DOCKETED	
Docket Number:	21-IEPR-06
Project Title:	Building Decarbonization and Energy Efficiency
TN #:	239959
Document Title:	Presentation - The Value of Grid interactive Efficient Buildings
Description:	S1.2F Brett Webster, RMI
Filer:	Raquel Kravitz
Organization:	RMI
Submitter Role:	Public
Submission Date:	10/4/2021 1:21:50 PM
Docketed Date:	10/4/2021

The Value of Gridinteractive Efficient Buildings

October 5th, 2021 | Brett Webster 2021 IEPR Commissioner Workshop California Energy Commission

Agenda

- 1. GEB: Why are they important for decarbonization?
- 2. Value to Building Owners and Occupants
- 3. Carbon value of GEB
- 4. Summary

WHY ARE GEB IMPORTANT FOR DECARBONIZATION?

The Recipe for Building Decarbonization

What are GEBs?

Grid-Interactive Efficient Buildings (GEB)

Grid-interactive efficient buildings (GEBs) are energy efficient buildings with smart technologies characterized by the active use of distributed energy resources (DERs) to optimize energy use for grid services, occupant needs and preferences, climate mitigation, and cost reductions in a continuous and integrated way.

GEBs bring building and grid together!

RMI – Energy. Transformed.

Source: RMI, The Carbon Emissions Value of Demand Flexibility, 2021

8

Hours of the day

RMI – Energy. Transformed.

Source: RMI, The Carbon Emissions Value of Demand Flexibility, 2021

Hours of the day

VALUE TO BUILDING OWNERS AND OCCUPANTS

Value Potential for Grid-Interactive Efficient Buildings in the GSA Portfolio

Best NPV:

- HVAC staging
- Staged laptop charging
 Flex+EE/RE combo measures too:
- LEDs + controls
- Solar + storage

Value Potential for Grid-Interactive Efficient Buildings in the GSA Portfolio

- GEBs measures have high NPV and short payback periods driven by low first costs (controls focused)
 - Best returns from locations with high demand charges and time-varying rates
- Value to grid and society depends on alignment between rate structures, grid operations, and carbon intensity
 - Individual building peaks don't always match grid peaks

CARBON VALUE OF GEB

GEBs can reduce GHGs

GEBs can help enable electrification

- "Spark spread" still a barrier to electrification in many places
- Additional revenue streams from demand flex can help cost-effectiveness
- Need to ensure equitable access

The Carbon Emissions Impact of Demand Flexibility

Carbon Signal Type

An average signal would encourage different behavior in buildings than a marginal signal

- A marginal signal better reflects the emissions impacts of load shifting
- Building operation optimized on a marginal signal may lead to >2X emissions reduction compared to an hourly average signal.
- Marginal and average emissions may not always be correlated, thus there are grid conditions where using an average signal for optimization could increase grid emissions (Shown in the IESO Ontario example).

Carbon Signal Characteristics

This table shows the loss in efficacy of a signal to yield its maximum potential carbon reduction as the timestep and level of advance notice change

- The level of advanced notice and timestep of a signal determines the behavior of the building.
- Buildings will respond differently, depending on the signal selected
- The signal characteristics will determine the emissions savings potential

Demand Flexibility in New York City Buildings: Benefits beyond Carbon

Reduction of peaker plant run times would improve the air quality in surrounding neighborhoods and begin to reverse health inequities in locales like New York City's South Bronx and Sunset Park, dubbed "Asthma Alley" due to its proximity to peaker plants

GridOptimal

GridOptimal Metric	What it Measures
Grid Peak Contribution	Degree to which building demand contributes to load
	on the grid during system peak hours
Onsite Renewable Utilization Efficiency	Building's consumption of renewable energy generated
	onsite (not exporting to grid) over a year
Grid Carbon Alignment	Degree to which the building demand contributes to
	upstream (grid) carbon emissions over a year
Energy Efficiency vs. Baseline	Percent better than code (annual total energy use)
Short-Term Demand Flexibility	Building's ability to reduce demand (shed) for 1 hour
Long-Term Demand Flexibility	Building's ability to reduce demand (shed) for 4 hours
Dispatchable Flexibility	Building's ability to automatically reduce demand
	(shed) for 15 minutes, controlled by utility/ third party
Resiliency	Building ability to island from grid and/or provide
	energy for critical loads for 4-24 hours; motor soft start
	capability to help grid restart after outage

SUMMARY

Key Takeaways

- Policies and programs should be designed to capture cost AND carbon value of GEBs
- Alignment between rates, wholesale market programs, and carbon intensity is critical to maximizing benefits of GEBs
- Carbon signal is important: type, timestep, and level of advance notice
- Bundling GEBs with electrification efforts can reinforce value propositions (incentive adders for 'smart and connected' electric equipment)
- GEBs should be thought of as an arrow in the quiver of building decarbonization, not a standalone objective

Additional Resources

- <u>Value Potential for Grid-Interactive Efficient Buildings in the GSA Portfolio: A Cost-Benefit Analysis, Rocky</u> <u>Mountain Institute, 2019.</u>
- The Carbon Emissions Impact of Demand Flexibility, RMI, 2021.
- Demand Flexibility in New York City Buildings: Benefits beyond Carbon, RMI, 2021.
- <u>The Economics of Demand Flexibility: How "flexiwatts" create quantifiable value for customers and the grid.</u> <u>Rocky Mountain Institute, August 2015.</u>
- <u>New Buildings Institute GridOptimal Initiative</u>

THANK YOU Brett Webster | <u>bwebster@rmi.org</u>

Rocky Mountain Institute Innovation Center 22830 Two Rivers Road