| DOCKETED         |                                                                                                                 |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Docket Number:   | 20-MISC-01                                                                                                      |  |  |  |  |
| Project Title:   | 2020 Miscellaneous Proceedings.                                                                                 |  |  |  |  |
| TN #:            | 238659                                                                                                          |  |  |  |  |
| Document Title:  | Presentation Materials for Staff Workshop on Proposed<br>Development for Long Duration Energy Storage Scenarios |  |  |  |  |
| Description:     | n: N/A                                                                                                          |  |  |  |  |
| Filer:           | Jeffrey Sunquist                                                                                                |  |  |  |  |
| Organization:    | California Energy Commission                                                                                    |  |  |  |  |
| Submitter Role:  | Energy Commission                                                                                               |  |  |  |  |
| Submission Date: | 7/2/2021 1:34:54 PM                                                                                             |  |  |  |  |
| Docketed Date:   | 7/2/2021                                                                                                        |  |  |  |  |

# **CEC EPC-19-056 Assessing the Value of Long Duration Storage**

Data & Scenario Selection Public Workshop

June 30, 2021



**Energy+Environmental Economics** 

Roderick Go, Technical Manager, E3 Nick Schlag, Director, E3 Amber Mahone, Partner, E3 Arne Olson, Senior Partner, E3 Dr. Ryan Hanna, Research Scientist, UCSD Dr. Scott Burger, Analytics Manager, Form Energy



| Time              | Торіс                                                |
|-------------------|------------------------------------------------------|
| 1:00 pm - 1:10 pm | Welcome & Project Overview                           |
|                   | Updated project schedule                             |
|                   | Project objectives                                   |
| 1:10 pm - 1:40 pm | Progress Updates                                     |
|                   | <ul> <li>Draft emerging technology review</li> </ul> |
|                   | Preliminary analytical experiments                   |
| 1:40 pm - 2:15 pm | Preliminary Analysis Scenario Design Discussion      |
|                   | Bulk system scenarios                                |
|                   | Zero-carbon microgrid scenarios                      |
| 2:15 pm – 2:20 pm | Recap of Project Schedule                            |
| 2:20 pm - 3:00 pm | Additional Stakeholder Q&A                           |



- + The focus for today's discussion is on <u>scenario design</u>, so we will reserve a large portion of our agenda for discussion related to that topic
- + The intention of the progress update sections is only to highlight & preview our ongoing work and not to provide a full discussion of assumptions, methodologies & results
  - We will provide a more complete description of technology review & modeling work in the upcoming preliminary analysis report

### + We ask that questions during the workshop time focus on the <u>Scenario Design</u> section

• If you would like to discuss any part of the <u>Progress Updates</u> we present today, please follow-up with the team after the workshop via email

# **Project Overview**

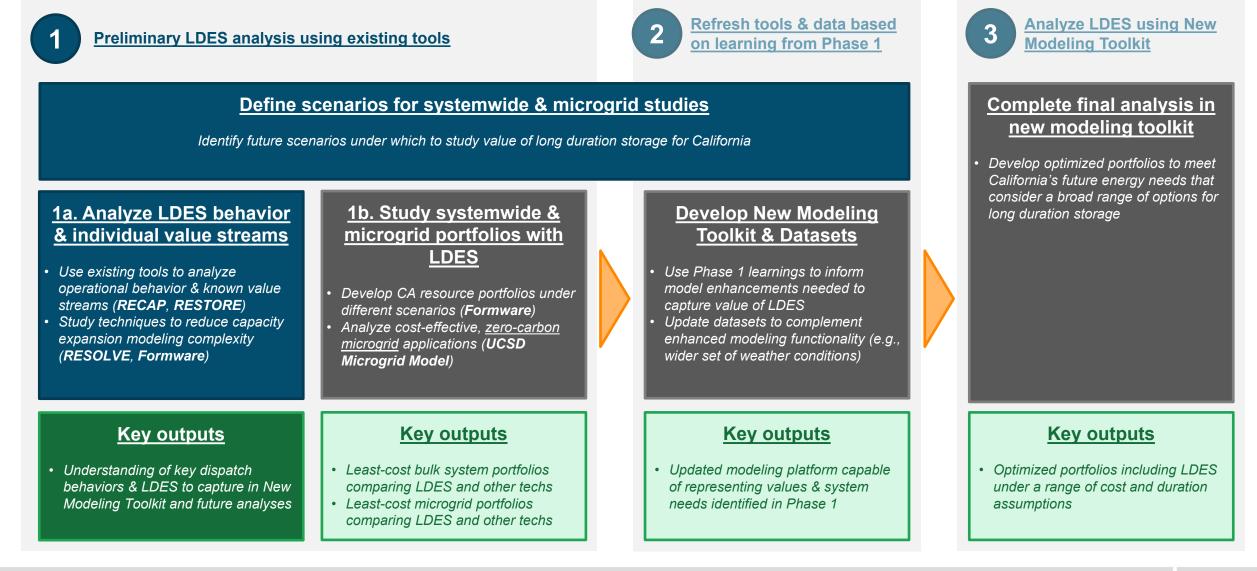




1. Evaluate the tradeoffs between energy storage duration, performance and cost, against a range of resource supply options and electric load conditions for various use-cases on California's future grid.

2. Develop an updated publicly available dataset to characterize potential futures for California's grid in the context of deep decarbonization, including characterization of new energy storage and energy generation technologies.

3. Develop a publicly available modeling toolkit that extends California's capabilities to plan for a deeply decarbonized electric sector, incorporating long duration storage and new energy generation technologies into the resource mix.




#### Goal is to have preliminary analysis completed approximately 3 months from today's workshop +

|                         |                                            | 2020 |     |     |     | 2021 |     |     |     |     |     |       |     |     |     |     |     | 2022 |     |     |     |     |     |
|-------------------------|--------------------------------------------|------|-----|-----|-----|------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|
| Task                    | Sub-Task                                   | Sep  | Oct | Nov | Dec | Jan  | Feb | Mar | Apr | May | Jun | Jul   | Aug | Sep | Oct | Nov | Dec | Jan  | Feb | Mar | Apr | May | Jun |
| Baseline Data De        | evelopment                                 |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| LDES Scenario I         | Design                                     |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| Emerging                | Draft Technology Review                    |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| Technology<br>Review    | Final Technology Review                    |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
|                         | Preliminary Modeling Experiments           |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| Preliminary<br>Analysis | Preliminary Systemwide LDES Analysis       |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
|                         | Preliminary Zero-Carbon Microgrid Analysis |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| New Modeling            | New Modeling Toolkit                       |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| Toolkit<br>Development  | New Modeling Dataset                       |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| Final Scenario Analysis |                                            |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
|                         | Introductory Public Workshops              |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
| Public<br>Workshops     | Data & Scenario Selection Workshop         |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
|                         | Final Scenario Selection Workshop          |      |     |     |     |      |     |     |     |     |     |       |     |     |     |     |     |      |     |     |     |     |     |
|                         | Final Public Workshop                      |      |     |     |     |      |     |     |     |     |     | -     |     |     |     |     |     |      |     |     |     |     |     |
| Energy+Envi             | ronmental Economics                        | •    |     |     |     |      |     |     |     |     |     | Today |     |     |     |     |     |      |     |     |     | e   | ;   |



# Where We Are in Overall Project Arc



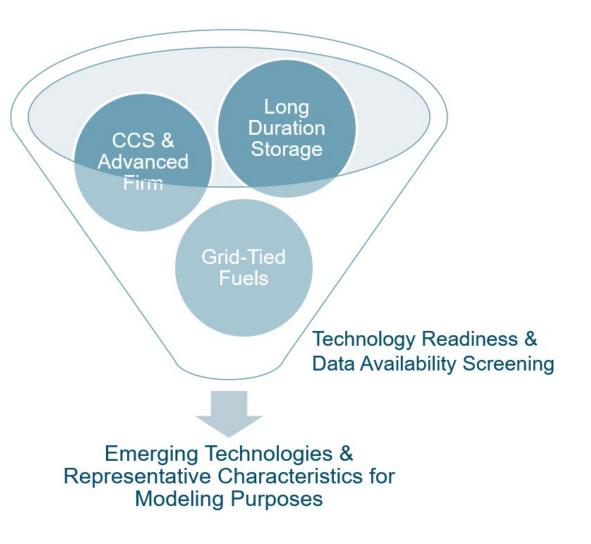
# **Progress Updates**



# **Progress Updates**

Draft Emerging Technology Review




Dr. John Stevens, Managing Consultant, E3Dr. Mengyao Yuan, Senior Consultant, E3Dr. Bill Wheatle, Consultant, E3



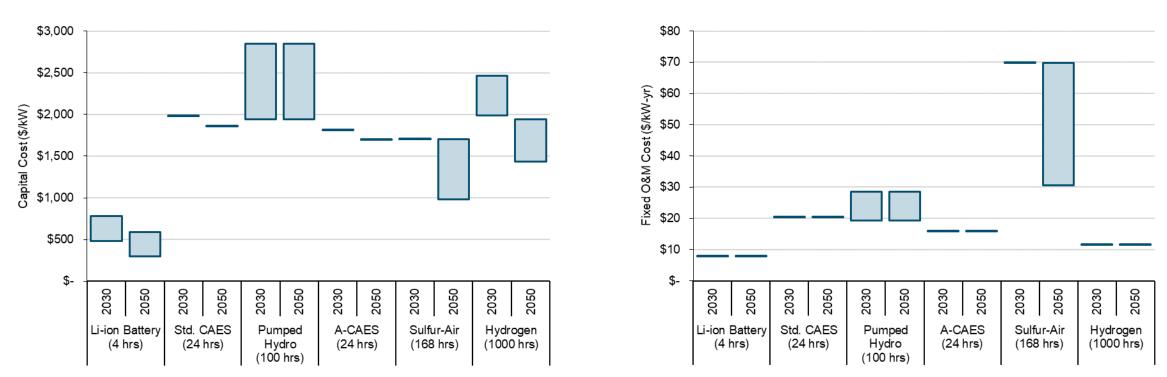
Draft Emerging Technology Review
Overview

#### **Goals for Emerging Technology Review**

- Review emerging technologies that could lower the overall cost of deep decarbonization
  - Technologies that can provide clean "firm" energy and/or longer-duration energy storage
- Generate cost and performance data to be incorporated in long-term system planning models
  - Screen out technologies that lack sufficient technoeconomic data for modeling
  - Model results will in turn inform R&D and policymaking on these technologies
  - As we produce more modeling results, we will compare the modeled value of emerging technologies to cost projections






- Technology selection primarily based on <u>technology readiness</u> and <u>data availability</u>, which indicate potential for near- to mediumterm deployment
- + IEA's Technology Readiness Level (TRL) scale was used to assess market experience
  - More details in Appendix
- + Cost and performance data are from public sources and are still under review
  - Sources include: NREL Annual Technology Baseline (ATB), research papers, manufacturer data; E3 expertise applied to give different weights to these sources
  - Review will also document caveats, including uncertainties in costs for pre-commercial technologies (learning curve, first- vs. n-th-of-akind, financing costs, etc.)

| Technology                                          | Technology<br>Readiness Level | Storage Duration<br>Range* |
|-----------------------------------------------------|-------------------------------|----------------------------|
| Hydrogen Storage                                    | 9                             | Weeks to Months            |
| Synthetic Methane                                   | 7                             | Weeks to Months            |
| Adiabatic Compressed Air<br>Energy Storage (A-CAES) | 8                             | Days to Weeks              |
| Sulfur-Air Battery                                  | 5-6                           | Days to Weeks              |
| Natural Gas + CCS                                   | 8                             | n/a                        |
| Allam Cycle                                         | 8                             | n/a                        |
| Bioenergy + CCS (BECCS)                             | 7                             | n/a                        |
| Small Modular Reactor                               | 7                             | n/a                        |
| Enhanced Geothermal                                 | 5                             | n/a                        |

\* Storage duration ranges are inferred from existing and proposed applications but may vary for each project depending on the specific use case and economics.

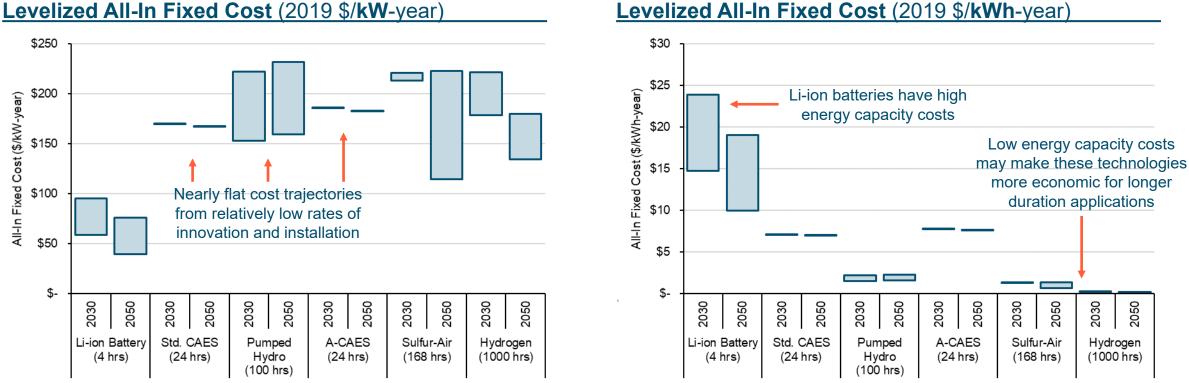


- + Based on our preliminary review, we developed cost projections for key storage technologies
- + The team may expand the technology review to include additional storage technologies, subject to data availability & market readiness



Fixed O&M Cost (2019 \$/kW-year)

Note: Indicative durations for each technology used only for visualization purposes. Each technology has a range of potential duration configurations.


#### Energy+Environmental Economics

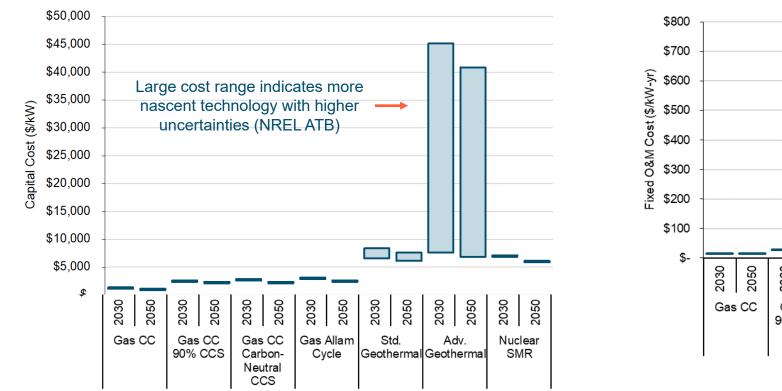
Installed (Capital) Cost (2019 \$/kW)



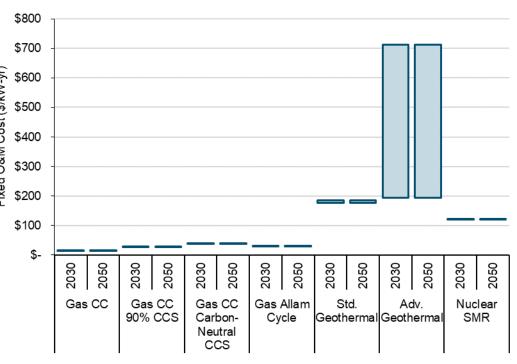
#### Levelization captures assumed <u>financing costs</u> of asset over expected lifetime +

- Includes higher financing costs for less proven technologies & different lifetimes for different technologies
- Levelization over energy storage capacity (\$/kWh-year) highlights contrast in potentially cost-+ effective applications for different storage technologies




Levelized All-In Fixed Cost (2019 \$/kWh-year)

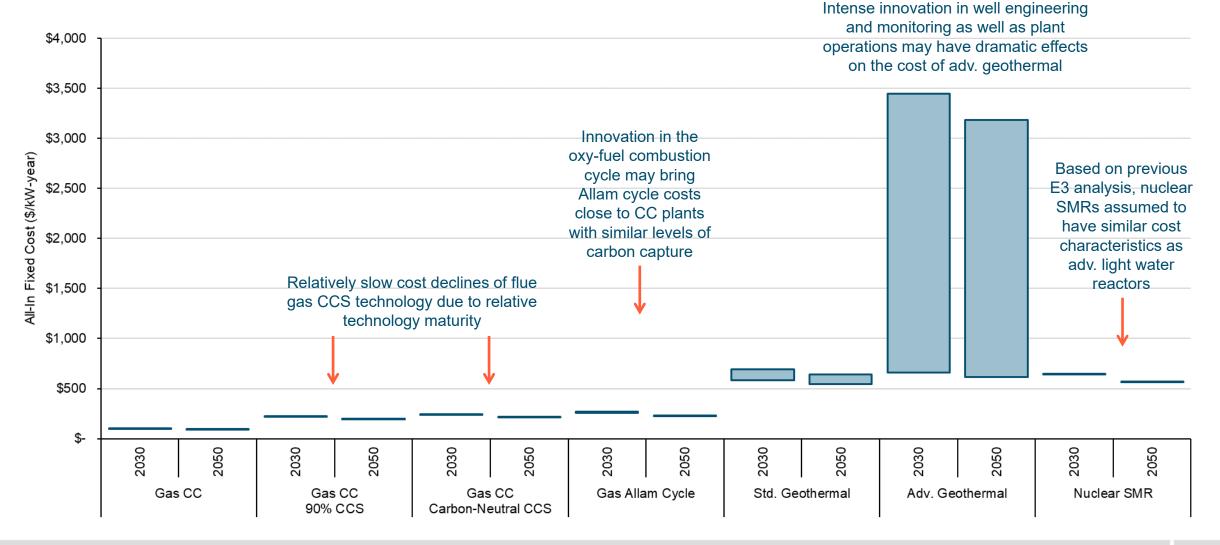
Note: Indicative durations for each technology used only for visualization purposes. Each technology has a range of potential duration configurations.




### **Draft Emerging Technology Review Emerging Generation Fixed Cost Projections**

- In addition to storage technologies, we developed cost projections for new generation technologies
  - Focus was on CCS, advanced geothermal, and advanced nuclear




#### Fixed O&M Cost (2019 \$/kW-year)



Installed (Capital) Cost (2019 \$/kW)



### **Draft Emerging Technology Review Emerging Generation Levelized Cost Projections**





 Draft technology review covers technology readiness level & cost projections for key emerging storage technologies

- Costs for some storage technologies may scale more slowly with duration, making them potentially useful for longer-duration storage applications
- + Technology review also includes emerging generation technologies, which will interact with LDES in a zero-carbon resource portfolio
  - Technologies with different cost characteristics may be operated differently and can provide different values to the system

+ The potential value of emerging technologies is being evaluated in ongoing analysis

+ We will provide updates on the technology review in future workshops

# **Progress Updates**

**Preliminary Analytical Experiments** 

Roderick Go, Technical Manager, E3 Jasmine Ouyang, Managing Consultant, E3 Manohar Mogadali, Senior Consultant, E3 Vignesh Venugopal, Consultant, E3 Dr. Bill Wheatle, Consultant, E3 Rachel Orsini, Analyst, Form Energy





To guide our upcoming analysis & model development, we conducted quick analytical experiments to highlight the kinds of behavior & values we want to consider when modeling LDES:

### **1. Storage Dispatch Behavior**

Storage technologies can simultaneously be dispatched for short- (i.e., daily) and longduration (i.e., seasonal) arbitrage value

### 2. Storage Capacity Contribution

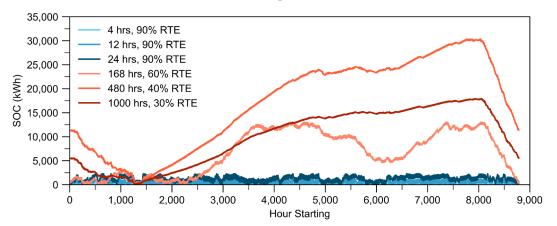
Longer duration storage configurations may provide greater capacity contribution (ELCC); however, this capacity is heavily dependent on interactions with other resources in the portfolio

### **3. Weather Variability**

Capturing weather variability (both within and across years) and climate impacts is key to developing robust resource portfolios for California's decarbonized future



### <u>1. Investigating Storage Dispatch Behavior</u> Cycling Behavior for Different Storage Configurations


#### **Experimental Setup & Goals**

 Using E3's RESTORE price taker model, we studied how storage of different durations & RTE would dispatch when subject to the <u>same</u> price signals over a full year (8760-hour)

#### Key Takeaways

- Shorter duration storage respond primarily to daily & weekly price signals
- Longer duration storage is still responsive to daily price signals, but an increasing portion of <u>value</u> is derived from seasonal arbitrage
  - For example: 168-hour storage resource has 2 prominent seasonal cycles across modeled year but is also cycling a noticeable amount day-to-day

#### Full-Year State of Charge in 2030



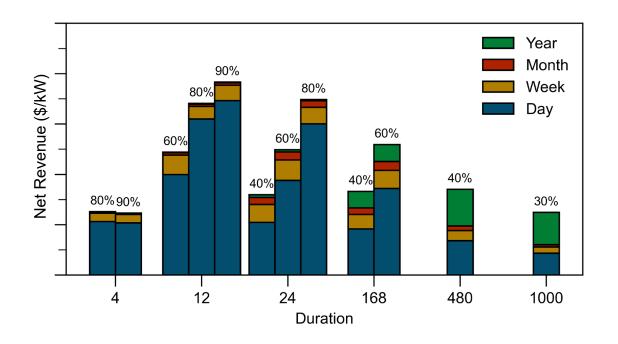
#### **Resulting Discharge Cycles in 2030**

| Configuration      | Cycles/Year |
|--------------------|-------------|
| 4-hour, 90% RTE    | 300*        |
| 12-hour, 90% RTE   | 300*        |
| 24-hour, 90% RTE   | 164         |
| 168-hour, 60% RTE  | 14          |
| 480-hour, 40% RTE  | 3           |
| 1000-hour, 30% RTE | 1           |

\* Assumed technology annual cycling limit



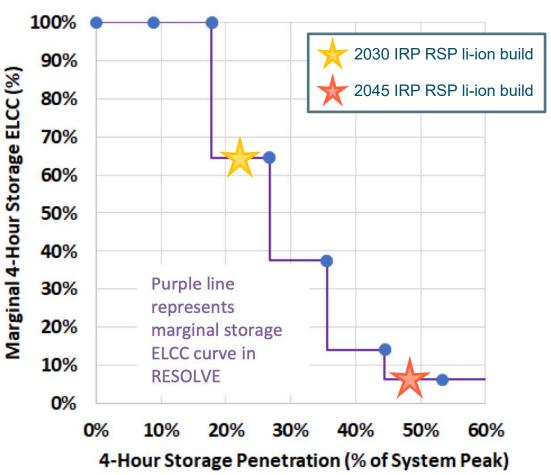
### <u>1. Investigating Storage Dispatch Behavior</u> Allocating Storage Dispatch Value


#### **Experimental Goals**

 Experiment with methods to characterize operations as daily to seasonal to understand impact of temporal sampling on modeled value

#### Key Takeaways

- + Long duration storage resources will typically shift energy for longer periods of time (i.e., derive value from longer-duration arbitrage)
  - Significant increase in arbitrage value from 4- to 12-hour storage duration
- + RTE has a significant impact on arbitrage value, as less energy can be shifted to high-value times
  - Lower RTE technologies may still be cost-effective if costs come in lower than higher RTE alternatives


#### Allocation of Energy Arbitrage Value



#### Guiding Project Question

How do we better capture the relative value associated with simultaneous daily through seasonal storage dispatch behaviors?





CPUC IRP 4-Hour Storage ELCC Curve

Source: CPUC IRP Proposed Reference System Plan

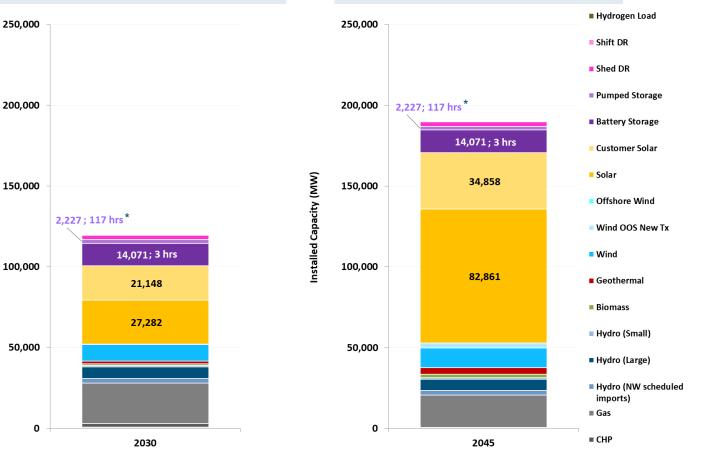
- + ELCC is a metric used to quantify the <u>capacity contribution</u> of a resource toward meeting system reliability target
  - At the highest level, achieving system reliability is about having sufficient supply to meet demand
- + The CPUC IRP used a <u>declining storage</u> <u>ELCC</u> curve based on SERVM LOLP modeling to represent the capacity contribution of 4-hour, lithium-ion storage
  - By 2045, the incremental capacity contribution of 4-hour storage is modeled as <10% of nameplate capacity
- We expect longer duration storage configurations to provide greater capacity contribution and/or decline less rapidly than 4-hour storage



### 2. Investigating Storage Capacity Contribution Experimental Setup

#### **Experiment Setup**

 Using CPUC IRP RSP build as our starting point, study the incremental ELCC of various storage configurations


#### **Experimental Goals**

- Understand how <u>durable</u> ELCCs for longer duration storage resources may be as load/resource balance changes
- Understand effect of duration & RTE as two major operational characteristics on calculates storage ELCC
- Understand interactive effects between shorter & longer duration storage resources in the same portfolio

#### 2030 Underlying Resource Portfolio

nstalled Capacity (MW)

#### 2045 Underlying Resource Portfolio\*\*



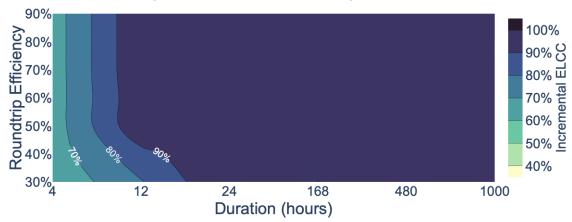
Nuclear

\* High average storage duration driven by <u>existing</u> pumped storage capacity. New pumped storage duration is modeled as 12-hour duration. \*\* 2045 portfolio includes all generation resources from 2019 CPUC IRP RSP but no incremental storage build after 2030

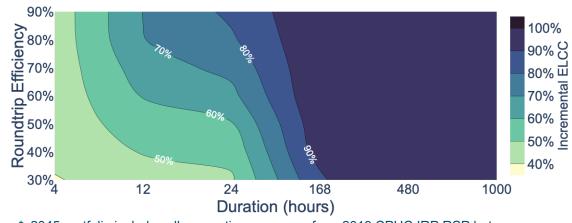


### 2. Investigating Storage Capacity Contribution Impact of Duration & RTE on Storage ELCC

#### Key Takeaways


- In 2030, storage of at least 12-hour duration can achieve full ELCC\*
  - Compared to <70% ELCC from CPUC IRP</li>
- + By 2045, storage of duration approaching one week needed to achieve full ELCC\*
  - ELCC becomes <u>heavily</u> dependent on interactive effects with other dispatch-limited resources
- Complex effect of RTE on ELCC, driven by ability for storage to recharge after reliability events—requires further study

#### Guiding Project Question


Can capacity expansion models better capture the interactive effects that affect storage capacity contribution for robust, future resource portfolios?

\* Full ELCC approaches 100% subject to modeled forced outages

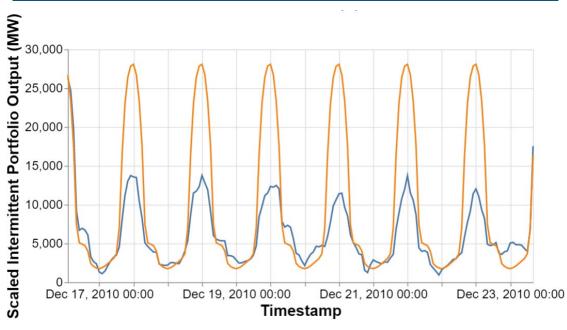
#### 2030 ELCC (5 GW incremental)



#### 2045 ELCC\* (5 GW incremental)



\* 2045 portfolio includes all generation resources from 2019 CPUC IRP RSP but no incremental storage build after 2030 (see previous slide)




# + Hypothesis: future reliability risks driven by multi-day low renewable energy events

- Here, we define "<u>renewable lulls</u>" as extended events where renewable resource availability falls 25% below historical average
- Analysis of 35 years of SERVM resource profiles from CPUC's "Hybrid Conforming Portfolio 2030" from the 2018 IRP preferred system plan revealed data revealed:
  - 50-hour renewables lulls occur once every 2 years
  - 100-hour renewables lulls occur once every 10 years

#### Guiding Project Question

Can we capture the effects of these low resource availability periods on the value & reliability contribution of future resource additions?



#### **December 2010 Low-Renewables Event**





#### **Experimental Context**

- Models need to maximize detail to build robust, low-cost portfolios, while maintaining tractability
- Tractability allows modeling of a wide range of sensitivities, increasing transparency & understanding of uncertain futures

#### Key Modeling Experiments

#### **Geographic Scope:**

Explore alternative representations of WECC to unlock computational power for greater temporal or technoeconomic detail



#### **Temporal Scope:**

Explore alternative representations of time to better capture storage and renewables dynamics

#### **Experimental Goals**

 Explore the impact of modeling tradeoffs on resource portfolio & other key reporting metrics to inform development of New Modeling Toolkit & final analysis



#### **Technoeconomic Detail:**

Explore alternative technoeconomic and market details to unlock computational power for greater temporal or spatial detail



### Preliminary Analytical Experiments Key Takeaways & Upcoming Modeling Improvements

#### + <u>Key takeaways from existing experiments to keep in mind for New Modeling Toolkit</u>:

- 1. Emphasis on capturing both daily and longer-duration dispatch behaviors to value storage
- 2. The potential multi-dimensional and time-varying considerations to correctly capture the capacity contribution of storage resources
- 3. The potential importance of capturing a wider range of weather conditions for California's future resource portfolios in New Modeling Toolkit & Dataset

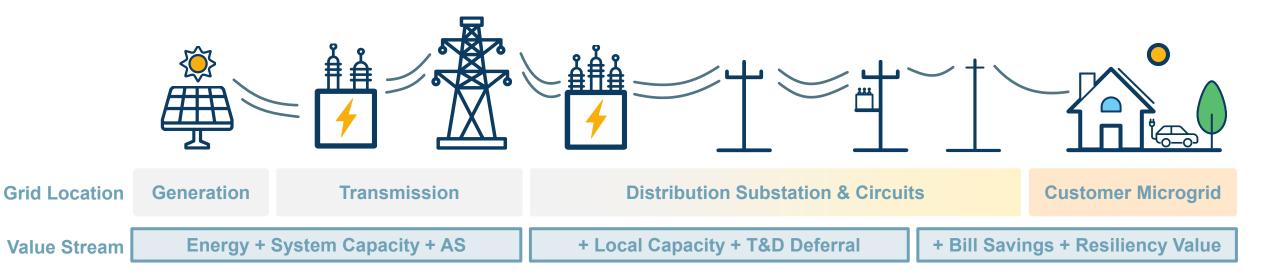
#### + Ongoing modeling development & analysis:

- Modeling the value of <u>interannual</u> storage (on top of within-year daily & seasonal arbitrage)
- Modeling the value of <u>cross-sectoral</u> storage (i.e., electrofuels, which may be used in other sectors)
- Developing data to study the value of locally- & distribution-sited storage resources
- Investigating additional datasets & modeling approaches to incorporate climate impacts into our generation data to capture a wider range of plausible, future system conditions
- As we need to higher granularity in some dimensions (e.g., storage dispatch), what other dimensions can we tradeoff to keep capacity expansion modeling useful, tractable & producing reliable resource portfolios?

# **Preliminary Analysis Scenario Design**






## **Overview of Two Scenario Design Questions**

#### **Bulk System Scenarios**

How will the **speed & stringency** of economywide emissions constraints affect procurement of LDES and other emerging technologies? As project timeline permits, we will study potential ways to better align the bulk system & microgrid perspectives

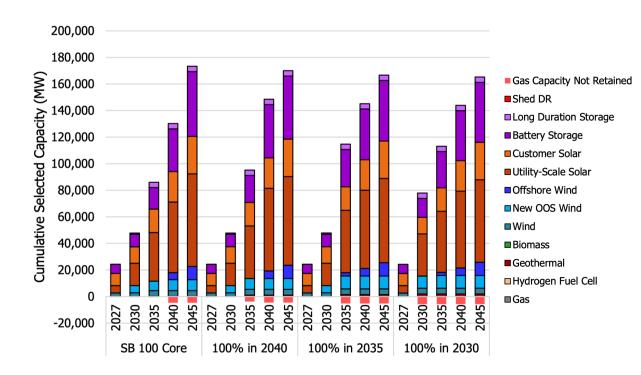
#### **Zero-Carbon Microgrid Scenarios**

How will <u>emissions constraints &</u> <u>market access</u> affect the economics of customer-sited LDES and zerocarbon microgrids?



# **Preliminary Analysis Scenario Design**

Preliminary Bulk System Scenarios


Roderick Go, Technical Manager, E3 Jasmine Ouyang, Managing Consultant, E3 Nick Schlag, Director, E3 Amber Mahone, Partner, E3 Arne Olson, Senior Partner, E3 Dr. Scott Burger, Analytics Manager, Form Energy Rachel Orsini, Analyst, Form Energy





### Preliminary Bulk System Scenarios Background & Key Analytical Questions

#### Context for Preliminary Analysis: SB100 Cumulative Resource Additions



#### **Key Analytical Questions**

- 1. What role could LDES play in system portfolio?
  - How could the resource portfolio change with inclusion of a wider range of emerging technologies?
- 2. What price targets must LDES achieve in order to become key components of the overall system portfolio?
- 3. What modeling approaches can we use to better capture the value of LDES technologies in a capacity expansion context?

#### Source: <u>SB100 Joint Agency Report (figure 9)</u>



# **Preliminary Bulk System Scenario Design**

- + For our scenario design, we believe the primary driver for adoption of emerging technologies will be the speed of electric sector decarbonization
  - Sensitivities will focus on drivers of the <u>value</u> of LDES within the resource portfolio—for example, relative to other commercialized & emerging technologies
  - Preliminary bulk system analysis will be conducted in Formware model
- + Proposed scenarios will be consistent with economywide decarbonization pathways

| Scenario                | Description                                                                    |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| SB100 Reference Policy  | Match SB100 Joint Agency Report Core Scenario (100% zero-carbon sales by 2045) |  |  |  |  |  |
| "Core" Zero-Carbon      | Achieve 100% zero-carbon generation by 2045                                    |  |  |  |  |  |
| Accelerated Zero-Carbon | Achieve 100% zero-carbon generation by 2035                                    |  |  |  |  |  |



### Preliminary Bulk System Scenario Design Additional Sensitivities

 Proposed sensitivities are intended to better understand the robustness of long duration storage value within the context of each policy scenario (previous slide)

• We propose that some sensitivities would be performed during the final analysis due to data development required or limited impact on preliminary results

| Category     | Sensitivity                  | Description                                                                                                                                                     |
|--------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resource     | Existing Technologies Only   | <ul> <li>Only test existing resource options (e.g., in- and out-of-state renewables, OSW, geothermal, li-ion,<br/>CPUC IRP transmission assumptions)</li> </ul> |
|              | Emerging Technologies        | <ul> <li>Add emerging technologies one-by-one: LDES, CCS, drop-in low carbon fuels</li> </ul>                                                                   |
|              | No Combustion by 2045        | <ul> <li>No combustion resources (existing or candidate) remaining on the system by 2045</li> </ul>                                                             |
| Demand       | Mid Electrification          | <ul> <li>Consistent with High Biofuels Pathways scenario, lower building electrification potentially drives lower<br/>LDES value</li> </ul>                     |
|              | High Electrification         | Consistent with High Electrification Pathways scenario                                                                                                          |
|              | High DER Adoption            | <ul> <li>Adjust loads and expected T&amp;D upgrade costs based on higher assumed adoption of DERs</li> </ul>                                                    |
|              | High Load Flexibility        | <ul> <li>Higher load flexibility shows substitutability between load flexibility and LDES technologies</li> </ul>                                               |
| Weather Year | Wider Range of Weather Years | <ul> <li>Test a wider range of weather years, which may be a driver of LDES value not captured by current<br/>modeling methodologies &amp; datasets</li> </ul>  |
|              | Extreme Events               | • Test portfolios against a characterized set of extreme weather events (characterization in progress)                                                          |

Sensitivity for Final Analysis only



# Any comments on the bulk system scenarios, sensitivities & modeling experiments?

# **Preliminary Analysis Scenario Design**

Preliminary Zero-Carbon Microgrid Scenarios



Dr. Ryan Hanna, Research Scientist, UCSD
 Roderick Go, Technical Manager, E3
 Jessie Knapstein, Managing Consultant, E3



#### **Resiliency Needs in California**

- California is experiencing increasing need for electric reliability, while a growing number of hazards threaten to degrade reliability
- California has identified microgrids as a possible solution to these problems, but issues around high investment costs, use of fossil fuels, and other open questions persist (SB 1339, CPUC microgrid proceeding)

#### **Key Analytical Questions**

- 1. What role could LDES play in enabling zerocarbon microgrids?
- 2. How will policy drivers (e.g., emissions limits, new incentive programs, or new market opportunities) affect the role that LDES could play in microgrids?
- 3. What price targets must LDES achieve in order to become key components of microgrids?
- 4. How do different parameters (e.g., critical load or number of PSPS events) impact costeffectiveness?



- Scenarios define explicit choices that policymakers could take to facilitate use of zero-carbon microgrids—e.g., constraining the use of fossil fuels or expanding market opportunities for DERs during "blue sky" grid conditions
  - Because LDES may not be economic under conditions today, it is important to understand the conditions (scenarios) in which they could be.
- + Within each scenario we will run a number of sensitivities, to further explore variation in parameters that could impact use of LDES but lie outside the purview of policy
  - For example, rates of PSPS, cost and performance of LDES

| Scenario                         | Emissions Constraints                | Available Revenue Streams                                      |
|----------------------------------|--------------------------------------|----------------------------------------------------------------|
| 1. Baseline                      | None / $CO_2$ price where applicable | Utility bill savings                                           |
| 2. Zero-carbon                   | 100% carbon-free                     | Utility bill savings                                           |
| 3. Zero-carbon commercialization | 100% carbon-free                     | Utility bill savings + market participation (energy, AS, etc.) |

# **UCSD Building Microgrid Case Studies**

#### + For each case study, a base (no investment) and microgrid case (with investment) are modeled

- Where buildings are already tied to diesel gensets for emergency backup, we will model this in the base case
- Comparing the two gives insights about the microgrid's economics and optimal use of DERs
- + Reliability is modeled as "survivability"—a minimum requirement for islanding duration
- + The value of resiliency is calculated as the ratio of the change in cost and change in reliability upon investing

| Building                              | Annual Load<br>(GWh) | Peak Load<br>(kW) | Average Daily<br>Load Factor<br>(%) | Critical Circuits<br>Metered<br>Separately | Average Critical<br>Load |
|---------------------------------------|----------------------|-------------------|-------------------------------------|--------------------------------------------|--------------------------|
| Biomedical Research II                | 7.5                  | 1,030             | 92%                                 | Yes                                        | 39%                      |
| Cellular & Molecular<br>Medicine West | 3.5                  | 460               | 94%                                 | Yes                                        | 10%                      |
| Moores Cancer Center                  | 8.3                  | 1,200             | 87%                                 | Yes                                        | 47%                      |
| Pharmacological<br>Sciences           | 6.7                  | 1,040             | 88%                                 | Yes                                        | 32%                      |
| UCSD Campus                           | 297                  | 47,600            | 94%                                 | No                                         | _                        |
| Other Campus<br>Buildings             | [TBD]                | [TBD]             | [TBD]                               | [TBD]                                      | [TBD]                    |

**Focus:** Separately metered critical loads will allow us to study how microgrids could serve different types of load shapes. These buildings on UCSD's campus tend to be higher load factor

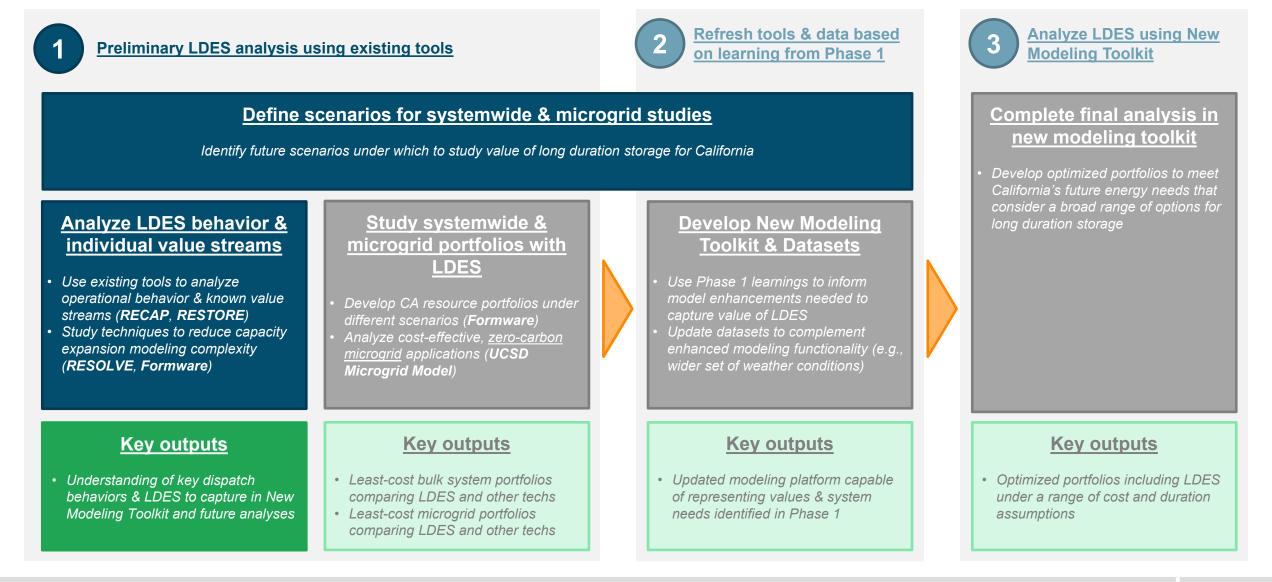
**Focus:** Campus-level and other building data will provide a wider range of load factors.



# Any comments on the scenarios to study for zero-carbon microgrids?

# **Next Steps**






#### Goal is to have preliminary analysis completed approximately 3 months from today's workshop +

|                                |                                            | 2020 2021 |     |     |     |     |     |     |     |     |      |     |     |     |     |     | 2022 |     |     |     |     |     |     |
|--------------------------------|--------------------------------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| Task                           | Sub-Task                                   | Sep       | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun  | Jul | Aug | Sep | Oct | Nov | Dec  | Jan | Feb | Mar | Apr | May | Jun |
| Baseline Data De               | evelopment                                 |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| LDES Scenario I                | Design                                     |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| Emerging                       | Draft Technology Review                    |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| Technology<br>Review           | Final Technology Review                    |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
|                                | Preliminary Modeling Experiments           |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| Preliminary<br>Analysis        | Preliminary Systemwide LDES Analysis       |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
|                                | Preliminary Zero-Carbon Microgrid Analysis |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| New Modeling                   | New Modeling Toolkit                       |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| Toolkit<br>Development         | New Modeling Dataset                       |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| Final Scenario A               | nalysis                                    |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
|                                | Introductory Public Workshops              |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| Public                         | Data & Scenario Selection Workshop         |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
| Workshops                      | Final Scenario Selection Workshop          |           |     |     |     |     |     |     |     |     |      |     |     |     |     |     |      |     |     |     |     |     |     |
|                                | Final Public Workshop                      |           |     |     |     |     |     |     |     |     |      | 7   |     |     |     |     |      |     |     |     |     |     |     |
| Energy+Environmental Economics |                                            |           |     |     |     |     |     |     |     |     | oday |     |     |     |     |     |      |     |     |     | 4(  | )   |     |

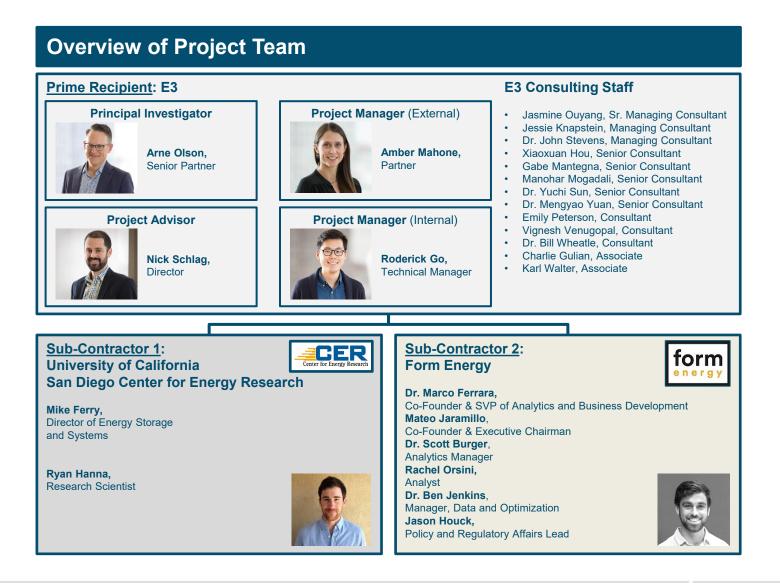


# Where We Are in Overall Project Arc



# **Thank You**

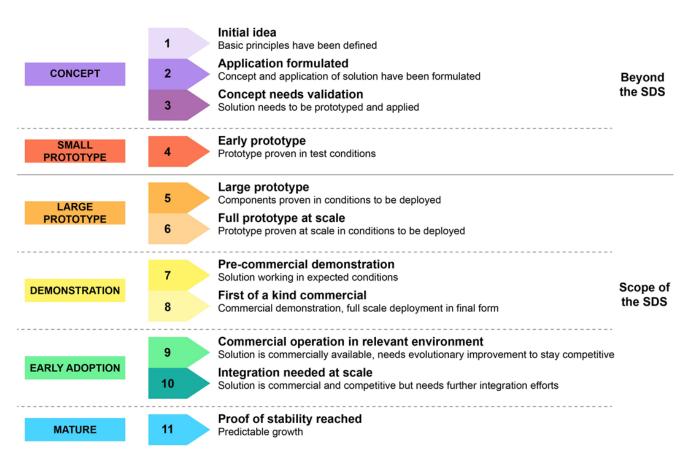
Roderick Go, <a href="mailto:roderick@ethree.com">roderick@ethree.com</a>




# **Appendix**



# **Overview of Project Team & Responsibilities**


- + E3 will lead this team, leveraging expertise in deep decarbonization analyses
  - Amber Mahone and Roderick Go will be serve as project managers
  - Arne Olson will be principal investigator
  - Nick Schlag will serve as project advisor
- + Form Energy will provide technology expertise on their long duration storage technology and analytical support valuing long duration storage assets
- + UCSD CER will draw on real-world testing expertise to assess the technical characteristics of long duration storage technologies and use the UCSD campus as a case study for low-carbon microgrids based on long duration storage





## Draft Emerging Technology Review IEA's Clean Energy Technology Guide

- As part of its <u>Energy Technologies</u> <u>Perspective</u> (ETP) report in 2020, IEA published a "Clean Energy Technology Guide"
  - This guide contains over 400 clean energy technologies for achieving global net-zero emissions by midcentury
- It utilizes an 11-point technology readiness level (TRL) scale
- IEA's TRL scale is adopted for E3's technology review
  - Supplemented with E3 expertise where needed



\* SDS = Sustainable Development Scenario (IEA-specific analysis).

https://www.iea.org/articles/etp-clean-energy-technology-guide



## <u>Draft Emerging Technology Review</u> **Proposed Technology Screening Approach**

|                                    | Commercialized                                                         | Emerging                                                                                                                                                                   | Experimental                                              |
|------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                    |                                                                        |                                                                                                                                                                            |                                                           |
|                                    | Mature Technologies                                                    | Emerging Technologies                                                                                                                                                      | Experimental Technologies                                 |
| Market Experience                  | Fully commercialized                                                   | Limited development                                                                                                                                                        | No development                                            |
| Data: Costs                        | Available, documented near-term costs and established trajectories     | Limited, possible near-term costs but speculative cost trajectories                                                                                                        | Theoretical, no real-world cost data                      |
| Data: Potential                    | Available                                                              | Limited                                                                                                                                                                    | Theoretical                                               |
| Data: Operating<br>Characteristics | Available                                                              | Limited                                                                                                                                                                    | Theoretical                                               |
| Examples                           | Solar, wind, battery storage, fossil gas<br>CT/CCGT, biogas combustion | Gas w/ CCS, advanced nuclear (e.g.,<br>modular reactors), direct air capture,<br>BECCS, H <sub>2</sub> , power-to-gas (P2G), advanced<br>geothermal, long duration storage | Nuclear fusion, solar fuels ("artificial photosynthesis") |
|                                    |                                                                        |                                                                                                                                                                            |                                                           |
| Proposed Approach                  | Model in all scenarios                                                 | Model in sensitivity scenarios                                                                                                                                             | Do not model due to lack of data                          |
| Impact                             | Drives results + near-term decision<br>making                          | Informs least-regrets planning, stranded asset risk                                                                                                                        | Informs R&D spending, pilot projects                      |



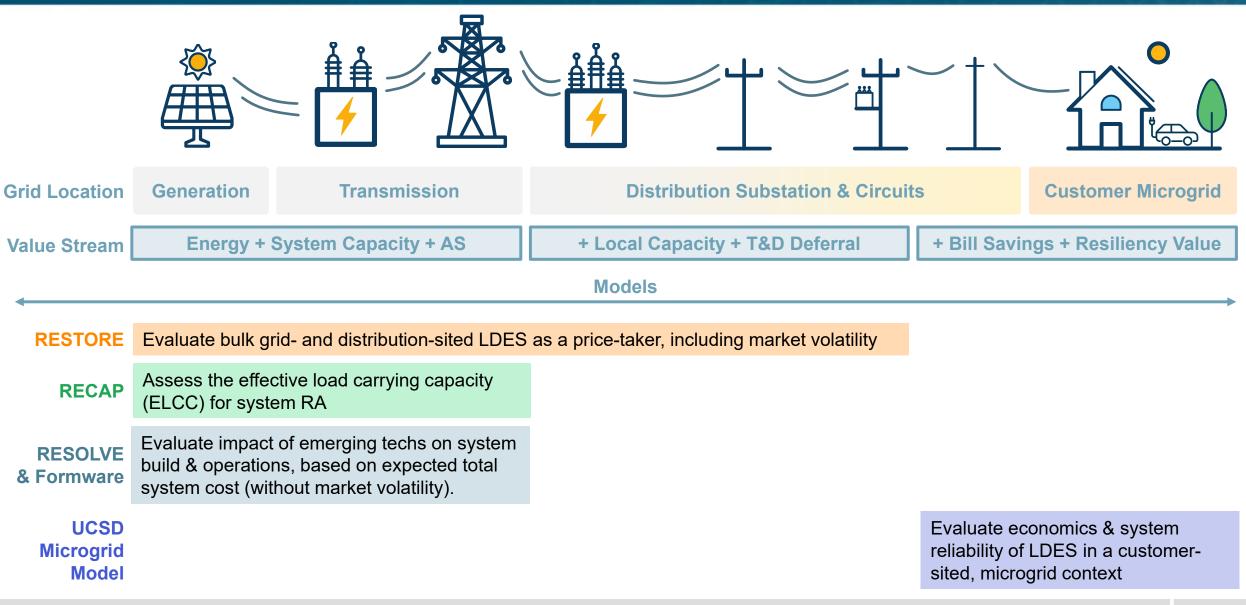
## Energy Arbitrage Modeling Experiment 2030 vs. 2050 Forecasted Energy Prices

| Raw DA Energy Prices | Year: | 2030  | Zone: | SP15  |       |       |       |        |        |        |         |         |          |        |        |        |        |       |       |       |       |       |       |       |
|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|---------|---------|----------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| \$/MWh               |       |       |       |       |       |       |       |        |        |        |         | Hour S  | Starting |        |        |        |        |       |       |       |       |       |       |       |
| Month                | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      | 9      | 10      | 11      | 12       | 13     | 14     | 15     | 16     | 17    | 18    | 19    | 20    | 21    | 22    | 23    |
| 1                    | \$ 45 | \$ 45 | \$ 44 | \$ 44 | \$ 46 | \$ 46 | \$ 46 | \$ 43  | \$ 26  | \$ 18  | \$ 18   | \$ 17   | \$ 17    | \$ 17  | \$ 18  | \$ 19  | \$ 39  | \$ 46 | \$ 46 | \$ 46 | \$ 46 | \$ 46 | \$ 46 | \$ 46 |
| 2                    | \$ 47 | \$ 45 | \$ 45 | \$ 45 | \$ 47 | \$ 49 | \$ 49 | \$ 40  | \$ 22  | \$ 18  | \$ 17   | \$ 17   | \$ 17    | \$ 17  | \$ 17  | \$ 19  | \$ 31  | \$ 52 | \$ 52 | \$ 52 | \$ 52 | \$ 52 | \$ 51 | \$ 50 |
| 3                    | \$ 44 | \$ 44 | \$ 44 | \$ 44 | \$44  | \$ 45 | \$44  | \$ 22  | \$ (0) | \$ (2) | \$ (2)  | \$ (2)  | \$ (2)   | \$ (2) | \$ (2) | \$ (1) | \$ 12  | \$ 43 | \$ 45 | \$ 45 | \$ 45 | \$ 45 | \$ 45 | \$ 45 |
| 4                    | \$ 35 | \$ 35 | \$ 35 | \$ 35 | \$ 35 | \$ 35 | \$ 32 | \$ 7   | \$ 0   | \$ 0   | \$ (0)  | \$ (1)  | \$ 0     | \$ 0   | \$ 0   | \$ 2   | \$9    | \$ 33 | \$ 37 | \$ 37 | \$ 37 | \$ 37 | \$ 37 | \$ 36 |
| 5                    | \$ 35 | \$ 35 | \$ 35 | \$ 35 | \$ 35 | \$ 31 | \$ 30 | \$9    | \$ 7   | \$6    | \$ 6    | \$5     | \$6      | \$ 6   | \$6    | \$ 7   | \$ 12  | \$ 34 | \$ 41 | \$ 43 | \$ 42 | \$ 41 | \$ 41 | \$ 40 |
| 6                    | \$ 33 | \$ 33 | \$ 33 | \$ 33 | \$ 33 | \$ 29 | \$ 29 | \$ 19  | \$ 18  | \$ 17  | \$ 18   | \$ 18   | \$ 17    | \$ 18  | \$ 18  | \$ 17  | \$ 23  | \$ 36 | \$ 40 | \$ 47 | \$ 46 | \$ 40 | \$ 38 | \$ 37 |
| 7                    | \$ 39 | \$ 39 | \$ 39 | \$ 39 | \$ 39 | \$ 37 | \$ 36 | \$ 28  | \$ 25  | \$ 25  | \$ 25   | \$ 25   | \$ 25    | \$ 25  | \$ 25  | \$ 26  | \$ 34  | \$ 47 | \$ 54 | \$ 61 | \$ 59 | \$ 50 | \$ 49 | \$ 48 |
| 8                    | \$ 42 | \$ 42 | \$ 41 | \$41  | \$ 42 | \$ 42 | \$ 38 | \$ 29  | \$ 28  | \$ 29  | \$ 29   | \$ 29   | \$ 29    | \$ 28  | \$29   | \$ 31  | \$ 37  | \$ 49 | \$ 64 | \$ 62 | \$ 57 | \$ 49 | \$ 48 | \$ 47 |
| 9                    | \$ 44 | \$ 44 | \$ 43 | \$ 43 | \$ 44 | \$ 44 | \$ 40 | \$ 27  | \$ 25  | \$ 25  | \$ 25   | \$ 26   | \$ 26    | \$ 25  | \$ 25  | \$ 30  | \$ 39  | \$ 57 | \$ 65 | \$ 63 | \$ 56 | \$ 55 | \$ 50 | \$ 48 |
| 10                   | \$ 45 | \$ 44 | \$ 43 | \$ 43 | \$ 44 | \$ 45 | \$ 43 | \$ 22  | \$ 16  | \$ 16  | \$ 16   | \$ 16   | \$ 16    | \$ 16  | \$ 16  | \$ 24  | \$ 39  | \$ 53 | \$ 54 | \$ 52 | \$ 52 | \$ 51 | \$ 46 | \$ 46 |
|                      | \$ 44 | \$ 43 | \$ 42 | \$ 42 | \$ 44 | \$ 44 | \$ 44 | \$ 29  | \$ 16  | \$ 15  | \$ 15   | \$ 14   | \$ 14    | \$ 15  | \$ 15  | \$24   | \$ 46  | \$ 47 | \$ 47 | \$ 47 | \$ 47 | \$ 47 | \$ 47 | \$ 47 |
| 12                   | \$ 47 | \$ 45 | \$ 44 | \$44  | \$ 47 | \$ 49 | \$ 49 | \$44   | \$ 32  | \$ 28  | \$ 27   | \$ 26   | \$ 26    | \$ 26  | \$ 28  | \$ 33  | \$ 52  | \$ 53 | \$ 53 | \$ 53 | \$ 53 | \$ 53 | \$ 53 | \$ 52 |
| Raw DA Energy Prices | Year: | 2050  | Zone: | SP15  |       |       |       |        |        |        |         | ·       | ·        |        |        | ·      |        |       |       |       |       |       |       |       |
| \$/MWh               |       |       |       |       |       |       |       |        |        |        |         |         | Starting |        |        |        |        |       |       |       |       |       |       |       |
| Month                | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      |        |         | 11      | 12       | 13     | 14     |        | 16     | 17    | 18    | 19    | 20    | 21    | 22    | 23    |
|                      | \$ 68 | \$ 68 | \$ 68 | \$ 68 | \$ 68 | \$ 68 | \$ 68 | \$ 61  | \$ 35  | \$ 22  | \$ 16   | \$ 13   | \$ 14    | \$ 16  | \$ 18  | \$ 28  | \$ 48  | \$ 67 | \$ 67 | \$ 67 | \$ 67 | \$ 67 | \$ 67 | \$ 67 |
|                      | \$ 67 | \$67  | \$ 67 | \$ 67 | \$67  | \$ 67 | \$ 67 | \$ 49  | \$ 31  | \$ 26  |         |         | \$ 20    | \$ 22  | \$ 21  | \$ 29  | \$ 34  | \$ 67 | \$67  | \$67  | \$ 67 | \$67  | \$67  | \$ 67 |
| 3                    | \$ 50 | \$ 50 | \$ 50 | \$ 50 | \$ 50 | \$ 50 | \$ 50 | \$8    | \$(10) | \$(14) | \$(17)  | \$(19)  | \$(18)   | \$(17) | \$(16) | \$(13) | \$ (8) | \$ 47 | \$ 49 | \$ 49 | \$ 49 | \$ 49 | \$ 49 | \$ 49 |
| 4                    | \$ 37 | \$ 37 | \$ 37 | \$ 37 | \$ 37 | \$ 37 | \$ 37 | \$(13) | \$(27) | \$(26) | \$ (28) | \$ (29) | \$ (28)  | \$(28) | \$(27) | \$(24) | \$(23) | \$ 35 | \$ 38 | \$ 38 | \$ 39 | \$ 38 | \$ 38 | \$ 38 |
|                      | \$ 36 | \$ 36 | \$ 36 | \$ 36 | \$ 36 | \$ 36 | \$ 35 | \$ (4) | \$ (5) | \$ (6) | \$ (7)  | \$ (7)  | \$ (7)   | \$ (6) | \$ (5) | \$ (5) | \$ (4) | \$ 31 | \$ 35 | \$ 35 | \$ 35 | \$ 35 | \$ 35 | \$ 35 |
|                      | \$ 46 | \$ 46 | \$ 46 | \$ 46 | \$ 46 | \$ 44 | \$44  | \$ 13  | \$ 12  | \$ 11  | \$ 10   | \$ 9    | \$ 10    | \$ 10  | \$ 11  | \$ 12  | \$ 14  | \$ 40 | \$ 49 | \$ 49 | \$ 49 | \$ 49 | \$ 49 | \$ 49 |
|                      | \$ 56 | \$ 56 | \$ 56 | \$ 56 | \$ 56 | \$ 55 | \$ 52 | \$ 16  | \$ 16  | \$ 14  | \$ 13   | \$ 13   | \$ 13    | \$ 14  | \$ 15  | \$ 16  | \$ 16  | \$ 46 | \$ 57 | \$ 57 | \$ 58 | \$ 57 | \$ 57 | \$ 57 |
|                      | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 58 | \$ 22  | \$ 19  | \$ 17  | \$ 15   | \$ 13   | \$ 14    | \$ 16  | \$ 18  | \$ 21  | \$ 25  | \$ 59 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 |
| 9                    |       | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 17  | \$ 14  | \$ 12  | \$ 8    | \$ 7    | \$ 9     | \$ 13  | \$ 15  | \$ 17  | \$ 31  | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 | \$ 60 |
|                      | \$ 62 | \$ 62 | \$ 62 | \$ 62 | \$ 62 | \$ 62 | \$ 61 | \$ 13  | \$ 9   | \$ 6   | \$ 4    | \$ 2    | \$ 4     | \$ 6   | \$ 10  | \$ 13  | \$ 46  | \$ 61 | \$ 61 | \$ 61 | \$ 61 | \$ 61 | \$ 61 | \$ 61 |
| 11                   |       | \$ 64 | \$ 64 | \$ 64 | \$ 64 | \$ 64 | \$ 64 | \$ 32  | \$ 21  | \$ 12  | \$ 7    | \$ 7    | \$ 8     | \$ 12  | \$ 15  | \$ 31  | \$ 64  | \$ 65 | \$ 65 | \$ 65 | \$ 65 | \$ 65 |       | \$ 65 |
| 12                   | \$ 75 | \$ 75 | \$ 75 | \$ 75 | \$ 75 | \$ 75 | \$ 75 | \$ 65  | \$ 56  | \$ 46  | \$ 42   | \$ 38   | \$ 39    | \$ 42  | \$47   | \$ 58  | \$ 75  | \$77  | \$ 77 | \$ 77 | \$ 77 | \$ 77 | \$ 77 | \$77  |

- + Seasonal and intraday shifting signals remain
- + The maximum difference in seasonal and intraday prices increases by ~50% and ~40% respectively
- + Expect that seasonal shifting will play a larger role in 2050, if a LoDES technology can perform it



## **Analytical Approach**


- Rather than focusing on categorizing technologies as "long" vs. "short" duration storage, we will study the applications, value streams, and operational characteristics that may drive storage procurement decisions
  - **1.** Energy, Capacity, and Operating Reserves
    - How do technology characteristics affect the value proposition for meeting systemwide RA, decarbonization targets?
  - 2. Transmission, Distribution & Local Reliability
    - How do technology characteristics affect the value proposition for local reliability and T&D deferral applications?
  - **3.** Resiliency & Customer Benefits
    - How do technology characteristics affect the value proposition for microgrid applications?
- + We will assess other factors (e.g., renewable integration, land-use impacts) in addition to these value streams

| Energy                            |              |  |  |  |  |
|-----------------------------------|--------------|--|--|--|--|
| System Resource Adequacy (RA)     | Bulk System  |  |  |  |  |
| Operating Reserves                | Values       |  |  |  |  |
| Transmission Deferral             |              |  |  |  |  |
| Local Capacity Requirement        |              |  |  |  |  |
| Distribution Deferral             | Local Values |  |  |  |  |
| DG Integration & Hosting Capacity |              |  |  |  |  |
| Local Air Quality                 |              |  |  |  |  |
| Backup Power & Resiliency         | Customer     |  |  |  |  |
| Bill Savings                      | Values       |  |  |  |  |



## **Analytical Approach**

Tying Together Analyses at Different Scales of the Electricity System





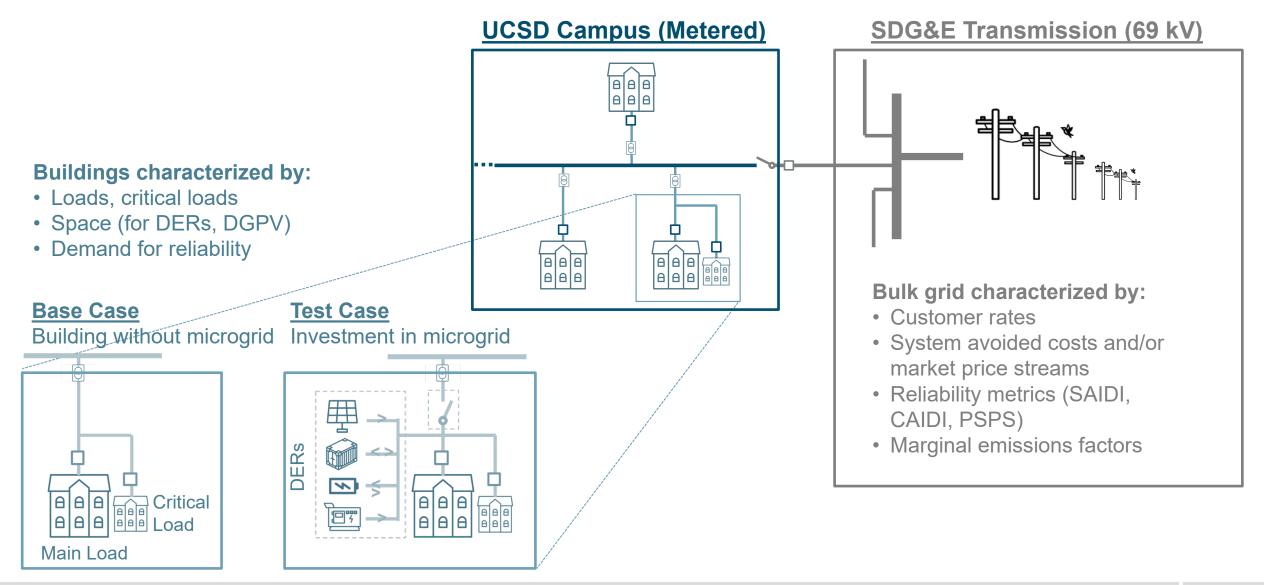
# Analytical Approach

## Anticipated Results for Comparison Across Baseline & Scenarios

| Scenario-based assumptions on load component forecasts & profiles (e.g., implied building & transportation electrification)                     |                       |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|--|
| Systemwide portfolio Total Resource Cost                                                                                                        |                       |  |  |  |  |  |  |  |
| Systemwide annual GHG emissions & marginal GHG abatement cost                                                                                   |                       |  |  |  |  |  |  |  |
| Marginal ELCC curves for storage technology alternatives                                                                                        |                       |  |  |  |  |  |  |  |
| Achieved PRM & PRM shadow price (indicative of marginal cost to achieve System Resource Adequacy requirements)                                  |                       |  |  |  |  |  |  |  |
| Systemwide resource build (e.g., MW of renewables, LDES, etc. deployed & gas economically retired, based on expected cost projections)          |                       |  |  |  |  |  |  |  |
| Breakeven cost of LDES to be competitive with bulk system resource alternatives (e.g., firm, zero-carbon resources, renewables, lithium-ion)    |                       |  |  |  |  |  |  |  |
| Breakeven cost of LDES to be competitive with local capacity resource alternatives (e.g., firm, zero-carbon resources, renewables, lithium-ion) |                       |  |  |  |  |  |  |  |
| Potential local capacity or T&D deferral value captured (translated into a net cost reduction for DERs in capacity expansion)                   |                       |  |  |  |  |  |  |  |
| B/C ratio for LDES as a local capacity resource based on expected cost projections (to be developed via technology review)                      |                       |  |  |  |  |  |  |  |
| Customer bills & reliability metrics                                                                                                            |                       |  |  |  |  |  |  |  |
| Breakeven cost of LDES to be competitive with microgrid resource alternatives (e.g., CHP, diesel, solar + lithium-ion)                          |                       |  |  |  |  |  |  |  |
| B/C ratio for LDES as a microgrid resource based on expected cost projections (to be developed via technology review)                           | Customer<br>Microgrid |  |  |  |  |  |  |  |
| Scenario-based microgrid deployment & configurations, informed by cost-effectiveness analysis                                                   |                       |  |  |  |  |  |  |  |
| Annual GHG emissions & local air quality impacts of various microgrid configurations                                                            |                       |  |  |  |  |  |  |  |
| Total land use for resource build                                                                                                               |                       |  |  |  |  |  |  |  |
| Value of "short-" (e.g., intra-day) vs. "long-duration" (e.g., seasonal) dispatch behavior for various storage alternatives                     |                       |  |  |  |  |  |  |  |



## Highlights from Baseline Data Development Task Summary of Relevant Public Datasets


### + Many of the relevant datasets are derived from the latest publicly available CPUC IRP proceeding\*

| Data                                    | Source                                                                                                                                                                                                                                                              |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Load profiles                           | <ul> <li>Baseline loads: 2007-09 WECC historical load profiles</li> <li>CEC 2019 California IOU Load Shape study</li> <li>Building &amp; transport electrification profiles: <u>Modeling Assumptions for the 2021-2022 Transmission Planning Process</u></li> </ul> |
| Load forecasts                          | <ul> <li>CA: 2019 CEC IEPR</li> <li>Non-CA: WECC 2028 Anchor Data Set (ADS) Phase 2 V1.2</li> </ul>                                                                                                                                                                 |
| Baseline resources                      | <ul> <li>Supply-side: 2020 IRP baseline portfolio (based on CAISO master file, RPS contract database, WECC ADS Phase 2 v. 1.2)</li> <li>Behind-the-meter: 2019 CEC IEPR</li> </ul>                                                                                  |
| Resource costs                          | <ul> <li>2020 NREL Annual Technology Baseline (ATB)</li> <li>2019 Lazard Levelized Cost of Storage</li> <li>2020 NREL <u>The Cost of Floating Offshore Wind Energy in California Between 2019 and 2032</u></li> </ul>                                               |
| Resource potentials                     | <ul> <li>Renewables: Black &amp; Veatch RPS Calculator v.6.3</li> <li>Shed DR: LBNL <u>Final Report on Phase 2 Results: 2025 California Demand Response Potential Study</u></li> </ul>                                                                              |
| Resource profiles                       | <ul> <li>NREL <u>PVWATTSv5</u> calculator</li> <li>NREL <u>Wind Integration National Dataset ("WIND") Toolkit</u></li> </ul>                                                                                                                                        |
| Fuel and carbon prices                  | 2019 CEC IEPR (NAMGas, Preliminary Nominal Carbon Price Projections)                                                                                                                                                                                                |
| Local capacity needs                    | <u>CAISO 2020-2021 TPP Appendix G: 2030 Local Capacity Technical Study</u>                                                                                                                                                                                          |
| Transmission upgrade costs              | Modeling Assumptions for the 2021-2022 Transmission Planning Process                                                                                                                                                                                                |
| Distribution upgrade cost               | CPUC IOU Grid Need Assessment (GNA) and Distribution Deferral Opportunity Report (DDOR) filings (R.14-08-013)                                                                                                                                                       |
| Historical PSPS events                  | <u>CPUC PSPS Post-Event Reports</u>                                                                                                                                                                                                                                 |
| Utility distribution system reliability | <u>CPUC Annual Electricity Reliability Reports</u>                                                                                                                                                                                                                  |
| DER equipment reliability               | <ul> <li>Various field data sets (<u>IEEE</u>, <u>Marqusee et al. 2020</u>)</li> </ul>                                                                                                                                                                              |

\* Several datasets are in the process of being updated, and the project team plans on updating or supplementing these baseline assumptions when those datasets become available.



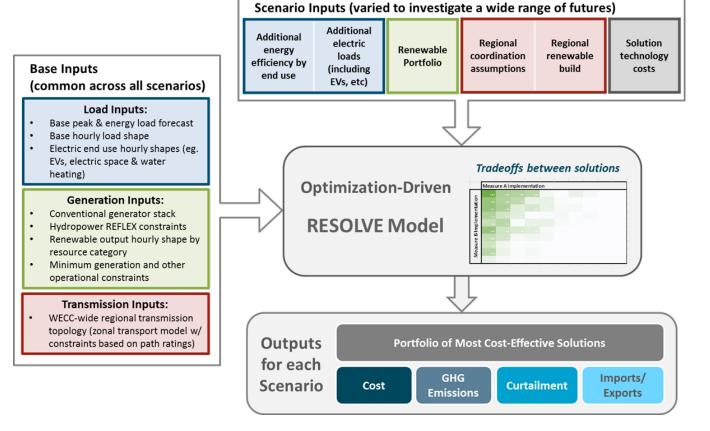
## Preliminary Zero-Carbon Microgrid Scenarios UC San Diego System Configuration





# + In addition to previously described scenarios, we want to study what model reduction techniques are appropriate for our resource planning

| Case Name                   | Temporal<br>Representation               | Zonal<br>Representation                       | Operating Reserves                      | PRM & ELCCs         | Resource Tranches                             | Rationale                                                                                                                      |
|-----------------------------|------------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| RSP Benchmark               | 37 rep. days                             | 6 load zones                                  | 7 operating reserves                    | 15% PRM + ELCCs     | Aligned with IRP RSP tranches                 | Provide benchmark between Formware & CPUC IRP<br>RSP/SB100 RESOLVE case                                                        |
| No External Zones           | [Same as Benchmark]                      | Replace non-CA<br>zones with price<br>streams | [Same as Benchmark]                     | [Same as Benchmark] | [Same as Benchmark]                           | Test if external zones can be simplified without significantly affecting portfolios                                            |
| No A/S                      | [Same as Benchmark]                      | [Same as Benchmark]                           | None                                    | [Same as Benchmark] | [Same as Benchmark]                           | Test impact of modeling AS on resource portfolio decisions                                                                     |
| Reduce Resource<br>Tranches | [Same as Benchmark]                      | [Same as Benchmark]                           | [Same as Benchmark]                     | [Same as Benchmark] | Reduce # of<br>renewable resource<br>tranches | Test if reducing # of modeled renewable tranches significantly affects portfolios                                              |
| 365 Day, HLH/LLH            | 365 days but only 2-4 rep. hours per day | [Same as Benchmark]                           | [Same as Benchmark]                     | [Same as Benchmark] | [Same as Benchmark]                           | Test if modeling all days but lower resolution still captures major seasonal arbitrage value for LDES                          |
| Representative<br>Weeks     | 4-6 rep. weeks                           | [Same as Benchmark]                           | [Same as Benchmark]                     | [Same as Benchmark] | [Same as Benchmark]                           | Test if modeling representative weeks captures full value of long duration storage & other long operational decision resources |
| 8760-Hour, with PRM         | Model full 8760-hour timeseries          | [Model simplification may be needed]          | [Model simplification<br>may be needed] | [Same as Benchmark] | [Model simplification may be needed]          | Test if PRM has significant impact on resource build if modeling all 8760 operational hours                                    |
| 8760-Hour, No PRM           | Model full 8760-hour timeseries          | [Model simplification may be needed]          | [Model simplification<br>may be needed] | None                | [Model simplification may be needed]          | Test if 8760-hour modeling is possible with CAISO system; additional iteration to simplify as needed                           |
| Multi-Year, No PRM          | Model full 8760-hour timeseries          | [Model simplification may be needed]          | [Model simplification<br>may be needed] | None                | [Model simplification may be needed]          | Test if directly modeling more operational years reduces need for PRM while maintaining reliability                            |




# **RESOLVE Modeling Inputs**

# RESOLVE is designed to allow easy scenario analysis of a variety of uncertainties

### + Inputs for RESOLVE include:

- Future resource costs (capital, interconnection, fixed & variable O&M)
- Existing & future resource operational characteristics (heat rate, fixed generation profiles)
- Fuel price forecasts
- Load profiles & annual load forecasts
  - Assumed adoption & load impacts of DERs (e.g., DGPV, EV, and other flexible loads)
- Annual GHG, RPS/CES, and PRM policy targets



# **Formware Overview**

#### Inputs



**Project-Specific Constraints** Site capacity, target availability, ...



#### **Sophisticated Storage Models** \$/kWh, \$/kW, RTE, ...



#### Market Conditions

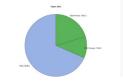
PPA price, capacity prices, energy and ancillary prices, RPS, ...



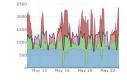
#### **Grid Data**

Transmission limits, load forecasts, retirements, ...

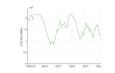



#### **Generator Data**

Capex, opex, start costs, heat-rates, fuel costs, solar & wind resource, ...


#### **Formware™ Software**

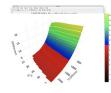
- 8760+ model captures price and resource volatility
- Multi-scenario optimization validates solution across range of conditions
- Customizable model allows Form to deliver bespoke analyses on-demand
- FORM ENERGY ANALYTICS HOME PROJECT SETTINGS ASSETS RESULTS Asset Dispatch and Demand Charge Discharge Discharge Und 2 Un


#### Outputs



Recommended Energy Asset Sizing Power, energy capacity




Hourly Operational Profiles 8760+ by energy asset



Storage "Duty Profile" Cycles/yr, peak power



**Project Financials** LCOE, FCF, IRR



Sensitivity Analysis Risks and trade-offs from input uncertainties

