DOCKETED	
Docket Number:	19-ERDD-01
Project Title:	Research Idea Exchange
TN #:	237347
Document Title:	PGE Presentation on Hydrogen Blending
Description:	N/A
Filer:	Yahui Yang
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	3/29/2021 3:08:24 PM
Docketed Date:	3/29/2021

PG&E Gas R&D Hydrogen Efforts

2021-03-18

INTERNAL

R&D Hydrogen Roadmap

INTERNAL

Hydrogen:

Portfolio of production technologies and applications

E = Completed Paper Study

Pipeline Research Council International, Inc.

MEAS 15-02

Emerging fuels – Hydrogen SOTA, Gap Analysis, Future projects, Roadmap

Project Final Results

Objective

Identify R&D needed for companies to safely & reliably inject hydrogen into their pipelines at certain blend levels.

Technical Subjects

- 1. Integrity
- 2. Safety
- 3. End Uses
- 4. Metering
- 5. Network Management
- 6. Maintenance and Inspection
- 7. H2/NG Separation
- 8. Underground Gas Storage

Methodology

- 1. Mapping
- 2. State-of-the-art Analysis
- 3. Gap Analysis
- 4. Roadmap

Key Results & Gap Analysis

The green bars display current knowledge coverage for each key challenge and different levels of injection

Conclusions & Recommendations

Top 3 Challenges2021 PRCI Project Ideas

Gas Measurement & Quality	 Impact on flow meter accuracy in transmission operating conditions Develop gas composition analysis tools Verify compatibility with USM sensor material and performance/accuracy
Compression	 Field and lab tests of compressor performance Evaluate material compatibility and integrity for compressors
Inspection & Maintenance	 Assess and define acceptability criteria for defects and third-party damage Develop more sensitive NDT/ILI tools to detect newly defined critical defects Assess integrity of repair techniques in transmission operating conditions

CEC Hydrogen Blending Scoping Workshop Questions

CEC Questions

Scale and priorities for demonstration

- Refer to <u>Chapter 4 Testimony H2 Application</u>
- Transmission complex, lot of knowledge gaps
- Distribution less complex, portions polyethylene sys may already be compatible

Key challenges for identified priorities and approach to technical tasks

- Refer to <u>Chapter 4 Testimony H2 Application</u>
- Testing and verification of all downstream components (including customer appliances) beforehand
- New development

Outcomes of demonstration and performance metrics

- Energy & efficiency
- Air quality from utilization (e.g., customer appliances)
- Safety & reliability risk, degradation, system capacity
- Economics rates
- Scalability existing gas system

Considerations for future GFOs

- Collaboration with industry, including within sectors of CEC
- Technical Advisory Committee (TAC)

