DOCKETED		
Docket Number:	21-IEPR-06	
Project Title:	Building Decarbonization and Energy Efficiency	
TN #:	238790	
Document Title:	Presentation - Accelerating Electrification of CA's Multifamily Buildings	
Description:	S2.3D Ben Cooper, Stop Waste	
Filer:	Raquel Kravitz	
Organization:	StopWaste	
Submitter Role:	Public	
Submission Date:	7/9/2021 4:58:12 PM	
Docketed Date:	7/9/2021	

Accelerating Electrification of CA's Multifamily Buildings

CEC IEPR Decarbonization Workshop

July 12, 2021

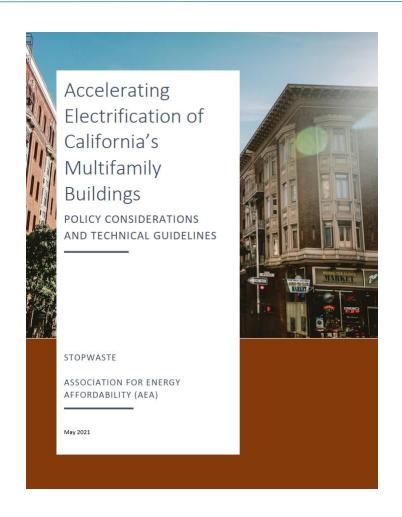
StopWaste Residential Decarb Work

- CEC Local Government Challenge Grant¹
 - Multifamily Electrification Readiness Report
 - EnergyPro Lite (Low-Cost Assessment Tool)
 - Multifamily Benchmarking Report
 - Rental Housing Potential Study
- Whitepaper: "Local Government Levers for Energy Policy in the Existing Single-Family Residential Sector" ²
- Bay Area Multifamily Building Enhancement Program (BAMBE)

^{2.} https://www.bayrencodes.org/wp-content/uploads/2020/12/EE-and-Electrification-White-Paper FINAL 12.28.2020.pdf

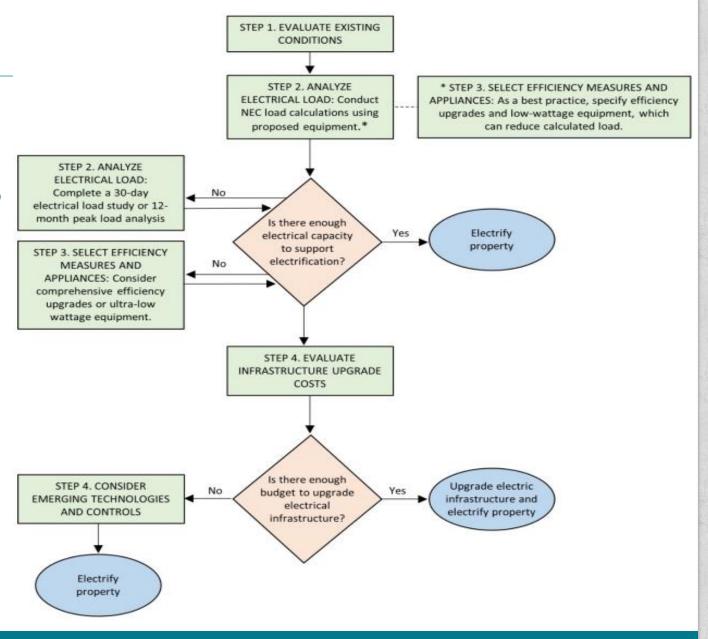
^{1.} https://www.stopwaste.org/accelerating-multifamily-building-upgrades

BAMBE/BayREN MF Program


Program Path	Completed Projects	Total Units	Rebate Amount
Traditional (Whole-building EE)	562	40,832	\$29,572,846 (\$52,620 project, \$724/unit)
Clean Heating Pathway (CHP, includes BAAQMD adder funds)	5 (thru end of 2020,19 currently in TA)	351 (2,116 in TA)	\$303,350 (\$60,670/project, \$864/unit, incl. \$40.1k in BAAQMD funds)

Recommendations to Scale Electrification Programs

- Attractive incentives (kickers/adders for electrification)
- Robust technical assistance (TA)
- Increase education owners, contractors, building departments
- Standardize and streamline permitting
- Bring back PV incentives for market-rate MF properties
- Emphasize health and safety/comfort advantages


MF Electrification Report

- Recommendations for Program
 Administrators and Gov't Agencies
 - 1. Incentivize electrical infrastructure upgrades
 - 2. Offset capacity increases with EE gains
 - 3. Take into account non-energy benefits
 - 4. Continue to address improvement of in-unit spaces
 - 5. Coordinate incentive offerings across multitude of funding sources

MF Electrification Report

- Recommendations for Program Implementers
 - Functional technical guidelines, for implementers
 - 80/20 rule
 - 4-step process –
 Decision Tree

Evaluate Upgrade Cost and Consider Emerging Alternatives (Step 4)

Table 10. Estimated Costs for Electrical Infrastructure Upgrades

Electrical Infrastructure Upgrades	Cost	
Add circuits for a new electric appliance	\$500-\$2,000	
Upgrade subpanels	\$1,000-\$7,000	
Replace disconnects at meter bank	\$1,000-\$3,000	
Upsize feeder cable	\$1,000-\$10,000	
Convert from single to three phase	\$10,000-\$100,000	
	(depends on building size)	

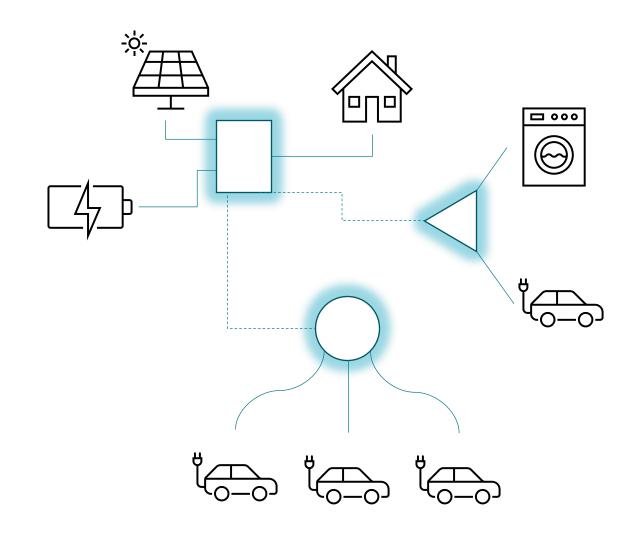
Table 11. Estimated Costs for Utility Service Upgrades

Utility Service Upgrades	Cost
Service line disconnect	\$500-\$5,000
Overhead service connection	\$3,000-\$10,000
Underground service connection	\$10,000-\$50,000
Pole-mount transformer	\$3,000-\$5,000
Pad-mount transformer	\$10,000-\$30,000
Subsurface transformer	\$40,000-\$80,000

Flagged Electrical Infrastructure

Appendix C: Flagged Electrical Infrastructure

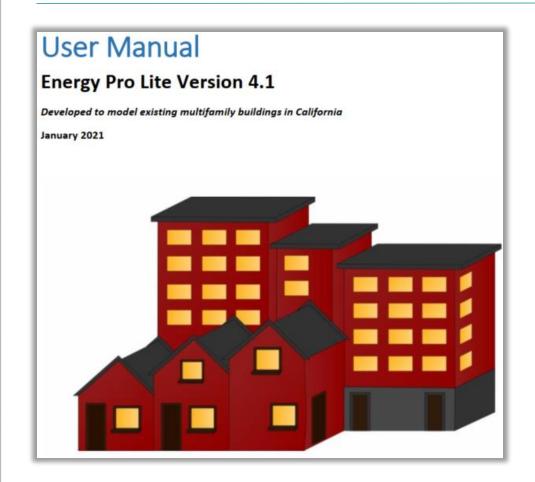
In the Data Collection Template (Figure 7), electrical infrastructure conditions that may increase a project's complexity are flagged with an asterisk. This table provides more information about those conditions and the relative ease or difficulty they present for electrification.

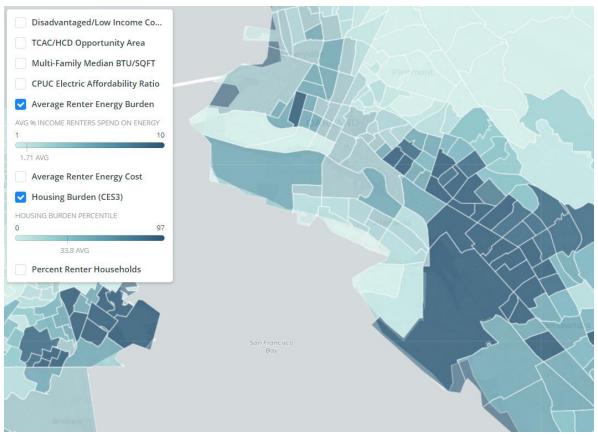

Key to electrification complexity:	O Relatively easy	Standard complexity	Difficult
key to electrification complexity.	C Relatively easy	Standard complexity	Difficult

Flagged Electrical Infrastructure	Description Spaces	Action
Brick or lath and plaster wall assemblies and ceiling assemblies with no cavities	Wall and ceiling assemblies that are solid or that have a cavity but are difficult to open and repair (such as lath and plaster or walls and ceilings with decorative finishes) make it difficult to conceal new circuits added during electrification.	 Wall and ceiling assemblies with inaccessible cavities require new circuits to be surface mounted or run through attics and crawlspaces. This makes adding new circuits easier but less aesthetically pleasing. Walls and ceilings with cavities give the option of surface mounting, attic or crawlspace runs or through wall or ceiling cavities.

Emerging Tech Alternatives

- Smart Panels
- Smart Splitters
- EV dynamic load management
- Dialogue with local code enforcement
 - Appendix A Product Guides incl. emerging tech




Equity and Workforce Development

- Electrification ≠ utility bill reduction, need more research
- Energy burden in CA¹
 - 2% energy burden across all Californians
 - 60-80% AMI = 3%
 - 30-60% AMI = 4%
 - 0-30% = 9% (over 4x the State average)
- Incentivize contractors to participate in equitable workforce development
 - e.g. MCE/AEA Workforce, Education, & Training Program (WET)²
- Tap Governor's \$1.1b Jobs Package³
- 1. https://www.energy.gov/eere/slsc/maps/lead-tool Department of Energy Low-Income Energy Affordability Data (LEAD) Tool
- 2. https://www.mcecleanenergy.org/contractors/#WET
- 3. http://www.ebudget.ca.gov/2021-22/pdf/Revised/BudgetSummary/LaborandWorkforceDevelopment.pdf From revised May 2021 Budget Proposal

Data and Analytical Tools

NOAH Identification Pilots

Thank you!

Ben Cooper

bcooper@stopwaste.org

510-891-6511

- Multifamily Electrification Report available here
- "Accelerating Multifamily Building Upgrades" CEC grant deliverables here²

- 1. https://www.stopwaste.org/accelerating-electrification-of-california%E2%80%99s-multifamily-buildings
- 2. https://www.stopwaste.org/accelerating-multifamily-building-upgrades

