DOCKETED	
Docket Number:	19-OIR-01
Project Title:	Load Management Rulemaking
TN #:	237439
Document Title:	Presentation - 2021-04-12 LMS Workshop (2 - Proposal - KHerter)
Description:	CEC staff proposal summary presentation for the April 12, 2021 staff workshop.
Filer:	Gabriel Taylor
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	4/13/2021 4:49:33 PM
Docketed Date:	4/13/2021

Proposed Amendments to the Load Management Standards

Draft Staff Analysis

April 12, 2021

Karen Herter, Ph.D.

Energy Commission Specialist III Efficiency Division, California Energy Commission

Chapter 1: Introduction

Goals

- 100% emissions-free vehicles by 2035
- 100% carbon-free grid by 2045

Status

- Most load management today: payment for load shed
- Carbon-free supplies tend to be inflexible

Updated: 20:15 PT 04/10/2021

California ISO

- Peak: 6-8 pm
- Ramp: 15 GW in 3 hours

Wind and Solar Curtailment

Source: CAISO 2021

Challenges

- Lack of statewide standards for response to granular grid signals
- Lack of automation to justify signals
- a.k.a. the chicken and egg problem

Opportunities

- Greenhouse gas signals and electricity prices every 5 minutes¹
- CEC Load Management Standards authority applies to the entire state

¹ via API from the CAISO, CPUC Self-Generation Incentive Program (SGIP)

Reduce peak demand

- Avoid fires and blackouts
- Reduce consumption of fossil fuels
- Avoid construction of storage and generation capacity
- Reduce need for conventional DR programs
- Reduce use of high-polluting peaking plants
- Avoid transmission & distribution congestion
- Reduce electricity use when generation costs are high

Increase off-peak demand

- Improve grid reliability
- Maximize utilization of carbon-free renewable energy
- Enable electrification through resource optimization
- Maintain electrical services while decarbonizing consumption

Customers can

- Choose a time-dependent rate or program (or not)
- Choose their own automation technology (or not)
- Regulate their own comfort-convenience-cost tradeoffs
- Reduce customer bills by avoiding peak rates
- Contribute to GHG reductions
- Lower system costs \rightarrow Lower rates

Equity and fairness

- Any customer can participate (not just the well-off)
- Efficient customers are rewarded (not the largest curtailable loads)
- Customers with grid-friendly load shapes are compensated appropriately (In the context of RTP, the term "free rider" is a dysphemism)

• Standardization \rightarrow Innovation in technology markets

Chapter 2: Recommendations

1	Rate Database	 Maintain the accuracy of existing and future time- varying rates in the publicly available and machine- readable MIDAS rate database.
2	Third-Party Services	 Develop a standard rate information access tool to support third-party services (RateID/RIN)
3	Hourly Rates	 Develop and submit locational rates that change at least hourly to reflect marginal wholesale costs.
4	Customer Education	 Integrate information about new time-varying rates and automation technologies into existing customer education and outreach programs.

Adopt standards by regulation for a program of electrical load management for each utility service area, considering:

- 1. Rate structure
- 2. Storage systems
- 3. Automatic devices and systems

- Warren Alquist Act, 1974

- 1970 Energy crisis
- 1974 Warren Alquist Act
 - Established the California Energy Commission
 - Established Appliance, Load Management and Buildings Standards
- 1979 First Load Management Standards
 - Marginal cost rates \rightarrow TOU for large customers
 - Residential AC and water heater load control programs
- 2003 California Loading Order
- 2003-2004 Statewide Pricing Pilot
- 2009-2013 Advanced Metering and Time-varying Rates

- Statewide Standards
 - Load Management Standards
 - Flexible Demand Appliance Standards
 - Appliance Efficiency Standards
 - Building Energy Efficiency Standards
- Research and Development
 - EPIC Research and Demonstration Projects
 - Fuels and Transportation Demonstration Projects

- Data and Analysis
 - Hourly Electric Load Modeling
 - Interval Meter Database
 - MIDAS Rate Database
- Reporting
 - Integrated Energy Policy Report (IEPR)
 - California Energy Efficiency Action Plan
 - Building Decarbonization Assessment (AB 3232)
 - SB 100 Joint Agency Report

Chapter 7: Proposed Amendments

1	Rate Database	 Maintain the accuracy of existing and future time- varying rates in the publicly available and machine- readable MIDAS rate database.
2	Third-Party Services	 Develop a standard rate information access tool to support third-party services (RateID/RIN)
3	Hourly Rates	 Develop and submit locational rates that change at least hourly to reflect marginal wholesale costs.
4	Customer Education	 Integrate information about new time-varying rates and automation technologies into existing customer education and outreach programs.

Proposed Amendment #1

Education

 Maintain the accuracy of existing and future time-Rate 1 varying rates in the CEC's publicly available and Updates machine-readable MIDAS rate database. Third-Party 2 • Develop a standard rate information access tool to support third-party services (RateID/RIN) **Services** 3 Hourly • Develop and submit locational rates that change at least hourly to reflect marginal wholesale costs. Rates Customer Integrate information about new time-varying rates and automation technologies into existing customer

education and outreach programs.

17

- Vetted by stakeholders: CPUC, WattTime, utilities
- Beta version implemented with 40+ rates
- Real-time GHG signal integration in progress

- 2 major tables
 - RateInfo
 - Price

11 minor tables

- Country (US)
- StateProvince (CA)
- Distribution (utility)
- Energy (utility or CCA)
- Location
- TimeZone
- Sector
- RateType
- DayType
- Holiday
- User

RateInfo Table 20 columns x 42 lines

CountryCode	StateProvinceCode	DistributionCode	EnergyCode	RateCode	LocationCode	RateName	RateTypeCode	SectorCode	EffectiveStart	EffectiveEnd	RatePlanURL
US	CA	PG	PG	AGCP	0000	AG-C Primary	T-D	CIA	10/1/2020	12/12/9999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_AG.pdf
US	CA	PG	PG	B19S	0000	B-19 Secondary	T-D	CIA	10/1/2020	12/12/1999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_B-19.pdf
US	CA	PG	PG	B6SP	0000	B-6 Single Phase	TOU	CIA	10/1/2020	12/12/9999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_B-6.pdf
US	CA	PG	PG	BEV1	0000	BEV-1	TOU	CIA	10/1/2020	12/12/9999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_BEV.pdf
US	CA	PG	PG	EV2A	0000	EV2-A	TOU	Res	12/1/2020	12/12/1999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_EV2%20(Sch).pdf
US	CA	PG	PG	TA1B	0000	A-1	TOU	CIA	11/1/2020	12/12/9999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_A-1.pdf
US	CA	PG	PG	TA6B	0000	A-6	TOU	CIA	11/1/2019	12/12/9999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_A-6.pdf
US	CA	PG	PG	E19S	0000	E-19 Secondary	T-D	CIA	4/19/2020	12/12/9999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-19.pdf
US	CA	PG	PG	TOUC	0000	ETOUC Tier1	TOU	Res	12/1/2020	12/12/1999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-TOU-C.pdf
US	CA	PG	PG	TOUD	0000	ETOUD	TOU	Res	12/1/2020	12/12/1999	https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-TOU-D.pdf
US	CA	SC	SC	T013	0000	TOU-PRIME	TOU	Res	3/1/2019	3/1/2019	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T014	0000	TOU-Option 4 to 9 PM	TOU	Res	1/1/2018	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T015	0000	TOU-Option 5 to 8 PM	TOU	Res	1/1/2018	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T018	0000	TOU-EV-1	TOU	Res	1/10/1996	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T020	0000	TOU-GS-1 (E)	TOU	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T021	0000	TOU-GS-1 (ES)	TOU	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T022	0000	TOU-GS-1 (D)	T-D	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T023	0000	TOU-GS-1 (LG)	T-D	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T026	0000	TOU-EV-7 (E)	тои	CIA	3/1/2019	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T027	0000	TOU-EV-7 (D)	TOU	CIA	3/1/2019	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T033	0000	TOU-GS-2 (D)	T-D	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T034	0000	TOU-GS-2 (E)	TOU	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T038	0000	TOU-EV-8	TOU	CIA	3/1/2019	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T045	0000	TOU-GS-3 (D)	T-D	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T046	0000	TOU-GS-3 (E)	TOU	CIA	3/1/19	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T054	0000	TOU-EV-9-SEC	TOU	CIA	3/1/2019	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T055	0000	TOU-EV-9-PRI	TOU	CIA	3/1/2019	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SC	SC	T056	0000	TOU-EV-9-SUB	TOU	CIA	3/1/2019	12/12/9999	https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/sche
US	CA	SD	SD	TOU8	0000	EV-TOU	TOU	REV			http://regarchive.sdge.com/tm2/pdf/ELEC_ELEC-SCHEDS_EV-TOU.pdf
US	CA	SD	SD	TOU9	0000	EV-TOU-2	TOU	REV			http://regarchive.sdge.com/tm2/pdf/ELEC_ELEC-SCHEDS_EV-TOU-2.pdf
US	CA	SD	SD	TEV5	0000	EV-TOU-5	TOU	REV			http://regarchive.sdge.com/tm2/pdf/ELEC_ELEC-SCHEDS_EV-TOU-5.pdf
US	CA	SD	SD	TOU1	0000	TOU-DR1	TOU	Res	6/1/2020	12/12/9999	https://www.sdge.com/whenmatters#plans
US	CA	SD	SD	TOU2	0000	TOU-DR2	TOU	Res	4/1/2020	12/12/9999	https://www.sdge.com/whenmatters#plans

RateLookupID	DateStart	DateEnd	DayTypeStart	DayTypeEnd	TimeStart	TimeEnd	Price	Unit	PriceName	
USCA-PGPG-AGCP-0000	06/01/21	9/30/2021	1	8	0:00:00	16:59:59	0.14048	kWh	Summer Off-Peak	
USCA-PGPG-AGCP-0000	06/01/21	9/30/2021	1	8	17:00:00	19:59:59	17.6900	kW	Max Peak Demand Summe	r
USCA-PGPG-AGCP-0000	06/01/21	9/30/2021	1	8	17:00:00	19:59:59	0.17992	kWh	Summer Peak	
USCA-PGPG-AGCP-0000	06/01/21	9/30/2021	1	8	20:00:00	23:59:59	0.14048	kWh	Summer Off-Peak	
USCA-PGPG-AGCP-0000	10/1/2021	5/31/2022	1	8	0:00:00	16:59:59	0.12644	kWh	Winter Off-Peak	
USCA-PGPG-AGCP-0000	10/1/2021	5/31/2022	1	8	17:00:00	19:59:59	0.15213	kWh	Winter Peak	
USCA-PGPG-AGCP-0000	10/1/2021	5/31/2022	1	8	20:00:00	23:59:59	0.12644	kWh	Winter Off-Peak	
USCA-PGPG-B19S-0000	3/1/2021	5/31/2021	1	8	9:00:00	13:59:59	0.07125	kWh	Winter Super Off-Peak	
USCA-PGPG-B19S-0000	3/1/2021	5/31/2021	1	8	14:00:00	15:59:59	0.11416	kWh	Winter Off-Peak	
USCA-PGPG-B19S-0000	3/1/2021	5/31/2021	1	8	21:00:00	8:59:59	0.11416	kWh	Winter Off-Peak	
USCA-PGPG-B19S-0000	06/01/21	9/30/2021	1	8	14:00:00	15:59:59	5.3500	kW	Max Part-Peak Demand Sur	nmer
USCA-PGPG-B19S-0000	06/01/21	9/30/2021	1	8	14:00:00	15:59:59	0.13529	kWh	Summer Part-Peak	
USCA-PGPG-B19S-0000	06/01/21	9/30/2021	1	8	16:00:00	20:59:59	25.9500	kW	Max Peak Demand Summe	r
USCA-PGPG-B19S-0000	06/01/21	9/30/2021	1	8	16:00:00	20:59:59	0.16504	kWh	Summer Peak	
USCA-PGPG-B19S-0000	06/01/21	9/30/2021	1	8	21:00:00	22:59:59	5.3500	kW	Max Part-Peak Demand Sur	nmer
USCA-PGPG-B19S-0000	06/01/21	9/30/2021	1	8	21:00:00	22:59:59	0.13529	kWh	Summer Part-Peak	
USCA-PGPG-B19S-0000	06/01/21	9/30/2021	1	8	23:00:00	13:59:59	0.11424	kWh	Summer Off-Peak	
USCA-PGPG-B19S-0000	10/1/2021	5/31/2022	1	8	16:00:00	20:59:59	1.7700	kW	Max Part-Peak Demand Wi	nter
USCA-PGPG-B19S-0000	10/1/2021	5/31/2022	1	8	16:00:00	20:59:59	0.14614	kWh	Winter Peak	
USCA-PGPG-B19S-0000	10/1/2021	2/29/22	1	8	21:00:00	15:59:59	0.11416	kWh	Winter Off-Peak	
USCA-PGPG-B6SP-0000	3/1/2021	5/31/2021	1	8	0:00:00	8:59:59	0.22755	kWh	Winter Off-Peak	
USCA-PGPG-B6SP-0000	3/1/2021	5/31/2021	1	8	9:00:00	13:59:59	0.21113	kWh	Winter Super Off-Peak	
USCA-PGPG-B6SP-0000	3/1/2021	5/31/2021	1	8	14:00:00	15:59:59	0.22755	kWh	Winter Off-Peak	

<?xml version="1.0"?> - <RateInformation xmlns="http://schemas.datacontract.org/2004/07/MIDAS_Api.Models"</p> instance"> <API Url/> <EndUse>Electric Vehicle</EndUse> - <PriceInformation> - < PriceData> <DateEnd>2021-09-30</DateEnd> <DateStart>2021-06-01</DateStart> <DayEnd>Holiday</DayEnd> <DayStart>Monday</DayStart> PG&E EV2-A rate (XML) <Price>0.4792500</Price> <PriceName>Summer Peak</PriceName> <TimeEnd>20:59</TimeEnd> <TimeStart>16:00</TimeStart> <Unit>KWH</Unit> </PriceData> - <PriceData> <DateEnd>2021-09-30</DateEnd> <DateStart>2021-06-01</DateStart> <DayEnd>Holiday</DayEnd> <DayStart>Monday</DayStart> <Price>0.3687600</Price> <PriceName>Summer Part-Peak</PriceName> <TimeEnd>23:59</TimeEnd> <TimeStart>21:00</TimeStart> <Unit>KWH</Unit> </PriceData>

* On CEC Intranet only at http://MIDAStest

¹ The CPUC's mandated Self-Generation Incentive Program (SGIP)

¹ The CPUC's mandated Self-Generation Incentive Program (SGIP)

1	Rate Updates	 Maintain the accuracy of existing and future time- varying rates in the publicly available and machine- readable MIDAS rate database.
2	Third-Party Services	 Develop a standard rate information access tool to support third-party services (RateID/RIN)
3	Hourly Rates	 Develop and submit locational rates that change at least hourly to reflect marginal wholesale costs.
4	Customer Education	 Integrate information about new time-varying rates and automation technologies into existing customer education and outreach programs.

1	Rate Updates	 Maintain the accuracy of existing and future time- varying rates in the publicly available and machine- readable MIDAS rate database.
2	Third-Party Services	 Develop a standard rate information access tool to support third-party services (RateID/RIN)
3	Hourly Rates	 Develop and submit locational rates that change at least hourly to reflect marginal wholesale costs.

1	Rate Updates	 Maintain the accuracy of existing and future time- varying rates in the publicly available and machine- readable MIDAS rate database.
2	Third-Party Services	 Develop a standard rate information access tool to support third-party services (RateID/RIN)
3	Hourly Rates	 Develop and submit locational rates that change at least hourly to reflect marginal wholesale costs.
4	Customer Education	 Integrate information about new time-varying rates and automation technologies into existing customer education and outreach programs.

Chapter 9: Feasibility

- 1. MIDAS Rate Database complete
- 2. Rate Data Retrieval API complete
 - Current price or future schedule in XML or JSON
- 3. Utility Rate Data Upload Tool May 2021
 - XML schema for automated uploads from utilities
- 4. Automation Service Provider download tool (API): June 2021
- 5. Enable real-time data streams for GHG and LMP July 2021
- 6. Enable real-time data streams for Flex Alerts August 2021

Automation Implementation

- Customer participation supported by Automation Service Providers (ASPs)
 - Demand Response aggregators
 - Smart thermostat manufacturers
 - Smart water heater manufacturers
- ASPs need access to customer Rate Identification Number (RIN)
 - Green Button process already in place for meter data
 - Customer RIN is a smaller lift and so feasible

• RTP in the field

- SCE's experimental Subscription Transactive Tariff (STT) for the Retail Automated Transactive Energy System (RATES) project
- SDG&E's Power Your Drive hourly rate
- RTP Proposed
 - <u>SCE's two-part RTP</u>
 - PG&E's Application 19-11-019
 - Public hearing Nov 6, 2021

Year	Milestone
2021	MIDAS rate data available for registered ASPs
2022	Load Management Standards go into effect
2023	Flexible Demand Appliance Standards go into effect
2024	Locational hourly or sub-hourly rates proposed
2025	Programs for granular time/space price/GHG response

CEC Staff Contacts

- Technical analysis: Karen Herter
- Economic analysis: Gavin Situ
- Project management: Gabriel Taylor

Links to CEC Standards

- 2020 Load Management Rulemaking website
- Load Management Standards: CCR Title 20 §1621-1625
- Flexible Demand Appliance Standards: PRC 25402
- Warren-Alquist Act: PRC 25403.5