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1.  Overview & Introduction  

 RPU uses regression based econometric models to forecast both its total expected GWh system 
load and system MW peak on a monthly basis.  Regression based econometric models are also used to 
forecast expected monthly retail loads (GWh) for our four primary customer classes.  These models are 
calibrated to historical load and/or sales data extending back to January 2005.  The following input 
variables are used in one or more of these econometric models: (a) various monthly weather summary 
statistics, (b) specific calendar effects, (c) unplanned for (but verified) expansion and contraction of 
industrial loads, (d) an annual per capita personal income (PCPI) econometric input variable for the 
Riverside – San Bernardino – Ontario metropolitan service area, (e) the cumulative load loss effects 
associated with retail customer solar PV installations and all of our measured Energy Efficiency (EE) 
programs, and (f) the expected net load gain due to increasing Electric Vehicle (EV) penetration levels 
within the RPU service territory.  These models are used to project RPU wholesale gross and peak 
monthly loads and monthly retail sales twenty years into the future.   

 Due to a lack of AMI and load research survey data, RPU does not currently produce forecasts of 
coincident or non-coincident peak loads associated with any specific customer class, or future electrical 
rates for any customer class and/or tier rate structure.  However, our current wholesale and retail 
forecasting models do explicitly capture and account for the effects of all active RPU EE programs at 
their current funding and implementation levels, along with the impacts of customer installed solar PV 
distributed generation and EV penetration within our service territory.  This document describes our 
statistical methodology used to account for these EE, solar PV and EV effects in detail.  The interested 
reader should refer to our SB1037/AB2021 reports for more detailed information about RPU’s various 
EE/rebate programs, and our prior SB1 reports for more general information about historical solar PV 
installation trends within the RPU service territory.   

 RPU does not currently administer any type of long-term, dispatchable Demand Response 
program in its service territory.  In response to the 2012 SONGS closure, RPU continues to support a 
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Power Partners voluntary load curtailment program to call upon up to 10 MW of commercial and 
industrial load shedding capability during any CAISO Stage 3 Emergency situation.  For large TOU 
customers, we use commercial time-of-use rate structures to encourage and incentivize off-peak energy 
use.  Finally, we have no ESP’s in our service territory and we do not anticipate either losing any existing 
load or gaining any new service territory over the next ten years. 

 

2.   Forecasting Approach 

2.1.   General modeling methodology  

 The following load based metrics are modeled and forecasted by the RPU Power Resources 
Division: 

• Hourly system loads (MW), 
• Total monthly system load (GWh), 
• Maximum monthly system peak (MW), 
• Total monthly retail loads for our Residential, Commercial, Industrial and Other customer classes 

(GWh). 

 All primary monthly forecasting equations are statistically developed and calibrated to ~15 years 
of historical monthly load data.  The parameter estimates for each forecasting equation are normally 
updated every 12 months; if necessary, the functional form of each equation can also be updated or 
modified on an annual basis.  Please note that this report only summarizes the methodology and 
statistical results for our monthly forecasting equations.  Section 3 of this report describes our monthly 
system load and system peak equations in detail, while section 4 provides a high-level overview of how 
our class-specific, retail load forecasts are derived from our system load forecasts. 

 

2.2.  Input variables  

 The various weather, calendar, economic and structural input variables used in our monthly 
forecasting equations are defined in Table 2.1.  Note that all weather variables represent functions of 
the average daily temperature (ADT, °F) expressed as either daily cooling degrees (CD) or extended 
heating degrees (XHD), where these indices are in turn defined as 

CD  =  max[ADT-65, 0]        [Eq. 2.1] 

XHD  =  max[55-ADT, 0] .         [Eq. 2.2] 

Thus, two days with average temperatures of 73.3° and 51.5° would have corresponding CD indices of 
8.3 and 0 and XHD indices of 0 and 3.5, respectively.   
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 The “structural” variables shown in Table 2.1 represent calculated cumulative load and peak 
impacts associated with the following programs and mandates: 

• An indicator variable for additional, new industrial load that relocated into the RPU service 
territory in the 2011-2012 time frame, in response to a two year, city-wide economic incentive 
program.  (Note that this load later migrated out of our service territory in the 2014-2015 time 
frame; the impact of this load loss is also incorporated into this “EconTOU” structural variable.) 

• Avoided energy use directly attributable to RPU energy efficiency programs and rebates. 
• Avoided energy use directly attributable to customer installed solar PV systems within the RPU 

service territory. 
• Additional expected load directly attributable to the increasing number of electric vehicles in 

RPU’s service territory. 

The calculations associated with each of these load and peak impact variables are described in greater 
detail in subsequent sections.  More specifically, section 2.4 describes the amount and timing of the new 
industrial load that relocated into our service territory in 2011 and 2012, and out of our service territory 
in 2014 and 2015.  Additionally, sections 2.5, 2.6 and 2.7 describe how we calculate the cumulative 
avoided load and peak energy usage associated with RPU energy efficiency programs and rebates, load 
loss due to customer installed solar PV systems, and load gain due to vehicle electrification within the 
RPU service territory, respectively.  Finally, section 2.8 describes how the utility is currently adjusting for 
temporary load loss due to COVID-19 impacts. 

Low order Fourier frequencies are also used in the regression equations to help describe 
structured seasonal load (or peak) variations not already explained by other predictor variables.  These 
Fourier frequencies are formally defined as 

Fs(n)  =  Sine[ n x 2π x [(m-0.5)/12} ],         [Eq. 2.3] 

Fc(n)  =  Cosine[ n x 2π x [(m-0.5)/12} ],        [Eq. 2.4] 

where m represents the numerical month number (i.e., 1 = Jan, 2 = Feb, .., 12 = Dec).  Note also that a 
second set of Fourier frequencies are also used in our system load and peak models to account for 
structural changes to our distribution system that occurred in 2014.  These 2014 distribution system 
upgrades were supposed to reduce our energy losses across all load conditions, but in practice appear to 
have only reduced energy losses under low load conditions. 
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Table 2.1  Economic, calendar, weather, structural and miscellaneous input variables used in RPU 
monthly system load (SL) and system peak (SP) forecasting equations. 

 
Effect 

 
Variable 

 
Definintion 

Forecasting Eqns. 
SL SP 

Economic PCPI Per Capita Personal Income ($1000) X X 
Calendar SumMF # of Mon-Fri (weekdays) in month X  

SumSS # of Saturdays and Sundays in month X  
Weather 
 
 

SumCD Sum of monthly CD’s X X 
SumXHD Sum of monthly XHD’s X  
MaxCD3 Maximum concurrent 3-day CD sum in 

month 
X X 

CDImpact Interaction between SumCD and MaxCD3 X   
MaxHD Maximum single XHD value in month  X 

Structural 
(TOU,EE,PV,EV) 

EconTOU Expansion/contraction of New Industrial load  X X 
Avoided_Load Cumulative EE+PV-EV load (GWh: calculated) X  
Avoided_Peak Cumulative EE+PV-EV peak (MW: calculated)  X 

Fourier terms Fs1 Fourier frequency (Sine: 12 month phase) X X 
Fc1 Fourier frequency (Cosine: 12 month phase) X X 
Fs2 Fourier frequency (Sine: 6 month phase) X X 
Fc2 Fourier frequency (Cosine: 6 month phase) X X 
Fs3 Fourier frequency (Sine: 4 month phase)  X 
Fc3 Fourier frequency (Cosine: 4 month phase)  X 
Fs2014a Fourier frequency (on/after 2014 effects) X X 
Fc2014a Fourier frequency (on/after 2014 effects) X X 
Fs2014b Fourier frequency (on/after 2014 effects) X X 
Fc2014b Fourier frequency (on/after 2014 effects) X X 
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2.3.  Historical and forecasted inputs: economic and weather effects  

 Annual PCPI data have been obtained from the US Bureau of Economic Analysis 
(http://www.bea.gov), while forecasts of future PCPI levels reflect the 15-year recession-adjusted 
historical average for the region (i.e., approximately 3.25 % income growth per year).  As previously 
stated, these data correspond to the Riverside-Ontario-San Bernardino metropolitan service area.  Note 
that we now only use the PCPI economic driver in all our forecasting models because our (previously 
used) additional set of monthly employment data no longer appears to materially improve the 
forecasting accuracy. 

 All SumCD, SumXHD, MaxCD3 and MaxHD weather indices for the Riverside service area are 
calculated from historical average daily temperature levels recorded at the UC Riverside CIMIS weather 
station (http://wwwcimis.water.ca.gov/cimis).  Forecasted average monthly weather indices are based 
on 25 year historical averages; these forecasted monthly indices are shown in Table 2.2 below.  Note 
that these average monthly values are used as weather inputs for all future time periods on/after 
November 2020. 

 

 

 

Table 2.2.  Expected average values (forecast values) for future monthly weather indices; see Table 2.1 
for weather index definitions. 

Month SumCD SumXHD MaxCD3 MaxHD 
JAN 2.5 72.6 1.8 9.5 
FEB 6.0 60.0 3.5 7.7 

MAR 14.4 29.1 8.3 6.5 
APR 35.7 14.5 18.4 4.4 
MAY 74.2 0.7 28.5 0.5 
JUN 173.6 0.6 38.5 0.2 
JUL 345.8 0.0 55.0 0.0 

AUG 371.8 0.0 57.5 0.0 
SEP 266.3 0.0 54.1 0.0 
OCT 104.1 0.5 35.3 0.2 
NOV 21.0 20.2 14.4 4.1 
DEC 2.0 77.4 2.0 9.4 

 

 

  

http://www.bea.gov/
http://wwwcimis.water.ca.gov/cimis
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2.4  Temporary Load/Peak Impacts due to 2011-2012 Economic Incentive Program 

 In January 2011, in response to the continuing recession within the Inland Empire, the City of 
Riverside launched an economic incentive program to attract new, large scale industrial business to 
relocate within the city boundaries.  As part of this incentive program, RPU launched a parallel program 
for qualified relocating industries to receive a two year, discounted time-of-use (TOU) electric rate.  In 
response to this program, approximately 10-12 new industrial businesses relocated to within the city’s 
electric service boundaries over an 18 month period.   

 In prior iterations of our load forecasting models, staff attempted to directly calculate the 
approximate GWh energy and MW peak load amounts associated with this economic incentive program.  
However, since these numbers have proved to be very difficult to accurately determine, in the current 
forecasting equations staff has instead used indicator variables in the forecasting models that 
automatically calibrate to the observed load (or peak) gains and losses over the 2011-2014 time period.  
Table 2.3 shows how the “econTOU” indicator variable is defined, and what the resulting parameter 
estimate corresponds to in each equation.  By definition, this indicator value is set to 0 for all years 
before 2011 and after 2014. 

 

 

 

Table 2.3  Values for econTOU indicator variable used to model RPU’s 2011-2014 discounted TOU  
incentive program.  Incentive program was closed in December 2012; nearly all early load gains 
disappeared by December 2014. 

Year Time Period EconTOU value  
Load  

parameter value 
represents 

incremental 
Monthly GWh 

 
Peak  

parameter value 
represents 

incremental monthly 
MW peak 

2011 January - June 0.33 
2011 July-December 0.67 
2012 All months 1.00 
2013 All months 1.00 
2014 January - June 0.67 
2014 July - December 0.33 
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2.5  Cumulative Energy Efficiency savings since 2005 

 RPU has been tracking and reporting SB-1037 annual projected EE savings since 2006.  These 
reported values include projected net annual energy savings and net coincident peak savings for both 
residential and non-residential customers, for a broad number of CEC program sectors.  Additionally, 
these sector specific net energy and peak savings can be classified into “Baseload”, “Lighting” and 
“HVAC” program components, respectively. 

 In the fall of 2014, staff reviewed all EE saving projections going back to fiscal year 2005/06, in 
order to calculate the cumulative load and peak savings attributable to efficiency improvements and 
rebate programs.  Since that time, staff have continued to track and accumulate this load and peak 
savings.  The steps we perform in this analysis are as follows: 

1. We first computed the sum totals of our projected net annual energy and coincident peak 
savings for the three program components (Baseload, Lighting, and HVAC) for each fiscal year, 
for both residential and non-residential customers. 

2. Next, we calculate the cumulative running totals for each component from July 2005 through 
our most recent EE 1037 filing by performing a linear interpolation on the cumulative fiscal year 
components. 

3. We then convert these interpolated annual totals into monthly impacts by multiplying these 
annual values by the monthly load and peak scaling/shaping factors shown in Table 2.4.  Note 
that the monthly HVAC factors reflect an engineering estimated, monthly interpolation of EE 
savings associated with heating and AC loads in the Riverside service territory. 

4. Finally, we sum these three projected monthly program components together to estimate the 
cumulative projected monthly load and peak reduction estimates, directly attributable to 
measured EE activities. 

It should be noted that staff continue to update these projections as new information becomes 
available.  Also, as stated above, these represent interpolated engineering estimates of energy efficiency 
program impacts.  Figure 2.2 shows a graph of the cumulative impact of the projected retail load savings 
due to EE impacts over time (along with projected load savings attributable to solar PV installations; see 
section 2.6).  Likewise, Figure 2.3 shows a graph of the cumulative impact of the projected retail peak 
energy savings due to EE impacts over time. 

In theory, if such estimates are unbiased and accurate, then when one introduces a regression 
variable containing these observations into an econometric forecasting model, the corresponding 
parameter estimate should be approximately equal to -1.05 (to reflect the anticipated load or peak 
energy reduction over time, after adjusting for 5% distribution system losses).  In practice, this 
parameter estimate may differ from -1.05 in a statistically significant manner, due to inaccuracies in the 
various EE program sector savings projections. 



Riverside Public Utilities 

Power Resources Division – Resource Planning and Technology Integration Unit 

 

 

8 
 

Table 2.4.  Monthly load scaling and peak shaping factors for converting interpolated SB 1037 
cumulative annual net load and coincident peak EE program impacts into cumulative monthly impacts. 

 
Month 

Load Scaling Factors Peak Shaping Factors 
Baseload Lighting HVAC Baseload Lighting HVAC 

Jan  
 
 
 
 

0.0833 for all 
months 

0.0970 0.0788  
 
 
 
 

1.0 for all 
months 

1.164 0.411 
Feb 0.0933 0.0541 1.119 0.283 
Mar 0.0858 0.0367 1.030 0.192 
Apr 0.0784 0.0256 0.940 0.134 
May 0.0746 0.0486 0.896 0.253 
Jun 0.0709 0.1122 0.851 0.586 
Jul 0.0709 0.1802 0.851 0.940 
Aug 0.0746 0.1916 0.896 1.000 
Sep 0.0784 0.1289 0.940 0.673 
Oct 0.0858 0.0513 1.030 0.268 
Nov 0.0933 0.0294 1.119 0.154 
Dec 0.0970 0.0626 1.164 0.327 
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2.6  Cumulative Solar PV installations since 2001 

 RPU has been tracking annual projected load and peak savings due to customer solar PV 
installations for the last nine years.  Historically, RPU had also been encouraging the installation of 
customer owned solar PV through its solar rebate program.  Figure 2.1 shows the calculated total 
installed AC capacity of customer owned solar PV in the RPU service territory since 2002. 

Staff estimate the projected net annual energy savings and net coincident peak savings for the 
RPU distribution system by calculating the cumulative load and peak savings attributable to customer 
installed PV systems within our service territory.  These calculations are performed by converting the 
installed AC capacity data into monthly load and peak energy reduction impacts (by multiplying these 
capacity values by the monthly load and peak scaling/shaping factors shown in Table 2.5).  These scaling 
and shaping factors are based on a typical south-facing roof-top solar PV installation with a 20% annual 
capacity factor, and assume that our distribution peaks occur in HE19 from November through February, 
and HE16 in March through October.  These projected monthly components are then summed together 
to estimate the cumulative projected monthly load and peak reduction estimates, directly attributable 
to solar PV distributed generation (DG). 

Once again, it should be noted that these represent interpolated engineering estimates of solar 
PV DG impacts.  As previously discussed, Figure 2.2 shows a graph of the cumulative impact of the 
projected retail load savings due to both EE and solar PV-DG impacts over time.  Likewise, Figure 2.3 
shows a graph of the cumulative impact of the projected retail peak energy savings due to EE and PV-DG 
impacts over time.  As before, if such estimates are unbiased and reasonably accurate, then when one 
introduces a regression variable containing these observations into an econometric forecasting model, 
the corresponding parameter estimate should be approximately equal to -1.05 (to reflect the 
anticipated load or peak energy reduction and distribution system losses over time, etc.).  In practice, 
this parameter estimate may once again differ from -1.05 in a statistically significant manner, due to 
inaccuracies in the various solar PV-DG savings calculations. 

 



Riverside Public Utilities 

Power Resources Division – Resource Planning and Technology Integration Unit 

 

 

10 
 

 

Figure 2.1. Total installed AC capacity of customer owned solar PV in the RPU service territory since 2002. 

 

Table 2.5.  Monthly load scaling and peak shaping factors for converting cumulative solar AC capacity 
into monthly net load and peak PV-DG impacts.   

Month Load Scaling Factors Peak Shaping Factors 
Jan 0.172 0 
Feb 0.181 0 
Mar 0.195 0.359 
Apr 0.211 0.403 
May 0.225 0.434 
Jun 0.232 0.442 
Jul 0.229 0.425 
Aug 0.217 0.389 
Sep 0.203 0.342 
Oct 0.188 0.298 
Nov 0.176 0 
Dec 0.170 0 
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Figure 2.2.  Calculated cumulative projected retail energy savings in the RPU service territory due to both EE program and 
solar PV distributed generation impacts over time. 

 

 

Figure 2.3.  Calculated cumulative projected coincident peak capacity savings in the RPU service territory due to both EE 
program and solar PV distributed generation impacts over time. 
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2.7 Incremental Electric Vehicle Loads  

 In early 2017 the CEC released their Transportation Electrification Common Assumptions 3.0 
model.  Since that time, this model has been periodically updated.  (RPU staff are currently using version 
3.5-3).  This model can be used by CA utilities to forecast EV growth in the utilities service territory 
through 2030, based on a limited number of objective input assumptions.  This model can also be used 
to forecast several emission reduction metrics, in addition to the expected net load growth associated 
with the forecasted EV penetration level. 

 Riverside has elected to continue using this model in our 2020 load forecasting equations to 
estimate our expected net EV load growth.  For baseline load forecasting purposes, we assume that 
Riverside will meet its share of the “Governors 2025 Goal” of 1,500,000 EV’s by 2025 and use the default 
0.56% Riverside estimate for defining our service area PEV population as a percent of the state total.  
We also assume 5% distribution losses within our service territory and that 10% of our customers EV 
charging load is self-supplied.   

Based on these input assumptions, Figure 2.4 shows the projected additional utility electrical 
load from new PEVs entering our service territory between 2015 through 2030.   Note that for 
forecasting purposes, these incremental EV loads (above the 2015 baseline level) are treated as net load 
additions that effectively offset some of our future EE and DG.PV (solar) load losses.   

 

 

 

Figure 2.4.  Projected 2015-2030 RPU electrical load from EV and PHEV penetration within our service territory. 
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2.8  Accounting for COVID-19 Pandemic Impacts on Load and Peak Forecasts 

Historical and projected values of per capita personal income (PCPI) are used in both the system 
load and peak forecasting models.  Specifically, PCPI data is input as a calibrated regression variable in 
each equation.  This process ties each model to historical economic information (about our regional 
area), and simultaneously allows the calibrated equations to forecast various future economic scenarios 
(by changing the projections of future PCPI data). 

In order to calibrate observed 2020 load reductions from the COVID-19 pandemic to this PCPI 
variable, staff has applied “shock-recovery impacts” to the 2020-2021 monthly PCPI projections.  These 
impacts have been specified as specific percent reductions to the quarterly PCPI data across 24 months 
(i.e., from Q1-2020 through Q4-2021), as shown in Table 2.6 below.  Note that the “shocks” applied to 
the quarterly 2020 data reduces the projected Q1-Q4 PCPI levels by 2%, 12%, 8% and 7%, respectively.  
Likewise, the “recovery” impacts projected in 2021 are assumed to be moderate and linear. 

 

Table 2.6.  COVID-19 “shock-recovery impacts” applied to projected PCPI data. 

Quarter % Reduction to PCPI levels Quarter 
 

% Reduction to PCPI levels 

Q1-2020 2% Q1-2021 7% 
Q2-2020 12% Q2-2021 5% 
Q3-2020 8% Q3-2021 3% 
Q4-2020 7% Q4-2021 1% 

 

 

These shock-recovery impacts produce a reasonably material reduction in both the load and 
peak forecasts, particularly in 2020.  However, these PCPI shock-recovery impacts (i.e., modified 2020-
2021 PCPI input levels) result in COVID-19 adjusted load and peak forecasts that align well with our 
observed March through November data.  Additionally, the assumption of a full recovery by the end of 
2021 appears to be reasonable, given the rapid distribution of COVID-19 vaccines now occurring across 
the United States.   
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3. System Load and Peak Forecast Models 

3.1  Monthly system total load model 

 The regression component of our monthly total system load forecasting model is a function of 
our primary economic driver (PCPI), two calendar effects that quantify the number of weekdays 
(SumMF) and weekend days (SumSS) in the month, three weather effects that quantify the total 
monthly cooling and extended heating degrees (SumCD and SumXHD) and the interactive effect of the 
maximum three-day heatwave impact (MaxCD3), eight low order Fourier frequencies that quantify 
seasonal impacts both before and after our distribution system upgrades (Fs1, Fc1, Fs2, Fc2, Fs2014a, 
Fc2014a, Fs2014b, and Fc2014b), one unconstrained Industrial load indicator variable (econTOU), and 
one constrained effect that captures the combined impacts of (avoided) EE, PV-DG and (incremental) EV 
loads.  Additionally, the heterogeneous residual variance (mean square prediction error) component is 
defined to be seasonally dependent; i.e., larger for the summer months (May through October) than the 
winter months (November through April).  Mathematically, the model is defined as 

yt = β0 + β1[PCPIt] + β2[SumMFt] + β3[SumSSt] + β4[SumCDt] + β5[SumXHDt] + β6[MaxCD3t] +  

 β46[SumCDt][MaxCD3t]/100 + β7[Fs1t] + β8[Fc1t] + β9[Fs2t] + β10[Fc2t] + β11[Fs2014at] +  

β12[Fc2014at] + β13[Fs2014bt] + β14[Fc2014bt] + β15[econTOUt] +  

θ1[EEt+PV.DGt-EVt] + εjt        [Eq. 3.1] 

where 

 εjt for j=1(summer), 2(winter) ~ N(0, σj
2).       [Eq. 3.2] 

In Eq. 3.1, yt represents the RPU monthly total system load (GWh) for the calendar ordered monthly 
observations and forecasts (t=1 → January 2005) and the seasonally heterogeneous summer and winter 
residual errors are assumed to be Normally distributed and temporally uncorrelated.  Eqs. 3.1 and 3.2 
were initially optimized using restricted maximum likelihood (REML) estimation (SAS MIXED Procedure).  
These REML results yielded summer and winter variance component estimates of 12.0 and 8.8 GWh2, 
suggesting that the variance ratio for the seasonal errors follows an approximate 1.5:1 ratio.  Based on 
these results, Eq. 3.1 was refit using weighted least squares (SAS REG Procedure).   

 All input observations that reference historical time periods are assumed to be fixed (i.e., 
measured without error) during the estimation process.  For forecasting purposes, we treated all 
forecasted economic indices and structural effects (PCPI, econTOU, EE, PV.DG and EV) as fixed variables 
and the forecasted weather indices as random effects.  Under such an assumption, the first-order Delta 
method estimate of the forecasting variance becomes 
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Var(ŷt) = σm
2 +  

Var{ β4[SumCDt] + β5[SumXHDt] + β6[MaxCD3t] + β46[SumCDt][MaxCD3t]/100 }   [Eq. 3.3] 

where σm
2 represents the model calculated mean square prediction variance and the second variance 

term captures the uncertainty in the average weather forecasts.  Note that the second variance term is 
approximated via an analysis of 25 years of historical weather data, once the parameters associated 
with the four weather effects have been estimated. 

 

3.2   System load model statistics and forecasting results 

Table 3.1 shows the pertinent model fitting and summary statistics for our total system load 
forecasting equation, estimated using weighted least squares.  The equation explains about 99.0% of the 
observed variability associated with the monthly 2005-2020 system loads and most input parameter 
estimates are statistically significant below the 0.01 significance level.  Note that the summer and winter 
variance components were restricted to a 1.5:1 variance ratio during the weighted least squares 
analysis; likewise, the avoided load parameter was constrained to be equal to -1.05. 

As shown in Table 3.1, the estimate for the winter seasonal variance component is 8.35 GWh2; 
the corresponding summer component is 1.5 times this amount (12.53 GWh2).  An analysis of the 
variance adjusted model residuals suggests that the model errors are also Normally distributed, devoid 
of outliers and approximately temporally uncorrelated; implying that our modeling assumptions are 
reasonable.  By definition, all of the engineering calculated avoided (and incremental) load effect is 
accounted for in this econometric model via use of the avoided load input variable.   

The remaining regression parameter estimates shown in the middle of Table 3.1 indicate that 
monthly system load increases as either/both weather indices increase (SumCD and SumXHD) and the 
weekdays contribute slightly more to the monthly system load, as opposed to Saturdays and Sundays 
(i.e., the SumMF estimate is > than the SumSS estimate).  Also, our RPU system load is expected to 
increase as the area wide PCPI index grows over time (i.e., this economic parameter estimate is > 0).  
However, our load growth will grow more slowly if future EE and/or PV-DG trends increase above their 
current forecasted levels, or more quickly if future EV penetration levels increase above their baseline 
levels. 

Figure 3.1 shows the observed (blue points) versus calibrated (green line) system loads for the 
2005-2020 timeframe.  Nearly all back-casts fall within the calculated 95% confidence envelope (thin 
black lines) and the observed versus calibrated load correlation exceeds 0.99.  Figure 3.2 shows the 
forecasted monthly system loads for 2021 through 2031, along with the corresponding 95% forecasting 
envelope.  This forecasting envelope encompasses model uncertainty only, while treating both the 
weather and projected economic indices as fixed inputs.  These forecasts assume that our future PV-DG   
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Table 3.1.  Model summary statistics for the monthly total system load forecasting equation. 

Gross Monthly Demand Model (Jan 2005 - Nov 2020): GWh units 
Forecasting Model: includes Weather & Economic Covariates, Fourier Effects pseudo TOU 

(unconstrained), 2014 Dist.system Adj, Avoided Load (PV + EE - EV) and COVID-19 Effects 
 
 

Final Forecasting Equation: assumes constrained Avoided Demand Savings 
                  
                         Dependent Variable: GWhload Load (GWh) 

Number of Observation Used: 191 
                                         Analysis of Variance 
 
                                                Sum of           Mean 
            Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                    16         149698     9356.12867    1120.33    <.0001 
            Error                   174     1453.11000        8.35121 
            Corrected Total         190         151151 
 
                         Root MSE              2.88985    R-Square     0.9904 
                         Dependent Mean      182.81601    Adj R-Sq     0.9895 
                         Coeff Var             1.58074 
 
                                        Parameter Estimates 
 
                                       Parameter      Standard                           Variance 
Variable       Label            DF      Estimate         Error   t Value   Pr > |t|     Inflation 
   
Intercept      Intercept         1     -82.95227       9.02258     -9.19    <.0001              0 
PCPI           PCPI ($1,000)     1       2.51572       0.05870     42.86    <.0001        1.12041 
SumMF                            1       5.77616       0.30140     19.16    <.0001        1.62048 
SumSS                            1       5.21845       0.36482     14.30    <.0001        1.57086 
SumCD                            1       0.18096       0.01253     14.44    <.0001       54.29896 
CDimpact                         1       0.03731       0.01639      2.28    0.0240       34.69456 
MxCD3                            1      -0.06357       0.03342     -1.90    0.0588       10.84442 
SumXHD                           1       0.04167       0.01103      3.78    0.0002        3.33116 
Fs1                              1      -3.09779       0.75702     -4.09    <.0001        5.43711 
Fc1                              1      -3.78338       1.05950     -3.57    0.0005       10.38729 
Fs2                              1       0.55897       0.60365      0.93    0.3557        3.47975 
Fc2                              1       1.73013       0.50357      3.44    0.0007        2.40630 
Fs2014a                          1      -3.91514       0.70005     -5.59    <.0001        1.82264 
Fc2014a                          1      -3.96485       0.71747     -5.53    <.0001        1.85343 
Fs2014b                          1       4.28184       0.68974      6.21    <.0001        1.76593 
Fc2014b                          1       2.00946       0.70245      2.86    0.0047        1.80184 
econTOU                          1       6.33426       0.65973      9.60    <.0001        1.03809 
avoided_load   EE+PV.DG-newEV    1      -1.05000             0     
 
 

Durbin-Watson D                1.407 
Number of Observations           191 
1st Order Autocorrelation      0.274 
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Figure 3.1. Observed and predicted total system load data (2005-2020), after adjusting for known weather conditions.  

 

Figure 3.2. Forecasted monthly system loads for 2021-2032; 95% forecasting envelopes encompass model uncertainty only. 



Riverside Public Utilities 

Power Resources Division – Resource Planning and Technology Integration Unit 

 

 

18 
 

installation rates will stabilize at approximately 3 MW of AC capacity per year (once we pass our NEM 
1.0 cap), that our future calculated EE savings rate will continue to be approximately equal to 1% of our 
total annual system loads, and that our near-term loads will be depressed from the COVID-19 pandemic.   

Table 3.2 shows the forecasted, COVID-19 adjusted monthly RPU system loads for 2021, along 
with their forecasted standard deviations.  In contrast to Figure 3.2, these standard deviations quantify 
both model and weather uncertainty.  The 2021 forecasts project that our annual system load should be 
2253.2 GWh, after adjusting for COVID-19 impacts and assuming that the RPU service area experiences 
typical weather conditions throughout the year. 

 

 

Table 3.2.  2021 monthly total system load forecasts for RPU; forecast standard deviations include both 
model and weather uncertainty. 

Month Load (GWh) Std.Dev (GWh) 
JAN 162.9 3.25 
FEB 147.0 3.57 

MAR 161.4 4.21 
APR 161.1 4.95 
MAY 176.7 9.64 
JUN 198.7 14.84 
JUL 245.0 15.55 

AUG 250.1 13.56 
SEP 220.2 12.72 
OCT 190.3 10.98 
NOV 168.2 4.12 
DEC 171.6 3.38 

Annual TOTAL 2253.2   
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3.3  Monthly system peak model 

 The regression component of our monthly system peak forecasting model is a function of our 
primary economic driver (PCPI), three weather effects that quantify the maximum three-day cooling 
requirements (i.e., 3-day heat waves), the monthly cooling degrees and the maximum single day heating 
requirement (MaxCD3, SumCD and MaxHD, respectively), ten lower order Fourier frequencies that 
quantify seasonal impacts both before and after our distribution system upgrades (Fs1, Fc1, Fs2, Fc2, 
Fs3, Fc3, Fs2014a, Fc2014a, Fs2014b and Fc2014b), one unconstrained Industrial peak indicator variable 
(econTOU), and one constrained effect that captures the combined impacts of (avoided) EE, PV-DG and 
(incremental) EV peaks.  The heterogeneous residual variance (mean square prediction error) 
component is again defined to be seasonally dependent with the same summer period (May through 
October).  Mathematically, the model is defined as 

yt = β0 + β1[PCPIt] + β2[MaxCD3t] + β3[SumCDt] + β4[MaxHDt] +  

β5[Fs(1)t] + β6[Fc(1)t] + β7[Fs(2)t] + β8[Fc(2)t] + β9[Fs(3)t] + β10[Fc(3)t] + 

+ β11[Fs2014at] + β12[Fc2014at] + β13[Fs2014bt] + β14[Fc2014bt] +  

β15[econTOUt] + θ1[EEt+PV.DGt-EVt]  + εjt      [Eq. 3.4] 

where 

 εjt for j=1(summer), 2(winter) ~ N(0, σj
2).       [Eq. 3.5] 

In Eq. 3.4, yt represents the RPU monthly system peaks (MW) for the calendar ordered monthly 
observations and forecasts (t=1 → January 2005) and the seasonally heterogeneous summer and winter 
residual errors are assumed to be Normally distributed and temporally uncorrelated.  Eqs. 3.4 and 3.5 
were again initially optimized using REML estimation (SAS MIXED Procedure).  These REML results 
yielded summer and winter variance component estimates of 425.5 and 212.7 MW2, suggesting that the 
variance ratio for the seasonal errors follow a 2:1 ratio.  Based on these results, Eq. 3.4 was refit using 
weighted least squares (SAS REG Procedure), where the θ1 parameter estimate was constrained to be 
equal to -1.05. 

 As in the total system load equation, all input observations that reference historical time periods 
were assumed to be fixed.  Likewise, we again treated the forecasted economic indices as fixed variables 
and the forecasted weather indices as random effects.  Under such an assumption, the first-order Delta 
method estimate of the forecasting variance becomes 

Var(ŷt) = σm
2 + Var{ β2[MaxCD3t] + β3[SumCDt] + β4[MaxHDt] }     [Eq. 3.6] 

where σm
2 represents the model calculated mean square prediction variance and the second variance 

term captures the uncertainty in the average weather forecasts.  As before, the second variance term 



Riverside Public Utilities 

Power Resources Division – Resource Planning and Technology Integration Unit 

 

 

20 
 

was approximated via the analysis of historical weather data after the parameters associated with the 
weather effects were estimated. 

 

3.4   System peak model statistics and forecasting results 

Table 3.3 shows the pertinent model fitting and summary statistics for our system peak 
forecasting equation.  This equation explains approximately 97.6% of the observed variability associated 
with the monthly 2005-2020 system peaks.  Note that the summer and winter variance components 
were restricted to a 2:1 variance ratio during the weighted least squares analysis; likewise, the avoided 
peak parameter was constrained to be equal to -1.05.   

As shown in Table 3.3, the estimate for the winter seasonal variance component is 225.0 MW2; 
the corresponding summer component is twice this amount (450.0 MW2).  An analysis of the variance 
adjusted model residuals suggests that the model errors are again Normally distributed, devoid of 
outliers and approximately temporally uncorrelated; implying that our modeling assumptions are 
reasonable.  By definition, all of the engineering calculated avoided (and incremental) peak effect is 
accounted for in this econometric model via use of the avoided peak input variable.   

The remaining regression parameter estimates shown in the middle of Table 3.3 imply that 
monthly system peaks increases as each of the weather indices increase, but the peaks appear to be 
primarily determined by the MaxCD3 index.  (Recall that this index essentially quantifies the maximum 
cooling degrees associated with 3-day summer heat waves.)  RPU system peaks are also expected to 
increase as the PCPI index improves over time (i.e., PCPI parameter estimate is > 0).  Likewise, our peak 
loads will grow more slowly if future EE and/or PV-DG trends increase above their current forecasted 
levels, or more quickly if our EV penetration levels increase.  Additionally, not every individual Fourier 
frequency parameter estimate is statistically significant, although their combined effect significantly 
improves the forecasting accuracy of the model. 

Figure 3.3 shows the observed (blue points) versus calibrated (green line) system peaks for the 
2005-2020 timeframe.  Nearly all the back-casts fall within the calculated 95% confidence envelope (thin 
black lines) and the observed versus calibrated load correlation exceeds 0.98.  Figure 3.4 shows the 
forecasted monthly system peaks for 2021 through 2032, along with the corresponding 95% forecasting 
envelope.  This forecasting envelope again encompasses just the model uncertainty, while treating the 
weather variables and projected economic and structural indices as fixed inputs.   
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Table 3.3.  Model summary statistics for the monthly system peak forecasting equation. 

 
Gross Monthly Peak Model (Jan 2005 - Nov 2020):  MW units 

Forecasting Model: includes Weather & Economic Covariates, Fourier Effects 
pseudo TOU (unconstrained), 2014 Dist.system Adj, and Avoided Peak (PV + EE - EV)     

 
Final Forecasting Equation: using optimized Forier coefs and constrained Avoided Peak Load Effect 

                   
Dependent Variable: peak Peak (MW) 
Number of Observations Used: 191 

 
                                        Analysis of Variance 
 
                                               Sum of           Mean 
           Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                    15        1570291         104686     465.15    <.0001 
            Error                   175          39385      225.05919 
            Corrected Total         190        1609677 
 
 
                         Root MSE             15.00197    R-Square     0.9755 
                         Dependent Mean      374.03731    Adj R-Sq     0.9734 
                         Coeff Var             4.01082 
 
 
                                         Parameter Estimates 
 
                                       Parameter      Standard                           Variance 
   Variable       Label         DF      Estimate         Error   t Value   Pr > |t|     Inflation 
 
   Intercept      Intercept      1     166.31910      11.84751     14.04    <.0001              0 
   PCPI           PCPI ($1,000)  1       4.37108       0.32920     13.28    <.0001        1.17885 
   MxCD3                         1       2.98118       0.18967     15.72    <.0001       10.84037 
   SumCD                         1       0.17405       0.04466      3.90    0.0001       20.61478 
   MxHD1                         1       1.33265       0.56686      2.35    0.0198        4.20399 
   Fs1                           1     -16.26615       4.40805     -3.69    0.0003        6.06140 
   Fc1                           1     -27.12852       6.06109     -4.48    <.0001       10.84040 
   Fs2                           1       2.55860       3.66934      0.70    0.4865        4.29232 
   Fc2                           1      -0.06537       2.81182     -0.02    0.9815        2.50282 
   Fs3                           1       6.91602       2.13111      3.25    0.0014        1.42698 
   Fc3                           1       9.49408       1.86518      5.09    <.0001        1.10517 
   Fs2014a                       1      -7.01567       3.94763     -1.78    0.0773        1.92213 
   Fc2014a                       1     -24.36998       4.01981     -6.06    <.0001        1.90304 
   Fs2014b                       1       7.02367       3.81688      1.84    0.0674        1.80430  
   Fc2014b                       1       5.23356       3.89486      1.34    0.1808        1.84484 
   econTOU                       1      13.80725       3.61382      3.82    0.0002        1.03999 
   avoided_peak   EE+PV-EV       1      -1.05000             0     
  
 
                               Durbin-Watson D                2.061 
                               Number of Observations           191 
                               1st Order Autocorrelation     -0.035 
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Figure 3.3. Observed and predicted system peak data (2005-2020), after adjusting for known weather conditions. 

 

Figure 3.4. Forecasted monthly system peaks for 2021-2032; 95% forecasting envelopes encompass model uncertainty only. 
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Table 3.4 shows the forecasted, COVID-19 adjusted monthly RPU system peaks for 2021, along 
with their forecasted standard deviations.  In contrast to figure 3.4, these standard deviations quantify 
both model and weather uncertainty.  The 2021 forecasts project that our maximum monthly system 
peak should be about 587.9 MW and occur in August, after adjusting for the expected COVID-19 impacts 
and assuming that the RPU service area experiences typical weather conditions throughout the year.  
Note that this represents a 1-in-2 peak forecast, respectively. 

 

 

Table 3.4.  2021 monthly system peak forecasts for RPU; forecast standard deviations include both 
model and weather uncertainty. 

Month Peak (MW) Std.Dev (MW) 
JAN 286.8 18.38 
FEB 283.3 24.50 

MAR 283.0 28.70 
APR 349.1 41.14 
MAY 416.5 52.32 
JUN 476.8 54.12 
JUL 565.3 40.00 

AUG 587.9 37.37 
SEP 550.9 40.80 
OCT 430.0 46.68 
NOV 334.1 35.89 
DEC 295.8 21.57 
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3.5  Peak demand weather scenario forecasts 

 After calculating the monthly peak forecasts and their corresponding standard deviation 
estimates (that incorporate weather uncertainty), additional peak demand forecasts for more extreme 
weather scenarios can be produced.  Under the assumption that these ŷt forecasts can be 
probabilistically approximated using a Normal distribution, the following formulas can be used to 
calculate 1-in-5, 1-in-10, 1-in-20 and 1-in-40 forecast scenarios: 

 1-in-5 Peak: ŷt + 0.842[ Std(ŷt) ]      [Eq. 3.7] 

 1-in-10 Peak: ŷt + 1.282[ Std(ŷt) ]        [Eq. 3.8] 

 1-in-20 Peak: ŷt + 1.645[ Std(ŷt) ]        [Eq. 3.9] 

 1-in-40 Peak: ŷt + 1.960[ Std(ŷt) ]        [Eq. 3.10] 

In Eqs. 3.7 through 3.10, the scale multiplier terms applied to the standard deviation represent the 
upper 80% (1-in-5), 90% (1-in-10), 95% (1-in-20) and 97.5% (1-in-40) percentiles of the Standard Normal 
distribution, respectively. 

 In the RPU service area, our maximum weather scenario peaks are always forecasted to occur in 
the month of August.  Thus, for 2021, our forecasted, COVID-19 adjusted 1-in-5, 1-in-10, 1-in-20 and 1-
in-40 peaks are 619.4, 635.8, 649.4 and 661.1 MW, respectively.   
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3.6  CEC Load and Peak Forecasts for RPU versus RPU Staff Forecasts 

 RPU staff are aware that the CEC produces their own set of system load and peak forecasts for 
the City of Riverside during each annual IEPR reporting process.  Historically, these CEC forecasts have 
been presented on the California Energy Demand Managed Forecast tables for various Demand and 
AAEE scenarios.  Note that the most recent set of tables were published by the CEC in January 2021 (i.e., 
California Energy Demand 2020-2030 Managed Forecasts). 

 Figure 3.5 compares RPU’s staff annual system load forecasts (produced by the load model 
discussed in section 3.2) to the most recent CEC Demand forecasts from the Mid-Demand / Low AAEE 
and High-Demand / Low AAEE scenarios.  RPU’s most recent observed annual system loads (2018-2020) 
are also shown in Figure 3.5 for reference purposes.  As shown in Figure 3.5, the growth rate in our 
forecasts corresponds very closely to the forecasted CEC High-Demand / Low AAEE growth rate for the 
City of Riverside, although our forecasts appear to consistently be about 80 to 120 GWh/year higher 
than the CEC forecasts throughout the 2021-2031 forecast period.  Notwithstanding this issue, staff 
believe that our forecasts show better alignment with RPU’s most recent observed annual system loads. 

 

 

 

 

Figure 3.5.  A comparison of RPU system load forecasts produced by RPU staff versus the most recent CEC CEDU demand 
forecasts for the City of Riverside (High-Demand / Low AAEE and Mid-Demand / Low AAEE scenarios).  Observed RPU system 
loads for 2018-2020 also shown for reference. 
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 Likewise, Figure 3.6 compares RPU’s staff annual 1-in-2 system peak forecasts (produced by the 
peak model discussed in section 3.3) to the most recent CEC 1-in-2 Peak forecasts from the Mid-Demand 
/ Low AAEE and High-Demand / Low AAEE scenarios.  RPU’s most recent observed annual system peaks 
(2018-2020) are also shown in Figure 3.6 for reference purposes.  It should be noted that the CEC peak 
forecasts for individual cities in past CEDU publications have historically represented coincident peak 
forecasts, but now appear to instead represent non-coincident peak forecasts.  Assuming that this is 
indeed the case, these RPU versus CEC forecasts should be directly comparable. 

As shown in Figure 3.6, both the growth rate and absolute levels for our peak forecasts 
corresponds very closely to the forecasted CEC Mid-Demand / Low AAEE forecasts for the City of 
Riverside, throughout the 2021-2031 forecast period.  Therefore, staff believe that our peak forecasts 
exhibit very close consistency with these latest CEC Mid-Demand / Low AAEE peak forecasts. 

 

 

 

Figure 3.6.  A comparison of RPU system 1-in-2 peak forecasts produced by RPU staff versus the most recent CEC CEDU 1-in-2 
peak forecasts for the City of Riverside (High-Demand / Low AAEE and Mid-Demand / Low AAEE scenarios).  Observed RPU 
system peaks for 2018-2020 also shown for reference. 
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4.  Class-specific Retail Load Forecasts 

 A simplified methodology for partitioning out our system load forecasts into class specific retail 
load forecasts is described in this section.  This new methodology was adopted in 2020 to simplify the 
generation of these retail forecasts, given that its accuracy is virtually equivalent to our prior, more 
complicated forecasting approach. 

The following issues have traditionally complicated any attempts to produce a robust and 
statistically rigorous set of retail load forecasts.  First, our retail sales data span overlapping monthly 
billing cycles and are subject to post-billing invoice corrections.  Likewise, customers’ monthly cycles can 
(and do) vary from 27 to 33 days per cycle, depending on when specific meter reading cycles are 
completed.  As such, our retail load models tend to be inherently less precise and thus subject to 
significantly more forecasting uncertainty.   

 Second, RPU cannot effectively analyze and estimate individual Commercial and Industrial 
forecasting models, because our Commercial versus Industrial classification schema was changed (over 
2005 through 2007) by our Finance/Billing department.  Historically, we would estimate a combined 
Commercial + Industrial load equation, produced combined forecasts using this equation and then split 
these forecasts into separate Commercial and Industrial predictions using monthly 
Commercial/Industrial load ratio metrics (where these ratio metrics were also estimated from 10-12 
years of prior retail load data). 

 Third, when using a direct load forecasting approach, there was not a convenient way to 
simultaneously constrain the annual sum of our class specific, retail forecasts to be equal to 94.6% of the 
forecasted annual wholesale loads.  (RPU internal distribution losses have averaged 5.4% over the last 
15 years.)  Instead, this constraint had to be applied after-the-fact by determining a post-hoc, annual 
adjustment factor (fR) computed as 

 fR  =  [ 0.946(W) – O ] / [ R + C + I ]         

where R, C, I and O represented our forecasted annual Residential, Commercial, Industrial and Other 
retail loads, and W represented our forecasted annual wholesale system load.  Historically, this process 
was done to force our (less accurate) retail load forecasts to align with our loss adjusted system load 
forecasts, after accounting for the fact that we expect 0% growth in our Other retail load class for the 
foreseeable future. 

 Due to all these issues, in 2020 staff changed to a simpler retail forecasting approach based on 
modeling simpler retail load ratio metrics.  These load ratio metrics are then used in conjunction with a 
simplified (yet reasonably accurate) relationship for estimating the total monthly retail load from the 
current and prior month’s wholesale loads to produce class specific retail forecasts.  This simplified 
forecasting approach is described in more detail in the next section. 
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4.1  Calculating Retail Sales from System Load Forecasts 

 The following simplified methodology is currently employed to partition out our system load 
forecasts into class specific retail load forecasts.  Let  

Est.System[m] = system load forecast for month m 

Res[m] = residential retail load billed during month m 

Comm[m] = commercial retail load billed during month m 

Indst[m] = industrial retail load billed during month m 

Other[m] = all other retail load billed during month m 

Retail[m] = total retail sales billed during month m = Res[m] + Comm[m] + Indst[m] + Other[m]  
 {our four customer classes} 

Res.Ratio[m] = Res[m] / [ Res[m] + Comm[m] + Indst[m] ]    

Comm.Ratio[m] = Comm[m] / [ Comm[m] + Indst[m] ]     

Then the following five step process can be used to produce forecasted estimates of our four customer 
classes which (after adjusting for expected system losses) automatically align with our system load 
forecasts. 

Steps / Methodology: 

1. Forecast Est.Retail[m] = α(Est.System[m]) + β(Est.System[m-1])   
{weighted two month average, where α+β = 0.946} 
 

2. Forecast Est.Other[m], Est.Res.Ratio[m], Est.Comm.Ratio[m] using simple seasonal regression 
models 
 

3. Compute Est.Res[m] = Est.Res.Ratio[m] x (Est.Retail[m] – Est.Other[m]) 
 

4. Compute Est.Comm[m] = Est.Comm.Ratio[m] x (Est.Retail[m] – Est.Other[m] – Est.Res[m]) 
 

5. Compute Est.Indst[m] = (1 - Est.Comm.Ratio[m]) x (Est.Retail[m] – Est.Other[m] – Est.Res[m]) 

High-level descriptions of steps 1 and 2 are presented below. 

 

4.2  The System Load / Retail Load Relationship 

 A simple relationship can be established between our current month’s MWh retail sales and our 
current and prior month’s MWh system loads.  Specifically, based on observed load and sales data from 
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July 2003 through June 2018, staff have determined that a reasonable forecast of the current month’s 
retail sales can be calculated as  

 Est.Retail[m] = 0.398(Est.System[m]) + 0.548(Est.System[m-1])     [Eq. 4.1] 

A plot of this relationship is shown in Figure 4.1 below; note that this simple regression relationship 
explains approximately 92% of the observed variation in the observed monthly retail load data. 

 

 

 

Figure 4.1.  Observed versus forecasted retail load relationship: July 2003 through June 2018. 

  

 

4.3  Load Forecasts for the Other Customer Class 

 The loads associated with the Other customer class currently account for about 1.5% of our total 
retail load; note that this class is primary comprised of city accounts, street lighting and miscellaneous 
agricultural customers.   From January 2010 through June 2015, the monthly loads associated with this 
class exhibited a stable, seasonal pattern that was independent of changing economic conditions (and is 
expected to remain so for the foreseeable future).  Additionally, this pattern does not exhibit any 
statistically significant relationship with the observed weather variables, after removing two obvious 
outlier months (May 2011 and March 2014).   
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In July 2015, the RPU Finance Division migrated all Agricultural Pumping customers from their 
miscellaneous contracts over to Industrial TOU accounts (i.e., out of the “Other” class and into the C&I 
class).  Although this load migration barely impacted the C&I class, the apparent load loss in the Other 
class was significant and must therefore be accounted for in the forecasting model.  To account for this 
migration, a “migration” indicator variable defined as 0 for all time periods before July 2015 and 1 for all 
periods after July 2015 was incorporated into the model.  Hence, the simplified seasonal load 
forecasting model for this customer class was defined to be a function of six low order Fourier 
frequencies and one indicator variable to account for this load migration effect.  The corresponding 
equation (derived using ordinary least squares) describes about 85% of the observed load variation 
associated with the monthly data from January 2010 through November 2020; a plot of the forecasted 
versus observed loads for the Other customer class is shown in Figure 4.2 below. 

 

 

Figure 4.2.  Predicted versus observed loads: Other customer class, January 2010 through November 2020. 

 

 

4.4   Residential and Commercial Load Ratio Models 

In addition to the guaranteed alignment of all retail load forecasts with the forecasted system 
load, the modeling of load ratios is also advantageous because the models themselves are quite simple.  
A simplified seasonal load ratio forecasting model for the Residential customer class was defined to be a 
function of six low order Fourier frequencies, weighted functions of the current and prior month’s 
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cooling degrees (SumCD) and heating degrees (SumXHD), and a simple linear trend variable.  Likewise, a 
simplified seasonal load ratio forecasting model for the Commercial customer class was defined to be a 
function of six low order Fourier frequencies and the EconTOU variable (which accounts for the 
expansion and contraction of new Industrial load during the 2011-2014 time period).  Both load ratio 
equations were again derived via ordinary least squares using January 2010 through November 2020 
calibration data. 

The Residential ratio model describes about 88% of the observed load variation associated with 
the monthly data from January 2010 through November 2020; a plot of the forecasted versus observed 
loads for the Residential customer class is shown in Figure 4.3.  Likewise, the Commercial ratio model 
describes about 70% of the observed load variation associated with the monthly data from January 2010 
through November 2020; a plot of the forecasted versus observed loads for the Commercial customer 
class is shown in Figure 4.4. 

 

 

 

Figure 4.3.  Predicted versus observed load ratios: Residential customer class, January 2010 through November 2020. 
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Figure 4.4. Predicted versus observed load ratios: Commercial customer class, January 2010 through November 2020. 

 

 

 Once the models for the Residential load ratios, Commercial load ratios and Other direct loads 
were established, steps 3, 4 and 5 were performed to produce the final set of retail load forecasts.  A 
summary of these final forecasts is presented in section 4.5. 
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4.5  Final Retail Forecasts 

The computed monthly 2021-2030 forecasts for all our retail customer classes are shown in 
Figure 4.5, along with our total system and total retail load forecasts.  Our final annual, class-specific 
adjusted retail forecasts are reported in Table 4.1, along with our system load and peak forecasts 
(through 2040).  It should be noted that our forecasted residential loads exhibit a much more 
pronounced reaction to summer temperature effects.  This pattern reflects the increased load 
associated with running residential air conditioning units during the June-September summer season in 
the RPU service territory.   

 

 

 

Figure 4.5.  RPU monthly retail load forecasts (2021-2030) for the system load, total retail load, and the residential, 
commercial, industrial and other customer classes. 
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Table 4.8.  Final system load (MWh), system peak (MW) and retail load (MWh) forecasts: 2021-2040. 

Year System 
Load 

System 
Peak Residential Commercial Industrial Other Total 

Retail 

2021 2,253,177 587.9 709,148 429,245 967,528 21,188 2,127,109 

2022 2,324,657 595.5 732,169 443,809 1,000,729 21,188 2,197,895 

2023 2,345,554 597.5 738,732 447,999 1,010,283 21,188 2,218,202 

2024 2,374,184 599.8 747,215 453,453 1,022,743 21,188 2,244,599 

2025 2,392,801 602.3 753,007 457,050 1,030,890 21,188 2,262,136 

2026 2,418,609 605.1 761,017 462,127 1,042,447 21,188 2,286,780 

2027 2,446,080 608.1 769,432 467,466 1,054,604 21,188 2,312,690 

2028 2,479,611 611.3 779,844 474,123 1,069,789 21,188 2,344,943 

2029 2,506,117 614.8 787,879 479,126 1,081,135 21,188 2,369,327 

2030 2,538,757 618.5 797,834 485,398 1,095,397 21,188 2,399,817 

2031 2,573,214 622.5 808,451 492,086 1,110,604 21,188 2,432,330 

2032 2,614,973 626.8 821,315 500,276 1,129,273 21,188 2,472,053 

2033 2,647,235 631.3 831,461 506,580 1,143,559 21,188 2,502,789 

2034 2,687,479 636.2 843,856 514,394 1,161,330 21,188 2,540,768 

2035 2,730,338 641.3 856,977 522,649 1,180,097 21,188 2,580,911 

2036 2,780,140 646.7 872,074 532,204 1,201,848 21,188 2,627,314 

2037 2,821,376 652.5 885,104 540,311 1,220,229 21,188 2,666,833 

2038 2,870,253 658.6 900,189 549,797 1,241,792 21,188 2,712,966 

2039 2,920,910 665.0 915,960 559,685 1,264,252 21,188 2,761,085 

2040 2,980,313 671.8 934,200 571,233 1,290,547 21,188 2,817,168 
 


