| DOCKETED         |                                                                         |
|------------------|-------------------------------------------------------------------------|
| Docket Number:   | 21-IEPR-05                                                              |
| Project Title:   | Natural Gas Outlook and Assessments                                     |
| TN #:            | 239606                                                                  |
| Document Title:  | Julia Prochnik - LDESAC Comments - LDESAC comments on<br>Draft 2022 SSS |
| Description:     | N/A                                                                     |
| Filer:           | System                                                                  |
| Organization:    | Julia Prochnik - LDESAC                                                 |
| Submitter Role:  | Public                                                                  |
| Submission Date: | 9/7/2021 4:17:14 PM                                                     |
| Docketed Date:   | 9/7/2021                                                                |

Comment Received From: Julia Prochnik - LDESAC Submitted On: 9/7/2021 Docket Number: 21-IEPR-05

### LDESAC comments on Draft 2022 SSS

Additional submitted attachment is included below.



Thank you for the opportunity to provide these September 7, 2021 comments on the Midterm Reliability Assessment August 30 workshop.

The Long Duration Energy Storage Association of California (LDESAC) is a 501(c)4 organization fully focused on promoting the development of long duration energy storage to complement short duration storage technologies, renewables and advancing California's climate and clean energy goals. Long duration energy storage (LDES) provides support to operate a safe and reliable energy grid. Our organization works closely with other renewable, clean energy, storage, and allied organizations to advance our shared priorities.

LDESAC storage technologies currently include pumped storage, compressed air, liquid air, zinc-air batteries, thermal storage, flow batteries, flywheels, molten salt, electrolytic hydrogen, and repurposed gravity wells. These technologies can be deployed in projects ranging from a few hundred kilowatts to several gigawatts. Some involve sitespecific applications, while others can be deployed almost anywhere. Some, such as pumped storage and concentrating solar thermal, are fully mature and have been deployed around the world for decades, while others are now becoming commercially available with strong public support to advance their deployment.

In the table below, LDESAC illustrates these diverse technologies and their grid attributes:

# Long Duration Energy Storage

All types promote renewable energy generation and manage surplus energy (change loss is less than 1%)

| Technology Type                | Capacity    | Avg. Duration                                                           | Avg. Life Cycle | Ancillary Services                                                                                                                                                                                               | Resource Attributes                                                                                                                                                             | Avg. Deployment<br>Stage                                                    |
|--------------------------------|-------------|-------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Thermal Battery                | 200kWe & up | 6-20hrs                                                                 | 30 yrs          | Grid stabilization, ESS incl.<br>frequency control, spinning<br>reserves, rate arbitrage                                                                                                                         | No georgraphical constraints,<br>scalable, close load following,<br>no degradation                                                                                              | Market ready                                                                |
| Gravity                        | 40kW-8MW    | 5-24hrs                                                                 | 30 yrs          | Resource adequacy, spinning<br>reserve, sub-second response time<br>(but not well suited for freqency<br>response)                                                                                               | Scableable, distributed, reuse<br>infrastructure, zero<br>self-discharge                                                                                                        | Pilot                                                                       |
| Zinc Batteries                 | 1-10MW      | 10 hrs                                                                  | 30 yrs          | Frequency control                                                                                                                                                                                                | High energy density, 2%<br>discharge rate                                                                                                                                       | Pilot                                                                       |
| Flow Battery                   | 1-25MW      | 10-24hrs                                                                | 25 yrs          | Frequency control                                                                                                                                                                                                | Scalable, power and duration can be sized independently                                                                                                                         | Deployed in market                                                          |
| Flywheel                       | 5-25MW      | 10-24hrs                                                                | 35 yrs          | Rotational energy, fast response time                                                                                                                                                                            | Instant start and load following                                                                                                                                                | Deployed in market                                                          |
| Green Hydrogen                 | 1-100MW     | 10-100hrs                                                               | 20 yrs          | Discharge time, response time                                                                                                                                                                                    | Refuel and recharge                                                                                                                                                             | Commerical                                                                  |
| Liquid Air                     | 25-150MW    | 8 - 24 hrs                                                              | 30 yrs          | Synchronous inertia, frequency<br>control, reserves, voltage support,<br>black start capability                                                                                                                  | No georgraphical constraints,<br>high energy density, no<br>degradtion                                                                                                          | Commerical                                                                  |
| Concentrating Solar<br>Thermal | 50-250MW    | 10-24 hrs                                                               | 75 yrs          | Synchronous generation thus<br>provides spinning reserve,<br>frequency regulation, fast ramping<br>and other ancillary services                                                                                  | High conversion efficiencies                                                                                                                                                    | Commerical,<br>deployed in market                                           |
| Compressed Air                 | 100-500MW   | 8+ hrs                                                                  | 50 yrs          | Regulation service-up, regulation<br>service-down, responsive reserve<br>service, non-spinning reserve<br>service                                                                                                | Efficiency at max generation,<br>Emissions free, unimpacted<br>by temperature, future<br>scalability in size and<br>duration, no degradation,<br>flexible siting locations      | Commerical                                                                  |
| Pumped Storage                 | 10-2400MW   | 8 hrs- 36 hours, can<br>be seasonal, and<br>lose no charge over<br>time |                 | Black start, frequency regulation,<br>voltage support, spinning reserves<br>and operating reserves,<br>synchronous condensers, fault ride<br>thru add all services available in<br>charging and discharging mode | Secure power supply, scalable,<br>synchronous machines with<br>large Inertia, high cycle<br>efficiency, ultra fast ramp rates<br>and response times, high<br>proven reliability | Commerical,<br>deployed in market<br>and150,000 MW in<br>operation globally |

Long duration energy storage is the failsafe component to ensure grid reliability and meet California's climate goals. As the state increases its deployment of variable energy resources, such as solar and wind, and fossil generation is retired, overall system reliability can become jeopardized. With the deployment of long duration energy storage, the system reliability we are accustomed to with today's grid will be maintained. Long duration energy storage stores excess solar, on shore and offshore wind generation to power the grid as these resources fluctuate or become unavailable, and to smooth out all inconsistencies in grid operations that arise from these variable resources. LDES ensures the lights can stay on for hours, days and even to address seasonal needs.

Thank you for your continued support of long duration energy storage as an essential solution to mitigating climate disasters and ensuring resiliency, reliability, and security in California.

We look forward to working with you now and in the years ahead to ensure Californians have an equitable and reliable clean energy future.

Sincerely,

Julia Prochnik Executive Director, Long Duration Energy Storage Association of California julia@storeenergyca.org O: 916-573-0403 C: 202-246-3025

### **LDESAC Specific Recommendations on Slides Presented:**

The presentation uses inconsistent terminology for Long Duration Energy Storage (LDES). Some slides mention pumped storage hydro, while other slides reference long duration energy storage. As you know, long duration energy storage has many different types of technologies including pumped hydro storage, which has been an effective and reliable tool, but does not speak for all the diverse types and attributes of other LDES technologies. Battery storage can also mean many different things and LDESAC recommends the labeling become clear and consistent.

We recommend referring to duration, rather than technology, unless there is a discrete attribute of that particular technology is being discussed. We recognize, however, that this requires creating a demarcation by duration and LDESAC recommends using 8-hours, consistent with the CPUC's mid-term reliability procurement order.

Also, LDESAC recommends the CEC use LDES as a category for the over 8-hour technologies and not pumped storage and simply note if pumped storage is being used as the proxy for that category given the ample data for this technology type.

The more inclusive the data set the better the modeling which then makes better policy.

LDESAC is requesting further clarification of the data and material regarding a comment made that "Modeling is showing there is not a need for long duration resources in 2026 to meet reliability." Since there are many models and studies that demonstrate it is critical to procure long duration energy storage to meet CA's climate and decarbonization goals in 2026 and beyond, we find this statement contrary and confusing to stakeholders.

In addition to fixing the terminology and adding consistency, the LDESAC recommends the following regarding specific slides:

As noted in slide 14, the study states it "Is not Designed to: • Model actual dispatch of the system. • Analyze actual system reliability from all available power plants. • Consider energy demands outside of the CAISO. • Incorporate RPS, GHG, or other policy and environmental impacts or limits on system operations. • Study November – April. • Incorporate recently observed extreme weather events. • Qualitative concerns related to resource deployment. The LDESAC recommends the CEC state what it will do to ensure all of these critical factors are considered.

On slide 20, there was no mention of LDES. As noted in previous work by the CEC and the CPUC, ELCC can encompass LDES technologies and projects. "ELCC and Technology Factors: Made use of the marginal ELCC values and technology factors from the CPUC's Reliability Needs Assessment." The LDESAC recommends the CEC revisit the data and incorporate the ELCC metrics for LDES (we note this again regarding slide 43).

On slide 22 omits values for LDES, and they should be included since data is available. The LDESAC likes the delineation noted in the table regarding energy storage and pumped hydro storage, but there is data missing. The LDESAC is more than happy to work with the CEC to provide more information for this table.

| Technology           | Forced<br>Outage Rate<br>(%) | Mean Time<br>to Repair (h) | Standard<br>Unit Size<br>(MW) | Test Unit<br>Size (MW) | CAISO<br>Median Unit<br>Size (MW) | CAISO Mean<br>Unit Size<br>(MW) |
|----------------------|------------------------------|----------------------------|-------------------------------|------------------------|-----------------------------------|---------------------------------|
| Combined Cycle       | 3.69                         | 24                         | 100                           | 600                    | 583                               | 619.0                           |
| Gas Turbine          | 11.66                        | 24                         | 100                           | 125                    | 49.8                              | 125.4                           |
| Cogen                | 13.84                        | 24                         | 100                           | 50                     | 49.8                              | 125.4                           |
| Gas-Other            | 13.84                        | 24                         | 100                           | 40                     | 9.9                               | 40.1                            |
| Nuclear              | 1.92                         | 24                         | 1140                          | 1140                   | N/A                               | N/A                             |
| Geothermal           | 7.2                          | 24                         | 25                            | 25                     | N/A                               | N/A                             |
| Biomass              | 8                            | 24                         | 10                            | 10                     | N/A                               | N/A                             |
| Imports - Specified  | 3.69                         | 24                         | 100                           | 100                    | N/A                               | N/A                             |
| Energy Storage 4 h   | 5                            | 24                         | 10                            | 10                     | N/A                               | N/A                             |
| Energy Storage 8 h   | 5                            | 24                         | 10                            | 10                     | N/A                               | N/A                             |
| Pumped Hydro Storage | 5.77                         | 24                         | 100                           | 100                    | N/A                               | N/A                             |

And for the next table where 250 MW was identified was this for an invite 1/20? The 250MW is less than the 1000MW of LDES identified. The LDESAC recommends consistency and continuity and would like to work with the CEC and help fill in the gaps.

Where is the LDES on slide 28? Only 4-hour storage is identified and this seems inconsistent with other storage labels on graphs. The LDESAC would like to work with the agencies on consistent terms and modeling.

Also, did the CEC consider looking at a 1-5 event? It is a useful data point since California is experiencing more dire events compounded by climate change every year and not just once every decade.

For Slide 38, is this summer or winter peak? LDESAC recommends adding more clarity to the labels.

The LDESAC supports the statement, "There is a large capacity need without the resources envisioned in D.19-11-016, D.21-06-035, and/or the proposed PSP." On slide

40 is this power sector only or economy wide decarbonization? This is another critical point for consistent labeling.

Regarding Next steps identified on slide 43, the LDESAC would like to work with the agencies to include more model data and attributes of LDES in each of these areas noted: "Test capacity additions for 2022 to determine what is necessary to reduce unserved energy to acceptable levels. • Run additional scenarios with the new ELCC values when available to determine if any results change. • Prepare an inputs and assumptions document, with detailed results, to accompany the MTR white paper." And why is LDSE missing in the ELCC values?



ELCC values used in this study are duplicated below. The CPUC is in the process of adopting NQC values for D.21-06-035, so these are rough estimates.

| Technology  | Tranche | 2022   | 2023   | 2024   | 2025   |        | Min Capacity<br>(MW) | Max Capacity<br>(MW) |
|-------------|---------|--------|--------|--------|--------|--------|----------------------|----------------------|
| Wind        |         | 28.5%  | 28.5%  | 28.6%  | 28.6%  | 28.6%  | N/A                  | N/A                  |
| Solar       |         | 2.3%   | 2.3%   | 1.9%   | 1.9%   | 1.9%   | N/A                  | N/A                  |
| 4 h Battery | 1       | 100.0% | 100.0% | 100.0% | 100.0% | 100.0% | -                    | 5,265                |
| 4 h Battery | 2       | 88.8%  | 89.1%  | 89.5%  | 89.8%  | 90.1%  | 5,265                | 7,674                |
| 4 h Battery | 3       | 76.2%  | 76.7%  | 77.1%  | 77.6%  | 78.0%  | 7,674                | 10,530               |
| 4 h Battery | 4       | 66.4%  | 67.1%  | 67.8%  | 68.5%  | 69.3%  | 10,530               | 13,034               |
| 4 h Battery | 5       | 54.2%  | 55.6%  | 57.0%  | 58.4%  | 59.9%  | 13,034               | 15,795               |

Source: CPUC's Reliability Needs Assessment

In the storage section on page 46, the CEC should clearly state what type of battery this is since there are different types of batteries and durations such as zinc batteries and thermal storage batteries that operate over 8 hours.

On slide 69 there is a reference to the 1-10 events, but there is a disconnect with the data here and what is presented earlier. We will continue to have extreme events every summer as well as droughts and natural disasters. This is not factored into the studies and should be.



On slide 71, LDESAC is glad to see storage acknowledged, yet this is a huge oversimplification of the issues at hand, and we need to call out the difference in long duration energy storage as well. Just like we delineate on-shore wind and off-shore wind, LDES has many benefits and grid services that are different than four-hour batteries.



• Equipment lead time may present problems

• Some upgrades require more extensive planning and design On page 81, there is acknowledgement of the need for expanded storage, and it is confusing whether LDES is included. It should be.

## Permitted and Potential Capacity Additions



Lastly, on slide 100, why is the scenario where LDES 1000MW not included in the ppt? This seems like a glaring omission and the LDESAC recommends including this critical component of the 11.5 GW requested by the CPUC.



- Procurement builds are based on remaining NQC procurement in D.19-11-016 (1,505 MW NQC) and D.21-06-035 (9,500 to 11,500 MW NQC)
- Resources were built consistent with the 2026 resource ratio in the PSP, but only up to the needed NQC value for each year.

| Nameplate (MW)     | 2022  | 2023  | 2024   | 2025   | 2026   | 2026a  |
|--------------------|-------|-------|--------|--------|--------|--------|
| Geothermal         | 8     | 25    | 77     | 92     | 92     | 1,241  |
| Biomass            | 7     | 23    | 71     | 85     | 85     | 85     |
| Shed DR            | 34    | 111   | 340    | 408    | 408    | 408    |
| Wind               | 242   | 794   | 2,427  | 2,908  | 2,908  | 2,908  |
| Solar              | 780   | 2,554 | 7,811  | 9,356  | 9,356  | 9,356  |
| Energy Storage 4 h | 936   | 3,066 | 9,378  | 11,233 | 11,233 | 11,233 |
| Energy Storage 8 h | -     | -     | -      | -      | -      | 1,000  |
| Total              | 2,007 | 6,573 | 20,105 | 24,082 | 24,082 | 26,231 |
| NQC                | 1,070 | 3,505 | 9,505  | 11,005 | 11,005 | 13,005 |
|                    |       |       |        |        |        |        |
|                    |       |       |        |        |        |        |

We appreciate all the work CEC has done and working with the other agencies, and the process to elicit stakeholder input.

The LDESAC appreciates the opportunity to comment and again offers our assistance to the CEC and CA agencies.

### Thank you!

### Julia Prochnik

Executive Director, Long Duration Energy Storage Association of California julia@storeenergyca.org