DOCKETED		
Docket Number:	21-IEPR-05	
Project Title:	Natural Gas Outlook and Assessments	
TN #:	239050	
Document Title:	Presentation - Introduction of EPIC Initiative - The Role of Green Hydrogen in a Decarbonized CA - A Roadmap and Strategic Plan	
Description:	***SUPERSEDES TN 239017 *** S1.01 Mike Petouhoff, CEC	
Filer:	Raquel Kravitz	
Organization:	California Energy Commission	
Submitter Role:	Commission Staff	
Submission Date:	7/27/2021 8:48:49 PM	
Docketed Date:	7/28/2021	

California Energy Commission

Panel Moderator: Mike Petouhoff, Manager, Energy Systems Research Office, ERDD Introduction of EPIC Initiative: The Role of Green Hydrogen in a Decarbonized CA- A Roadmap and Strategic Plan Panel: National and International Applications

Data Gathering	Green H2 Generation	Distribution & Storage Technology	Some Priority End Uses
 Staff Collaboration Prior CEC Research Information Sharing and Working Groups Denmark Germany Finland In State Collaboration Workshops EPIC- July 1 IEPR- July 28 	 Current Tech Alkaline Proton-exchange membrane (PEM) Solid oxide Photon-based Emerging Tech Salt water Non-water Electrolyte 	S	
			3

Data Gathering	Green H2 Generation	Distribution & Storage Technology	Some Priority End Uses
 Staff Collaboration Prior CEC Research Information Sharing and Working Groups Denmark Germany Finland In State Collaboration Workshops EPIC- July 1 IEPR- July 28 	 Current Tech Alkaline Proton-exchange membrane (PEM) Solid oxide Photon-based Emerging Tech Salt water Non-water Electrolytes 	 Technology Options Gaseous in Tanks Tube Trucks Pipelines Geologic Storage Other Forms of H2 Liquid H2 Ammonia NH3 Green CH4 Eco System Examples Land Base PV-H2 Offshore Wind - H2 	

Data Gathering	Green H2 Generation	Distribution & Storage Technolog	Some Priority End Uses
 Staff Collaboration Prior CEC Research Information Sharing and Working Groups Denmark Germany Finland In State Collaboration Workshops EPIC- July 1 IEPR- July 28 	 Current Tech Alkaline Proton-exchange membrane (PEM) Solid oxide Photon-based Emerging Tech Salt water Non-water Electrolytes 	 Technology Options Gaseous in Tanks Tube Trucks Pipelines Geologic Storage Other Forms of H2 Liquid H2 Ammonia NH3 Green CH4 • Eco System Examples Land Base PV-H2 Offshore Wind - H2 	 Electric generation and storage Firm Dispatchable Decarbonized Generation Transportation (FCV) Hard to electrify applications (ex. high-heat industrial)

H2 Roadmap Approach

Keeping hydrogen's role in focus

- Establish a hydrogen (H2) roadmap with ongoing updates
- Follow on research and demonstration projects will focus on data gaps
- Next updates will reflect research and industry progress milestones

Hydrogen (H_2) is classified by color into three types according to the feedstock used and method of H_2 production: gray, blue, and green.

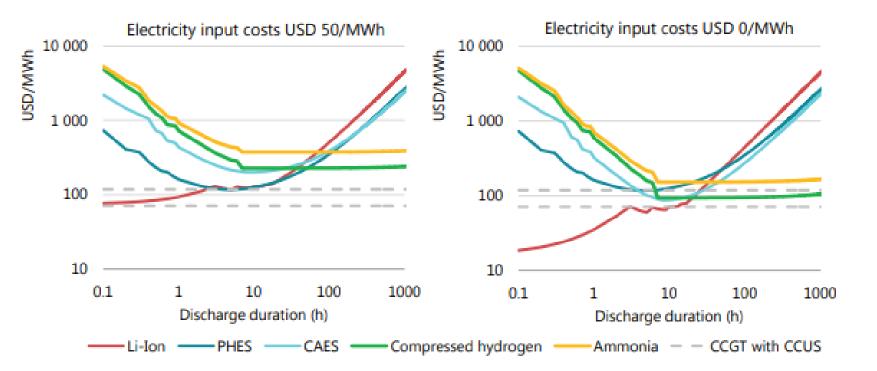
Gray hydrogen is produced from fossil fuel feedstocks without carbon capture at the point of production.
 Gray hydrogen accounts for more than 95% of global hydrogen production today.

Blue hydrogen is produced from fossil fuel feedstocks with carbon capture at the point of production. Blue hydrogen exhibits significant potential in reducing emissions in end-use segments in the near term.

Green hydrogen encompasses multiple carbon-neutral production pathways:

- Electrolytic hydrogen or power-to-gas (P2G), is the conversion of electrical power into a gaseous energy carrier, such as hydrogen or methane, using an electrolyzer. When powered with renewable electricity, P2G is a green hydrogen source.
- Other green hydrogen generation pathways exist, including biogas reforming and artificial photosynthesis.

Key Driver: H2 for Grid Reliablity


- SB100 Scenarios show up to 15 GW of Firm Dispatchable Generation May be needed (p13) – Trade offs with Long Duration Storage
- Modelling included SB100 "Core" option and "Study" (no combustion) options- w incremental cost of "no combustion" option of \$8Billion/Year
- H2 Generation may have less land use impacts than other sources

Why H₂? Long Duration Storage Medium

Hydrogen's value as a storage medium is derived from its ability to be cost-effectively stored for long durations relative to other current storage technologies such as Lithium Ion and Pumped Hydro

Compare H2 cost and performance to other forms of LDS as they both evolve

Notes: PHES = pumped-hydro energy storage; CAES = compressed air energy storage; Li-Ion = lithium-ion battery. Compressed hydrogen storage refers to compressed gaseous storage in salt caverns, ammonia storage to storage in tanks. Source: IEA 2019. All rights reserved.

Green H2 Ecosystem examples

CA Land Based PV + H2

CA Land Offshore Wind + H2

Example: North Sea Wind + H2

Clean Electricity input costs dominate the economics for electrolysis

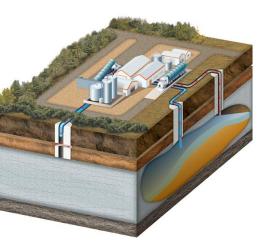
Note the difference when ¢/kWh costs drop from 7¢ to 3¢.

Capital Costs Decommissioning Costs Fixed O&M

Feedstock Costs Other Raw Material Costs Electricity and Other Var.

Relevant to

- Curtailed Clean PV or Wind
- Optimizing Purpose Built PV
 or Wind

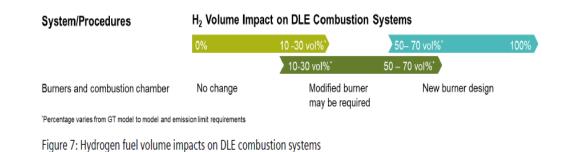

PEMEC Example

The cost of electricity is the top (light blue) section of each stacked bar

- The two bars on the left are for distributed H₂
- The two bars on the right are for centrally produced H_2

- Compressed gaseous H2 tanks
- Pipelines for gaseous H2
- Geologic storage
 - depleted oil and gas fields or storage structures

• Liquid H2 tanks



For Grid Scale H₂ Power Solutions-

- H2 Turbines generally more cost effective than H2 Fuel Cell
- Local Criteria Pollutants (NOx) are an issue for turbines

H₂ in Natural Gas Pipelines

- H₂ is limited in natural gas pipelines to blending of 20% by volume or 7% by weight, due to metallurgical embrittlement and related issues.
- H₂ may be transmitted in dedicated purpose-built pipes at 100%- and these are common in the
 petroleum industry
- A process can convert Green H2 + CO2 > Green CH4, which can be transmitted in natural gas pipelines and used in the same way as fossil sourced natural gas, but its decarbonized
- H₂ Behaves differently than Fossil Sourced CH4 in end use appliances

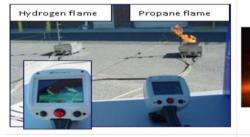


Figure 5 - Hydrogen and Propane Flames in Daylight (Photo courtesy of HAMMER)

Figure 6 - Hydrogen and Propane Flames at Nigh (Photo courtesy of ImageWorks)

Green H2 to Green CH4 Case Study: Audi e-gas plant in Werlte, Germany

Electrolyzers (3 x 2 MW)

Methanation Unit

Green CH4 can be both a by clean product of Green H2, and also a competing decarbonized fuel from Biogas

14

Evaluation of Green H2 End Uses & Alternatives

The H2 Roadmap requires that we consider alternatives to H2 for each end use

End Use Firm Dispatchable Decarbonized Grid Generation FDDG (SB100 report shows that up to 15 GW of FDDG may be needed)	 Green H2 1. Needs updated H2 Turbines and delivery system 2. Compare costs to Long Duration Energy Storage 	Green CH4 Can use existing Generation and pipeline Compare Costs to Long Duration Energy Storage
Transportation Uses (contextualize with BEVs)	Fuel cell vehicles (<i>As FCV and BEVs evolve</i>)	Initially provided easy conversion of combustion engines, but those are being phased out
Stationary End Uses (in the context of electrification)	 may need end use appliance change and new delivery systems 	Same appliancesSame pipeline
(e.g. legacy building stock) (e.g. selected high-heat industrial)	 delivery cost needs to be defined 	

Accelerating Hydrogen Research in ERDD

Investment Area	<u>\$19M invested</u>
Generation and storage	 Wind to H2 storage for load shifting Solar to H2 for 100-hour storage in metal hydrides Lowering the energy and cost of electrolysis with advanced non water electrolytes
Mobile H2 for PSPS	 Mobile H2 production and energy storage, emergency power & PSPS resiliency
Transportation	 Fuel Cell Railway switcher locomotive Fuel Cell Tugboat Fuel Cell Harbor craft and mobile refueling system

Upcoming Research for ERDD

Investment Area	Details
Generation	 Cost Reduction and Efficiency Improvement for Renewable H2 Production Developing and Demonstrating H2 Power Generation Systems
Delivery & Storage	 Green Hydrogen, A Roadmap and Strategic Plan for a Decarbonized CA Hydrogen Blending Validation
Transportation	 H2 Fuel Cell Truck and Bus Tech, Integration and Demonstration Advanced Hydrogen Refueling Infrastructure Solutions for Heavy Transport
Buildings and Industrial	 Effects of Hydrogen in end use Appliances for Large Commercial Buildings and Industrial Applications Likely Industrial Candidates for Hydrogen Adoption

Fuels and Transportation Investments

Investment Area	<u>\$194.5M invested</u>
Fueling Infrastructure	\$169.4M
Hydrogen Production	\$7.9M
Fuel Standards and Equipment Certification	\$3.9M
Light-Duty ZEV Deployment (CVRP support)	\$0.7M
Medium- & Heavy- Duty Advanced Vehicle Technology Demonstration	\$11.9M
Regional Alternative Fuel Readiness and Planning	\$0.8 M

And now for our panelists!