 decreased, that was a little hard to predict, but 12 we'll update that again next year.

13 VICE CHAIR GUNDA: Thank you, Lynn. So
14 one kind of question, and then I'll pass it on to
15 Commissioner Monahan. Just on the, specifically
16 on the SCE case, you kind of just talked about
17 the higher consumption that's coming in. Do we
18 have a sense on where it is coming from
19 specifically and what's driving that.

20 MS. MARSHALL: Well, so there's two 21 things. In the current, sort of our starting 22 point, there's higher residential use in 23 our -- right. And then we're adding, in the 24 forecast period, we're adding vehicle 25 electrification. We're adding that additional

load. And then when you get to the sales 1 2 forecast, we're also forecasting less 3 self-generation in the SCE area. So combined 4 with that, that really impacts the bottom line, 5 you know, Sales and Managed Sales forecasts. 6 VICE CHAIR GUNDA: Thank you, Lynn. I'm going to pass it on to Commissioner Monahan, but 7 8 again, I just want to say thank you for your 9 incredible work. Thanks for jumping in over the 10 last month and a half, especially, and taking on 11 additional work than you usually do in a 12 forecasting year. Thank you. 13 COMMISSIONER MONAHAN: Lynn, I wonder, I 14 have some really basic questions. So could we go 15 to slide 13 on statewide commercial consumption? 16 Not natural gas. So I think it's slide 13. 17 Well, I can just walk -- I can say it, Lynn, and 18 maybe you can just. 19 So basically, on the commercial 20 consumption, the historical pattern was slightly

21 trending upward, mostly flat though over the last 22 decade. And then our projections have it going 23 up. Can you just walk us through why? Why we're 24 anticipating an increase in commercial

25 electricity consumption?

1 MS. MARSHALL: Yeah. So part of that is we're, you know, the big drop in 2020. Just let 2 me pull that slide up. It's --3 4 COMMISSIONER MONAHAN: Yeah, that one 5 makes sense. But it's the -- it's the --6 MS. MARSHALL: Ten. 7 COMMISSIONER MONAHAN: -- 2000 to 2020, 8 there's a little trend upwards, but it's pretty 9 flat between 2010 and 2020. 10 MS. MARSHALL: Mm-hmm. 11 COMMISSIONER MONAHAN: And then --12 MS. RAITT: It's on slide 10. 13 VICE CHAIR GUNDA: Slide 10, please. 14 COMMISSIONER MONAHAN: Oh, sorry. In my docket it's a different number. Yeah. 15 16 MS. MARSHALL: So, yeah. So near-term, 17 in the near term, it's partly, you know, economic 18 recovery. So we're getting back to previous 19 levels. 20 COMMISSIONER MONAHAN: Mm-hmm. 21 MS. MARSHALL: But then a lot of that 22 growth is the additional vehicle electrification. 23 So that, you know, that 31,000 gigawatt hours 24 were added. 25 COMMISSIONER MONAHAN: Oh, that's why.

1 Okay.

2 MS. MARSHALL: More than 60% is the 3 vehicle --4 COMMISSIONER MONAHAN: So if you factored out -- if you took electric -- EV load growth 5 6 out, what would it look like? Would it be more 7 flat? 8 MS. MARSHALL: That's why -- it's -- yes, 9 definitely more flat. So it's probably adding at 10 least a half a percent to the growth rate. 11 COMMISSIONER MONAHAN: Mm-hmm. 12 MS. MARSHALL: So like, yeah. 13 COMMISSIONER MONAHAN: And for 14 industrial, which also, industrial was trending 15 down over the last two decades. And then we have 16 it kind of more on the mid-case being flat. 17 MS. MARSHALL: Mm-hmm. 18 COMMISSIONER MONAHAN: So it seems like, 19 you know, historically there's been this big 20 efficiency push. Have we tapped out of 21 industrial efficiency? Is that why it's flat? 22 MS. MARSHALL: I think we're not basing 23 in a continued decline in that -- in that energy 24 intensity. It's a little hard to forecast. 25 COMMISSIONER MONAHAN: Mm-hmm.

1

MS. MARSHALL: So.

LEAD COMMISSIONER MCALLISTER: Maybe 2 Lynn, just on that point -- that's a really good 3 question, Commissioner Monahan. And it also has 4 to do I think with the -- I'm sure Lynn, you have 5 6 more insight on this, but with the kind of 7 changing mix of the industrial sector in the 8 state to be a little bit less heavy industry and 9 a more light industry manufacturing and sort of a 10 shift in our economic base. 11 MS. MARSHALL: Well yeah, and some of 12 that, you know, the industrial includes, you 13 know, tech related activities. So some of that 14 is growing pretty strong, so --15 COMMISSIONER MONAHAN: Mm-hmm. 16 LEAD COMMISSIONER MCALLISTER: Okay. 17 Right. 18 MS. MARSHALL: -- you know there's 19 different --20 LEAD COMMISSIONER MCALLISTER: Yeah. 21 MS. MARSHALL: -- there is a different 22 mix of resources there, industries there. 23 COMMISSIONER MONAHAN: Lynn, maybe we 24 could have an offline, you could brief me offline, just so I could understand all these 25

1 factors at play.

2 MS. MARSHALL: Sure. 3 COMMISSIONER MONAHAN: That would be 4 great. 5 MS. MARSHALL: I would be happy to do 6 that. 7 COMISSIONER MONAHAN: Okay, thank you. 8 I have no other questions, so. 9 VICE CHAIR GUNDA: That's a -- that's a 10 really good question, Commissioner Monahan. I 11 think, you know, you always start out by saying 12 basic, but you know, like actually pretty 13 insightful questions. So thank you for raising 14 them, and I -- hopefully we can have further 15 discussion on that. 16 So I don't know if we -- if we don't have 17 any more questions, I think we would go to the 18 Q&A submitted by attendees from Zoom at the end 19 of this. So Heather, I'll pass it back to you. 20 MS. RAITT: Yeah, actually, we don't have 21 any questions in the Q&A, so if it's okay with 22 you, we'll just move on to our next presenter. 23 Thank you Lynn, so much for that presentation.

24 So we'll go on to Nick Fugate to talk 25 about the 2021 Hourly and Peak Electricity Demand

California Reporting, LLC (510) 313-0610

Forecast. So go ahead, Nick. Thanks for being
 here.

3 MR. FUGATE: Thank you, Heather. So good 4 afternoon, Commissioners, also everyone who's 5 joining us online. Thanks for your time and 6 attention today. My name's Nick Fugate and I 7 have prepared a presentation on the draft results 8 of our Hourly and Peak Electricity Demand 9 Forecast developed for this IEPR.

10 And as the Commissioners noted, our 11 internal schedule slipped quite a lot this year 12 due to some unexpected absences from a couple key 13 staff. So I have to -- I have to add my own 14 acknowledgement and gratitude for the 15 extraordinary contributions from both Lynn 16 Marshall, who we just heard from, and also Alex 17 Lonsdale, who both stepped out of their normal 18 role and dove into the forecast to carry a lot of 19 that weight over the last many weeks. Next 20 slide.

21 So the Energy Commission's peak forecasts 22 are used as a direct input into resource and 23 reliability, also transmission planning studies. 24 Commissioners spoke to this at the top of the 25 workshop today, so I'll just add a couple of

1 points here. One being that a number of the 2 specific use cases for the scenarios that Lynn 3 and I are presenting today are outlined in detail 4 as part of a Single Forecast Set Agreement 5 between the CEC, the CPUC, and CAISO. And that 6 agreement is memorialized within the forecast 7 volume of each IEPR report.

8 I'm going to present today the peak 9 forecasts, but I will be discussing updates to 10 our Hourly Load Model as these two analyses are 11 related. The peak forecast is actually derived 12 from our hourly load analysis, Next slide. One 13 more.

14 So by now, the motivation for using an hourly model to forecast peak demand should be 15 16 relatively clear. Demand modifiers like PV, and 17 storage, and electric vehicle charging alter the system load profile over time, and this can have 18 19 an impact on the rate of peak load growth and 20 also the timing of the peak hour. So the chart 21 here is just an illustration. It shows the steep 22 ramping period between early afternoon and 23 evening caused by the significant additions of behind-the-meter PV. And then PV also shifts to 24 25 peak hour here from hour 18 to, in 2020, to hour
19 in 2025. And electric vehicle charging very
 2 nearly shifts the peak hour later by 2030.
 3 Again, this is just a for illustration purposes.
 4 I'll discuss our actual load profiles, forecasted
 5 load profiles later in this presentation. Next

6

slide.

The structure of the Hourly Model is 7 8 unchanged from last time, last cycle. The HLM 9 model's load ratio for each hour of the day, so 10 that's the ratio of load in each hour of the year 11 to the annual average hourly load for that year. 12 And this is a convenient specification. The 13 model does not have to account for economic and 14 demographic activity when we're -- when we're 15 estimating it because that could impact the 16 absolute magnitude of the loads. And so these 17 sorts of considerations can then be taken up in 18 the 10 year annual forecast of consumption load. 19 And then we can apply those hourly ratios to the 20 annual consumption forecast to get our hourly 21 load forecast.

And then we adjust that hourly load forecast to account for the incremental impacts of additional load modifiers added over the forecast period: PV, electric vehicle charging,

California Reporting, LLC (510) 313-0610

1 efficiency, and now fuel substitution. For these
2 load modifiers, we've developed a unique set of
3 profiles. And then as a last step, we calibrate
4 the resulting profiles to our base-year estimate
5 of weather-normal peak load. Next slide.

6 So I'm going to say a bit more about each 7 of these steps describing what we've done for 8 this forecast cycle, starting with the 9 first -- next slide. One more.

10 So the reason I had, on the last slide I 11 had consumption in quotes and the reason being 12 that we're not using actual total consumption in 13 the specification of our model, but rather a 14 recorded system load, which we then reconstitute 15 to reflect the impact, both of the demand 16 response events and also behind-the-meter PV 17 generation. So we know what -- we know what 18 actual system load is on an hourly basis. We get 19 that from CAISO. And we have a pretty reasonable 20 estimate of what demand response impacts are. Ι 21 use -- I have a process for estimating those. So 22 we -- the sort of missing piece of the puzzle and 23 it's a big piece is behind-the-meter PV 24 generation. So to this point, we have been 25 relying on average generation profiles to

estimate historical generation, and these average
 profiles were developed using metered generation
 data from a five year study of a few thousand
 systems. This study is 10 years old.

5 Last cycle, our self-generation modeler 6 invested some time and effort into updating, sort 7 of reweighting these profiles to reflect a more current mix of system orientations based on our 8 9 interconnection data that we have now. And even 10 with this update, though, we're still 11 encountering an issue with using average profiles to reconstitute historical consumption. 12 So on 13 days with heavy solar insulation, our average 14 profiles were overestimating generation, leading 15 to spikes in the resulting consumption record. 16 There's enough behind-the-meter PV on the system 17 now that these spikes were becoming impactful, 18 sometimes several hundred megawatts for a single 19 planning area. Next slide.

20 So we made an effort this cycle to 21 address the issue by attempting to simulate PV 22 generation. We figured we could improve on our 23 estimate -- on our average estimates through the 24 use of NREL's System Advisor Model. We have a 25 interconnection dataset. It's a rich dataset.

And so the general approach was to take that 1 2 information, categorize systems by tilt, and 3 orientation, and location, and then create 4 representative historical profiles which are based on actual -- modeled using actual solar 5 6 insulation data for each of those categories. And then weighed those profiles by our installed 7 8 capacities to create generation estimates for 9 each forecast zone. As an intermediate step, we 10 also compared our modeling results against a 11 relatively small set of CSI systems for which we 12 had actual generation data. It was important to 13 us that we had actually ground truth the modeling 14 that we were doing, and the results were 15 encouraging. So next slide.

16 This is an example of our simulation 17 compared against actual system generation data 18 for the CSI dataset, and each plot shows a 19 different historical month and year. And I know 20 this is a strain on the eyes if you're trying to 21 read any of these actual numbers here, but the 22 main point I'm trying to illustrate is that 23 generally the simulator results track well. And 24 importantly, for the handful of days with heavy solar insulation where production drops off 25

significantly, our simulated results did pretty
 well; they also dropped off. Next slide.

3 And here is a comparison of our simulated 4 results for the SDG&E forecast zone compared against average generation profiles that we had 5 6 been using as a stand-in for not having actual 7 generation, historical generation. And this is 8 to really illustrate the issue that I'm, you 9 know, talking about that we're attempting to 10 resolve. So on days with no solar insulation, 11 our average profiles can actually tend to 12 slightly underestimate production. And then on 13 days with heavy solar insulation, they can 14 drastically overestimate generation. Next slide. 15 So we took a --- this is a very detailed 16 approach that we took for the simulation effort, 17 and it was very time intensive, and so we were 18 only able to model SDG&E's territory for this 19 cycle. We have a number of, well we have 20 20 forecast zones and so as an intermediate step so 21 that we had an improvement for the CED 2021, we 22 asked Kevala Analytics to develop historic 23 profiles that we could use to -- as to fill in 24 the blanks for all of our other forecast zones. 25 So we compared the profiles that Kevala developed

1 for us against what we had simulated for SDG&E, 2 and we're comfortable with the profiles that 3 Kevala provided. They seem to also reasonably 4 estimate historical generation. And so those are 5 the profiles that we are using to estimate our 6 hourly model this cycle.

We are -- and it's something that we'll 7 8 have to update every year going forward. And so 9 we are going to continue to look to expand our 10 simulation effort to cover all forecast zones. 11 We're also looking to acquire a more substantial 12 set of meter generation data because, again, it's 13 important to us to actually be ground truthing 14 these model results, and then we will also look 15 to coordinate with the CPUC's Modeling team. 16 They have an established and relatively efficient 17 approach to a similar problem. Though theirs is 18 focused on and benchmarked to supply site 19 generation.

20 So our next step would be to make 21 comparisons with our respective approaches and 22 see if they produce similar results. And then 23 from that point, there are a number of 24 applications for this simulated data, even beyond 25 the hourly load model. We can update our average

> California Reporting, LLC (510) 313-0610

PV profiles for the forecast. We can develop
 distributions of hourly profiles around each
 forecast year, and perhaps improve our peak load
 normalization process. Next slide.

5 I'm not going to say anything about step 6 two. The major updates there come from updates 7 to our underlying consumption forecast, which 8 Lynn already discussed, but we do have some 9 updates to our load modifiers. So I want to show 10 those. Next slide. Perfect.

11 So this one should look pretty familiar 12 to most of us. We are using the same PV profiles 13 as last cycle. That is the average profiles from 14 the metered study I discussed earlier, weighted 15 by the cumulative capacities and orientations 16 from our current interconnection data sets. I'm 17 going to show several charts like this. They 18 show the non-coincident 2035 peak day impacts of 19 each set of load modifiers by individual attack 20 area, and then also normalized over the day. So 21 the y axis is just a ratio of the impacts in that 22 hour, divided by the total impact over the day. 23 For reference, the peak day occurs in late July 24 for PG&E and early September for SCE and SDG&E. 25 Next slide.

1 Our light-duty EV charging profile is 2 actually a composite of underlying profiles for 3 at home charging and destination charging. For 4 this cycle, the at home charging profile is unchanged from last cycle, where we're still 5 6 using the same profile ADM developed for us, which is based on a sample of ChargePoint data, 7 and adjusted to reflect time of use rate impacts. 8 9 For the destination charging, the 10 profiles that ADM originally developed were based

11 on a very small sample of charging data. So for 12 this cycle, we are instead using destination 13 charging profiles taken from the AB 2127 report. 14 And these profiles were discussed in more detail 15 with stakeholders at a meeting the Demand 16 Analysis Working Group on September 14th. Ι 17 think those materials are posted on the DAWG 18 website, for anyone interested. Next slide.

Here we have our medium and heavy-duty profile. So this is again another composite of different vehicle classes with medium and heavy-duty vehicles. We are, of course, lacking in a lot of real world meter data. So any profiles we use are going to be speculative to some extent. For this cycle, we're relying on

California Reporting, LLC (510) 313-0610

1 the LBNL heavy-load model, which develops
2 charging load profiles based on real world
3 activity data for different vehicle classes.
4 In doing this, we expanded the underlying
5 set of profiles from three categories, which I

believe were buses and then two different size

7 categories for trucks, to now 12 different 8 vehicle classes. And don't ask me to name them 9 all. And again, these changes were discussed in 10 detail at the September 14th DAWG meeting. Next 11 slide.

6

12 Here we have our residential storage 13 charge and discharge profiles with charging 14 indicated by positive values. These are also the 15 same profile that we used for the 2020 update. 16 Staff modeled battery systems paired with PV 17 using NREL's SAM Model and assuming that a 18 charge/discharge pattern would optimize the 19 customer's economic benefit. So we see that 20 batteries are being charged by solar in the late 21 morning and discharged in the evening when rates 22 are highest. Next slide.

23 For non-residential storage, we have 24 another composite profile. We're using 25 charge/discharge patterns estimated by Itron for

1 the CPUC's most recent Self-Generation Incentive 2 Program Impact Report. The underlying profiles 3 are specific to different building categories, 4 but even within an individual category, the profiles seem to reflect different operational 5 6 strategies. Some, like with the residential 7 profiles, seem to be charging systems from their 8 solar; so in the morning, and then discharging 9 through the afternoon and evening. But a fair 10 number of systems also seem to be charging from 11 the grid at night and discharging during the day. 12 Next slide.

13 Staff also projected the impacts of the 14 transition of PG&E and SCE residential customers 15 to a default time-of-use rate using the hourly per household load impacts estimated for the 2020 16 17 Default Time-of-Use Pilot Study Load Impact 18 Evaluations and also the most recent PG&E and 19 Edison transition schedules. There's no profile 20 here for SDG&E as they have completed their 21 rollout and the baseload modifiers for mostly 22 looking at impacts incremental to the base here. 23 Next slide.

24 Our additional achievable energy 25 efficiency impacts have been refreshed this cycle 1 in conjunction with the CPUC's latest Potential 2 and Goals Study. While the ratios here are 3 positive, these impacts are, of course the load 4 reduction in this orientation though, you can see 5 the peak day impacts from more efficient space 6 conditioning measures are pretty apparent. Next 7 slide.

This is the newest addition to our set of 8 9 load modifiers, Additional Achievable Fuel 10 Substitution. These impacts are also aligned with the Potential and Goals Study and have been 11 12 discussed more recently, or more extensively at a 13 number of workshops, including one just a couple 14 weeks ago. Recall that, you know, what I'm 15 showing here is the Summer Peak Day Profile. So 16 there's perhaps less space heating impact than 17 you might expect to see if you were looking at 18 say a winter day profile. And instead, what we 19 are seeing here are the impacts, mostly from 20 water heating and to a lesser extent, cooking end 21 uses. Next slide.

So here's a graph similar to the illustrative one I had at the onset. So I'm showing the impacts to the overall system load profile as we layer on more of these load

modifiers each year. This is the CAISO Peak-Day 1 2 profile for a number of select forecast years. 3 Behind-the-meter, solar contributes to 4 the -- continues to carve load out of the middle 5 of the day, creating a steeper ramp in the 6 afternoon. And then the significant load growth 7 occurs in the -- in the late evening and early 8 morning hours, and the hour of system peak is 9 forecast to shift from hour 17 to hour 19 by 10 2023. After that peak shift, additional PV, well 11 additions, have no incremental impact on the peak 12 load. Next slide.

13 Okay. So admittedly I am not the most 14 visually oriented person in the world, and I had been struggling to come up with an effective way 15 16 to show the relative contribution of individual 17 load modifiers to peak load. And it was recently 18 suggested to me to use a waterfall chart, which I 19 had never heard of. And I'm going to say who 20 that person was, but I do want them to know that 21 I would have much rather -- would have much 22 rather spent the two hours it took me to put this 23 chart together last night, sleeping instead. I 24 do like the effect though, so I will say that. 25 And I promise the next time I put one of these

California Reporting, LLC (510) 313-0610

together it will look a little nicer than this. 2 But in any case, here are the relative 3 impacts by 2035 of incremental load modifiers projected to be added over the forecast period in 4 5 the CAISO control area. Scenario I'm showing here represents our mid-baseline forecast, 6 compared with mid AAEE, and -- or sorry, paired 7 8 with mid AAEE and mid AAFS, which were, I've 9 commonly referred to as Scenario 3 when they were 10 discussed in the -- in the development process 11 for the Additional Achievable Scenario 12 developmental process. When our forecast -- in 13 our forecasting, we've grown accustomed to 14 referring to these as mid, low and high 15 scenarios, but in the Potential and Goals Study 16 in the AA process. They are typically referred 17 by scenario; so mid-AAEE, mid-AAFS is Scenario 3. 18 Next slide.

1

19 My thanks to Commissioner Monahan. 20 That's all for load modifiers. I do want to come back to the final step of our Hourly Load Model 21 22 process, which is to calibrate to the results are 23 weather-normal estimate of base-year peak load. 24 Next slide. One more. Perfect.

25 All right. This is another process that California Reporting, LLC

1 has been discussed a number of times publicly and 2 with stakeholders, so I'll just review it at a 3 high level.

4 To normalize peak load, we begin with hourly system load data from the CAISO, and we 5 6 add to that, again, impacts from DR events 7 estimated by the IOUs. And this results in a 8 counterfactual hourly load series approximating 9 load in the absence of dispatchable DR. We then 10 select and we do that -- we added the DR back in 11 because we are -- our forecasts are all queued 12 around -- well we don't include any dispatchable 13 DR in our forecast, and so we don't want to -- we 14 don't want to benchmark to load that does include 15 those impacts.

16 So we then select a daily peak -- we then 17 select daily peak loads from the last three 18 summers and regress those against weather effects 19 such as maximum and minimum temperatures, daily 20 temperatures, calendar effects such as day, the 21 week, month, year. And we do this to establish 22 the current load response to temperature and then 23 when you use that relationship to simulate peak 24 summer loads using historical weather data from 25 the last 30 years. And the distribution of those

simulated peaks gives us the median value, which
 we take as our normal estimate.

3 This is not product placement, I just4 have a dry throat. Next slide, please.

5 So, at a DAWG meeting on September 30th, 6 our -- well, so we discussed the challenge posed 7 by climate change and estimating weather normal 8 conditions, specifically, given a series of 9 single observations drawn from a distribution 10 with -- of likely outcomes. So the peak load, 11 weather temperature conditions, you know, each 12 year, for example. If the expected value of that 13 distribution is gradually increasing over time, 14 sort of illustrated by this graph on the right 15 here, then using a 30 year window to estimate 16 what that expected value is, it is likely to give 17 an underestimate.

18 And so this question of establishing a 19 present day normal, within the context of a 20 changing climate is, well it's an identified use 21 case for the new Cal-Adapt Analytics engine 22 currently under development and due to begin 23 rolling out data products next year. So we are 24 excited to be working with that team to improve 25 climate considerations within our forecast,

1 specifically related to normal weather.

2 In the interim, though, we did propose a 3 straightforward adjustment to our weather normalization process, which is to sample recent 4 historical weather patterns more frequently 5 during the simulation step. So next slide. 6 So here I'm showing our weather 7 normalized peak estimates, both with and without 8 9 that weighting adjustment. Prior to the 10 adjustment, the results are slightly higher than CED 2019 normal levels, though our consumption 11 12 forecast in that year is -- I'm sorry for our 13 consumption forecast and this year, 2021, is 14 lower than 2019 levels. So the overall peaked consumption ratio is higher. Lynn discussed 15 16 earlier some of the shifts in energy consumption within and between sectors; residential, 17 18 commercial and industrial. Each of which has a 19 different load factor. So a higher peak to 20 energy consumption ratio could reflect the reality of our situation now, particularly with 21 22 higher residential consumption.

But I am eager to review these results
with some of our key stakeholders, namely JASC
and IOUs in particular, as they have their own

1 forecasting team's thinking about these things. And so hopefully we can touch base over the next 2 3 couple weeks during the comment period. 4 The -- this is this something we would typically do ahead of our results workshop, but we really 5 6 came down to the wire this cycle. So hopefully 7 no one has any plans over the couple weeks, 8 right? Next Slide. One more. 9 Okay. So, some results. I'm going to 10 show a series of similar slides for each forecast 11 area, planning area, starting with PG&E. This is PG&E's CAISO Coincident Annual 12 13 Managed Peak Forecast. I'm showing a few 14 different scenarios, each using the mid-baseline 15 forecast but paired with different AAEE and AAFS 16 scenarios. There are a lot of potential combinations now, so I've selected just the 17 18 likely candidates for use in the single forecast 19 set agreement. So that would be the mid baseline scenario paired with the mid-AAEE and AAFS. 20 21 That's Scenarios 3 for both. And also the mid-22 baseline paired with the low AAEE, Scenario 2. 23 And either the mid AAFS or the high AAEE. And by 24 high AAEE, that would be Scenario 4. 25 For the mid-mid case, the -- I guess the

mid-mid-mid case, the long-term growth rate is 1 2 about 1.1% annually, reaching nearly 22,600 3 gigawatt hours by 2035. The inflection point's really on in the forecast period. And this will 4 be true for the other TAC areas as well, and they 5 are impacted by the shifting peak hour. After 6 2023, the peak hour settles on hour 19. I do 7 want to note the delta between 2023, between 8 9 these results and our previous forecast, is a 10 little over 400 megawatts. Next slide. 11 For the SCE planning area, the long-term 12 growth rate is 0.7% annually. And the mid-mid-13 mid managed forecast reaches almost 25,200 14 megawatts by the end of the forecast period. And 15 in the delta here is more substantial; a little 16 over 700 megawatts in 2023. Next slide. 17 I have a correction to make here. For 18 SDG&E, the forecast grows at a rate of 0.8%

19 annually. I have shown here 1.1 and that is a 20 copy and paste error. Everything else here is 21 accurate, though, and the mid-mid-mid case 22 reaches over 4,600 megawatts by 2035. And the 23 delta in 2023 is 120 megawatts. Next slide. 24 And the results for CAISO as a whole,

25

California Reporting, LLC (510) 313-0610

unfortunately, I do have a couple more copy paste

1 errors here, and I will -- I will post a 2 corrected version of the slide deck just so that 3 the record is straight after this workshop. Specifically, the forecast grows at an annual 4 5 rate of 1%, not one 1.1%, and it reaches 52,500 megawatts, not 22,500 megawatts. And in total, 6 7 the delta between vintages and 2023 is a little 8 over 1,200 megawatts, which is -- would be 9 significant.

I do also want to note here that the CAISO Coincidence factor derived from our hourly forecast, starts at about 94.6% in 2021, but then after the peak shift hour -- sorry, after the shift to the peak hour being in hour 19, that factor is closer to 97% and then hovers around 97.7% after 2030. Next slide.

17 And finally, because our monthly peak 18 forecast is used as a benchmark for RA, I wanted 19 to show where our forecast, you know, our 20 forecasted 2023 monthly peaks, which are shown 21 here by the blue line fall within the 22 distribution of historical monthly system peaks, 23 which are taken from the -- in the CAISO EMS data 24 set with DR impacts added back in. And so those 25 historical peaks are represented by the black

1 dots.

2 I will be docketing a few data files 3 following this workshop, which will contain our detailed draft hourly results with all of the 4 individual load modifier impacts, as well as a 5 6 summary file containing the coincident and non-7 coincident annual and monthly peak projections, so that stakeholders can review those data sets 8 9 directly. Next Slide.

10 And that brings me to my final slide here 11 and next steps. After those results are 12 docketed, staff will reach out to the IOUs to 13 review our results and hopefully compare notes, 14 particularly around the where are the normal peak 15 estimates and the persistence of a higher peak to 16 consumption ratio over the forecast period. And 17 as an adjustment to either of those factors would 18 have implications for that delta that we see in 19 our 20 -- CED 2020 and CED 2021 forecasts. 20 Stakeholder comments are due December 21 30^{th} ; two weeks from today. And once -- I assume 22 so. I think it's usually two weeks after the 23 workshop, right? I'm now wishing I had confirmed

24 that with Heather. Stakeholder comments

25 are --

COMMISSIONER MONAHAN: Yeah.

1

2 MR. FUGATE: Yea. Okay, great. Thanks. 3 Once we have considered stakeholder feedback and 4 finalized our forecast, we will docket a final 5 set of forms that we'll bring the CEC's -- that 6 we'll bring to the CEC's January 26 business 7 meeting to request adoption.

8 And so with that, I will pause and ask 9 the Commissioners if they have comments or 10 questions. Thank you.

11 VICE CHAIR GUNDA: Yeah. Nick, I just 12 want to begin by saying this is really, really 13 good work. Thank you again to you and the entire 14 team for all the hard work on pulling this 15 together. I'm especially really heartened by all 16 the improvements that have been done on the 17 behind-the-meter PV forecast, this 18 [indiscernible], especially on the shapes, the 19 generation shapes and such. So just wanted to 20 commend the team on all the improvements and then 21 pushing to the extent of using them in the 22 forecast. So just thank you.

And I also want to apologize for you
having to stay up last night for a couple hours.
You know, sorry. Sorry for that suggestion.

California Reporting, LLC (510) 313-0610

1 MR. FUGATE: I did -- I did like the 2 chart. I -- so I'm happy to now have that in my 3 toolbox. 4 COMMISSIONER MONAHAN: Oh wait. Does that mean that Vice Chair Gunda is the reason why 5 6 you were staying up late? 7 VICE CHAIR GUNDA: Yes. I mean, I think I have to -- I have to --8 9 MR. FUGATE: He usually is. 10 VICE CHAIR GUNDA: Thank you, Nick. So 11 just, I think I have a couple of high level 12 questions, specifically as they pertain to 13 reliability, and I think there's a lot of Q&A 14 questions coming in. So I'll cede time to that, 15 for sure. 16 Just going to your slide number 23. We 17 don't have to put it up if we don't, if we can't. 18 But just on the impact on the peak day profile. 19 So you kind of showed, you know the continual 20 reduction in kind of the load early, in the in 21 the early hours of the day; 3:00, 4:00 a.m. But 22 kind of moving towards the evening, you have the 23 peak, the gross peak itself moving from 17 to 24 hour 19, hourly 19. 25 So just wanted to confirm with you that

when we take this peak and then look at the 1 2 supply side solar assets, so we are potentially 3 going to have a higher net peak on the system moving forward than what we have today? 4 5 So the -- yeah, after 2023 MR. FUGATE: 6 our -- well, so this is -- this isn't a big change relative to previous vintages of forecast. 7 We have been projecting a shift in the peak hour 8 to hour 19 in the last several forecasts. 9 It's 10 just the timing, depending on how much solar is 11 added each year. The sort of timing of when that 12 happens changes a little bit each, during each 13 vintages of forecast. And so I'm just calling 14 that out specifically as is occurring for this 15 vintage in 2023. And so beyond 2023, our peak 16 projection aligns with the net peak hour, on the 17 supply side.

18 VICE CHAIR GUNDA: Okay. Thank you. So 19 the other kind of question is like, if we want to 20 go to slide number 28 real quick, on the climate 21 considerations. Earlier this year, you kind of 22 talked about, you know, obviously you recognize 23 the shift in the, kind of the overall 24 distribution, kind of the standard deviation 25 also, kind of stretching. Could you comment on

1 as we continue to, you know move, you know 2 continue to develop our forecast in 1-in-2, you 3 know, are you -- are you expecting or is the 4 analysis beginning to show that the 5 deviation -- or the delta between the 1-in-2, and 6 1-in-5, and 1-in-10, is increasing due to climate 7 impacts? Or, you know, it's pretty steady.

8 MR. FUGATE: I -- using, you know relying 9 just on the historical data set, there's very 10 little data to try to answer that question. And 11 so I think -- so the answer is no, at this point. 12 But again, that is another question that we have cued up for this to be tackled by this new 13 14 Cal-Adapt engine. And so we are going to be 15 looking to this new round of climate modeling to 16 try to answer those questions about, not only 17 what the shifting, kind of average temperatures 18 are, and what a normal expected value is right 19 now, but also, you know, what are the -- what are 20 the potential extreme, likelihood of extreme 21 events as well? How is -- how is that -- how has 22 that potentially shifted already and how might it 23 continue to shift over the forecast horizon? 24 VICE CHAIR GUNDA: Great. So just a 25 couple of last high level questions and pass it

California Reporting, LLC (510) 313-0610

1 on to Commissioner McAllister and Monahan.

So on slide number 34, just confirming that you know, the peak, the difference for 2022, as we go into the 2022 a year, the projection is proximately 1,000 megawatts higher on the peak. Just confirming that, you know, as we begin to construct risk mitigation for 2022, that's what we are seeing here.

9 MR. FUGATE: In 2022, yeah, 1,200
 10 megawatts.

11 VICE CHAIR GUNDA: 1200. Good to know.
12 MR. FUGATE: Yeah. And also, I don't
13 think -- I don't think I explicitly stated this,
14 but these peak results here are all based on the
15 adjusted weighted normal peak, so that the
16 slightly -- the slightly higher weather normal
17 peaks with the weighting adjustment.

18 VICE CHAIR GUNDA: Got it. Thank you. 19 The last one, and then it was your 35th slide. 20 Just getting a little bit of an understanding 21 into this. So as we look at the middle of the 22 month, like the shorter months and such, you 23 know, there are kind of the peak forecast or the 24 monthly peak tracks right in the middle, you know, kind of the distribution. But the months, 25

1 1 and 12, especially, you kind of trend towards 2 the top, you know. Is there a specific reason 3 that occurs, and any insights that you may be 4 able to provide?

5 MR. FUGATE: For the-- for the winter 6 months, well. I would have to go back and explicitly -- so we will be, I think in the long-7 8 term, you know we could be expecting load growth 9 in the winter months, obviously. I'm only 10 looking at the 2023 here. So that's perhaps not 11 due to the fuel substitution impacts that, you 12 know, that we weighted. There -- it would be 13 very small in 2023. So at this point, you know 14 there could be some impact from you know, 15 additional electrification of the vehicle 16 charging, but I would have to go back and look at 17 the explicit load profiles for those months 18 rather than the -- sorry, distracted by comments 19 popping up.

20 Yeah, I would have to go back and look at 21 the actual load shape for those individual 22 months. I think for, you know for this 23 presentation I was pretty heavily focused on the 24 summer peak profiles. But that's -- that is a 25 good question to have in mind and I can certainly

California Reporting, LLC (510) 313-0610

1 follow up with you on it.

2 VICE CHAIR GUNDA: Great. Thank you so much, Nick, again. Thanks to you and the entire 3 4 team. Fabulous work. And I don't know if it's because I have been watching this for five years 5 6 that it's slowly sinking into my head, or the presentations are becoming clearer. I feel like 7 8 I follow better. Thank you so much for making 9 them more and more accessible as well. So with 10 that, Commissioner McAllister and Monahan. 11 LEAD COMMISSIONER MCALLISTER: Well, I 12 guess I'm happy to step in. I just want to 13 mostly compliment Nick and the team. I agree, 14 the visuals are looking really good, and I like 15 the waterfall chart. It's nice to get sort of a 16 more visual appreciation of the push and pull of 17 the various load modifiers and how they kind of 18 add up and compare and where they end up, right? 19 I guess, so I think I was -- I wanted to 20 ask a similar question to Vice Chair Gunda about 21 sort of the uncertainty and how you're 22 quantifying uncertainty. And particularly like 23 your regression analyses. You know, you're kind 24 of tracking how weather the fits those are like 25 getting worse, or the residuals bigger, and stuff

1 like that and how that kind of plays into your use of Cal-Adapt. If I understood right. 2 I'm not sure I understood right. Which tools are 3 sort of regressions, and which are which are 4 different, you know, different kinds of 5 6 assessments. So that's one. I quess I'm, you 7 know it's like we really do need to, you know 8 when we start looking at peaks and, you know, 9 beyond 1-in-5 and stuff, understanding 10 uncertainty becomes more and more important. So 11 I quess I'm just wondering how you're thinking 12 about that. You talked a little about that, but 13 I guess I'm asking you to go into maybe a little 14 more depth.

15 MR. FUGATE: Sure. So yeah. Right now, we are still using regression analysis to 16 17 establish the relationship between temperature 18 and load in weather normalization step. And that 19 there are some confounding, you know, factors to 20 that. Well, there are no confounding factors. 21 LEAD COMMISSIONER MCALLISTER: Mm-hmm. 22 MR. FUGATE: But they include, you know, 23 the addition of PV has been a challenge, and that 24 seems to be slowly creeping up in SDG&E's 25 territory in particular. And you know, you have

1 day that can be warm, but you have some cloud 2 cover, and the system load looks higher than 3 might be -- might be predicted by our model. So 4 there are things like that that was, I sort of 5 touched on that early on in the presentation with 6 discussion of PV.

7 LEAD COMMISSIONER MCALLISTER: Mm-hmm. 8 MR. FUGATE: And so that could be one 9 potential application of that is to -- is to add 10 PV to the -- to the loads that we are regressing 11 against and -- or that -- yeah it's the, rather 12 normalizing kind of consumption rather than the 13 load.

Another approach could potentially be to, you know, now that we are shifting to hour 19 as peak hour, is just normalizing that peak hour, that net peak hour explicitly --

18 LEAD COMMISSIONER MCALLISTER: Right.
19 MR. FUGATE: -- rather than the peak day.
20 So a few different things to explore here.

21 LEAD COMMISSIONER MCALLISTER: Mm-hmm.
22 MR. FUGATE: And then, you know going
23 forward, there may be additional challenges with
24 some reconstituting system loads as we have more
25 DR and wildfire impacts in the system.

1 And then just regarding the climate 2 change, in particular, I don't know yet how that will play out explicitly. I just know that we 3 4 are expecting a much richer data set of, through 5 model runs, through this Cal-Adept process. 6 LEAD COMMISSIONER MCALLISTER: Mm-hmm. 7 MR. FUGATE: It can give a much broader range of, you know, potential temperature draws, 8 9 both not just in, not just going forward into the 10 future, but also for kind of present day 11 situation. And so that could kind of inform, you 12 know, our understanding of the distribution of 13 temperatures right now, rather than -- rather 14 than relying on kind of the one data point we get 15 each year. 16 LEAD COMMISSIONER MCALLISTER: Yeah. 17 Well, that makes a lot of sense, and it Okav. 18 does -- yeah. Glad you're sort of brainstorming 19 with the team about ways to, you know, improve 20 the fits and stuff, and then that all makes 21 sense. Let's see. 22 I wanted to -- so it's interesting, 23 With the push and pull of all the right? 24 different, you know, load modifiers. You know 25 you maybe don't end up in that different of a

place in terms of net consumption, you know, at 1 2 least in the near-term, but you know your point about load factors getting worse, essentially 3 right? Getting lower, your sort of peak 4 to -- peak to average ratio, you know, getting 5 6 bigger. That seems like something worth tracking. I mean worth tracking explicitly like, 7 8 I mean, that's a -- that's a key long-term metric 9 and maybe, you know, we need to maybe start to 10 redefine that.

11 I mean, but utility systems have always 12 thought of -- thought about the load factors as 13 kind of a gauge of how optimally you're taking 14 advantage of your infrastructure. And it seems like that's a, you know as that goes down, that's 15 obviously, you know, the ramp goes up in the 16 17 evening and that's, you know, the CAISO is facing 18 that increasingly, as we all know.

But that seems like, you know that obviously ties to flexibility and sort of the value of flexibility in shifting load around. And so I guess I'd like to kind of maybe do a little brainstorm with you all about that. And are there are there metrics that we could be kind of tracking year to year, like capacity factor, 1 load factor, something, some modified definition 2 of that, given that we have, you know, electrons 3 flowing all over the place in, you know, 4 different directions.

5 MR. FUGATE: Yeah.

6 LEAD COMMISSIONER MCALLISTER: So anyway, 7 just kind of updating, or thinking about, what 8 load factor actually means and how we would track 9 something like that.

10 MR. FUGATE: I do think that's a really 11 good point and just sort of agree in general 12 about having, kind of adding to our set of 13 metrics about, you know, the load and then also 14 our forecast in general.

I saw a question pop up. I don't -- I don't want to jump the gun here, but I saw a question pop up in Chat about how the, sort of the long-run trend in our weather normalized peak loads.

LEAD COMMISSIONER MCALLISTER: Mm-hmm. MR. FUGATE: And that was a question I had in mind my myself. And unfortunately, we have only been, sort of had a standard process for this that we've been implementing for a few years now. So I only have a few data points, but

California Reporting, LLC (510) 313-0610

it might be worth going back and kind of 1 2 renormalizing a longer set of historical peaks to 3 see if there is a -- some sort of trend there. 4 LEAD COMMISSIONER MCALLISTER: Okav. Thanks. And I just --5 Yeah. 6 MR. FUGATE: So, but that could be -- that could be another metric that we track 7

8 each year.

9 LEAD COMMISSIONER MCALLISTER: Okay.
10 Yeah. I'd love to love to participate in that
11 discussion.

12 And then just finally, I wanted to 13 compliment you, also on the -- on the updating of 14 the solar load shapes, and for the generation 15 shapes, and stuff. I think that's, yeah, it's good to -- if there's any -- I mean, you know, in 16 17 a sense, the sun hasn't changed and, you know, PV 18 is still generating with a similar profile if it 19 hasn't moved from, you know, one roof to another. 20 But it would be nice to -- it would be good to 21 know if, as you update that, you get any, you 22 really note any differences from you know, 23 the -- when you had more limited data to when 24 you, you know, when you have a chance to update 25 that and compare notes with the PUC. It will be

interesting to know if sort of anything 1 2 fundamental has sort of shifted or changed and how you're looking at behind-the-meter PV, so. 3 But I'm glad you're doing that. That's really 4 5 qood. 6 MR. FUGATE: And a lot of credit, Vice 7 Chair Gunda, to your advisor Sudhakar contributed 8 extensively to that effort. 9 LEAD COMMISSIONER MCALLISTER: Yep. 10 VICE CHAIR GUNDA: Thanks, for that. 11 LEAD COMMISSIONER MCALLISTER: Okay. So 12 well, thanks, thanks a lot. Yep. Moving on to 13 Commissioner Monahan. Go ahead. 14 VICE CHAIR GUNDA: Thanks, Nick 15 for --16 LEAD COMMISSIONER MCALLISTER: Thank you. 17 VICE CHAIR GUNDA: Yeah. 18 COMMISSIONER MONAHAN: All right. Nick, I just got to heap it on around the impact on net 19 20 peak hour. That is -- I'm going to use that 21 chart. And I wanted to just comment. Can we 22 show that slide? It's, I think it's slide 24, or 23 the 54th in the full deck. I think it's slide 24 24, although I -- there may be a difference 25 between what I have and -- there we go.

VICE CHAIR GUNDA: Oh, this one. Sorry.
 Thank you. The waterfall.

3 COMMISSIONER MONAHAN: The waterfall. It shall forever be known as the waterfall. 4 Although I don't know because it's going up and 5 6 then down. It's a perfect waterfall. So, I mean, this is the best slide I've ever seen to 7 8 show the potential for transportation 9 electrification to be a DR to a flexible load, 10 right. That this is the opportunity. And this 11 is only in the mid scenario, which actually 12 doesn't get us to California's goals. So I would 13 say the high scenario gets us closer, and that 14 might be one to also show in the IEPR because 15 it'll highlight even more the opportunity for 16 that to be a flexible load.

And I think, one question I had for you, Nick, and maybe it's for, a broader question for the team is, you know we keep saying like, oh, we need an EV happy hour when EVs charge instead of curtailing renewable energy in the middle of the day, we're plugging in and we're making -- creating a benefit for all electricity

 $24\,$ users by driving down rates. And that -- and

25 that's -- it would be great to have some data to

1 be able to show that and. in particular, like 2 well, what's the, you know we're looking at net 3 peak hour, but what is the potential for some of 4 these more flexible resources to bite into the, 5 you know, use the electricity that we would 6 otherwise be curtailing? And is there anything 7 in the IEPR that looks at that? Maybe it's a 8 question for Vice Chair Gunda. I don't know.

9 VICE CHAIR GUNDA: I will see if Nick 10 wants to add something, but yes, I think that's a 11 good question. So Nick, do you have anything 12 that you want to add first?

MR. FUGATE: No, I don't have that. I'm 14 not sure if there's --

15 VICE CHAIR GUNDA: Yeah.

16 COMMISSIONER MONAHAN: But aren't you
17 happy that all of us love this slide so much?
18 VICE CHAIR GUNDA: So yeah. Commissioner
19 Monahan, I think the -- I think this is kind of a

20 two part answer I think, or kind of a reaction to 21 your question. I think the last time you raised 22 your comments in the previous workshop, I think 23 the workshop was -- it was also centered around 24 this idea of how can our planning products be 25 more of an insight into the policymaking side. I
1 think the forecast historically has been a very 2 much of a planning product and less of a policy 3 flexing kind of product. So I think that's 4 a -- I just want to note that, and I think a part of the policy side of this work is being 5 contemplated in the demand scenario side, and the 6 integration of the demand scenarios into the 7 broader SB 100, and that intersection of both the 8 9 climate change as well as the grid stability. So 10 I think that's kind of how we have been thinking 11 about it but would love to kind of have further conversations on thinking this through. 12

13 COMMISSIONER MONAHAN: Yeah. I mean and 14 I was actually thinking that there's a policy 15 dimension, definitely. But I was actually just 16 thinking of the data that Nick and the team 17 has -- have been drawing on that, especially 18 HEVI-Pro and the models that are being used for 19 AB 2127, that look at it, just sort of what, 20 here's what we expect just under a general, you 21 know, just the way things are today. Here's what 22 we expect the charging behaviors to be. And a 23 lot of, especially the light-duty charging, 24 really overlays with where there's solar. And so 25 we just without even, you know, much policy, I

California Reporting, LLC (510) 313-0610

1 think there is a fair amount of renewable energy 2 in the middle of the day that we will be 3 capitalizing on, and then if you add policy on 4 top of it, it could be even greater.

5 So I'm not suggesting we do any 6 additional analysis for this IEPR at all. The team needs to sleep, but just something that's to 7 8 think through going forward is that how do we do 9 analysis that helps inform that potential for 10 electric vehicles to be a DER, and particularly, 11 to capitalize on renewable energy that would otherwise be curtailed. 12

13 VICE CHAIR GUNDA: Yeah. So I will I try 14 not to create another chart for Nick between now 15 and -- but I think -- I think to your point, I 16 think, you know really kind of a -- kind of a 17 heat map to kind of show the different hours and 18 the opportunity across these different sectors in 19 terms of delta. Essentially creating the 20 waterfall across many hours to show it in a -- in 21 more of a heat map format, I think would be a 22 really good way to do it, and I think we probably 23 could dig into it right after the forecast. 24 LEAD COMMISSIONER MCALLISTER: Yeah. Can

25 I just add something here? I think this is a

California Reporting, LLC (510) 313-0610

great train of thought here and you know the, 1 2 necessarily right, the categories along the bottom here are specific to analyses that staff 3 4 is doing, but load flexibility, just pure load flexibility is not there, right? It's kind of 5 6 built into transportation, as Commissioner Monahan said. And battery storage is there and 7 8 that's sort of, you know, inherently load, you 9 know, flexible capacity. But you know, this 10 focus on the net peak hour, you know, sort of 11 what resources could we bring to that hour or to 12 the peak to add, you know, add swing here and 13 it'd be nice to kind of be able to understand not 14 only in the transportation side, but also on the building side, you know, what value it can bring 15 16 to this net peak hour and the few hours on either 17 side of it.

18 VICE CHAIR GUNDA: Yeah. If Eric Cline 19 is listening to this conversation, I would 20 definitely flag it as potentially one of the data 21 insights early next year that we can dig into the 22 data and put that out there.

LEAD COMMISSIONER MCALLISTER: Great.
 COMMISSIONER MONAHAN: Yeah, thanks for
 this discussion. I feel like we have these

1 talking points about, you know, we can run our 2 EVs on sunshine and, but to have data behind it 3 would really be helpful. And so just appreciate 4 your receptivity to this conversation. And hear 5 what Commissioner McAllister is saying that 6 transportation education isn't the only potential 7 DER out there.

8 VICE CHAIR GUNDA: Yeah. Very much 9 looking forward to this conversation. I think 10 we're going to take it a little bit more 11 holistically next year in the IEPR process, and 12 I'm really looking forward to that.

13 But Commissioner Monahan, I just want to 14 say thanks to you. I think you have definitely, 15 you know, broadened discussion points this last 16 two workshops. I think it's really great that we 17 all get to speak because of the big issues, we 18 don't get to talk behind the scenes. So making 19 this more of a -- more of a common practice where 20 we get to just discuss and brainstorm is a great 21 idea. So thank you for raising these questions. 22 With that, I would, if we don't have any 23 more questions from the dais, I would like to go 24 to the Q&A. Heather and Heidi. I'm guessing I 25 pass it on to Heidi.

1	MS. RAITT: Go ahead, Heidi
2	MS. JAVANBLAKT: Oh, sorry, Heather.
3	Okay. So yeah, there are a few questions
4	in the Q&A. The first one, I think Nick has
5	already touched on a little bit but wanted to
6	give him the opportunity to talk some more if he
7	wanted to. So the first part of this question
8	it's from Christian Lambert, Cal Advocates.
9	He mentions a typo on slide 34 that's
10	already been addressed. I'm going to skip that.
11	But the second part of this; So they said the
12	sum of the three TAC area coincident peaks
13	approaches 1,300 megawatts worth of increase over
14	the 2020 forecast. The 2019 and 2020 IEPRs both
15	had their own significant peak load forecast
16	increases and now the 2021 has yet another large
17	jump in the peak load forecast. What insights
18	can staff offer into the drivers of these large
19	increases over the 2019 and through 2021 IEPRs?
20	MR. FUGATE: I apologize. I just need to
21	read this. Yeah. So with the, we call it the
22	2020 forecast. We were we were looking at a
23	situation where so I guess at a high level,
24	the underlying driver to our peak forecast is
25	consumption load. And then right we are and

California Reporting, LLC (510) 313-0610

then while we are layering on all of these load 1 2 modifiers, but the main driver for growth is the 3 underlying consumption forecast. And in 2020, we were looking at a situation where we were 4 5 forecasting a significant decline in consumption, relative to what the type of weather normal peak 6 load was for 2020, which created a significant, 7 8 kind of, if we had just applied that through 9 strict application of our normal modeling 10 process, it would have led to an even more 11 drastic increase in our peak load forecast, which 12 we thought was unreasonable.

13 And so we addressed that by sort of 14 transitioning from that, that 2020 load factor to 15 something closer to our 2019 load factor. Sort 16 of assuming that this was an impact, you know, 17 artifact of Covid, and we would sort of gradually 18 transition back to something more normal. So I 19 think going forward we're, you know this is 20 something that we're going to have to think 21 about, sort of track closely. As Commissioner 22 McAllister had suggested, this is kind of, you 23 know, year to year load factors and brainstorm 24 with IOUs and other forecasters to make sure we 25 have a handle on and a reasonable explanation for

1 how things are changing in that respect.

MS. JAVANBAKHT: Thanks, Nick. The next 2 3 question comes from Mike Florio who asks, is 4 there an upward trend in what is considered to be a normal temperature condition? And I will just 5 6 add that this was discussed at a DAWG meeting on September 30th, and I'll put the link to those 7 8 meeting materials as a response to the Q&A. But 9 Nick, did you have anything more you wanted to 10 say?

11 MR. FUGATE: Yeah. I do want to say more 12 on this because what we discussed at the, that 13 DAWG meeting you just referenced was sort of 14 looking at just kind of general temperature 15 trends, or temperature trends sort of more 16 generally. But I think it would be interesting 17 and worth doing to go back several years and sort 18 of apply our weather normalization process to a 19 number of previous years to see sort of how the results translate to any sort of, you know, 20 21 increasing trend. I think that -- I think that 22 makes sense to look at.

23 MS. JAVANBAKHT: Okay. And I know you've 24 already answered this, but I thought it was 25 important enough to mention it again and what are 78 California Reporting, LLC

(510) 313-0610

1 the plans for uploading the IOU load, DER, and 2 load shape data?

3 MR. FUGATE: Hi Phil. I owe you an email response. I promise to get to that shortly. But 4 5 to answer your question -- I'm sorry. Yes, we do 6 have plans to upload the data. It will be in the 7 same sort of format that we have posted those 8 files previously and it will be draft for the 9 moment. And I do have to hope -- I do hope to 10 have those up by tomorrow.

MS. JAVANBAKHT: Okay. And then next, there's a series of a couple of questions from the same person. So what weather event for 2021 were you showing for PG&E, SCE, SDG&E, and then salso for CAISO? And then what is the weather normalized peak for CAISO in 2021?

17 MR. FUGATE: Well I assume -- wait. What 18 whether event is for 2021? Oh. So I assume that 19 is the -- I assume that is asking what 20 the -- what the actual, sort of peak load events 21 were for each of the TAC areas. I can look those 22 up and maybe drop them into the chat, I don't 23 have them off the top of my head. On slide 23, 24 CAISO annual peak CAISO annual peak.

25 Yeah, so in 2021 is a forecast here. So California Reporting, LLC 1 we are showing -- so 2021 does not reflect actual 2 conditions, but this is the results of our model 3 output. So they will not necessarily align. And 4 then what is the weather normalized peak for 5 CAISO in 2021?

6 So yeah. This looks like the similar 7 question to the first one. I will have to look 8 that up.

9 MS. JAVANBAKHT: Okay. That's all the10 questions from the Q&A.

11 VICE CHAIR GUNDA: Thank you, Heidi. And 12 I just want to acknowledge everybody who asked 13 the questions and also I see the presence of our 14 colleagues from the Cal Advocate's Office at CPUC 15 in the IEPR workshop. Just express gratitude for your presence and continuing to engage on the 16 17 forecast. I will also thank you so much for 18 that.

19 So with that, if we are okay, Heather, I
20 would like to move to the next presentation and
21 call on Ingrid, and Ingrid to go through the
22 presentation. Oh, sorry. Michael Kenney.
23 Sorry, Michael.

24 MR. KENNEY: No, that's okay. So good 25 afternoon, everybody. My name is Michael Kenney.

I'm an energy specialist in the Energy
 Assessments Division. And today I'll be
 discussing the history of the energy efficiency
 savings estimates mandated by Senate Bill 350.
 Next Slide.

6 So Senate Bill 350 was authored by Senator DeLeon and passed in 2015. It put into 7 8 action many clean energy goals, and important for 9 the discussion today was the goal to double 10 statewide energy efficiency savings in electricity and gas end uses by January 1st, 11 12 2030. The legislation also called out a series 13 of programs and policies to assess towards this 14 goal. This included programs that would save 15 energy using cleaner fuels or fuel substitution, 16 thus reducing greenhouse gas emissions as well. 17 Overall, the legislation stipulated that we 18 should assess savings that are cost effective, 19 feasible, and do not adversely impact public 20 health and safety. Next slide.

21 So to understand the sources of energy 22 savings in California, the staff at the Energy 23 Commission researched the known and expected 24 programs and policies contributing efficiency 25 savings between 2015 and 2030. We then assessed

1 their current status and expected growth or 2 decline in the future. This included savings 3 coming from utility programs, codes and standards, and a variety of policies and programs 4 funded by taxpayers or private funds, such as the 5 6 Greenhouse Gas Reduction Fund and PACE Financing. 7 The projected savings from these programs 8 resulted in cumulative annual electricity, gas, 9 and then combined savings, which were shown as 10 Btus. These were measured against the 2030 goal. 11 Next slide.

So staff held multiple workshops and prepared three different interim reports discussing how the efficiency doubling at baseline would be set, how the savings would be calculated, and from which program savings were estimated. A final report synthesizing these topics was adopted in October 2017.

19 The report found that the 2030 goal, as a 20 combined energy metric, is 0.4 Quadrillion Btus. 21 The report also projected that the current suite 22 of programs would fall short of achieving that 23 2030 goal. Next slide.

In 2019, the energy savings estimates were updated and published as part of the 2019

1 California Energy Efficiency Action Plan. The 2 updated estimates included analytical 3 recommendations from the initial assessment, such 4 as including industrial and agricultural programs, expanding fuel substitution 5 6 assessments, applying savings from possible 7 conservation voltage reduction programs, and disaggregating savings from low income and 8 disadvantaged communities. Next Slide. 9

10 So to further this effort, a tool was 11 created to assist staff, allowing us to assess 12 energy savings and permit simpler tracking and 13 editing of program information as things change 14 over time. So this tool allowed us to track, 15 analyze, and project electricity, gas, and those 16 combined savings. It also allowed staff to 17 create scenarios based on a range of variables, 18 including compliance rate, funding levels, and 19 market penetration. And it gave us a streamlined 20 process for reporting savings and greenhouse gas 21 reductions by utility service area, sector, and 22 end use. Next slide.

23 So the updated savings estimates for 2019 24 show expected programmatic activity would fall 25 short in a reference scenario. An aggressive

scenario was designed by adjusting financing and
 incentive levels, as well as standard compliance
 rates and program participation. So this
 modified scenario showed what it would take to
 reach that 2030 goal. Next slide.

6 So that is where we're leading up to, to 7 today's analysis that will be updated and 8 explained by my colleague Ingrid Neumann. I'm 9 happy to answer any questions about the target 10 setting process and the reporting up to today. 11 Thank you. And I'll pass it on to Ingrid.

12 DR. NEUMANN: Hello. I am going to 13 update you today on the SB 350 Tracking and 14 Projections for this year and 2020. Next slide, 15 please.

16 So for 2021, we utilized the same energy 17 efficiency savings, accounting, aggregation, and 18 extrapolation methodology and tools, as were 19 developed with great care for our use in 2019. 20 Next slide, please.

As you can see on the timeline on the 22 bottom here, the SB 350 analysis goes from 2015 23 through the end of 2029. The goal is a January 24 1st goal in 2030. This means there are seven 25 years of historical tracking and eight years of

1 future projections that are included in this 2 work. So it's very important that we updated 3 historical data, as well as add emerging programs, and revised projections to our 2021 SB 4 350 Update. We added new energy efficiency 5 6 programs. We incorporated updates to codes and 7 standards in the savings projections. We considered overlap and customer segments being 8 9 targeted by different programs, and we considered 10 market based activities that could result in EE 11 savings that are not being captured elsewhere. Many of the values that went into the 12 13 projections draw from the same projections that 14 are used in our additional achievable energy 15 efficiency forecast. Now that's a forecast that 16 rolls forward with the baseline forecast that was 17 discussed earlier today, each cycle. Whereas the 18 SB 350 tracking and projections are always on a

19 fixed timeline, so always from 2015 through 2029.

20 So the SB 350 analysis is not incremental to

21 anything, like the AAEE forecast is incremental

22 to the baseline forecast. It is only

23 incremental, if you will, to savings that were 24 already committed prior to 2015. So programs 25 that began after that time that had first year

California Reporting, LLC (510) 313-0610

savings, then are made cumulative and decayed,
 according to the lifetime of their end uses
 across that projection period. Next slide,
 please.

5 Now, SB 350 doesn't exist in a vacuum, 6 right. It exists in the broader policy context of building decarbonization, and the SB 350 7 language does allow for fuel substitution, as 8 9 long as overall energy consumption is reduced. 10 So we considered it in our work towards this 2021 11 SB 350 Update. Between 2019 and 2021, we did 12 develop the Fuel Substitution Scenario Analysis 13 Tool, which was used to support our AB 3232 14 analysis recently published in the California 15 Building Decarbonization Assessment. Next slide. 16 More recently this year, we developed a 17 new forecasting product, the Additional 18 Achieving -- Additional Achievable Fuel 19 Substitution, or AAFS, which is also an annual 20 and hourly load modifier to the baseline demand 21 forecast. Like AAEE, it's focused on firm 22 projections and programs since the core scenarios 23 are used for planning and procurement purposes, 24 as was presented by our Forecasting Unit in their 25 managed forecast.

1 So this is the type of analysis that we 2 used for our SB 350 analysis. There's something 3 very similar to what's included in our AAFS for 4 building electrification projections. Next 5 slide, please.

6 We incorporated new data, such as from 7 utilities and other on ground incentive programs. 8 We incorporate electrification resulting from 9 local ordinances as well as from the recently 10 adopted 2022 Title 24 California building 11 standards.

12 Those encourage building electrification,

13 especially in the residential sector. So that's 14 added to the efforts in the 2015 through 2029 SB 15 350 analysis. Most of the building 16 electrification is a projection. There is very 17 little historic or committed savings in there. 18 On the timeline, you also see some of the 19 other analyses that were done here at the Energy

20 Commission having to do with building

21 electrification or fuel substitution. And what 22 the SB 350 analysis is different, because of the 23 different timescale, it's also different because 24 it's not a what-if, it's not speculative in the 25 same way that the FSSAT was using the technology

> California Reporting, LLC (510) 313-0610

1 based fuel substitution that was used in support 2 of AB 3232 from 2020 to 2030, as well as the 3 difference as not being a load modifier to the 4 baseline forecast but having its own independent 5 analysis that's not incremental to anything else. 6 Next slide, please.

7 All right. So from all the input workbooks, of course, we remove fuel substitution 8 9 , because that was a speculative amount of fuel 10 substitution for all electric new construction. 11 That was loosely based on how many buildings were 12 being built at the time, perhaps being motivated 13 by local ordinances. That's now incorporated in 14 the workbook on local ordinances that has both EE 15 savings, as well as fuel substitution components. 16 So for the last point, we did add the fuel 17 substitution dimension to existing workbooks that 18 quantified energy efficiency.

19 we also have a list here of new 20 workbooks. Notably, the CCAs and REN Program 21 Savings, right Those are not yet included in the 22 Potential and Goal Study. So those consist of 23 both EE savings as well as fuel substitution 24 impacts. Then we did model separately 25 residential and new construction fuel

substitution from all electric new construction, 1 2 according to the 2022 standards and beyond, as 3 well as tendencies in the commercial building 4 standards to have partial or full building 5 electrification for some new construction.

6 Then there were some programs, such as 7 the Clean Energy Optimization Program, the Heat 8 Pump Water Incentives in the SGIP, as well as our 9 statewide Tech and Build programs, projecting 10 some impacts from those. Projecting impacts from 11 the pilot program, Food Processing Investment 12 Program. And then also, we did create workbooks 13 for the IOU Low Income Fuel Substitution, because 14 the low income sector is reflected in the 15 Potential and Goal Study of -- for the IOUs in 16 the rebate programs, the Energy Efficiency Rebate 17 programs. And while fuel substitution was 18 included for our market based customers, in the 19 Potential and Goal Study there was no specific 20 low income segment there. So that was modeled 21 separately.

22 And then the POUs, of course, submit 23 their energy efficiency projections with the CMUA 24 Report. We got a fresh new report this year. 25 That only comes out every four years, but they do

1 not formally submit fuel substitution or building 2 electrification projections. So we obtained that 3 information from interviews with POUs that we're 4 willing to share that information with the Energy 5 Commission. Next slide, please.

6 So our goal here for SB 350, or the SB 7 350 Update in the 2021 IEPR, was to shed some 8 more light on the difference between our Business 9 as Usual track, and the track we prefer to be on, 10 which meets energy efficiency and GHG goals. 11 Next slide, please.

So something that we want to consider when we first look at these slides, or the graphs on the next slides, is that energy efficiency, of course, saves energy. So we reduce the gigawatt hours of consumption or demand. And the MM Therms of gas demand.

Fuel Substitution or Building Fuel Substitution or Building Electrification is a little trickier. Though it displaces gas, right. So you can kind of still say that it saves gas, it does add incremental electricity demand. So that would take away from the electricity side of the savings that we would see on the -- on the graphs. Next slide, please.

25

California Reporting, LLC (510) 313-0610

So first, I want to define our Business

1 as Usual Scenario. So we have basically two 2 fundamental scenarios that translate into three 3 scenarios here for SB 350 in 2021. So our 4 Business as Usual Scenario 1 is exactly that. 5 It's kind of our reference using, you know, all 6 of the existing codes and standards savings. committed IOU and POU program savings. Anything 7 8 that already, has occurred and will continue 9 occurring, as well as projections for IOU and POU 10 program savings, as coming from the Potential and 11 Goal Study, which was adopted by the CPUC for the 12 IOUs, and from the 2021 CMUA report that -- for 13 the POUs. And then the additional CEC analysis 14 on POU Fuel Substitution. Next slide.

15 Then, of course, we incorporated the 16 Title 24 California Building Standards Energy 17 Efficiency Savings and building electrification 18 components for both new construction and 19 additions and alterations. The projected 20 components here are for the 2022 standards, as 21 well as somewhat more speculative values for the 22 2025 standards. But of course, those are 23 in the process of starting their development. 24 There will be 2025 standards. Exactly how those 25 will look, you know, we do not know at this time

1 and so we included those at a 20% compliance rate 2 because there's a little bit more uncertainty 3 there.

4 So then similarly, for the Title 20 5 (California State) Appliance Energy Efficiency 6 Standards and the Federal Appliance Standards, we 7 added some new savings, starting in the more 8 near-term, at reference compliance rates for the 9 California standards because those are being 10 developed by the Energy Commission and we have, 11 you know, there's less uncertainty around those. 12 Whereas for the Federal Appliance Standards, we 13 included those at a 20% reduction because those 14 are just starting to ramp back up after being 15 neglected for the last few years. Next slide, 16 please.

17 So lastly, there are the various Beyond 18 Utility programs that we included at reference 19 for conservative levels, depending on how much 20 historical data was available and how many 21 assumptions needed to be made to generate EE 22 savings or fuel substitution impacts. Next 23 Slide.

24 So this is our first slide of results 25 here. On the left hand side, we see the

electricity savings for our Business as Usual 1 2 Scenario. And then the right hand side, we see 3 our gas savings for the Business as Usual 4 The blue are the energy efficiency Scenario. The orange are the fuel substitution 5 portions. 6 portions. The gray line is the SB 350 doubling 7 target. And you can see for the electricity, the 8 blue wedge would actually go to just slightly 9 below 60,000 gigawatt hours at the end of 2029, 10 but the hashed orange fuel substitution, it's 11 efficient electrification, but it does add a 12 little bit of electricity so that blue hash -- oh 13 sorry, the orange hash piece actually diminishes 14 the blue wedge that we have, right. So it drops 15 it down by that orange hashed amount.

16 So what this means is that 66% of target 17 electricity savings are met with this scenario. 18 But then if we look on the right hand side, the 19 gas piece, you know, those are both savings or 20 displaced gas, if you like, for the orange fuel substitution portions, those really do stack, and 21 22 those -- the SB 350 targets are exceeded there, 23 right. It's 126% at the end of that period. 24 The other thing to notice from these 25 graphs is that traditional energy efficiency

California Reporting, LLC (510) 313-0610

1 becomes more difficult to add at the same rate as 2 it was in earlier years. So it doesn't really look like a linear wedge anymore. It does sort 3 of taper off. What that means is that if I could 4 5 save, you know 100 gigawatt hours with something 6 last year, that measures already taken, right. 7 So some of that low hanging fruit is taken. And 8 maybe the next best measure that I can take for 9 next year only saves 90 gigawatt hours. So 10 cumulative savings continue to grow, but new 11 first year savings do diminish over time. Next 12 slide, please.

13 So then we took all of the elements here 14 of this Business as Usual Scenario 1 and put it 15 into a High Electrification future. What that 16 meant was that we were focusing on aggressive 17 building electrification instead of gas 18 efficiency. So we maximized programmatic 19 electrification impacts and then only cut first 20 year gas EE savings through 2024. So there were 21 no gas energy efficiency savings, first year 22 savings, starting in 2025. But the savings 23 occurring before that time would decay, according 24 to the useful lifetime of that end use. Next 25 slide, please.

1 So those are the results that we would 2 see from this scenario. And you can see that 3 because we're adding more electrification, it's more aggressive, right even if it's efficient. 4 You know, you could maybe see how efficient it is 5 6 because we were getting 66% of the way to the SB 7 350 target on the Business as Usual Scenario. And now here in the High Electrification future, 8 9 even though we're adding electricity, we're still 10 getting 64% of the way there. Of course, on the 11 gas side, we were about at 126% and we're all the 12 way at 152% now in the High Electrification 13 future.

14 You can also see on the gas side that the 15 cumulative savings, like that blue piece, stays 16 there for energy efficiency, but it starts 17 decaying as new gas -- no new gas savings are 18 being added, starting in 2025. Next slide, 19 please.

20 So then our third scenario was an 21 Aggressive Scenario 2, which was only modeled in 22 a High Electrification future. So in addition to 23 existing codes and standard savings and committed 24 program savings, and elements in the Business as 25 Usual case, we maximized IOU and POU electric

Energy Efficiency programmatic savings potential. 1 2 And we focused on a High Electrification future by again, including aggressive building 3 electrification instead of gas efficiency. 4 So 5 once again, there was no gas energy efficiency, 6 starting in 2025, but there was higher electric 7 energy efficiency as well as the high building electrification. Next slide. 8

9 So these are the results we see from that 10 scenario. On the left hand side, the orange 11 hashed sliver for electricity, for the 12 incremental electricity, is the same as it was 13 for the building -- Business as Usual Scenario 1 14 High Electrification because the amount of fuel 15 substitution or building electrification is the 16 same. Of course, the blue wedge is significantly 17 larger because we added very aggressive or very 18 optimistic levels of electric energy efficiency. 19 So we can see that we got really close to 20 the electric savings target there. It's 91% of 21 the way there, to the SB 350 doubling. And then 22 on the right hand side, the gas looks exactly the

23 same as it did in the previous High

24 Electrification future because we're still using 25 Business as Usual gas projections through 2024

and then stopping first year savings, starting at
 2025. Next slide, please.

3 So then to really evaluate how close we're getting to any goals here, we need to 4 5 convert, you know as we're having both energy 6 efficiency and building electrification, we need to convert to a common metric of BTU savings or a 7 8 combined energy goal here to see which scenarios 9 reach the SB 350 doubling goal, and perhaps when. 10 Next slide.

11 So this is what we see when we convert 12 our MM Therms and gigawatt hours to BTUs, or 13 quadrillion BTUs because it ends up being a 14 rather large number. And these are all savings. 15 So we have our traditional energy efficiency 16 savings in blue, and then the savings from the 17 fuel substitution in orange and we meet 84% of 18 the combined SB 350 target at the end of 2029. 19 If however, we extrapolate our projections past 20 2029, so throughout the forecast the, I quess 21 past that -- this SB 350 forecast period, next 22 slide, then we can see that the full 2029, or at 23 the end of 2029, SB 350 doubling target is met in 24 2036. So this isa Business as Usual scenario 25 i.e. if we don't make any changes to current

> California Reporting, LLC (510) 313-0610

1 programs and projections. So it's later, but it
2 is still -- it is still met eventually. Next
3 slide.

4 This is the Business as Usual Scenario broken out by the sector, as well as whether it's 5 6 an energy efficiency saving or a fuel 7 substitution impact, we have in blue. And blue 8 gray is the various energy efficiency savings. 9 Residential and commercial, of course, are the 10 largest, as to be expected. And then for the 11 fuel substitution, that's very much dominated by 12 the residential sector. There's just a little 13 bit of red that you can see here for commercial 14 fuel substitution, and I'm having trouble seeing the industrial fuel substitution too, because 15 16 that's really coming mostly from a few pilot 17 programs in our Business as Usual case here. So 18 next slide, please.

19 So on this slide, we took the data and 20 disaggregated it a little bit further. Rather 21 than by doing -- breaking it up by sector, we 22 broke it out by program. So the pattern portions 23 are the EE portions. The solid portions are the 24 fuel sub-portions. Everything in blue is for IOU 25 programs. Everything in green is POU programs.

In pink we have our own Title 24 California
 Building Standards. In purple we have our own,
 or our own as well as the Federal Appliance
 Energy Efficiency Standards. And then in orange,
 we have the Beyond Utility Programs. Next slide,
 please.

7 So this is an attempt to show what is the difference between committed savings and 8 9 projected savings. There are some approximations 10 in here, trying to break it out. And on the 11 brackets we can see that the bottom four, you 12 know, sort of layers or strata almost it looks 13 like, we have again, with the same color coding, 14 blue for IOU programs. Green for POU programs. 15 Pink for the Title 24 Standards. Purple for 16 Appliance Standards, and orange for the Beyond 17 Utility Programs.

18 We have the committed savings that then 19 would decay after the first year savings stopped 20 being added for committed savings. Then the 21 projected savings with the same color scheme for 22 energy efficiency, and then the projected 23 building electrification or fuel substitution 24 savings is on the very top stock. And this is 25 all for the building or Business as Usual

1 Scenario 1. Next slide.

2 So then we move on to the Business as 3 Usual Scenario in a High Electrification future and we get a little closer to the SB 350 target 4 line. We get 90% of the way there at the end of 5 6 the projection period. If we project beyond 7 2029, next slide, then we see that the full 2029 8 SB 350 doubling target is met in 2032, so three 9 years later than we'd prefer.

10 And lastly, or actually, let's look at 11 this in a sector break down again. The sector 12 breakdown looks very similar to what we saw with 13 the standard building or, I keep saying building. 14 It is building, right. But Business as Usual 15 Scenario. And, but what we can start seeing is 16 we can start seeing that orange. Well there's a 17 little tiny orange slice at the top here for 18 industrial fuel substitution as that starts being 19 added in the High Electrification future. Next 20 slide, please.

All right, so this is the last SB 350
scenario for 2021. This is the Aggressive
Scenario 2 in the High Electrification future in
the combined goal. So the combined SB 350
doubling line is in gray, and the two wedges sum

California Reporting, LLC (510) 313-0610

up to exceeding that that target in 2029. We can 1 2 actually see on the next slide that the target 3 is actually met a full year earlier. So this would require, again, aggressive electric energy 4 5 efficiency as well as aggressive building 6 electrification. So that would be a deviation 7 from our Business as Usual track right now. Next slide. 8

9 And again, this has the sector breakdown 10 for those, and it's very similar. What has grown 11 here are the blue wedges here for the electric 12 energy efficiency. The fuel substitution, or 13 building electrification portion, is the same as 14 it was in the other High Electrification future. So there's nothing really new to see there other 15 16 than that it's stacked on a higher energy 17 efficiency savings amount. Next slide, please. 18 All right. So here this is an attempt to 19 compare how the sectors look from one scenario to 20 the next. So on the left hand side, we have the same Scenario 1 Business as Usual break down by 21

22 sector. And on the right hand side, this is the

 $23\,$ Business as Usual Scenario 1 in the High

24 Electrification future. It's the same graph,

25 except it's flipped. So we kind of took the

California Reporting, LLC (510) 313-0610

mirror image, and the reason we did that is so 1 2 that we could better compare those 2019 values. 3 It's a little hard to see when they're not right next to each other. So we do see that the blue 4 energy efficiency portions have diminished, and 5 6 that makes sense because in the High 7 Electrification future, we are stopping gas 8 energy efficiency savings in 2025, right. It's 9 only the cumulative savings from prior to 2025 10 that then our decayed out. So it's reasonable to 11 see that energy efficiency savings and total are diminished. 12

13 But on the other hand, you could really 14 see what the residential fuel substitution portion, we have a Business as Usual version of 15 16 fuel substitution here for 2021 versus an 17 Aggressive version. That yellow wedge is huge, 18 and it really has grown a lot between 19 those -- between those two scenarios. So next 20 slide, please. 21 All right, so here again, the actual 22 values for the energy efficiency reductions, but 23 those pale in comparison to the additions from the fuel substitution. The industrial value is, 24

25 you know, maybe a little bit silly, but you're

1 starting out from this very small pilot program 2 to actual achievable amounts that could be 3 motivated if we developed programs for those 4 industrial savings or fuel substitution impacts. 5 Next Slide.

6 So then this is the same type of 7 comparison here, and this time with the Business 8 as Usual High Electrification wedges on the left 9 and then the mirror image from the Aggressive 10 Scenario in the High Electrification future on the right. So the fuel substitution portion 11 12 should be the same, but they're layered on top of 13 much higher energy efficiency savings. And all 14 of this -- all of this additional energy 15 efficiency savings are coming from the 16 electricity portion, right, because we're really 17 in a high electrification trading off added 18 electrification for gas energy efficiency. Next 19 slide.

All right. So this is really, really All right. So this is really, really showing that there's still a lot of room for electric energy efficiency, maybe less so in the residential sector, more so in the commercial sector. And then ag and industrial, you know, there are few programs currently motivating

California Reporting, LLC (510) 313-0610

savings there. So that's something that one
 could examine. Next slide, please.

3 All right, so we were saying that SB 350, you know, exists in the context of building 4 decarbonization. So in order to really look at 5 6 that, we would want to convert the gigawatt hours avoided or saved, right, and the MM Therms saved 7 to GHG emissions that are averted. So we want to 8 convert all that with emissions factors to MM 9 10 Tons of CO2 equivalent that are avoided. And 11 then we could see which scenarios saved how much 12 and maybe compare those to some other emissions 13 goals. Next slide, please.

14 So it turns out that both SB 350 and AB 15 3232 consider targets or goals in the relative 16 They both look at a -- meeting a near term. 17 certain value by January 1st, 2030. So that 18 seemed like the most reasonable comparison for 19 these -- for this type of analysis. So as we 20 know, SB 350 focuses on doubling energy efficiency savings using a baseline of 2015, so 21 22 that energy efficiency baseline that was then 23 doubled was set by the combined energy efficiency 24 savings, as projected by 2015 AAEE. So then how 25 does this work for AB 3232? What are we

1 comparing there?

2 So there is one thing we need to clean 3 out right away is that SB 350 has more sectors 4 included than AB 3232 is looking at, right. AВ 3232 is seeking a reduction of GHG emissions from 5 a baseline of in 1990 for commercial and 6 residential buildings. And it's a 40% reduction 7 from 1990 that's being considered. So for this 8 9 comparison, we only took the SB 350 savings from 10 the residential and commercial sector, so that 11 would be more of a one for one comparison. So then if we looked into the recently 12 13 published AB 3232 analysis in the Building 14 Decarbonization Report, there were two, there was 15 a dual baseline set. So there were two 16 baselines. One for system wide emissions, which 17 included the generation required for serving 18 residential and commercial buildings. And that 19 was found to be a -- they say to reach that 2030 20 goal, one would need 5.5 MM Tons of reduction 21 from the Business as Usual case at that time. So 22 the Business as Usual case, then, would include, 23 you know, things like energy efficiency, 24 etcetera, right. As -- and so we want to compare 25 to this Business as Usual baseline.

1 Similarly, the direct emissions they 2 didn't include the generation for those buildings. And so then the overall values were 3 less, so 40, or were different. So then the 40%4 ended up being a larger value of 22.1 MM Tons of 5 6 reduction from a Business as Usual required. So now let's look at what we see for GHG reductions 7 for the three SB 350 scenarios that we developed 8 9 for 2021. Next slide.

10 So we have here the MM Tons on the 11 vertical axis. The Years are the horizontal axis 12 for the three scenarios. Scenario 1 in blue. 13 The Scenario 1 in a High Electrification future 14 in orange. And then our Aggressive in a High 15 Electrification future in red. So all of the GHG 16 savings are being measured, with respect to the Business as Usual EE savings and negligible fuel 17 18 substitution because for the AB 3232 analysis 19 there was negligible fuel substitution that would have been included in a Business as Usual value 20 21 that we're measuring these reductions against. 22 Next slide.

23 So that means for our Business as Usual 24 Scenario 1, we're only looking at GHG reductions 25 from new fuel substitution. So our new Business 1

as Usual projection. So that blue line gets us 1 2 about half of the way to the 5 and a half MM Ton 3 reduction in the system wide emissions goal. That's set by that horizontal line at five and a 4 Then if we looked at a Business as Usual 5 half. 6 Scenario 1 in the High Electrification future, 7 since we're, you know, using aggressive 8 electrification, we have more GHGs reduced. And 9 it's the orange curve that reaches 80%, sorry, 10 86% of that system wide emissions goal as set by 11 AB 3232.

12 And then lastly, for the Aggressive 13 Scenario 2 in the High Electrification future, we 14 have both the aggressive fuel substitution as 15 well as the difference between aggressive 16 electric energy efficiency and the Business as 17 Usual electric energy efficiency. So we could take that difference and include the added GHGs 18 19 reduced there. And so that actually looks like 20 you're meeting the AB 3232 system wide emissions 21 qoal as early as 2027. Next slide.

All right, so this is a little bit more of a breakdown of this Aggressive Scenario 2. The blue portion is showing the 34% of additional electric energy efficiency, the GHG reductions
1 from that. The orange wedge is showing the 66% 2 of GHG reductions coming from electrification in 3 the Aggressive Scenario. Next slide.

4 And not surprisingly, more GHG savings can be obtained from electrification than from 5 6 traditional EE, but the traditional EE was 7 necessary to help, you know, reach the SB 350 8 doubling target. So they do work -- they do work 9 in concert. Next slide.

10 All right. So this is the final slide, 11 and we have some long-term considerations because 12 of course, we understand that there are longer 13 term goals than just 2030, especially for 14 building decarbonization and carbon neutrality.

15 So in our analysis that was reported in 16 the recently published California Building 17 Decarbonization Assessment, it indicated that 18 even if in that assessment, one might want to 19 refer to the system wide emissions for meeting 20 the AB 3232 goal. What could be learned also was 21 that GHG reductions on the order of the direct 22 emissions goal would need to be attained in order 23 to be on a trajectory for the economywide carbon 24 neutrality goals that are set by various 25 executive orders for 2045 and are wanted, perhaps

California Reporting, LLC (510) 313-0610

1 to be accelerated even.

2 So to remind you, the direct emissions 3 goal was a reduction of 22.1 MM Tons from a Business as Usual Scenario. And even our 4 Aggressive Scenario 2, developed for the 2021 SB 5 6 350 Update, wouldn't meet that particular GHG 7 reduction goal. Now it's also important to note that the SB 350 is not looking economywide, like 8 9 the carbon neutrality goals are looking. So 10 they're -- it's hard to draw one for one 11 comparison there, but one could say that more work must be done in order to reach these carbon 12 13 neutrality goals, even for buildings. 14 So as someone else had previously 15 mentioned, the Energy Commission is working on a 16 Demand Scenarios Project, which was formally 17 introduced in the IEPR workshop two weeks ago, 18 and this work will elaborate on various potential 19 and possible futures towards mid-century 20 decarbonization goals. So that'll be a long-term 21 economywide analysis that can compare to these 22 2045 goals.

23 And that completes my presentation today.24 Thank you.

25 VICE CHAIR GUNDA: Thank you, Ingrid.

That was super helpful. Really well done, 1 2 thorough. Given that Commissioner McAllister is 3 lead on building decarb as a whole, I don't know, Commissioner McAllister, would you like to kick 4 off any questions that you might have? I have a 5 6 couple of questions. 7 LEAD COMMISSIONER MCALLISTER: Yeah, 8 absolutely. Well, I mean, feel free to go ahead. 9 I do have a list. I have some comments and a 10 couple of questions. Yes. 11 VICE CHAIR GUNDA: Please, please, go 12 ahead. 13 LEAD COMMISSIONER MCALLISTER: Okay. 14 VICE CHAIR GUNDA: I'll follow you. 15 LEAD COMMISSIONER MCALLISTER: Great. So, yeah, I really appreciate this analysis as 16 17 well, Ingrid. Well done. This is really kind of 18 exactly like I think we envisioned it at the 19 beginning of the IEPR cycle, and it's really nice 20 to see the sort of execution in your graphics and 21 sort of the order in which he presented the 22 analysis, I think, was really helpful to kind of 23 walk through because it's not easy. And 24 particularly, this, you know, the AB 3232 report, 25 you know that we recently put out sort of helped

California Reporting, LLC (510) 313-0610

1 us think about this in a more holistic way. Or 2 at least with respect to buildings. But the fact 3 that you've got SB 350 efficiency doubling and then, you know, overlaid or you know, alongside 4 the carbon emissions reduction goals. And then, 5 6 you know, fuel substitution obviously is a kind 7 of a linkage between the two in some way, you 8 know. That translation really needed to happen 9 and you -- and you all, you and the team, have 10 really, I think, done that in a way that is 11 transparent. So thanks to you and the whole 12 team.

And I'm really looking forward to the Demand Scenarios Project that you, and Mike Jaske, and others are working on. So I'm really looking forward to helping move that forward. So this is a huge integration task. So I just want to thank you for that.

19 And just the explicit distinction. Your 20 color coding was fantastic. The explicit 21 distinctions between sort of what is EE and 22 what's electrification. I really, really 23 appreciated that. And you know at, toward the 24 end, you know I think the, you pointed this out, 25 there wasn't a graphic, but you pointed it out

1 that if we really do take the direct emissions 2 baseline, it's much more challenging to get there 3 with the tools that we currently have and the 4 toolbox. And that, you know, we really do need some creative thinking to be able to scale energy 5 6 efficiency and fuel substitution electrification, particularly electrification, because that's kind 7 8 of the twofer. I just wanted to -- I wanted to 9 just comment on, maybe this is for attendees who 10 maybe aren't sort of always paying attention to these -- to these issues with respect to, you 11 12 know, efficiency in a form like this. You know, 13 it's not sort of this topic is a little bit 14 unique in terms of, in the context of the 15 forecast.

16 So I guess I just wanted to point out 17 that heat pumps are really a key technology here. 18 I'm not sure that you even mention them, you 19 know, Ingrid, but in terms of having a twofer. 20 You know, so we were really kind of wondering a 21 couple of years ago how we would get to our 22 efficiency doubling goals because, you know, that 23 conversation was shifting towards emissions. And 24 you know, we're already a pretty efficient 25 economy and we had a lot of programs doing a lot

California Reporting, LLC (510) 313-0610

1 of things, and building codes, and appliance 2 standards, that are always in development. But 3 doubling those efforts, it wasn't clear what the 4 path was going to be if we took a straight 5 efficiency, just through a straight efficiency 6 lens.

7 And so you know then we, as we really 8 started to consider what building decarbonization 9 could look like, and as heat pumps really got to 10 be ready for prime time, and you know, we started 11 seeing that they were both inherently efficient, 12 you know, multiples of 100%. You know, like 300 13 and 400% efficiency, and they were electric, 14 which meant that they could take advantage of the 15 cleaning, the increasingly decarbonized electric 16 grid.

17 So really, the 350 goal has really gotten new life breathed into it, and we saw that we're, 18 19 you know, we can be on track to actually meet and 20 exceed that with some pretty clear policy 21 directions and some programmatic efforts. And so 22 as I said, you know, it breathed, you know heat 23 pumps and electrification, generally have kind of 24 breathed new life into the 350 goal achievement. 25 I'm sort of, you know, very optimistic about that

California Reporting, LLC (510) 313-0610

1 now. And more broadly in the emissions.

2 You know, the other takeaway is just that, you know, we've really got to scale these 3 4 efforts. And you know, I hope that 2022, 2023, we're going to see, you know, infusions of 5 6 resources into that effort and we're really going to need everybody rowing in the same direction 7 8 across the state. So it could be a huge job 9 creator. It could be a huge, you know, just 10 pipeline of projects to do what you were just talking about, Ingrid, you know, to really -- so 11 12 five years, five, 10 years down the road, we 13 would look at these -- at these graphs again with 14 actual data from that period and see that we're 15 on track and maybe beyond our goals. So anyway, 16 that's the optimistic me talking. 17 I actually had -- the question I had

18 written down was about this the onsite emissions, 19 the direct emissions, and you address that 20 verbally. And so I was kind of hoping there was 21 a graph there, but I understand why there's not, 22 or a chart. I understand why there's not -- why 23 there's not one. So let's see, I quess I don't 24 have any questions that are going to stretch you 25 in a new direction. I've been -- I've been

> California Reporting, LLC (510) 313-0610

obviously paying attention to this along the way, 1 2 and I think as we develop the path, sort of the 3 pipelines and the sort of recipient, ideas for 4 what programmatic initiatives we're going to do 5 with federal infrastructure funds and id Build 6 Back Better passes, we'll get some funds, and you know, we'll see kind of what comes down the pike 7 8 in terms of the budgeting, etcetera. You know I 9 can't really predict all the details there but, 10 you know, I think I'm hopeful that that we'll be 11 able to sort of, you know, make this analysis 12 proud by actually executing and going even beyond 13 these projections, hopefully.

14 So I'm very excited about where we --15 where we are and where we can potentially go for 16 the next couple of years. So anyway, all this is to say thank you and really be encouraging to our 17 18 whole team. I think, you know, Michael, you know 19 now you're the AD and I think you're leveraging 20 all your experiences from efficiency division. 21 But this cross division team that's wrestling with these tough, you know you're trying to sort 22 23 of figure out how analysis, you know, how you should analyze to both reflect reality, but also 24 25 project the possible. And I think that's always

1 the balance we have here. And I really 2 appreciate your thoughtfulness and rigor in 3 trying to kind of manage this discussion and be explicit about, you know, what needs to happen in 4 order to reach our goals. 5 So I really, really 6 enjoyed the presentation. Nice job. 7 VICE CHAIR GUNDA: Thank you, Commissioner McAllister. I -- I'm glad that I'm 8 9 following you because it's, you know, I second 10 everything you said, and I think it's really 11 great. I especially know that Ingrid has been 12 putting a lot of hours, you know, and given the 13 way that the swim lanes work in terms of project 14 timing, it is always like a squeeze towards the end and a lot of pressure to get this analysis 15 16 done very rapidly. So, you know, I'm grateful 17 for the team for thinking about the more broader 18 analytical tool that that kind of accommodates 19 this kind of analysis. So Ingrid, to you and 20 Michael, you're still in the family, even though

21 you kind of moved away from the Efficiency

22 Division. So I thank you for continuing this.

23 So let me just elaborate a couple of 24 things that Commissioner McAllister mentioned, 25 and I want to make sure that I put it on the

California Reporting, LLC (510) 313-0610

1 table. I think Commissioner McAllister already 2 pointed out this. The building conversation has moved from energy to carbon, and we can see, you 3 know, as the conversations in the scoping plan 4 are going, you can see the trajectory towards 5 6 more equitable buildings, right. So that the 7 idea here is energy and equity. So as we 8 transition the economy, how do -- how do every 9 sector provides an equitable opportunity?

10 So I think, you know, as you think about, 11 you know, again, just recognizing your efforts 12 here, Ingrid, of taking the energy and then 13 converting that to the broader CO2 and then kind 14 of comparing across different policy arenas, you 15 know, I would -- I would challenge ourselves to 16 think about how do we begin to take the non-17 energy benefits conversation and kind of putting 18 that overlay as we move forward. I know we can't 19 do that right now, but it's like, how do we begin 20 to think about a broader framework that that cuts across policies that, you know, to provide the 21 22 equitable transition conversation we're having. 23 That's one.

I just has a comment. And two, just at a high level, you know, again, recognizing that

1 there's a lot of work that happened in top
2 leadership on how to think about 350 from the
3 early time to like now, and I just want to ask
4 ourselves to continue to think about what are the
5 policies coming down the pike and how do we
6 evolve the thinking around the building
7 decarbonization to fit that more broadly.

8 One question for you. Obviously, we 9 didn't put the direct emissions on the chart. 10 You know, when it's -- I don't know why would why 11 we would put it, but at the same time, do we, you 12 know the, one of the scenarios for the building, 13 for 3232, was the refrigeration, the refrigerant. 14 You know, the whole thing around the refrigerants 15 and the, I forget the actual Bill number, which 16 would have helped with some of that. Are you 17 able to track that in your analysis now, as a 18 potential scenario, or we're not thinking about 19 this yet?

20 DR. NEUMANN: Yeah. Okay. So there's a 21 couple of things, right. So there's the bit for 22 CARB with SB 1383 and the way it was dealt with 23 in AB 3232 was an all or nothing right. Whereas 24 obviously, in conversations with CARB, as we were 25 progressing through the work, they were also

1 progressing through their work, and we're hoping 2 to get some data from them early next year so 3 that we can make some better projections there 4 based on the work that they're doing towards SB 5 1383, right.

6 So basically, you know it's not going to 7 be a zero. It's not going to be a nothing, but 8 it's maybe not -- it's very similar to our own SB 9 350, maybe, right? You know, maybe we're 80% of 10 the way there, if we do XYZ, you know, and that 11 sort of thing. So we're hoping they could tell 12 us that kind of stuff.

13 So for this, I did not include any 14 refrigeration impacts. So like the refrigeration, so there was an AB 3232. That was 15 a what-if analysis, which was really technology 16 17 based fuel substitution. Whereas here in the, 18 for the energy efficiency in the fuel 19 substitution, it's more programmatically based. 20 It's not a specific technology being substituted, 21 but it's also more grounded than because 22 it's -- you're looking at, you know, programs 23 that are, you know for the committed portions, 24 that are funded, right. And building standards 25 that are coming down the pipeline.

1 So it's just a different type of 2 analysis. So the answer is we don't have -- we have something by end use, but we don't have 3 specific technologies assigned to those, right. 4 5 So then it would be hard to do what we did in AB 6 3232, where there was an incremental amount of refrigeration emissions then, that was added 7 8 every time we added a heat pump, right, because 9 they use refrigerants. And then one could use, 10 in addition to that, what emission reduction one 11 could get from the SB 1383. But both of those incremental refrigerant values were a lot smaller 12 13 than any emissions from the electricity 14 consumption or than the gas consumption that's 15 displaced. So this is a little bit of a 16 different approach there, but it's, you know, 17 plus or minus, you know, maybe a few percent and 18 not including any CARB efforts there with 19 emissions.

20 VICE CHAIR GUNDA: Great. I think that's 21 a -- that's a good point to make, and I think in 22 the -- in the write-up for this volume, you might 23 want to connect those dots just a little bit, in 24 terms of why they're different. Because that 25 would be helpful, right. I mean because again,

1 going back to the broader discussion, I think 2 it's to Commissioner Monahan's point over the 3 last two workshops, is the -- is the challenge of 4 talking about all these different policy goals 5 with some cross-work of metrics. That's helpful. 6 So, you know, let's kind of put that in

7 our pockets to just think through and kinds of 8 how can we advance that conversation.

9 And I think finally, before we go to the 10 Q&A, I don't see any Q&A. Heather, you could 11 just chat. Put it in the chat if we are good to 12 just move to public comment after this. But just 13 one final question, specifically.

14 So as we think through the work of, you 15 know the long-term considerations, you obviously 16 talked about the Demand Scenarios and such. How 17 far are we? I'm not going to open this can 18 completely, but just going to just touch it. You 19 know, the conversation around the vehicle 20 integration, right. Vehicle to grid integration and then the kind of boundaries, the messes that 21 22 we have around. You know, what is at a building. 23 What's not at a building. You know, how are we 24 tracking that and what are we thinking? Are we 25 always going to just keep this tight to the end

1 users we currently have? Or are we planning to 2 expand them more holistically?

3 DR. NEUMANN: I don't, I mean from my 4 involvement in Demand Scenarios, I would just say 5 that we're including our own analysis on building 6 electrification and building energy efficiency. 7 So something along the lines of long-term AAEE 8 and AAFS, and then something similar with the 9 transportation forecast.

10 VICE CHAIR GUNDA: Yeah.

DR. NEUMANN: So I, I mean as far as you know, how that's going to be broken down, as far as locationally, I think that's not been -- not quite been determined yet.

15 VICE CHAIR GUNDA: Okay. Yeah, I think 16 what -- I think the flag here is just that, you 17 know, as we have more and more transportation 18 electrification discussions, to the extent that 19 they have the overlap of the buildings, and then 20 to the extent that they have 350, 1383 interactions, having clarity on how we are 21 22 thinking about these analysis and where the 23 boundary is would be just helpful. I know we all 24 know those boundary conditions pretty well, but 25 this is an evolving situation, just call that

> California Reporting, LLC (510) 313-0610

1 out.

So with that, again, thanks Ingrid, to 2 3 you, Michael, and I know that EAD team, a large amount of EAD team, Ida, I know, the supervisor, 4 thank you for all the work and the -- and the 5 6 collaboration with Efficiency Division and also 7 sometimes R&D on important issues. So thanks to all of that. 8 9 And with that, I would propose we go to 10 Q&A. Heather, I will hand it to you. 11 MS. RAITT: Sure. Thanks. Commissioner 12 Gunda, I don't see anything in the Q&A, so if 13 you'd like, we could go straight to public 14 comments. And Rosemary Avalos is here from the 15 Public Advisor's Office to help us with that. 16 Thanks. 17 MS. AVALOS: Thank you, Heather. Commenters, please allow one person per 18 19 organization to make a comment, and comments are 20 limited to three minutes per speaker. And I'll 21 first go to call on the folks using the raise 22 hand feature on Zoom. 23 So at this point, I don't see anyone who 24 has raised their hand yet. Let's see. Okay. I 25 don't see any hands raised here. Okay, and I'm

California Reporting, LLC (510) 313-0610

1 going to give a reminder to the folks on the 2 phone.

In order to raise your hand on, if you're using your phone, you dial *9, and *6 to mute unmute. So let me give it a few minutes here, a few seconds here. Okay.

7 I don't show any hands raised either on 8 Zoom or on the phone, so that concludes the 9 comments from the Zoom in online and on the 10 phone. So I'll turn it to Vice Chair Gunda. 11 VICE CHAIR GUNDA: Yeah. Thank you,

12 RoseMary.

13 I just want to say now, in closing, you 14 know we had two really good workshops. Again, 15 and I'm just kind of invoking the sentiment of 16 gratitude to the staff in EAD, the Forecasting 17 Team and more broadly, you know, other divisions 18 that are helping with the forecasting elements. 19 Really thank you for your excellent work, you 20 know with -- given the limitations on resources 21 and a number of the staff stepping up. I know 22 Mark Palmere, you know, Lynn Marshall, and a 23 number of you who are stepping in to take over 24 work that needed to be done.

25 So thank you all. And to Heather and

your team, thanks for another excellent workshop. 1 2 Look forward to the comments, public comments and responding to that from our team. So I don't 3 have anything else other than thank you. 4 5 So Commissioner McAllister, I'll pass it 6 to you before I close the --7 LEAD COMMISSIONER MCALLISTER: Okay. 8 Great. No, just really a nice afternoon here of, 9 you know, update information -- updated 10 information and just a reflection of all the 11 great work that's been happening. 12 And I did want to just acknowledge the 13 partnership with the PUC, as well. With the 14 Potential and Goal Study and just kind of working 15 through the ins and outs of that. And I know, 16 you know, a lot of interaction with various 17 stakeholders who informed that and the contractor 18 that does that work. And I think that's a strong 19 partnership that only gets stronger over time as 20 we engage further on these issues. And, you 21 know, draw some, connect some of these dots and 22 build bridges across energy sources. So I think 23 that's a really, bedrock partnership as it is in 24 other areas. But here to.

25 So thanks for -- thanks for the day.

VICE CHAIR GUNDA: Yeah. Thank you,
 Commissioner McAllister.

3 So I think I want to just close by saying thanks to everybody for being in attendance 4 5 today, all the speakers, the Q&A participants, 6 and generally being a part of this conversation. 7 All the stakeholders who were able to join. Your 8 commitment of your time to engage in these 9 workshops and help push both the quality and the 10 rigor of the work. We just really appreciate 11 your participation.

12 I know we're going into holidays pretty 13 soon here. So happy holidays to everyone. And 14 for those of you who are going to take the time 15 to provide comments before December 30th, extra 16 thanks to all of you. So we welcome written 17 comments, and once again, those comments are due 18 by close of day on December 30th. Instructions 19 on how to provide written comments are included 20 in the notice for this workshop, which is posted 21 on the CEC website.

22 So with that, I would call the meeting to 23 adjourn, and so thank you all.

24

25 (Off the record at 3:49 p.m.)

REPORTER'S CERTIFICATE

I DO HEREBY CERTIFY THAT THE TESTIMONY IN THE FOREGOING HEARING WAS TAKEN AT THE TIME AND

PLACE THEREIN STATED; THAT THE TESTIMONY OF SAID WITNESSES WERE REPORTED BY ME, A CERTIFIED ELECTRONIC COURT REPORTER AND A DISINTERESTED PERSON, AND WAS UNDER MY SUPERVISION THEREAFTER TRANSCRIBED INTO TYPEWRITING.

AND I FURTHER CERTIFY THAT I AM NOT OF COUNSEL OR ATTORNEY FOR EITHER OR ANY OF THE PARTIES TO SAID HEARING NOR IN ANY WAY INTERESTED IN THE OUTCOME OF THE CAUSE NAMED IN SAID CAPTION.

IN WITNESS WHEREOF, I HAVE HEREUNTO SET MY HAND THIS 10TH DAY OF FEBRUARY, 2022.

hisar Pa

SUSAN PALMER CERTIFIED REPORTER CERT 00124

CERTIFICATE OF TRANSCRIBER

I do hereby certify that the testimony in the foregoing hearing was taken at the time and place therein stated; that the testimony of said witnesses were transcribed by me, a certified transcriber and a disinterested person, and was under my supervision thereafter transcribed into typewriting.

And I further certify that I am not of counsel or attorney for either or any of the parties to said hearing nor in any way interested in the outcome of the cause named in said caption.

I certify that the foregoing is a correct transcript, to the best of my ability, from the electronic sound recording of the proceedings in the above-entitled matter.

Martha L. Nelson

February 10, 2022

MARTHA L. NELSON, CERT**367