DOCKETED	
Docket Number:	21-SIT-01
Project Title:	21-SIT-01, SB100 Implementation Planning for SB100 Resource Build
TN #:	238129-1
Document Title:	Presentation - Dependability of CSP Plants
Description:	N/A
Filer:	Patty Paul
Organization:	Vote Solar
Submitter Role:	Public
Submission Date:	6/4/2021 4:15:50 PM
Docketed Date:	6/4/2021

Dependability of CSP Plants

Dr. Fred Morse, Dr. Terry Peterson, Dr. Luis Crespo, Dr. David Kearney January 2021

Are CSP plants dependable?

- In 2020, there were 99 CSP plants operating globally and a subset of those provided dependability data
- A "dependable" plant or fleet should have over 90% availability and less than 10% variation in annual output
- The Ivanpah and Crescent Dunes CSP plants in the U.S. had first-of-a-kind early operating issues and thus are not representative of CSP plants globally.

Worldwide status of CSP plants*

- 99 in operation
 - Over 6 GW total
 - 83% are parabolic trough
- 47 include thermal energy storage (TES)
 - Totaling 3.3 GW of capacity and 25 GWh
 - Nearly 8 hours of energy storage on average
 - Largest is 17.5 hours of full-power TES
- 43 use molten-salt TES
 - First commercial plant came online in 2007
 - 3 of 19 US plants include TES
 - Most built in the last 7 years include TES

*NREL/SolarPACES database <https://solarpaces.nrel.gov/>

50-MW Termosol 1 Plant (Spain) with 9 hours of molten-salt TES

Sources of CSP-plant dependability data

- Spain 49 plants, 2.3 GW in commercial operation since 2013, 39 plants provided public individual-plant performance data
- U.S.
 - 9 SEGS plants, totaling 354 MW, completed long-term PPA contracts
 - 64-MW Nevada Solar One plant in commercial operation since 2007
 - 5 CSP plants, 2 with TES, were funded under the DOE Loan Guarantee Program, and were constructed between 2010–2014
 - All provided dependability data via DOE Energy Information Agency

Spain has a mature 2.3–GW fleet of CSP plants

- 49 operating CSP plants
- 44 parabolic-trough (PT) plants, each limited to 50 MW by Spanish regulations
- 17 PT plants include 7 to 9 hours of full-power TES
- First plants began operation in 2007, all have operated since 2013
- Operation since 2014 has been without natural gas auxiliary heating
- January 2020 Spanish Ministry national energy and climate plan* sees fleet expansion to 7 GW by 2030

*https://ec.europa.eu/energy/topics/energy-strategy/national-energy-climate-plans_en#final-necps

The Spanish 2.3-GW CSP fleet has demonstrated dependability

Data Source: https://www.ree.es/en/datos/generation/generation-structure

protermo S 🔆 L A R

Since 2014, the Spanish CSP plants have operated fully on solar energy with no natural gas contribution.

Annual production has generally tracked available sunlight. 2018 insolation was 8% below average and 2020 preliminary data indicate that it was also well below average.

In the summer months, these CSP plants often meet 8% of Spain's hourly demand.

Spanish parabolic trough plants have been dependable with or without thermal energy storage

In the Spanish market and climate, trough plants with no TES are typically designed for about 20% annual capacity factor, while 30% to 35% is the corresponding target capacity factor for plants with 7 to 9 hours of TES.

The available ESIOS data indicate over 96% availability for trough plants, both with and without TES.

The current U.S. CSP fleet has shown dependable performance for the past 6 years

Current fleet reached 1.6 GW in 2015

It included 11 PT plants and 2 central-receiver plants that total 4 towers

The final SEGS plants retired in 2019 and 2020 reducing total capacity to 1.4 GW

Ongoing learning is evident in the increasing capacity factor

Gemasolar (Spain)

- 17-MW power tower CSP plant with 15 hours of full-power TES
- Many novel aspects made it a "first of a kind" plant and therefore not "typical"
- Despite its novelty, the plant has achieved over 92% availability in 3 of the last 6 years
- It has run up to 36 days non-stop at nominal power

Gemasolar stable production through cloud transients

11

Torresol Energy reinventing solar power

Gemasolar production following grid operator requirements

- Output matches grid operator setpoints (—), not irradiance (—)
- Curtailed output in early morning and afternoon, but energy not lost

Torresol Energy 12

Gemasolar 24/7 production over many winter days

12 days of continuous production in February

- Continuous output despite intermittent cloudiness
- Generation (—) decoupled from irradiance (—)
- In sunnier times of the year, Gemasolar has run up to 36 days non-stop at full nominal power

Xina (South Africa) – 100 MW with 5.5 hours full load thermal energy storage

Xina Solar One meeting evening peaks

- Xina is only paid for production between 06:00 and 22:00 daily (yellow- and pink-shaded areas) with substantially more paid after 17:00 (pink-shaded area)
- The plant was designed to maximize post-17:00 "peak" production
- In its first 3 years of operation, it averaged over 93% availability total and over 91% during the "peak" times

Solana (Arizona) – 250 MW with 6 hours full-load thermal energy storage

Solana Generating Station meeting the evening peaks

17

CSP+TES and Resource Adequacy

- Yagi et al.* modeled CSP towers with 12 hours TES producing 8 hours of nameplate power during peak system loads in 28 SW U.S. locations over 18 years using actual weather and load data
- Example partially sunny day at right: Boulder City, NV on August 1, 2014
- Modeling required 8-hour output 13:00 to 21:00 (shaded area) to bracket balancing authority (—) peak-load period
- Solar energy input (- -) spanned only 08:00– 14:00, missing most of the load peak
- TES (-X-) charged during morning solar input
- Plant output (••••) began at 09:00 and lasted 12 hours

*Yagi, Sioshansi, Denholm. Solar Energy, 191, 2019, 686

CSP+TES and Resource Adequacy

- At right: Percentage of supplemental non-solar energy needed in individual years (0) and 18-yr totals (×) for modeled CSP towers with 12 hours TES to produce 8 hr of nameplate power during peak system loads 365 days/yr in 28 SW U.S. locations over 18 years using actual weather and load data*
- The majority of the 18-yr totals range between 2% and 5% with none over 7%
- Most locations on most years needed less than 3% additional energy with none needing more than 10% non-solar energy in a single year

*Yagi, Sioshansi, Denholm. Solar Energy, 191, 2019, 686

Capabilities of dependable CSP + TES

- Long Duration Storage plants can operate 24 hours a day when needed
- Can be hybridized with PV, Natural Gas, or Biogas
 - e.g., a hybrid CSP plant with 12 hours TES can provide full-year capacity with 2%–5% of the fuel consumption of a natural gas plant*
- Synchronous Generation with wide range of grid reliability services
 - e.g., stability and inertia
- Flexible in design and output to meet any demand profile
- Dispatchable separates energy collection from electricity generation
- Costs continue to decrease still high on the learning curve (6 GW globally) lowest currently 8.2¢/kWh in relatively low DNI

*Yagi, Sioshansi, Denholm. Solar Energy, 191, 2019, 686

Flexible Designs for an Evolving Grid

Commercial Developers are Optimizing CSP/PV Hybridization

DEWA IV – Dubai – PV co-located

- Developer: ACWA Power
- PPA signed at \$0.073/kWh
- 950 MW total capacity
 - 200 MW x3 Troughs with 10 hours TES
 - 100 MW Tower with 15 hours TES
 - 250 MW PV

Midelt 1 – Morocco- PV hybrid

- Developer: EDF/MASDAR/Green of Africa
- PPA signed at \$0.071/kWh
- 400 MW PV (per press release)
- 400 MW Trough with 5 hours TES
- Excess PV electricity will be stored in molten salt TES

Many CSP roles in the future energy grid

- As grids move to 100% carbon-free generation, they need to maintain system inertia and balance, fast ramping capabilities, and adequate resources for contingency reserves
- CSP + TES plants are the least costly renewable choice for complementing PV all night long
- CSP + TES plants can be designed to meet multi-hour evening peaks with minimal non-solar energy
- CSP + TES plants—with zero or little investment—can provide additional services to the grid such as firm strategic reserve for demand peaks whether the previous days were sunny or not
- CSP + TES could also collect curtailed generation from PV and wind for generation when needed.
- With demonstrated dependability, CSP + TES plants could support the ongoing energy transition process

...but there is no silver-bullet energy storage technology that fulfills all power system needs

