DOCKETED	
Docket Number:	20-SPPE-01
Project Title:	Great Oaks South Backup Generating Facility Small Power Plant Exemption
TN #:	237298
Document Title:	ROC with Xuna Cai, BAAQMD re China Mobile Data Center
Description:	N/A
Filer:	Lisa Worrall
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	3/25/2021 8:29:31 AM
Docketed Date:	3/25/2021

Siting, Transmission and Environmental Protection Division			FILE:	n/a			
	PROJECT TITLE: Great C Facility	Docket: 20-SPPE-01					
TECHNICAL AREA(s	: Air Quality/Public H	lealth					
Telephone	Email	Meeting Location	: N/A				
NAME(s):	Wenjun Qian, Air Resources Engineer	DATE: 09/30/2020		TIME:			
WITH:	Xuna Cai, Senior Air Qua	ity Management District					
SUBJECT:	Engineering Evaluation and Health Risk Assessment result memorandum for BAAQMD Application 29830 (China Mobile Data Center)						

COMMENTS:

This report of conversation documents an e-mail exchange between Xuna Cai, Senior Air Quality Engineer at Bay Area Air Quality Management District (BAAQMD), and Wenjun Qian (CEC staff) regarding China Mobile International's "US1 Data Center" project, located at 6320 San Ignacio Ave. San Jose, CA. Two documents are included:

- 1. BAAQMD's Engineering Evaluation, and
- 2. BAAQMD's Health Risk Assessment (HRA) result interoffice memorandum dated December 3, 2019.

The e-mail exchange is attached, followed by the Engineering Evaluation (pages 1 to 12) and the HRA result memorandum (page 13 and beyond).

cc:	Signed:
	<u> s </u>
	Name: Wenjun Qian, Air Resources Engineer

Qian, Wenjun@Energy

From:	Xuna Cai <xcai@baaqmd.gov></xcai@baaqmd.gov>
Sent:	Wednesday, September 30, 2020 1:39 PM
То:	Qian, Wenjun@Energy
Cc:	Daphne Chong; Dennis Jang; Bemis, Gerry@Energy; Hughes, Joseph@Energy
Subject:	Engineering evaluation and HRA result memo for Application 29830 (China Mobile Data Center)
Attachments:	29830-HRA Report Memo.pdf; 29830-Eval - Final.pdf

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Wenjun,

Per your request, the engineer evaluation and HRA result memo for Application 29830 are attached to this email. They are the approved version we used as a basis to issue the Authorities to Construct for 15 standby generators in Application 29830.

Please let me know if you have any questions or need additional info.

Thanks,

Xuna Cai Senior Air Quality Engineer Engineering Division Bay Area Air Quality Management District Phone: (415)749-4788 Email: xcai@baaqmd.gov

ENGINEERING EVALUATION CHINA MOBILE INERNATIONAL PLANT 24374 APPLICATION 29830

1. BACKGROUND

China Mobile International is applying for Authorities to Construct and Permits to Operate 15 new emergency standby generators at a new data center, located at 6320 San Ignacio Ave. San Jose, CA. The applicant also named it "US1 Data Center" in the application package. The sources covered by this application for an authority to construct/permit to operate are identified as follows:

Fifteen Emergency Backup Power Generators: S-1 through S-15: Standby Diesel Generators, 2019 Kohler Engine, Model KD83V16, 4331 BHP.

After reviewing the Initial Study for this proposed data center, the CEQA lead agency, City of San Jose, prepared an Addendum to the Edenvale Redevelopment Project Final Environmental Impact Report (EIR) (SCH # 1996052098) and Envision San Jose 2040 General Plan Final Environmental Impact Report" (SCH # 2009072096) in 2019, certifying that the environmental impacts of this project were addressed by these two Final EIRs.

2. CRITERIA POLLUTANT EMISSIONS

Criteria pollutant emissions from the diesel engines that are the subject of this application are outlined below. POC, NOx, CO, PM_{10} , and $PM_{2.5}$ emissions were calculated using manufacturer data obtained using ISO8178-D2 cycle method for EPA Engine Family: KLHAL103.ESP. SO₂ emissions were calculated using factors specified in AP-42 Chapter 3, Table 3.4-1. Emission factors for the engines are summarized below:

Pollutant	Emission Factor			
	g/hp-hr			
\mathbf{PM}_{10}	0.08			
PM _{2.5}	0.08			
POC	0.43			
NOx	3.89			
SO ₂ ¹	0.0055			
СО	0.77			

Table 1: Emission Facto	rs
-------------------------	----

¹Derived from Table 3.4-1 of AP-42 SO2 factor of (8.09E-3S) lb/hp-hr, assuming S=0.0015 wt% in California ULSD.

The emissions calculations shown here are based on 29 hours per year that each engine can be operated for maintenance and reliability-testing purposes. This limit is less than the maximum 50 hours per year per engine allowed by other regulatory requirements because the facility has agreed to this limit in order to comply with the health risk requirements in the District's Regulation 2, Rule 5. Detailed discussion is provided in Section 4.

Emission calculations are based on the engine specifications and operation schedule shown in Table 1 below (per engine).

Information	
Emission Calculation Basis	per engine
Horsepower	4331
Annual Hours of Operation	29
Daily Hours of Operation (hr)	24
Fuel Consumption Rate (gal/hr)	200.5

Table 2: Emergency Backup Power Generator Operation and SpecificationInformation

Annual Emissions / Engine:

NOx	=	(3.89	g/hp-hr)	(4331	hp)	(29	hr/yr)	(lb/454g)	=	1076.89	lb/yr	=	0.538	TPY
СО	=	(0.77	g/hp-hr)	(4331	hp)	(29	hr/yr)	(lb/454g)	=	212.49	lb/yr	=	0.106	TPY
POC	=	(0.43	g/hp-hr)	(4331	hp)	(29	hr/yr)	(lb/454g)	=	119.65	lb/yr	=	0.060	TPY
PM ₁₀ /PM _{2.5}	=	(0.08	g/hp-hr)	(4331	hp)	(29	hr/yr)	(lb/454g)	=	22.69	lb/yr	=	0.011	TPY
SO ₂	=	(0.0055	g/hp-hr)	(4331	hp)	(29	hr/yr)	(lb/454g)	=	1.52	lb/yr	=	0.001	TPY

Daily Emissions / Engine:

NOx	=	(3.89	g/hp-hr)	(4331	hp)	(24	hr/day)	(lb/454g)	=	891.22	lb/day
CO	=	(0.77	g/hp-hr)	(4331	hp)	(24	hr/day)	(lb/454g)	=	175.85	lb/day
POC	=	(0.43	g/hp-hr)	(4331	hp)	(24	hr/day)	(lb/454g)	=	99.02	lb/day
PM ₁₀ /PM _{2.5}	=	(0.08	g/hp-hr)	(4331	hp)	(24	hr/day)	(lb/454g)	=	18.78	lb/day
SO ₂	=	(0.0055	g/hp-hr)	(4331	hp)	(24	hr/day)	(lb/454g)	=	1.26	lb/day

Criteria Pollutant Cumulative Increase

Permit applicants must provide emission offsets for the facility's cumulative increase if the facility's potential to emit exceeds certain thresholds. Cumulative Increase is defined as the sum of all emissions increases authorized by authorities to construct and permits to operate issued to a facility since the applicable cumulative increase baseline date, which is April 5, 1991 for POC, NOx, S0₂, PM₁₀, and CO, and August 31, 2016 for PM_{2.5}. This is a new facility, so its cumulative increase will simply be the emissions

from the equipment being permitted under the current application. The cumulative increase for the facility is summarized in Table 3 below. The requirement to provide offsets for the facility's cumulative increase is addressed below in Section 4.

Pollutant	Existing	Project	Facility						
	(TPY)	Increase	Cumulative						
		(TPY)	Increase						
			(TPY)						
NOx	0.000	8.077	8.077						
СО	0.000	1.594	1.594						
POC	0.000	0.897	0.897						
PM ₁₀ /PM _{2.5}	0.000	0.170	0.170						
SO ₂	0.000	0.011	0.011						

Table 3: Cumulative Emissions Increase

3. STATEMENT OF COMPLIANCE

Regulation 2 - Permits, Rule 1 – General Requirements

Public Notice, Schools (Section 2-1-412)

A new or modified source located within 1,000 feet of the outer boundary of a K-12 school site which results in the increase in emissions of any substance into the ambient air, which has been identified by the California Air Resources Board or the Air Pollution Control Officer as a toxic air contaminant or a hazardous air contaminant or which is on the list required to be prepared pursuant to subdivision (a) of Section 25532 or Section 44321 subsections (a) to (f) inclusive of the Health and Safety Code, shall prepare and distribute a public notice in accordance with subsections 412.1 and 412.2 of *Regulation 2, Rule 1 General Requirements.* The sources in this application are not within 1,000 feet of a K-12 school, therefore, a public notice is not required.

Regulation 2 - Permits, Rule 2 – New Source Review

Best Available Control Technology Requirement (Section 2-2-301)

An authority to construct and/or a permit to operate for a new or modified source must require the applicant to use the Best Available Control Technology (BACT) to control emissions if the source will have the potential to emit a District BACT pollutant in an amount of 10 or more pounds per day. The emergency backup power generators (sources S-1 through S-15) will exceed this limit for POC, NOx, CO, and PM10/PM2.5, so they must apply BACT for these pollutants.

BACT is defined as the most stringent emissions limitation, control device, or control technique that (i) has been achieved in practice at other similar sources and/or (ii) is technologically feasible and cost-effective. *See* Reg. 2-2-202. To determine what level of control constitutes BACT for the emergency backup diesel engines, the District reviewed available control technologies that can be effective at controlling POC, NOx, CO, and PM10/PM2.5from these sources.

Control Technology Review

Several control technologies can reduce NOx, CO, POC, and PM emissions from emergency backup diesel engines. These technologies have been divided into three categories: Clean Fuels, Combustion Technologies, and Post-Combustion Technologies.

Clean Fuel Technology

The use of diesel fuel with a low nitrogen content reduces the amount of NOx formed during combustion. The less nitrogen available in the fuel, the less that can be converted to NOx upon combustion. Diesel fuel producers are not required to remove nitrogen from the fuel specifically for NOx reduction purposes. But they are required to remove sulfur in order to comply with regulatory mandates, and the hydro-treating technique they use to remove the sulfur also removes more than 50% of the nitrogen. As a result, using ultra-low-sulfur diesel fuel will provide benefits in reducing NOx emissions as well as reducing sulfur dioxide emissions. Ultra-low sulfur diesel is required to be used by the California Air Resources Board (CARB) and is therefore achieved in practice for these engines.

Combustion Technologies

NOx, CO, POC, and PM10/PM2.5 emissions can be minimized by optimizing the engines' combustion process using techniques such as injection timing retard, preignition chamber combustion, air-to-fuel ratio adjustments, and derating. These combustion characteristics are determined by the design of the engine, which is dictated by the manufacturer and cannot be controlled by the end user. The end user can reduce emissions by using the cleanest engines available, however. Engines are certified to meet progressively more stringent emissions performance standards using EPA's "Tier" system, with higher-tier engines representing more stringent levels of emissions control. For the size of engines that will be used for this project, the most stringent level of emissions control that can be achieved using combustion controls is Tier 2.¹ The use of Tier 2 engines is achieved in practice.

Post-Combustion Technologies

Currently, the most effective and prevalent post combustion technologies used to abate POC, CO, and NOx rely on the use of catalysts. For NOx reduction, catalytic technology can come in the form of a selective catalytic reduction unit, lean-NOx catalyst, or NOx adsorber. For POC and CO, reduction is typically achieved through an oxidation catalyst. For each of these technologies, the catalyst is used to lower the heat of reaction

¹ EPA's diesel emission tiers range from Tier 0 through Tier 4. The Tier 4 standards require catalytic control devices, which are addressed below. For diesel engines over 750 horsepower, there are no Tier 3 standards. The next most stringent set of standards for this size category after Tier 2 is Tier 4, which requires catalytic control devices. See California Air Resources Board, Non-Road Diesel Engine Certification Tier Chart, available at:

<u>https://ww2.arb.ca.gov/resources/documents/non-road-diesel-engine-certification-tier-chart-pdf.</u> The most stringent tier that can be achieved with combustion controls is therefore Tier 2 for this size category.

that is required for the breakdown and/or conversion of the target pollutants. The catalyst needs to be at a relatively high temperature in order to activate and become effective, however.² With emergency standby generators, the catalyst would not reach its effective temperature during short-duration operations associated with periodic testing and maintenance, which is primarily how these engines will be operated. As a result, add-on catalytic control devices are not normally required for emergency standby generators, and they are therefore not "achieved in practice" for purposes of the BACT requirement for this type of source.

Catalytic control devices would become effective if and when the engines are operated for longer periods in the case of a power outage. Emergency operation will be infrequent, however, and it is not expected to last for a significant amount of time when it does occur. As a result, the emission reduction benefit from having a catalytic control device would be minimal and would not be justified under the District's BACT regulations given the costs involved. Studies that have evaluated the additional costs and emission reduction benefits that would be involved in implementing catalytic control technologies on emergency backup engines have shown that the cost would be in the range of \$66,000 to \$682,000 per ton of emission reduction benefit.² This cost per ton greatly exceeds the District's BACT cost-effectiveness threshold of \$17,500 per ton.³ Catalytic control devices are therefore not required as BACT for this project.

For PM10/PM2.5, diesel particulate filter is typically used as an effective postcombustion technology. Retrofitting a Tier 2 engine with a filter would cost about \$100,000 for engines rated more than 2000 horsepower according to a California Air Resources Board's staff report³. Assuming an 85% reduction efficiency, a diesel particulate filter will reduce up to 0.01 tons of PM per year per engine from reliabilitytesting operation. The cost per ton of PM reduction would be much more than a million dollar which far exceeds the current District's BACT cost-effectiveness threshold for PM10, \$5,300 per ton.

BACT Determination

From the analysis of the various technologies that could be implemented to reduce CO, POC, NOx and/or PM10/PM2.5 for each engine type, the District has concluded

www.baaqmd.gov/-/media/files/engineering/bact-tbact-workshop/bact-tbact-policy-and-

implementation/policyand-implementation-procedure.pdf?la=en. Note that the emergency backup power generators will be equipped with diesel particulate filters in order to limit their emissions of particulate matter. The applicant will be installing these filters in part to reduce particulate emissions to a level where they are not subject to the BACT requirement for particulate matter. These particulate filters come with an oxidation catalyst as standard equipment, and so they will have a catalyst that will be functional during emergency operations. There is no additional cost associated with these catalysts, however, as they are included with the diesel particulate filters that are being installed anyway for other reasons.

²See Sacramento Metropolitan Air Quality Management District BACT Determination No. 172 (April 10, 2018), available at:

www.airquality.org/StationarySources/Documents/IC%20Engine%20Compression%20Standby% 20Diesel%20Fired%20BACT%20172.pdf; California Air Resources Board, Staff Report: Initial Statement of Reasons for Proposed Rulemaking, Proposed Amendments to the Airborne Toxic control Measure for Stationary Compression Ignition Engines (Sept. 2010), available at www.arb.ca.gov/regact/2010/atcm2010/atcmisor.pdf.

³ See BAAQMD BACT/TBACT Workbook, Policy Implementation and Procedure (2002), available at:

that the use of ultra-low sulfur diesel fuel and EPA Tier 2 certified engines are achieved-in-practice control technologies and are technologically feasible and cost-effective. These control technologies are therefore required as BACT. The engine type that will be used for this project is certified to meet the EPA Tier 2 emission standard, and the facility will be required by CARB regulations to use ultra-low-sulfur diesel fuel. Therefore, the project complies with the BACT requirements under Regulation 2-2-301 for all applicable pollutants.

Offset Requirements, POC and NO_x (Section 2-2-302)

In accordance with Regulation 2-2-302, POC and NO_x offsets are required if a facility's potential to emit more than 10 tons per year (tpy), respectively. The facility-wide NOx and POC emissions are less than 10 tpy for each pollutant, so it is not subject to offsets for NOx or POC.

*Offset Requirement, PM*_{2.5}, *PM*₁₀ and *Sulfur Dioxide (Section 2-2-303)* In accordance with Regulation 2-2-303, PM₁₀, PM_{2.5}, and SO₂ offsets are required only if a facility's potential to emit those pollutants exceeds 100 tons per year, respectively. No offsets are required for these pollutants because the facility's potential to emit is below 1 tpy for all of them.

Prevention of Significant Deterioration (Section 2-2-304 through 307) Per Regulation 2-2-224, this facility will not emit 100 tons or more per year of any PSD pollutant and, therefore, is not a major PSD facility and is not subject to any of the PSD requirements in Regulations 2-2-304 through 2-2-307.

NAAQS Protection Requirement (Section 2-2-308)

Per Regulation 2-2-308, if a project will result in a significant net increase in emissions of CO, NO₂, SO₂, PM₁₀, PM_{2.5}, or lead, the applicant must demonstrate that the emissions will not cause or contribute to any exceedance of the National Ambient Air Quality Standards for these pollutants. This project will not involve any significant net emissions increases, as defined in Regulation 2-2-227.2.

Publication of Notice and Opportunity for Public Comment (Section 2-2-404)

If an application involves a major facility, a PSD project, or an increase in CO, NO_x , SO_2 , PM_{10} , $PM_{2.5}$, VOC, or lead in an amount that is significant as defined in Regulation 2-2-227.2, the District must prepare and distribute a public notice and provide an opportunity for public comment in accordance with Regulation 2-2-404 (Publication of Notice and Opportunity for Public Comment). This application does not involve a major facility or PSD project, and it will not increase emissions above any of the significance levels defined in Regulation 2-2-227.2.

Regulation 2- Permits, Rule 5 New Source Review of Toxic Air Contaminants

Regulation 2-5-301 requires new or modified sources of Toxic Air Contaminants (TACs) to apply Best Available Control Technology for Toxics (TBACT) if the associated cancer risk is greater than one in one million or the chronic hazard index is greater than 0.2. Regulations 2-5-301 and 2-5-302 require the APCO to deny an authority to construct and

permit to operate for a project if the project risk or project net risk at any receptor exceeds a cancer risk of ten in one million, or an acute or chronic hazard index of one.

Regulation 2-5-402 requires a Health Risk Assessment if TAC emissions exceed the screening thresholds set forth in Table 2-5-1 in Regulation 2, Rule 5. For this project, emissions of diesel particulate matter exceed the Table 2-5-1 screening threshold for chronic risk. (Per Regulation 2-5, diesel particulate matter is used as a surrogate for evaluating the health risks for all TACs in the engine exhaust.) The chronic risk screening threshold is 0.26 lb/yr, and the maximum diesel particulate emissions will be 22.69 lb/yr for each of the emergency backup power generators (S-1 through S-15).

The Air District therefore undertook a Health Risk Assessment to evaluate the potential chronic carcinogenic and non-carcinogenic health risks from diesel PM emissions from this project. The Health Risk Assessment evaluated risks to workers and to residents in the vicinity of the project.

The Health Risk Assessment evaluated chronic health risks both from the individual diesel engines and from the project as a whole (i.e., from all 15 emergency backup power generators together). The evaluation assumed that each engine would operate up to the maximum 50 hours per year allowed for testing and maintenance purposes. Emissions from emergency operations were not included because they are exempt from Regulation 2, Rule 5 under Section 2-5-111.

The results of the Health Risk Assessment show that the total project risk would be below the limits of 10 in a million for carcinogenic risk and a hazard index of one for non-carcinogenic risk set forth in Regulations 2-5-302 and 2-5-303 if the annual reliability-testing operation is limited no more than 29 hours per year per engine. The applicant has accepted this limit as a permit condition.

Each source also complies with the current TBACT requirement, which requires PM emission from a standby diesel engine to be no greater than 0.15 g/hp-hr. Therefore, these sources comply with the TBCT requirement in Regulation 2-5-301.

Regulation 2- Permits, Rule 6 Major Facility Review

The facility is not subject to Title V permitting requirements because the facility potential to emit does not exceed any of the major source thresholds for criteria pollutants or hazardous air pollutants.

Regulation 6 - Particulate Matter, Rule 1 - General Requirements

Ringelmann No. 1 Limitation, Opacity Limitation, and Visible Particles (Section 6-1-301, 302, and 305)

Section 301 and 302 prohibits a source from emitting visible emissions as dark or darker than No. 1 on the Ringelmann Chart or with an opacity of 20% or more for more than three minutes in any hour. Section 305 prohibits a source from emitting particles in

sufficient number to cause annoyance to any other person where the particles are large enough to be visible as individual particles at the emission point or of such size and nature as to be visible individually as incandescent particles. These engines are all EPA certified Tier 2 engines, so they should emit low amount of PM and are expected to comply with these requirements.

Total Suspended Particulate (TSP) Concentration Limits (Section 6-1-310.1 and 6-1-310.2)

Section 310.1 prohibits any person from emitting from any source particulate matter in excess of 0.15 grains/dscf of exhaust gas volume. The emission rate from S-1 through S-15 each is 0.08 grams/hp-hr and the exhaust flowrate of each source during normal operation is 22,837 cubic feet per minute, which results in an outlet grain loading of about 0.004 grains/cf. This estimated emission rate is much less than the limit 0.15 grains/dscf and is in compliance with Regulation 6-1-310.1. Regulation 6-1-310.2 does not apply because the potential to emit TSP for each engine does not exceed 1000 kg per year.

Regulation 9 – Inorganic Gaseous Pollutants, Rule 1 Sulfur Dioxide

S-1 through S-15 are subject to Regulation 9, Rule 1, Section 301, 302, and 304. Section 301 requires that sulfur dioxide emissions shall not result in ground level concentrations in excess of 0.5 ppm continuously for 3 consecutive minutes or 0.25 ppm averaged over 60 consecutive minutes or 0.05 ppm averaged over 24 hours. Section 302 requires that a gas stream containing sulfur dioxide shall not contain sulfur dioxide in excess of 300 ppm (dry). Section 304 specifies that the sulfur content of liquid fuel burned shall not exceed 0.5% by weight. These sources will comply with all of the above sections by burning Ultra Low Sulfur Diesel with a sulfur content of 15 ppm, which is expected to result in less than 1 ppmv of SO₂ in the exhaust gas.

Regulation 9 – Inorganic Gaseous Pollutants, Rule 8 NOx and CO from Stationary Internal Combustion Engines

Exemptions (Section 9-8-110)

Section 110.5 exempts emergency standby engines from the requirements of Sections 9-8-301 through 305, 501 and 503.

Emergency Standby Engines, Hours of Operation (Section 9-8-330) S-1 through S-15 are subject to the requirements of Section 330 which limits reliability related operation of the engines to 50 hours per year per engine. Permit conditions for these sources will include operating limits that meet this standard.

Monitoring and Records (Section 9-8-500)

S-1 through S-15 are subject to the reporting requirements of Sections 502 and 530. Permit conditions for these sources will include reporting requirements that meet this standard.

Regulation 10 – Standards of Performance for New Stationary Sources

New Source Performance Standards (NSPS)

Any new or modified source is required to comply with Regulation 10, Standard of Performance for New Stationary Sources – which is Title 40, Part 60 of the Code of Federal Regulation incorporated by reference. According to 40 CFR Section 60.4200(a)(1)(i) engines are subject to 40 CFR 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines if they have a displacement of less than 30 liters per cylinder where the model year is 2007 or later, for engines that are not fire pump engines. S-1 through S-15 each has a 16-cylinder engine with a total displacement of 83 liters, so each cylinder has a volume less than 30 liters. Therefore, these engines are subject to NSPS

Section 60.4205(b) requires that owners and operators of these engines comply with the emission standards in Section 60.4202, which refers to 40CFR89.112 and 40CFR89.113 for all pollutants. S-1 through S-15 meet the applicable standards as shown in the table below:

Pollutant	Manufacturer's Performance Data (g/hp-hr)	40CFR89.112 Emission Limits (g/bhp-hr)
PM	0.08	0.15
$NMHC + NO_x$	4.33	4.8
СО	0.77	2.6

Table 4: Applicable NSPS Standards

Regulation 11 – National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) S-1 through S-11 are subject to 40 CFR 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines (RICE). Per 40 CFR 63.6590(c)(1), a new or reconstructed stationary RICE located at an area source must meet the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines. The engines are in compliance with the requirements of 40 CFR part 60 subpart IIII, as discussed above.

California Air Resource Board - Airborne Toxic Control Measure (ATCM) for Emergency Standby Diesel-Fueled CI Engines

The District is charged with enforcing the requirements of California's Air Toxic Control Measure for Stationary Compression Ignition Engines Title 17, California Code of Regulations, Section 93115 for the purpose of reducing diesel particulate matter (PM) and criteria pollutant emissions from stationary diesel-fueled compression ignition (CI) engines. Subsection 93115.6(a)(3)(A)(1)(a) sets forth Emission Standards for new stationary emergency standby diesel fueled compression ignition engines with maximum engine power greater than 750 HP. S-1 through S-15 are subject to and meet the requirements of this section of the ATCM as shown in the table below:

Pollutant	Manufacturer's Performance Data (g/hp-hr)	ATCM Emission Standards (g/bhp-hr)
PM	0.08	0.15
$\overline{NMHC} + NO_x$	4.33	4.8
СО	0.77	2.6

Table 5: Applicable ATCM Standards

California Environmental Act (CEQA)

The City of San Jose (City) is the CEQA lead agency for the China Mobile Data Center project. The City prepared a CEQA Initial Study and adopted an Addendum to the Edenvale Redevelopment Project Final Environmental Impact Report (EIR) (SCH # 1996052098) and Envision San Jose 2040 General Plan Final Environmental Impact Report" (SCH # 2009072096) in March 2019. The City also determined that this addendum will not be circulated for public review but will be attached to the EIRs, pursuant to CEQA Guidelines §15164(c). In the Initial Study/Addendum, the City found that the environmental impacts of this project were addressed by these two Final EIRs. In addition, the City stated that, if the proposed project is permitted by BAAQMD to operate the engines for reliability-testing more than 27 hours per year per engine on average, the applicant shall submit a request to the City and provide documents to demonstrate that the total emissions from engine maintenance and testing would not exceed 54 pounds of NOx per day on average and 10 tons of NOx per year. According to the emission estimates in Section 2, the permitted annual NOx emissions for this project are 8.1 tons based on an annual limit of 29-hour reliability-testing operation per engine, and the daily average NOx emissions for this project are 44.3 pounds when averaging the permitted annual NOx emissions over 365 days per year.

The Air District is a CEQA responsible agency for the China Mobile Data Center project. The Air District has reviewed and considered the project's environmental impacts as discussed in the City's Addendum to the Final EIRs and Initial Study in connection with its decision to issue the Authority to Construct. As the project will not be expected to have any significant impacts, there is no need to consider alternatives or mitigation measures (beyond what the District is already imposing under its regulations as outlined above) to avoid or minimize any such impacts.

4. PERMIT CONDITIONS

S-1 thru S-15 will be subject to Permit Condition Numbers 22829 as shown below.

Permit Condition Number 22829

- The owner/operator shall not exceed 29 hours per year per engine for reliability-related testing. [Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, subsection 93115.6 (b)(3)(A)(1)(a)]
- 2. The owner/operator shall operate each emergency standby engine only for the following purposes: to mitigate emergency conditions, for emission testing to demonstrate compliance with a District, State or Federal emission limit, or for reliability-related activities (maintenance and other testing, but excluding emission testing). Operating while mitigating emergency conditions or while emission testing to show compliance with District, State or Federal emission limits is not limited. [Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, subsection
 - 93115.6 (b)(3)(A)(1)(a)]
- 3. The owner/operator shall operate each emergency standby engine only when a non-resettable totalizing meter (with a minimum display capability of 9,999 hours) that measures the hours of operation for the engine is installed, operated and properly maintained. [Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, subsection 93115.10 (e)(1)]
- 4. Records: The owner/operator shall maintain the following monthly records in a District-approved log for at least 36 months from the date of entry (60 months if the facility has been issued a Title V Major Facility Review Permit or a Synthetic Minor Operating Permit). Log entries shall be retained on-site, either at a central location or at the engine's location, and made immediately available to the District staff upon request.
 - a. Hours of operation for reliability-related activities (maintenance and testing).
 - b. Hours of operation for emission testing to show compliance with emission limits.
 - c. Hours of operation (emergency).
 - d. For each emergency, the nature of the emergency condition.
 - e. Fuel usage for each engine(s).

[Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, subsection 93115.10 (g) (or, Regulation 2-6-501)]

5. At School and Near-School Operation: If the emergency standby engine is located on school grounds or within 500 feet of any school grounds, the following requirements shall apply: The owner/operator shall not operate each stationary emergency standby diesel-fueled engine for non-emergency use, including maintenance and testing, during the following periods:

- a. Whenever there is a school sponsored activity (if the engine is located on school grounds)
- b. Between 7:30 a.m. and 3:30 p.m. on days when school is in session.

"School" or "School Grounds" means any public or private school used for the purposes of the education of more than 12 children in kindergarten or any of grades 1 to 12, inclusive, but does not include any private school in which education is primarily conducted in a private home(s). "School" or "School Grounds" includes any building or structure, playground, athletic field, or other areas of school property but does not include unimproved school property. [Basis: "Stationary Diesel Engine ATCM" section 93115, title 17, CA Code of Regulations, subsection 93115.6 (b)(2)]

5. RECOMMENDATION

Issue the Authorities to Construct for the following sources:

S-1 through S-15: Standby Diesel Generators, 2019 Kohler Engine, Model KD83V16, 4331 BHP.

By:___

Date:

Xuna Cai Senior Air Quality Engineer

INTEROFFICE MEMORANDUM DECCEMBER 3, 2019

TO: Xuna Cai

FROM: Daphne Y. Chong

SUBJECT: Revised Results of Health Risk Assessment (HRA) for China Mobile International (San Jose, CA), Fifteen Standby Generator Diesel Engines (S-1 thru S-15), Plant #24374, Application #29830

SUMMARY: Per your request, a revised health risk assessment (HRA) was completed for the above referenced permit application based on different set of engines (Kohler). This analysis estimates the incremental health risk resulting from toxic air contaminant (TAC) emissions from non-emergency operation of 15 standby generator diesel engines (S-1 thru S-15) at this facility. As stated in your HRA request memo, the applicant is considering a different engine models (Kohler) for this revised project. Project health risk estimates for this set of Kohler engines are as follows:

• <u>15 Kohlers:</u> project cancer risk is estimated at 17 in a million; project chronic hazard index is estimated at 0.013.

In accordance with the District's Regulation 2, Rule 5, these sources do not comply with the project risk requirements. The applicant should consider limiting non-emergency operation of each engine to no more than 29 hours per year, or install an abatement device on each engine in order to reduce the project cancer risk to no more than 10 in a million.

EMISSIONS: Diesel particulate matter (PM) was used as a surrogate for all emitted TACs. The particulate emission rates were calculated based on the following:

Source	PM Emission Factor (g/bhp-hr)	Horsepower	Annual Usage (hours/year)	Diesel PM Emissions (lb/year)
15 Kohler	0.08	4,331	50	587

MODELING: The AERMOD air dispersion computer model (version 18081) was used to estimate annual average ambient air concentrations from the modeled sources. Model runs were made with 5 consecutive years of San Jose International Airport (KSJC) AERMOD ready meteorological data sets (2013-2017). These recently processed AERMET sets were prepared by BAAQMD meteorology staff and include an adjustment for surface friction (u*) that improves model performance at low wind speeds. Upper air data coincident with the local met data was taken from the Oakland International Airport station. The model was referenced in NAD 83 UTM coordinates and used 10-meter NED terrain data files for Santa Clara County. A flagpole height of 1.5 meters was used at each receptor to represent the human breathing zone. Each model run includes fifteen vertical exhaust stack outlets (point sources). Model runs were made with rural dispersion coefficients based on the typing scheme proposed by Auer, which best represents land use around this facility (79% rural). Stack and building parameters for the analysis were based on information provided by the applicant.

HEALTH RISK: Health risk estimates were calculated in accordance with the BAAQMD's Air Toxics NSR Program HRA Guidelines, dated December 2016. Estimates of residential risk assume potential exposure to annual average TAC concentrations occur 350 days per year, for 30 years. In addition, residential risk estimates assume a 95th percentile breathing rate for age groups younger than two years old, and 80th percentile breathing rate for age groups that are older than or equal to two years of age. Risk estimates for offsite workers assume potential exposure occurs 8

hours per day, 250 days per year, for 25 years. For offsite workers, the 95th percentile 8-hour breathing rate based on moderate activity was assumed. Residential cancer risk estimates include age sensitivity factors (ASFs) and fraction of time at home (FAH) adjustments. The ASFs are age-specific weighting factors used in calculating cancer risks from exposures of infants, children and adolescents, to reflect their anticipated special sensitivity to carcinogens. The maximum estimated health risks for this permit application are presented in the table below.

Receptor	Cancer Risk	Chronic Non-cancer Hazard Index
Resident	8.5 chances in a million	0.0023
Worker	17 chances in a million	0.013

Kohlers Operating 50 hours per year per engine:

Revised Health Risk Assessment Summary for Fifteen Standby Generator Diesel Engines - Kohler (S-1 thru S-15) Facility = China Mobile International (San Jose, CA)

- Plant #24374, Application #29830
- AERMOD Air Dispersion Model Used
- San Jose International Airport (2013-2017) Meteorological AERMET Data Used
- Santa Clara County 10m NED Terrain Data Used
- AER Default Settings

School located in 10⁻⁶ isopleth? yes

Health Risk Estimates:

							041 01 040420		
Receptor	Max. Annual (lb/yr)	Emission Rate (g/sec)	Max. Annual Avg. Chi/Q (μg/m ³ per g/sec)	Annual Average Exposure Concentration ¹ (μg/m ³)	Inhalation Dose ² (mg/kg-day)	Inhalation Cancer Potency Factor (CPF) (mg/kg-day) ⁻¹	Inhalation Reference Exposure Level (REL) (µg/m ³)	Max. Cancer Risk ³	Max. Non-cancer Hazard Quotient ⁴
Resident	587	8.4E-03	1.4	0.011	see RICT	1.1E+00	5.0E+00	8.5E-06	0.0023
Worker	587	8.4E-03	7.6	0.064	1.0E-05	1.1E+00	5.0E+00	1.7E-05	0.013

Diesel PM

1. Annual Average Exposure Concentration (µg/m³) = Max. Annual Emission Rate (g/sec) * Max. Annual Avg. Chi/Q (µg/m³ per g/sec)

2. Inhalation Dose (mg/kg-day) = Ann. Avg. Exp. Conc. (µg/m³) * BR (L/kg-day) * UCF (mg-m³)/(µg/L) * EF; For Resident, see Residential Inhalation Cancer Table (RICT) for calculation procedure

3. Max. Cancer Risk = Inhalation Dose (mg/kg-day) * CPF (mg/kg-day)⁻¹ * ASF*(ED/AT); For Resident, see Residential Inhalation Cancer Table (RICT) for calculation procedure

4. Max. Non-cancer Hazard Quotient = Ann. Avg. Exp. Conc. (µg/m³) / REL (µg/m³)

Source(s) Operating Time:

	Daily (hours/day)	Weekly		Lifetime (years per 70-	Use Discount Factor (DF) showing
	Daily (nouis/uay)	(days/week)	Annually (weeks/year)	yr lifetime)	actual coincident hours for
Resident is Present While Source is Operating	24	7	50	30	worker/student
Worker is Present While Source is Operating	8	5	50	25	
Student is Present While Source is Operating	10	5	36	9	
Source is Operating	1	1	50	70	
Coincident Time Worker is Present While the Source is Operating	1.00	1.00			0.025
Coincident Time Student is Present While the Source is Operating	1.00	1.00			0.020

Thus, if a receptor is present 10 hours/day, but the source operates only 1 hours/day, the maximum that the receptor can be present while the source is operating is the number of hours the source is operating (e.g., 1 hours). Discount factor = $(H_{coindent}/H_{worker})X(D_{coincident}/D_{worker})$

Exposure Parameters:

					Units	
Receptor	Breathing	Exposure	Exposure	Exposure	Conversion	WAF ⁶ (Worker
	Rate (BR) ⁵	Time (ET)	Frequency (EF)	Duration (ED)	Factor (UCF)	Adjustment Factor)
	(L/kg-day)	(hours/day)	days	(years)	(mg-m ³)/(µg-L)	
Resident	see RICT	24	350	30	1.0E-06	
Worker	230	8	250	25	1.0E-06	4.2
Student	520	10	180	9	1.0E-06	3.4

Age Sensitivity Factors (ASFs):

Receptor	ASFs
Resident	See Exposure Parameters: Resident Only
Worker	1
Student	3

Based on a 8-hour day. Worker breathing rate is 230 L/kg-8-hour (for moderate intensity activities for age bins 16>70) and 240 L/kg-8-hour (for moderate intensity activities for age bins 16>30)
Student breathing rate is 520 L/kg-8-hours (for moderate intensity activities for age bins 2<16) and 640 L/kg-8-hours (for moderate intensity activities for age bins 2<9)

6. WAF=(H_{res}/H_{source}) X (D_{res}/D_{source}) X DF (where H= hours and D= days); Discount Factor (DF) is only used when the offsite worker's schedule partially overlaps the source's emission schedule

Exposure Parameters: Resident Only

		Project Exposure	See 12 Line				Residential Exposure
Age Bins	Age Bin Duration	Duration	BR/BW ⁷	ASF	ED/AT	FAH School/No School	Factor
3rd Trimester	0.25	0.25	361	10	0.0036	1	1.2E-05
0<2	2	2	1090	10	0.029	1	3.0E-04
2<9 ⁸	7	0	861	3	0.000	1	0.0E+00
2<16	14	14	572	3	0.20	1	3.3E-04
16<30	14	14	261	1	0.20	0.73	3.7E-05
16 to 70	54	0	233	1	0.000	0.73	0.0E+00

7. RMP BR/BW at 95th/80th percentile values; if Project Term is short term use 95th percentile breating rate value

8. Duration of short term project to be determined

6.8E-04

C:\Risk Screens\Plant #24374 China Mobile International\Revision December 2019\PN24374 R1 Kohler 5vrs OTHER.G

0.041 0.037 0.033 0.028 0.024 0.020 0.017 0.015 0.014 0.013 0.012 0.012 0.011 0.011

0.045 0.046 0.047 0.047 0.047 0.047 0.047 0.046 0.045 0.045 0.045 0.044 0.044 0.041 0.039 0.036 0.032 0.028 0.024 0.021 0.018 0.016 0.015 0.013 0.012 0.012 0.011 0.010 0.010

0.046 0.047 0.048 0.049 0.050 0.050 0.051 0.051 0.054 0.055 0.053 0.051

0.046 0.048 0.050 0.051 0.052 0.054 0.057 0.061 0.060 0.059

0.046 0.048 0.050 0.052 0.055 0.060 0.065 0.0

0.044 0.047 0.050 0.053 0.059 0.066

0.042 0.045 0.048 0.054

0.039 0.042

035 0.038

0.031 0.035

0.026 0.031 0.038

0.022 0.026 0.032

0.018 0.021 0.026 0.026

0.014 0.017 0.020 0.020 0.020

0.012 0.013 0.016 0.016 0.016 0.016

0.010 0.010 0.012 0.013 0.013 0.013 0.013

0.008 0.009 0.010 0.011 0.011 0.011 0.010 0.012 0.015

0.007 0.007 0.008 0.009 0.010 0.010 0.009/0.010 0.011 0.015

0.006 0.006 0.007 0.007 0.008 0.009 0.009 0.009 0.010 0.012 0.017

0.006 0.006 0.006 0.006 0.007 0.007 0.008 0.009 0.010 0.012 0.016 0.021 0.027

0.005 0.005 0.005 0.005 0.006 0.006 0.007 0.008 0.009 0.011 0.014 0.018 0.023 0.029 0.039 0.045 0.048 0.046 0.043 0.042 0.041 0.040 0.041 0.041 0.041 0.040 0.04

0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.007 0.008 0.010 0.013 0.017 0.021 0.025 0.030 0.034 0.036 0.036 0.035 0.036 0.036 0.037 0.038 0.039 0.040 0.040 0.040 0.039

Scale: 1" = 41.7 Meters

GROUP ALL - PERIOD VALUES AVERAGED ACROSS 0 YEARS

Max = 0.06706 (608000, 4121945)

0.037 0.033 0.028 0.024 0.019 0.016 0.014 0.013 0.013 0.012 0.011 0.011

0.033 0.030 0.026 0.021 0.018 0.015 0.014 0.013 0.012 0.012 0.011

0.017

0.026 0.022 0.019 0.016 0.015 0.013 0.013 0.012 0.012

0.022 0.019 0.017 0.016 0.014 0.013 0.013 0.012

017 0.016 0.014 0.013 0.013

0.018 0.017 0.014 0.014 0.013

0.019 0.019 0.016 0.014 0.013

0.021 0.021 0.020 0.017 0.015 0.014

0.024 0.024 0.023 0.019 0.017 0.016

/0.031 0.029 0.028 0.025 0.021 0.019 0.018

0.041 0.036 0.035 0.033 0.029 0.025 0.022 0.021

0.051 0.046 0.042 0.041 0.038 0.034 0.028 0.026 0.024

0.053 0.050 0.048 0.046 0.042 0.036 0.032 0.030 0.028

0.056 0.054 0.053 0.054 0.050 0.044 0.039 0.036 0.034 0.032

0.054 0.055 0.058 0.060 0.057 0.050 0.044 0.041 0.039 0.037 0.035 055 0.061 0.064 0.064 0.058 0.051 0.046 0.043 0.042 0.041 0.039 0.038

0.053 0.058 0.058 0.053 0.048 0.046 0.043 0.042 0.042 0.041 0.040 0.039

. a . 0 0 Sec. State of the second . 0 0 0 026.026.027.027.027.027.027.027.027.026.026.025.025.024.023.027.027.027.027.026.026.019.013.013.015.015.014.013.013.013.013.012.012.010.010.010.009.009.009.008.008.008.008 023.024.024.024.025.025.025.025.025.025.025.025.025.024.024.024.024.023.022.022.022.020.020.020.020.013.013.015.015.015.015.015.015.013.012.012.012.010.010.010.010.003.009.009.009.009 0 0110 0100 0100 0100 0090009 013.012.012.012.010.010.010.010.010.010 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1000 012.012.012.012.010.010.010.010.01 17. 0 0 0 0 0 0 0 0 0

**BEE-Line Software: (Version 11.13) data input file ** Model: AERMOD.EXE Input File Creation Date: 10/28/2019 Time: 11:54:26 AM NO ECHO

Input File - C:\Risk Screens\Plant #24374 China Mobile International\Revision October 2019\PN24374 R1 Kohler 5yrs OTHE R.DTA

Output File - C:\Risk Screens\Plant #24374 China Mobile International\Revision October 2019\PN24374 R1 Kohler 5yrs OTHE R.LST

Met File - C:\Risk Screens\Plant #24374 China Mobile International\KSJC 2013 2017.SFC

*** Message Summary For AERMOD Model Setup ***

----- Summary of Total Messages ------

0 Fatal Error Message(s) A Total of A Total of 2 Warning Message(s) A Total of 0 Informational Message(s)

******* FATAL ERROR MESSAGES ******* *** NONE ***

******* WARNING MESSAGES ******* MEOPEN: THRESH 1MIN 1-min ASOS wind speed threshold used ME W186 11324 MEOPEN: ADJ U* Option for Stable Low Winds used in AERMET ME W187 11324

0.50

ž

***** *** SETUP Finishes Successfully ***

* * * *** AERMOD - VERSION 18081 *** *** China Mobile International (San Jose): P#24374: A#29830 10/28/19 *** AERMET - VERSION 18081 *** *** 15 Standby Generator Diesel Engines (Revised - Kohler Engines) *** 11:54:27 PAGE 1 *** MODELOPTS: READFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ U* +++ +++ MODEL SETUP OPTIONS SUMMARY **Model Is Setup For Calculation of Average CONCentration Values. -- DEPOSITION LOGIC --**NO GAS DEPOSITION Data Provided. **NO PARTICLE DEPOSITION Data Provided. **Model Uses NO DRY DEPLETION. ERYDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F **Model Uses RURAL Dispersion Only. **Model Uses Regulatory DEFAULT Cptions: 1. Stack-tip Downwash. 2. Model Accounts for ELEVated Terrain Effects. 3. Use Calms Processing Routine. 4. Use Missing Data Processing Routine. 5. No Exponential Decay. **Other Options Specified: ADJ U* - Use ADJ U* option for SBL in AERMET CCVR Sub - Meteorological data includes CCVR substitutions TEMP Sub - Meteorological data includes TEMP substitutions **Model Accepts FLAGPOLE Receptor Heights. **The User Specified a Pollutant Type of: OTHER **Model Calculates PERIOD Averages Only **This Run Includes: 16 Source Group(s); and 10783 Receptor(s) 15 Source(s); with: 15 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) and: 0 VOLUME source(s) 0 AREA type source(s) and . and: 0 LINE source(s) and: 0 OPENPIT source(s) 0 BUOYANT LINE source(s) with 0 line(s) and . **Model Set To Continue RUNning After the Setup Testing. **The AERMET Input Meteorological Data Version Date: 18081 **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 15.50; Decay Coef. = 0.000 ; Rot. Angle = 0.0 Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M**3 **Approximate Storage Requirements of Model = 9.5 MB of RAM. **Input Runstream File: PN24374 R1 Kohler 5yrs OTHER.DTA **Output Print File: PN24374 R1 Kohler 5yrs OTHER.LST

**File for Summary of Results: C:\Risk Screens\Plant #24374 China Mobile International\Revision October 2019\PN24374 R1 Kohler

*** AERMOD - VERSION	18081 *** *	** China Mobile International (S	San Jose); P#24374; A#29830	* * *	10/28/19
*** AERMET - VERSION	18081 *** *	** 15 Standby Generator Diesel H	Engines (Revised - Kohler Engines)	* * *	11:54:27
					PAGE 2

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

*** POINT SOURCE DATA ***

	NUMBER	EMISSION RAT	3		BASE	STACK	STACK	STACK	STACK	BLDG	URBAN	CAP/	EMIS RATE
SOURCE	PART.	(GRAMS/SEC)	х	Y	ELEV.	HEIGHT	TEMP.	EXIT VEL.	DIAMETER	EXISTS	SOURCE	HOR	SCALAR
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)				VARY BY
													$\mathbf{x}_{i} = \mathbf{x}_{i} = \mathbf{x}_{i}$
Sl	0	0.56300E-03	608006.4	4121814.8	63.3	8.53	750.93	46.03	0.56	YES	NO	NO	
S2	0	0.56300E-03	608010.1	4121819.7	63.3	8.53	750.93	46.03	0.56	YES	NO	NO	
S3	0	0.56300E-03	608016.8	4121808.0	63.7	8.53	750.93	46.03	0.56	YES	NO	NO	
S4	0	0.56300E-03	608019.6	4121812.5	63.7	8.53	750.93	46.03	0.56	YES	NO	NO	
S5	0	0.56300E-03	608026.2	4121802.0	63.8	8.53	750.93	46.03	0.56	YES	NO	NO	
S6	0	0.56300E-03	608029.4	4121806.5	63.8	8.53	750.93	46.03	0.56	YES	NO	NO	
S7	0	0.56300E-03	608127.5	4121779.3	63.7	8.53	750.93	46.03	0.56	YES	NO	NO	
S8	0	0.56300E-03	608142.1	4121798.2	63.7	8.53	750.93	46.03	0.56	YES	NO	NO	
S10	0	0.56300E-03	608152.1	4121811.8	63.7	8.53	750.93	46.03	0.56	YES	NO	NO	
S12	0	0.56300E-03	608167.5	4121832.3	62.9	8.53	750.93	46.03	0.56	YES	NO	NO	
S14	0	0.56300E-03	608178.1	4121846.6	63.0	8.53	750.93	46.03	0.56	YES	NO	NO	
S9	0	0.56300E-03	608147.0	4121794.8	63.7	8.53	750.93	46.03	0.56	YES	NO	NO	
S11	0	0.56300E-03	608156.8	4121808.4	63.7	8.53	750.93	46.03	0.56	YES	NO	NO	
S13	0	0.56300E-03	608172.4	4121829.1	63.0	8.53	750.93	46.03	0.56	YES	NO	NO	
S15	0	0.56300E-03	608183.2	4121843.2	63.1	8.53	750.93	46.03	0.56	YES	NO	NO	

* * *	AERMOD -	VERS	SION	18081	* * *	***	China Mol	bile Interna	tional (Sa	n Jose);	P#24374	; A#29830	* * *	10/28/19
* * *	AERMET -	VERS	SION	18081	* * *	* * *	15 Stand	by Generator	Diesel En	gines (Re	evised -	Kohler Engines)	* * *	11:54:27
ale ale ale	NODELODE		D		CONG	DT F		NODDUDDI	NOUDEDDI	m DIMAT	ADT MA			PAGE 3
* * *	MODELOPTS	s:	Regu	FAULT	CONC	ELE	V FLGPO	T NODKADAPLL	NOWETDPL	T RURAL	ADJ U*			

*** SOURCE IDs DEFINING SOURCE GROUPS ***

SRCGROUP I	D -				SOURCE IDS	5						
ALL	Sl	, S2	, S3	, S4	,	, S5	,	S6	, S7		, S8	,
	S10	, S12	, S14	, S9	,	, S11	,	S13	, S15	5	,	
S1	Sl											
S2	S2	,										
S3	S3											
S4	S4	<i>,</i>										
S5	S5											
S6	S6	e.										
S7	S7											
S8	S8	ž										
S10	S10	ł.										
S12	S12	<i>i</i>										
S14	S14	,										
S9	S9	,										
S11	S11	,										
S13	S13	<i>.</i>										
S15	S15	,										

*** AERMOD - VERSION 18081 *** *** China Mobile International (San Jose); P#24374; A#29830 *** AERMET - VERSION 18081 *** *** 15 Standby Generator Diesel Engines (Revised - Kohler Engines) *** 10/28/19 *** 11:54:27 PAGE 4

.

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

*** DIRECTION SPECIFIC BUILDING DIMENSIONS ***

SOURCE	TD. S1											
TEV	BH	BW	BI.	XAD.T	VAD.T	TEV	BH	RW	BL	XADJ	YADJ	
1	19.8.	199.3.	143.0.	-42.1.	-72.8.	2	19.8.	185.9.	149.4.	-26.5.	-62.1.	
3	19.8.	166.8.	154.7.	-13.4.	-49.6.	4	19.8.	150.5.	160.6.	-1.0.	-39.4.	
5	19.8.	151.2.	173.8.	1.9.	-34.3.	6	19.8.	150.0.	191.0.	-4.5.	-26.7.	
7	19.8.	144 2.	202 4	-10.8.	-18.4.	8	19.8.	134.1.	207.7.	-16.7.	-9.5.	
9	19.8.	136 0.	206 6	-22 1	7 8	10	19.8.	143 0.	199.3.	-26.9.	29.4.	
11	19.8	149 4	185 9	-30.8	48 2	12	19.8	154 7	166.8	-33.8.	63.9.	
13	19.8	160 6	150 5	-35 8	79 3	14	19.8	173 8	151 2	-41 3	88 8	
15	19.8	191 0	150.0	-48 3	91 0	16	19.8	202 4	144 2	-53 7	90 4	
17	19.8	207 7	134 1	-57 6	87 1	18	19.8	206 6	136 0	-75 8	81 2	
19	19.8	199 3	143 0	-100 9	72 8	20	19.0,	185 9	149 4	-123 0	62 1	
21	19.8	166 8	154 7	-141 3	49 6	22	24 3	60.3	70 0	-123.7	39 4	
23	24 3	52 2	79 1	-133 7	24 2	24	24.3	43 6	85 9	-139 5	77	
25	24.3,	34 3	90.0	-101.7,	_9.3	24	10 0	13/ 1	207 7	-191 0	9 5	
23	19 8	136 0	206 6	-191.2,	-7.8	20	19.0,	143 0	199 3	-172 4	-29.4	
20	10 0	149 4	105 0	-164.5,	-19.2	20	10.0,	164 7	166 0	-172.4,	-62 0	
31	19.0,	149.4,	150 5	-114 7	-40.2,	30	19.0,	173 9	151 2	-109 9	-03.9,	
22	10.0	101.0,	150.5,	-114.7,	-19.3,	24	10.0	202 4	144 2	-109.9,	-00.0,	
35	19.0,	207 7	130.0,	- 76 5	-91.0,	34	19.0,	202.4,	136 0	-50.3,	-90.4,	
55	19.0,	207.7,	134.1,	-76.5,	-07.1,	30	19.0,	200.0,	130.0,	-00.2,	-01.2,	
SOUDCE	TD. 92											
TEV	BH	BW	BI.	XAD.T	VAD.T	TEV	BH	BW	BI.	XAD.T	VAD.T	
1	19.8	199 3	143 0	-47 6	-70 0	2	19.8	185 9	149 4	-32 4	-60.3	
3	19.0,	166 8	154 7	-19 5	-18 8	2	24 3	105.9,	70 0	17 6	-30.3,	
5	24 3	52 2	79 1	19.5,	- 25 6	4	24.3,	13 6	95 0	47.0,	-10.1	
2	24.5,	34.2,	90.0	40.5,	-25.0,	0	24.3,	43.0,	03.9,	40.0,	-10.1,	
0	10 0	126 0	206 6	40.0,	0.0,	10	10 0	142 0	100 2	42.0,	23.2,	
11	10.0	140.4	200.0,	-25.0,	2.9,	10	10.0	143.0,	100.0	-29.1,	23.9,	
12	19.0,	149.4,	165.9,	-32.0,	42.3,	14	19.0,	172 0	151 0	-34.0,	57.0,	
15	19.0,	101.0,	150.5,	-35.5,	/3.1,	14	19.8,	173.8,	101.2,	-40.0,	82.8,	
17	19.8,	191.0,	124 1	-45.9,	85.3,	10	19.8,	202.4,	144.2,	-50.4,	85.3,	
10	19.8,	207.7,	134.1,	-53.4,	82.6,	18	19.8,	206.6,	136.0,	-70.9,	11.5,	
19	19.8,	199.3,	143.0,	-95.4,	70.0,	20	19.8,	185.9,	149.4,	-117.1,	60.3,	
21	19.8,	100.0,	154.7,	-135.2,	48.8,	22	24.3,	60.3,	70.0,	-117.6,	39.7,	
23	24.3,	52.2,	79.1,	-121.7,	25.6,	24	24.3,	43.6,	85.9,	-133.9,	10.1,	
25	24.3,	34.3,	90.0,	-136.0,	-6.0,	26	24.3,	28.8,	91.4,	-134.0,	-23.2,	
21	19.8,	136.0,	206.6,	-180.8,	-2.9,	28	19.8,	143.0,	199.3,	-169.6,	-23.9,	
29	19.8,	149.4,	185.9,	-155.2,	-42.3,	30	19.8,	154.7,	166.8,	-132.3,	-57.8,	
31	19.8,	160.6,	150.5,	-115.0,	-/3.1,	32	19.8,	1/3.8,	151.2,	-111.3,	-82.8,	
33	19.8,	191.0,	150.0,	-104.1,	-85.3,	34	19.8,	202.4,	144.2,	-93.9,	-85.3,	
35	19.8,	207.7,	134.1,	-80.7,	-82.6,	36	19.8,	206.6,	136.0,	-65.1,	-77.5,	
SOURCE	TD. C3											
TEV	DU DU	BW	BT	YADT	VADT	TEV	DU	DW	DI	YADT	VADT	
1	19.8	199 3	143 0	-37 2	-61 A	2	19.8	185 9	149 4	-23 7	-50 1	
3	19.9	166.8	154 7	-12 7	-37 2	4	19.0,	150 5	160 6	-2 5	-27 2	
5	10 0	161 0	172 0	1 7	-37.2,	6	24.2	130.5,	100.0, 0E 0	10 1	21.2,	
7	19.0,	24 2	1/3.0,	-1.7,	-22.4,	0	10 0	43.0,	707.7	40.1,	3.4,	
0	10 0	126 0	90.0,	43.0,	19.2,	10	19.0,	142 0	207.7,	-25.7,	-1.0,	
11	10.0,	140.0,	105 0	-32.5,	14.0,	10	19.0,	143.0,	199.3,	-38.2,	54.5,	
1.2	19.0,	160 6	150 5	-42.0,	77 0	12	10 0	172 0	151 0	-40.2,	04.0,	
15	10.0	101.0,	150.5,	-48.1,	//.8,	14	19.8,	1/3.8,	144 0	-53.2,	85.2,	
17	19.8,	191.0,	124 1	-59.3,	85.5,	10	19.8,	202.4,	126 0	-03.0,	83.0,	
10	19.8,	207.7,	142 0	-00.0,	/8.1,	18	19.8,	200.0,	140.0,	-82.5,	70.8,	
19	19.8,	199.3,	143.0,	-105.8,	61.4,	20	19.8,	185.9,	149.4,	-125.8,	5U.I,	
22	24.3,	70.1, ED D	70 1	-110.7,	41.1, 10.0	22	24.3,	12 5	70.0, 0F 0	124.0	27.1,	
23	24.3,	24.2,	19.1,	-130.1,	10.2	24	10 0	43.0,	207 7	102 0	-3.4,	
20	24.3,	34.3,	90.0,	-133.8,	-19.2,	20	10.0	142 0	207.7,	-182.0,	1.0,	
21	19.0,	130.0,	200.0,	-1/4.1,	-14.0,	28	19.0,	143.0,	199.3,	-101.0,	-34.3,	

29	19.8,	149.4,	185.9,	-143.0,	-51.1,	30	19.8,	154.7,	166.8,	-120.7,	-64.6,
31	19.8,	160.6,	150.5,	-102.4,	-77.8,	32	19.8,	173.8,	151.2,	-98.0,	-85.2,
33	19.8,	191.0,	150.0,	-90.7,	-85.5,	34	19.8,	202.4,	144.2,	-80.6,	-83.0,
35	19.8,	207.7,	134.1,	-68.1,	-78.1,	36	19.8,	206.6,	136.0,	-53.4,	-70.8,

SOURCE ID: S4

IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ
1	19.8,	199.3,	143.0,	-42.0,	-59.4,	2	19.8,	185.9,	149.4,	-28.8,	-48.9,
3	24.3,	70.1,	61.3,	44.1,	-40.8,	4	24.3,	60.3,	70.0,	47.1,	-27.8,
5	24.3,	52.2,	79.1,	46.0,	-13.9,	6	24.3,	43.6,	85.9,	43.4,	1.0,
7	24.3,	34.3,	90.0,	39.6,	16.1,	8	19.8,	134.1,	207.7,	-29.3,	-4.9,
9	19.8,	136.0,	206.6,	-35.3,	10.1,	10	19.8,	143.0,	199.3,	-40.3,	29.4,
11	19.8,	149.4,	185.9,	-44.0,	45.9,	12	19.8,	154.7,	166.8,	-46.4,	59.4,
13	19.8,	160.6,	150.5,	-47.4,	72.6,	14	19.8,	173.8,	151.2,	-51.6,	80.2,
15	19.8,	191.0,	150.0,	-56.9,	80.8,	16	19.8,	202.4,	144.2,	-60.5,	78.9,
17	19.8,	207.7,	134.1,	-62.2,	74.6,	18	19.8,	206.6,	136.0,	-78.1,	68.0,
19	19.8,	199.3,	143.0,	-100.9,	59.4,	20	19.8,	185.9,	149.4,	-120.7,	48.9,
21	24.3,	70.1,	61.3,	-105.5,	40.8,	22	24.3,	60.3,	70.0,	-117.1,	27.8,
23	24.3,	52.2,	79.1,	-125.1,	13.9,	24	24.3,	43.6,	85.9,	-129.3,	-1.0,
25	24.3,	34.3,	90.0,	-129.6,	-16.1,	26	19.8,	134.1,	207.7,	-178.4,	4.9,
27	19.8,	136.0,	206.6,	-171.3,	-10.1,	28	19.8,	143.0,	199.3,	-159.0,	-29.4,
29	19.8,	149.4,	185.9,	-141.9,	-45.9,	30	19.8,	154.7,	166.8,	-120.4,	-59.4,
31	19.8,	160.6,	150.5,	-103.1,	-72.6,	32	19.8,	173.8,	151.2,	-99.6,	-80.2,
33	19.8,	191.0,	150.0,	-93.1,	-80.8,	34	19.8,	202.4,	144.2,	-83.8,	-78.9,
35	19.8,	207.7,	134.1,	-71.9,	-74.6,	36	19.8,	206.6,	136.0,	-57.9,	-68.0,

*** AERMOD - VERSION 18081 *** *** China Mobile International (San Jose); P#24374; A#29830 *** AERMET - VERSION 18081 *** *** 15 Standby Generator Diesel Engines (Revised - Kohler Engines) *** 10/28/19 *** 11:54:27 PAGE 5

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ U*

*** DIRECTION SPECIFIC BUILDING DIMENSIONS ***

SOURCE	ID: S5										
IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ
1	19.8,	199.3,	143.0,	-32.9,	-51.0,	2	24.3,	79.2,	54.4,	46.6,	-43.6,
3	19.8.	166.8.	154.7.	-12.3.	-26.0.	4	19.8.	150.5.	160.6.	-4.0.	-16.1.
5	24.3.	52.2.	79.1.	47.6.	-1.7.	6	24.3.	43.6.	85.9.	42.9.	13.3.
7	24.3.	34.3.	90.0.	36.9.	28.1.	8	19.8.	134.1.	207.7.	-34.0.	6.5.
9	19.8	136 0	206 6	-41 9	20.6	10	19.8	143 0	199 3	-48 6	38 5
11	19.8	149 4	185 9	-53 8	53 5	12	19.8	154 7	166 8	-57 4	65 1
13	19.8	160 6	150 5	-59 2	76 3	14	19.0,	173 8	151 2	-63 9	81 8
15	10.0	101.0,	150.0	- 69 2	0.3,	16	10.0,	202 4	1111 2	-72 5	76 2
17	10 0	207 7	124 1	-73 6	60.2,	10	10.0,	202.4,	126 0	- 99 5	61 4
10	10 0	100 2	142 0	-73.0,	51.0,	20	24.2	200.0,	IJ0.0,	-00.5,	12 6
19	19.0,	199.3,	143.0,	-110.0,	51.0,	20	24.3,	19.2,	70 0	-101.0,	43.0,
21	24.3,	70.1,	01.3,	-111.2,	29.9,	22	24.3,	60.3,	70.0,	-120.0,	10.0,
23	24.3,	52.2,	79.1,	-126.7,	1.7,	24	24.3,	43.6,	85.9,	-128.8,	-13.3,
25	24.3,	34.3,	90.0,	-126.9,	-28.1,	26	19.8,	134.1,	207.7,	-1/3.7,	-6.5,
27	19.8,	136.0,	206.6,	-164.7,	-20.6,	28	19.8,	143.0,	199.3,	-150.7,	-38.5,
29	19.8,	149.4,	185.9,	-132.1,	-53.5,	30	19.8,	154.7,	166.8,	-109.5,	-65.1,
31	19.8,	160.6,	150.5,	-91.3,	-76.3,	32	19.8,	173.8,	151.2,	-87.4,	-81.8,
33	19.8,	191.0,	150.0,	-80.8,	-80.2,	34	19.8,	202.4,	144.2,	-71.7,	-76.2,
35	19.8,	207.7,	134.1,	-60.5,	-69.8,	36	19.8,	206.6,	136.0,	-47.4,	-61.4,
SOURCE	ID: S6										
IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	LCAX	YADJ
1	24.3,	85.9,	45.9,	37.0,	-53.7,	2	24.3,	79.2,	54.4,	41.3,	-42.2,
3	24.3,	70.1,	61.3,	44.4,	-29.4,	4	24.3,	60.3,	70.0,	45.4,	-16.4,
5	24.3,	52.2,	79.1,	42.3,	-3.0,	6	24.3,	43.6,	85.9,	37.9,	11.1,
7	24.3,	34.3,	90.0,	32.4,	25.0,	8	19.8,	134.1,	207.7,	-37.9,	2.7,
9	19.8,	136.0,	206.6,	-45.1,	16.1,	10	19.8,	143.0,	199.3,	-50.9,	33.6,
11	19.8,	149.4,	185.9,	-55.3,	48.2,	12	19.8,	154.7,	166.8,	-57.9,	59.6,
13	19.8,	160.6,	150.5,	-58.8,	70.9,	14	19.8,	173.8,	151.2,	-62.5,	76.6,
15	19.8,	191.0,	150.0,	-67.0,	75.3,	16	19.8,	202.4,	144.2,	-69.4,	71.7,
17	19.8,	207.7,	134.1,	-69.8,	66.0,	18	19.8,	206.6,	136.0,	-84.1,	58.2,
19	24.3,	85.9,	45.9,	-82.9,	53.7,	20	24.3.	79.2.	54.4.	-95.7,	42.2.
21	24.3.	70.1.	61.3.	-105.8.	29.4.	22	24.3.	60.3.	70.0.	-115.3.	16.4.
23	24.3.	52.2.	79.1.	-121.4.	3.0.	24	24.3.	43 6	85.9.	-123.8.	-11.1.
25	24 3	34 3	90.0	-122 4	-25 0	26	19.8	134 1	207 7	-169 8	-2 7
27	19.8	136 0	206 6	-161 5	-16 1	20	10.0,	143 0	100 3	-148 3	-33 6
20	10 0	149 4	195 0	120 6	- 10 - 2	20	10.0,	154 7	166 0	100.0	59.0,
23	10 0	149.4,	160.5,	-130.0,	-40.2,	20	10.0	172 0	151 0	-108.9,	-35.0,
22	19.0,	101.0,	150.5,	-91.7,	-70.9,	24	19.8,	1/3.0,	101.2,	-88.7,	- /0.0,
33	19.8,	191.0,	150.0,	-83.0,	- 15.3,	34	19.8,	202.4,	144.2,	- /4.8,	-/1./,
35	19.8,	207.7,	134.1,	-64.3,	-66.0,	36	19.8,	206.6,	136.0,	-51.9,	-58.2,
SOURCE	TD. 57										
TEV	DU DU	DW	DT	YADT	VADT	TEN	DU	DW	DT	VADT	VADT
1	24 3	85 9	15 9	16 7	17 6	2110	10.0	195 0	149 4	-34 5	62 Q
2	10 0	166 0	45.5,	40.7,	47.0,	2	10.0,	165.9,	149.4,	-34.3,	05.0,
5	19.0,	100.0,	154.7,	-43.2,	73.0,	4	19.8,	150.5,	100.0,	-51.6,	70.1,
5	19.8,	151.2,	1/3.8,	-68.0,	70.7,	6	19.8,	150.0,	191.0,	-91.6,	64.5,
/	19.8,	144.2,	202.4,	-112.4,	56.4,	8	19.8,	134.1,	207.7,	-129.7,	46.5,
9	19.8,	136.0,	206.6,	-143.2,	43.3,	10	19.8,	143.0,	199.3,	-152.3,	43.3,
11	19.8,	149.4,	185.9,	-156.7,	40.2,	12	19.8,	154.7,	166.8,	-156.4,	34.1,
13	24.3,	70.0,	60.3,	-106.3,	38.1,	14	24.3,	79.1,	52.2,	-106.9,	24.2,
15	24.3,	85.9,	43.6,	-105.4,	9.5,	16	24.3,	90.0,	34.3,	-101.2,	-5.5,
17	24.3,	91.4,	28.8,	-97.8,	-20.2,	18	24.3,	90.0,	36.0,	-94.8,	-34.4,
19	24.3,	85.9,	45.9,	-92.6,	-47.6,	20	19.8,	185.9,	149.4,	-114.9,	-63.8,
21	19.8,	166.8,	154.7,	-111.5,	-73.0,	22	19.8,	150.5,	160.6,	-108.9,	-76.1,
23	19.8,	151.2,	173.8,	-105.8,	-70.7,	24	19.8,	150.0,	191.0,	-99.4,	-64.5,
25	19.8,	144.2,	202.4,	-90.0,	-56.4,	26	19.8,	134.1,	207.7,	-77.9,	-46.5,
27	19.8,	136.0,	206.6,	-63.4,	-43.3,	28	19.8,	143.0,	199.3,	-47.0,	-43.3,

29	19.8,	149.4,	185.9,	-29.2,	-40.2,	30	19.8,	154.7,	166.8,	-10.4,	-34.1,
31	24.3,	70.0,	60.3,	46.0,	-38.1,	32	19.8,	173.8,	151.2,	-4.9,	-18.9,
33	19.8,	191.0,	150.0,	-10.5,	-3.9,	34	19.8,	202.4,	144.2,	-15.8,	11.2,
35	19.8,	207.7,	134.1,	-20.6,	25.9,	36	19.8,	206.6,	136.0,	-24.7,	39.9,

1

SOURCE ID: S8

IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ
1	19.8,	199.3,	143.0,	-49.3,	63.8,	2	19.8,	185.9,	149.4,	-57.3,	71.1,
3	19.8,	166.8,	154.7,	-66.9,	76.2,	4	19.8,	150.5,	160.6,	-75.5,	75.2,
5	19.8,	151.2,	173.8,	-91.3,	65.7,	6	19.8,	150.0,	191.0,	-113.7,	55.5,
7	19.8,	144.2,	202.4,	-132.6,	43.6,	8	19.8,	134.1,	207.7,	-147.4,	30.5,
9	19.8,	136.0,	206.6,	-157.8,	24.4,	10	19.8,	143.0,	199.3,	-163.4,	22.2,
11	24.3,	54.4,	79.2,	-106.1,	37.8,	12	24.3,	61.3,	70.1,	-107.4,	25.9,
13	24.3,	70.0,	60.3,	-105.4,	14.3,	14	24.3,	79.1,	52.2,	-101.8,	0.9,
15	24.3,	85.9,	43.6,	-96.4,	-12.6,	16	24.3,	90.0,	34.3,	-88.5,	-25.7,
17	24.3,	91.4,	28.8,	-81.7,	-37.9,	18	24.3,	90.0,	36.0,	-75.9,	-49.0,
19	19.8,	199.3,	143.0,	-93.7,	-63.8,	20	19.8,	185.9,	149.4,	-92.2,	-71.1,
21	19.8,	166.8,	154.7,	-87.8,	-76.2,	22	19.8,	150.5,	160.6,	-85.1,	-75.2,
23	19.8,	151.2,	173.8,	-82.5,	-65.7,	24	19.8,	150.0,	191.0,	-77.3,	-55.5,
25	19.8,	144.2,	202.4,	-69.8,	-43.6,	26	19.8,	134.1,	207.7,	-60.2,	-30.5,
27	19.8,	136.0,	206.6,	-48.8,	-24.4,	28	19.8,	143.0,	199.3,	-35.9,	-22.2,
29	24.3,	54.4,	79.2,	26.9,	-37.8,	30	24.3,	61.3,	70.1,	37.3,	-25.9,
31	24.3,	70.0,	60.3,	45.1,	-14.3,	32	19.8,	173.8,	151.2,	-9.9,	4.4,
33	19.8,	191.0,	150.0,	-19.5,	18.2,	34	19.8,	202.4,	144.2,	-28.5,	31.4,
35	19.8,	207.7,	134.1,	-36.6,	43.6,	36	24.3,	90.0,	36.0,	39.9,	49.0,

*** AERMOD - VERSION 18081 *** *** China Mobile International (San Jose); P#24374; A#29830 *** AERMET - VERSION 18081 *** *** 15 Standby Generator Diesel Engines (Revised - Kohler Engines) *** 10/28/19 *** 11:54:27 PAGE 6

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

*** DIRECTION SPECIFIC BUILDING DIMENSIONS ***

SOURCE	ID: S1	.0										
IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ	
1	19.8,	199.3,	143.0,	-64.4,	71.2,	2	19.8,	185.9,	149.4,	-73.5,	75.8,	
3	19.8,	166.8,	154.7,	-83.7,	78.1,	4	19.8,	150.5,	160.6,	-92.4,	74.1,	
5	19.8,	151.2,	173.8,	-107.8,	61.7,	6	19.8,	150.0,	191.0,	-129.2,	48.7,	
7	19.8,	144.2,	202.4,	-146.6,	34.2,	8	19.8,	134.1,	207.7,	-159.7,	18.8,	
9	19.8,	136.0,	206.6,	-167.8,	10.8,	10	24.3,	45.9,	85.9,	-109.1,	33.4,	
11	24.3.	54.4.	79.2.	-110.9.	21.5.	12	24.3.	61.3.	70.1.	-109.3,	9.1,	
13	24.3.	70.0.	60.3.	-104.3.	-2.6.	14	24.3.	79.1.	52.2.	-97.8.	-15.6.	
15	24.3.	85.9.	43.6.	-89.6.	-28.1.	16	24.3.	90.0.	34.3.	-79.1.	-39.7.	
17	24.3.	91.4.	28.8.	-70.0.	-50.2.	18	19.8.	206.6.	136.0.	-78.8.	-64.5.	
19	19.8.	199 3.	143 0	-78.5.	-71.2.	20	19.8	185.9.	149.4.	-75.9.	-75.8.	
21	19.8	166 8	154 7	-71 0	-78 1	22	19.8	150 5	160 6	-68 2	-74 1	
23	19.8	151 2	173 8	-66 0	-61 7	24	19.8	150.0	191 0	-61 8	-48 7	
25	19.8	144 2	202 4	-55 8	-34 2	26	19.8	134 1	207 7	-48 0	-18 8	
20	10 0	136 0	202.4,	-30.0,	-10 9	20	21 2	154.1,	207.7,	22.0,	-10.0,	
20	24 3	54 4	200.0,	-30.0,	-21 5	20	24.5,	43.9,	70 1	20.2,	-91	
23	24.5,	70.0	60.2	31.7,	-21.5,	20	24.5,	70 1	F2 2	JJ.2,	15 6	
22	24.3,	70.0,	00.3,	44.0,	2.0,	34	24.3,	79.1,	24.2,	45.7,	10.0,	
33	24.3,	85.9,	43.6,	45.9,	28.1,	34	24.3,	90.0,	126 0	44.8,	39.7,	
35	24.3,	91.4,	28.8,	41.2,	50.2,	30	19.8,	200.0,	136.0,	-57.2,	64.5,	
SOURCE	ID: S1	2										
IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ	
1	19.8	199 3	143 0	-87 2	82 8	2	19.8	185 9	149 4	-98.0	83.2	
3	19.8	166 8	154 7	-109 1	81 1	4	19 8	150 5	160 6	-117 9	72 7	
5	19.8	151 2	173 8	-132 7	55 9	6	19.0,	150.0	191 0	-152 7	38 7	
7	19.0,	144 2	202 4	-169 1	20.3	Q	19.0,	134 1	207 7	-179 3	1 3	
9	24 3	36 0	90 0	_110 /	20.5,	10	24.2	154.1,	207.7,	-120.7	10 6	
11	24.5,	50.0,	79.2	-110 3	-2 9	12	24.5,	43.9,	70 1	-112 3	-16 3	
13	24.5,	70.0	19.2,	102.0	20.2	14	24.5,	70 1	52.2	-112.3,	-10.5,	
15	24.3,	70.0,	00.3,	-102.9,	-20.2,	14	24.3,	79.1,	144 2	-92.0,	-40.5,	
15	24.3,	05.9,	43.0,	- /9.5,	-51.0,	10	19.8,	202.4,	144.2,	-92.4,	-00.9,	
17	19.8,	207.7,	134.1,	-68.3,	-74.5,	18	19.8,	206.6,	136.0,	-58.3,	- /9.9,	
19	19.8,	199.3,	143.0,	-55.7,	-82.8,	20	19.8,	185.9,	149.4,	-51.4,	-83.2,	
21	19.8,	166.8,	154.7,	-45.6,	-81.1,	22	19.8,	150.5,	160.6,	-42.7,	- 12.1,	
23	19.8,	151.2,	173.8,	-41.1,	-55.9,	24	19.8,	150.0,	191.0,	-38.3,	-38.7,	
25	19.8,	144.2,	202.4,	-34.3,	-20.3,	26	19.8,	134.1,	207.7,	-29.3,	-1.3,	
27	24.3,	36.0,	90.0,	29.4,	-23.8,	28	24.3,	45.9,	85.9,	34.8,	-10.6,	
29	24.3,	54.4,	79.2,	39.1,	2.9,	30	24.3,	61.3,	70.1,	42.2,	16.3,	
31	24.3,	70.0,	60.3,	42.6,	28.2,	32	24.3,	79.1,	52.2,	39.9,	40.5,	
33	24.3,	85.9,	43.6,	35.9,	51.6,	34	19.8,	202.4,	144.2,	-51.8,	66.9,	
35	19.8,	207.7,	134.1,	-65.8,	74.5,	36	19.8,	206.6,	136.0,	-77.7,	79.9,	
COLIDOF	TD. 01	1										
TEV	DU DU	DW	DT	VADT	VADT	TEN	DU	DW	DT	VADT	VADT	
TEV	10 0	100 2	142 0	102 2	IADU	TLA		105 0	140 4	11E O	IADU	
1	19.0,	199.3,	143.0,	-103.2,	90.8,	2	19.8,	185.9,	149.4,	-115.0,	88.4,	
3	19.8,	166.8,	154.7,	-126.8,	83.2,	4	19.8,	150.5,	160.6,	-135.7,	/1./,	
5	19.8,	151.2,	1/3.8,	-150.0,	51.8,	6	19.8,	150.0,	191.0,	-169.1,	31.6,	
1	19.8,	144.2,	202.4,	-183.0,	10.5,	8	24.3,	28.8,	91.4,	-127.5,	25.9,	
9	24.3,	36.0,	90.0,	-130.1,	9.5,	10	24.3,	45.9,	85.9,	-128.7,	-5.3,	
11	24.3,	54.4,	79.2,	-123.5,	-20.0,	12	24.3,	61.3,	70.1,	-114.4,	-34.0,	
13	24.3,	70.0,	60.3,	-101.9,	-45.9,	14	19.8,	173.8,	151.2,	-127.4,	-63.1,	
15	19.8,	191.0,	150.0,	-106.6,	-73.6,	16	19.8,	202.4,	144.2,	-82.6,	-81.8,	
17	19.8,	207.7,	134.1,	-56.1,	-87.5,	18	19.8,	206.6,	136.0,	-44.0,	-90.5,	
19	19.8,	199.3,	143.0,	-39.8,	-90.8,	20	19.8,	185.9,	149.4,	-34.4,	-88.4,	
21	19.8,	166.8,	154.7,	-27.9,	-83.2,	22	19.8,	150.5,	160.6,	-24.9,	-71.7,	
23	19.8,	151.2,	173.8,	-23.8,	-51.8,	24	19.8,	150.0,	191.0,	-21.9,	-31.6,	
25	19.8,	144.2,	202.4,	-19.4,	-10.5,	26	24.3,	28.8,	91.4,	36.1,	-25.9,	
27	24.3,	36.0,	90.0,	40.1,	-9.5,	28	24.3,	45.9,	85.9,	42.8,	5.3,	

29	24.3,	54.4,	79.2,	44.2,	20.0,	30	24.3,	61.3,	70.1,	44.3,	34.0,
31	24.3,	70.0,	60.3,	41.6,	45.9,	32	19.8,	173.8,	151.2,	-23.8,	63.1,
33	19.8,	191.0,	150.0,	-43.4,	73.6,	34	19.8,	202.4,	144.2,	-61.6,	81.8,
35	19.8,	207.7,	134.1,	-78.0,	87.5,	36	19.8,	206.6,	136.0,	-92.0,	90.5,

IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ
1	19.8,	199.3,	143.0,	-46.8,	69.2,	2	19.8,	185.9,	149.4,	-55.8,	76.8
3	19.8,	166.8,	154.7,	-66.4,	82.2,	4	19.8,	150.5,	160.6,	-76.1,	81.1
5	19.8,	151.2,	173.8,	-92.9,	71.4,	6	19.8,	150.0,	191.0,	-116.2,	60.9
7	19.8,	144.2,	202.4,	-136.0,	48.5,	8	19.8,	134.1,	207.7,	-151.7,	34.6
9	19.8,	136.0,	206.6,	-162.7,	27.8,	10	19.8,	143.0,	199.3,	-168.8,	24.
11	24.3,	54.4,	79.2,	-111.9,	39.3,	12	24.3,	61.3,	70.1,	-113.3,	26.
13	24.3,	70.0,	60.3,	-111.3,	13.7,	14	24.3,	79.1,	52.2,	-107.6,	-0.
15	24.3,	85.9,	43.6,	-101.8,	-15.2,	16	24.3,	90.0,	34.3,	-93.4,	-29.
17	24.3,	91.4,	28.8,	-85.9,	-42.2,	18	24.3,	90.0,	36.0,	-79.3,	-54.
19	19.8,	199.3,	143.0,	-96.2,	-69.2,	20	19.8,	185.9,	149.4,	-93.7,	-76.
21	19.8,	166.8,	154.7,	-88.3,	-82.2,	22	19.8,	150.5,	160.6,	-84.5,	-81.
23	19.8,	151.2,	173.8,	-80.9,	-71.4,	24	19.8,	150.0,	191.0,	-74.8,	-60.
25	19.8,	144.2,	202.4,	-66.4,	-48.5,	26	19.8,	134.1,	207.7,	-56.0,	-34.
27	19.8,	136.0,	206.6,	-43.9,	-27.8,	28	19.8,	143.0,	199.3,	-30.5,	-24.
29	24.3,	54.4,	79.2,	32.7,	-39.3,	30	24.3,	61.3,	70.1,	43.3,	-26.
31	19.8,	160.6,	150.5,	5.9,	-4.2,	32	19.8,	173.8,	151.2,	-4.2,	6.
33	19.8,	191.0,	150.0,	-14.1,	20.7,	34	19.8,	202.4,	144.2,	-23.6,	34.
35	19.8,	207.7,	134.1,	-32.4,	47.8,	36	24.3,	90.0,	36.0,	43.3,	54.

*** AERMOD - VERSION 18081 *** *** China Mobile International (San Jose); P#24374; A#29830 *** AERMET - VERSION 18081 *** *** 15 Standby Generator Diesel Engines (Revised - Kohler Engines) *** 10/28/19 *** 11:54:27 PAGE 7

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

*** DIRECTION SPECIFIC BUILDING DIMENSIONS ***

SOURCE	ID: S1	.1										
IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ	
1	19.8,	199.3,	143.0,	-61.9,	76.5,	2	19.8,	185.9,	149.4,	-71.9,	81.4,	
3	19.8,	166.8,	154.7,	-83.1,	83.8,	4	19.8,	150.5,	160.6,	-92.8,	79.8,	
5	19.8,	151.2,	173.8,	-109.2,	67.3,	6	19.8,	150.0,	191.0,	-131.5,	54.0,	
7	19.8,	144.2,	202.4.	-149.9,	39.0,	8	19.8,	134.1,	207.7.	-163.7,	22.9,	
9	19.8.	136.0.	206.6.	-172.5.	14.1.	10	19.8.	143.0.	199.3.	-176.1.	9.6.	
11	24.3.	54.4.	79.2.	-116.5.	23.1.	12	24.3.	61.3.	70.1.	-115.0.	9.7.	
13	24 3	70 0	60 3	-110 1	-3 0	- 4	24 3	79 1	52 2	-103 5	-17 0	
15	24 3	85 9	43 6	-94 9	-30 5	- 6	24 3	90 0	34 3	-83 9	-43 0	
17	24 3	91 4	28 8	-74 2	-54 2	- 8	19 8	206 6	136 0	-82 1	-69.2	
19	19 8	199 3	143 0	-81 0	-76 5	20	19.8	185 9	149 4	-77 5	-81 4	
21	10 0	166 9	154 7	-71 6	.02.0	20	10.0,	160.5,	160 6	67 0	-70 9	
21	10.0,	151 0	172 0	-71.0,	-03.0,	22	19.0,	150.5,	101.0,	-07.0,	-79.0,	
25	19.0,	151.2,	1/3.8,	-64.6,	-67.3,	24	19.8,	150.0,	191.0,	-59.4,	-54.0,	
25	19.8,	144.2,	202.4,	-52.5,	-39.0,	26	19.8,	134.1,	207.7,	-44.0,	-22.9,	
27	19.8,	136.0,	206.6,	-34.1,	-14.1,	28	19.8,	143.0,	199.3,	-23.2,	-9.6,	
29	24.3,	54.4,	79.2,	37.3,	-23.1,	30	24.3,	61.3,	70.1,	44.9,	-9.7,	
31	19.8,	160.6,	150.5,	4.6,	12.5,	32	19.8,	173.8,	151.2,	-8.3,	22.3,	
33	19.8,	191.0,	150.0,	-21.0,	36.0,	34	19.8,	202.4,	144.2,	-33.1,	48.7,	
35	24.3,	91.4,	28.8,	45.4,	54.2,	36	19.8,	206.6,	136.0,	-53.8,	69.2,	
SOURCE	ID: S1	.3										
IFV	BH	BW	BL	XADJ	YADJ	IFV	BH	BW	BL	XADJ	YADJ	
1	19.8,	199.3,	143.0,	-85.0,	88.2,	2	19.8,	185.9,	149.4,	-96.7,	88.9,	
3	19.8,	166.8,	154.7,	-108.8,	87.0,	4	19.8,	150.5,	160.6,	-118.7,	78.5,	
5	19.8,	151.2,	173.8,	-134.4,	61.4,	6	19.8,	150.0,	191.0,	-155.4,	43.8,	
7	19.8,	144.2,	202.4,	-171.6,	24.9,	8	19.8,	134.1,	207.7,	-182.6,	5.2,	
9	24.3,	36.0,	90.0,	-124.3,	26.9,	10	24.3,	45.9,	85.9,	-126.1,	12.8,	
11	24.3,	54.4,	79.2,	-124.0,	-1.7,	12	24.3,	61.3,	70.1,	-118.1,	-16.0,	
13	24.3,	70.0,	60.3,	-108.7,	-28.9,	14	24.3,	79.1,	52.2,	-97.6,	-42.2,	
15	24.3.	85.9.	43.6.	-84.7.	-54.3.	16	19.8.	202.4.	144.2.	-97.0.	-70.4.	
17	19.8	207 7	134 1	-72 3	-78.8	18	19.8	206 6	136 0	-61 5	-84 8	
19	19 8	199 3	143 0	-58 0	-88 2	20	19 8	185 9	149 4	-52 7	-88 9	
21	19 8	166.8	154 7	-45 9	-87 0	20	19.0,	150 5	160 6	-41 9	-78 5	
23	19.0,	151 2	173 9	-39 /	-61 4	22	10 0	150.0	191 0	-35 6	-13.9	
25	10.0	144 2	202.4	20.9	24.0	24	10.0,	124 1	207.7	-35.0,	-45.0,	
20	19.0,	144.2,	202.4,	-30.8,	-24.9,	20	19.8,	134.1,	207.7,	-25.1,	-5.2,	
27	24.3,	36.0,	90.0,	34.3,	-26.9,	28	24.3,	45.9,	85.9,	40.2,	-12.8,	
29	24.3,	54.4,	79.2,	44.8,	1.7,	30	24.3,	61.3,	70.1,	48.1,	16.0,	
31	24.3,	70.0,	60.3,	48.4,	28.9,	32	24.3,	79.1,	52.2,	45.4,	42.2,	
33	24.3,	85.9,	43.6,	41.1,	54.3,	34	19.8,	202.4,	144.2,	-47.2,	70.4,	
35	19.8,	207.7,	134.1,	-61.8,	78.8,	36	19.8,	206.6,	136.0,	-74.5,	84.8,	
COUDCO	TD 01	5										
SOURCE	ID: SI	5	Dr		113 5 7			2017				
T F.A	BH	BM	BL	XADJ	YADJ	1 3.A	BH	BW	BL	XADJ	YADJ	
1	19.8,	199.3,	143.0,	-100.7,	96.5,	2	19.8,	185.9,	149.4,	-113.6,	94.3,	
3	19.8,	166.8,	154.7,	-126.4,	89.3,	4	19.8,	150.5,	160.6,	-136.4,	77.8,	
5	19.8,	151.2,	173.8,	-151.8,	57.6,	6	19.8,	150.0,	191.0,	-171.8,	37.1,	
7	19.8,	144.2,	202.4,	-186.6,	15.4,	8	19.8,	134.1,	207.7,	-195.8,	-6.7,	
9	24.3,	36.0,	90.0,	-135.2,	12.9,	10	24.3,	45.9,	85.9,	-134.4,	-2.9,	
11	24.3,	54.4,	79.2,	-129.4,	-18.6,	12	24.3,	61.3,	70.1,	-120.5,	-33.6,	
13	24.3,	70.0,	60.3,	-108.0,	-46.7,	14	19.8,	173.8,	151.2,	-133.3,	-64.9,	
15	19.8,	191.0,	150.0,	-112.1.	-76.3.	16	19.8,	202.4.	144.2.	-87.5.	-85.4,	
17	19.8.	207.7.	134.1.	-60.3.	-91.9.	18	19.8.	206.6.	136.0.	-47.4.	-95.6.	
19	19.8.	199.3.	143.0	-42.2	-96.5.	20	19.8.	185.9	149.4	-35.8	-94.3.	
21	19 8	166 8	154 7	-28 3	-89 3	22	19.8	150 5	160 6	-24 2	-77 8	
23	19 8	151 2	173 8	-22 0	-57 6	24	19.8	150 0	191 0	-19 2	-37 1	
25	19.8	144 2	202 4	-15 8	-15 4	26	19.8	134 1	207 7	-11 0	67	
27	24 2	36 0	90 0	AE 2	-12 0	20	24 2	45 0	gc 0	10 1	2 9	
21	64.31	30.0,	50.0,	40.41	-12.91	20	24.31	40.0,	00.9,	40.4,	6.91	

29	19.8,	149.4,	185.9,	1.4,	38.9,	30	19.8,	154.7,	166.8,	5.9,	49.1,	
31	24.3,	70.0,	60.3,	47.7,	46.7,	32	19.8,	173.8,	151.2,	-18.0,	64.9,	
33	19.8,	191.0,	150.0,	-37.9,	76.3,	34	19.8,	202.4,	144.2,	-56.7,	85.4,	
35	19.8,	207.7,	134.1,	-73.8,	91.9,	36	19.8,	206.6,	136.0,	-88.6,	95.6,	

***	AERMOD -	VERSION	18081	*** *	**	China Mobile International (San Jose); P#24374; A#29830	* * *	10/28/19
***	AERMET -	VERSION	18081	*** *	**	15 Standby Generator Diesel Engines (Revised - Kohler Engines)	* * *	11:54:27
								PAGE 195

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

	*** THE PERIOD) (43824 HRS)	AVERAGE	CONCENTRATION	VALUES FOR SOUR	CE GROUP: ALL	* * *
	INCLUDING	SOURCE(S):	S1	, S2	, S3	, S4	, S5
S6	, S7 ,	S8 ,	S10	, S12	, S14	, S9	, S11
S13	, S15 ,						

.....

.

.

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

		** CONC OF OTHER	IN MICROGRAMS/M**3		* *	
X-COORD (M)	Y-COORD (M)	CONC	X-COORD (M)	Y-COORD (M)	CONC	
608495.00	4121435.00	0.01902	608510.00	4121435.00	0.01901	
608525.00	4121435.00	0.01888	608540.00	4121435.00	0.01878	
608555.00	4121435.00	0.01864	608570.00	4121435.00	0.01848	
608585.00	4121435.00	0.01824	608600.00	4121435.00	0.01804	
608615.00	4121435.00	0.01776	608630.00	4121435.00	0.01753	
608645.00	4121435.00	0.01730	608660.00	4121435.00	0.01699	
608675.00	4121435.00	0.01675	608690.00	4121435.00	0.01648	
608705.00	4121435.00	0.01617	608720.00	4121435.00	0.01591	
608735.00	4121435.00	0.01560	608750.00	4121435.00	0.01533	
608765.00	4121435.00	0.01501	608780.00	4121435.00	0.01474	
608795.00	4121435.00	0.01442	608810.00	4121435.00	0.01409	
608825.00	4121435.00	0.01381	608840.00	4121435.00	0.01347	
608855.00	4121435.00	0.01314	608870.00	4121435.00	0.01282	
608885.00	4121435.00	0.01248	608900.00	4121435.00	0.01213	
608915.00	4121435.00	0.01181	608930.00	4121435.00	0.01145 Res	sident
608945.00	4121435.00	0.01111	608960.00	4121435.00	0.01075	
608975.00	4121435.00	0.01044	608990.00	4121435.00	0.01010	
609005.00	4121435.00	0.00977	609020.00	4121435.00	0.00945	
609035.00	4121435.00	0.00914	609050.00	4121435.00	0.00884	
609065.00	4121435.00	0.00854	609080.00	4121435.00	0.00823	
609095.00	4121435.00	0.00798	609110.00	4121435.00	0.00770	
609125.00	4121435.00	0.00745	609140.00	4121435.00	0.00721	
609155.00	4121435.00	0.00695	609170.00	4121435.00	0.00673	
609185.00	4121435.00	0.00651	607235.00	4121450.00	0.00118	
607250.00	4121450.00	0.00119	607265.00	4121450.00	0.00119	
607280.00	4121450.00	0.00120	607295.00	4121450.00	0.00120	
607310.00	4121450.00	0.00122	607325.00	4121450.00	0.00123	
607340.00	4121450.00	0.00123	607355.00	4121450.00	0.00124	
607370.00	4121450.00	0.00125	607385.00	4121450.00	0.00125	
607400.00	4121450.00	0.00127	607415.00	4121450.00	0.00128	
607430.00	4121450.00	0.00128	607445.00	4121450.00	0.00129	
607460.00	4121450.00	0.00129	607475.00	4121450.00	0.00131	
607490.00	4121450.00	0.00131	607505.00	4121450.00	0.00131	
607520.00	4121450.00	0.00132	607535.00	4121450.00	0.00132	
607550.00	4121450.00	0.00133	607565.00	4121450.00	0.00134	
607580.00	4121450.00	0.00135	607595.00	4121450.00	0.00136	
607610.00	4121450.00	0.00137	607625.00	4121450.00	0.00138	
607640.00	4121450.00	0.00141	607655.00	4121450.00	0.00142	
607670.00	4121450.00	0.00144	607685.00	4121450.00	0.00145	
607700.00	4121450.00	0.00146	607715.00	4121450.00	0.00147	

*** AERMOD - VERSION 18081 *** *** China Mobile International (San Jose); P#24374; A#29830 *** AERMET - VERSION 18081 *** *** 15 Standby Generator Diesel Engines (Revised - Kohler Engines)

*** 10/28/19 *** 11:54:27 PAGE 2290

-

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

*** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS ***

* *	CONC	OF	OTHER	IN	MICROGRAMS/M**3
					14

NETWORK

**

GROUP I	D				AVERAGE CONC			REC	CEPTOR (XR, YR,	ZELEV,	ZHILL, ZFLAC	G) OF (FYPE	GRID-ID
							-							
ALL	1ST	HIGHEST	VALUE	IS	0.06706	AT	(608000.00,	4121945.00,	62.47,	63.42,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS	0.06581	AT	(607970.00,	4121930.00,	62.37,	62.37,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS	0.06528	AT	(607985.00,	4121945.00,	61.94,	61.94,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS	0.06425	AT	(608180.00,	4121735.00,	63.71,	63.71,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS	0.06413	AT	(608165.00,	4121735.00,	63.58,	63.58,	1.50)	DC	Worker
	6TH	HIGHEST	VALUE	IS	0.06088	AT	(608000.00,	4121960.00,	62.97,	62.97,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS	0.06060	AT	(608150.00,	4121735.00,	63.25,	63.25,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS	0.06002	AT	(608015.00,	4121960.00,	63.05,	63.05,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS	0.05993	AT	(607970.00,	4121945.00,	62.17,	62.17,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS	0.05984	AT	(608195.00,	4121750.00,	63.26,	63.26,	1.50)	DC	
S1	1ST	HIGHEST	VALUE	IS	0.00936	AT	(608165.00,	4121735.00,	63.58,	63.58,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS	0.00923	AT	(608180.00,	4121735.00,	63.71,	63.71,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS	0.00898	AT	(608150.00,	4121735.00,	63.25,	63.25,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS	0.00870	AT	(608150.00,	4121720.00,	63.42,	63.42,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS	0.00863	AT	(608165.00,	4121720.00,	63.65,	63.65,	1.50)	DC	
	6TH	HIGHEST	VALUE	IS	0.00839	AT	(608180.00,	4121750.00,	63.55,	63.55,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS	0.00829	AT	(608135.00,	4121735.00,	63.21,	63.21,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS	0.00818	AT	(608165.00,	4121750.00,	63.30,	63.30,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS	0.00817	AT	(608195.00,	4121750.00,	63.26,	63.26,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS	0.00814	AT	(608135.00,	4121720.00,	63.11,	63.11,	1.50)	DC	
S2	1ST	HIGHEST	VALUE	IS	0.01003	AT	(608165.00,	4121735.00,	63.58,	63.58,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS	0.00997	AT	(608180.00,	4121735.00,	63.71,	63.71,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS	0.00960	AT	(608150.00,	4121735.00,	63.25,	63.25,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS	0.00925	AT	(608150.00,	4121720.00,	63.42,	63.42,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS	0.00917	AT	(608165.00,	4121720.00,	63.65,	63.65,	1.50)	DC	
	6TH	HIGHEST	VALUE	IS	0.00902	AT	(608180.00,	4121750.00,	63.55,	63.55,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS	0.00885	AT	(608135.00,	4121735.00,	63.21,	63.21,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS	0.00882	AT	(608165.00,	4121750.00,	63.30,	63.30,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS	0.00873	AT	(608195.00,	4121750.00,	63.26,	63.26,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS	0.00855	AT	(608165.00,	4121765.00,	63.02,	63.02,	1.50)	DC	
S3	1ST	HIGHEST	VALUE	IS	0.00963	AT	(608165.00,	4121735.00,	63.58,	63.58,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS	0.00926	AT	(608180.00,	4121735.00,	63.71,	63.71,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS	0.00915	AT	(608150.00,	4121735.00,	63.25,	63.25,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS	0.00876	AT	(608150.00,	4121720.00,	63.42,	63.42,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS	0.00863	AT	(608165.00,	4121720.00,	63.65,	63.65,	1.50)	DC	
	6TH	HIGHEST	VALUE	IS	0.00832	AT	(608135.00,	4121735.00,	63.21,	63.21,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS	0.00822	AT	(608180.00,	4121750.00,	63.55,	63.55,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS	0.00817	AT	(608135.00,	4121720.00,	63.11,	63.11,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS	0.00800	AT	(608195.00,	4121750.00,	63.26,	63.26,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS	0.00784	AT	(608165.00,	4121750.00,	63.30,	63.30,	1.50)	DC	

* * *	AERMOD	-	VERSION	18081	* * *	* * *	China Mobil	le Interna	tional	(San Jose	e); P#2437	4; A#298	30	* * *	10/	28/19
***	AERMET	-	VERSION	18081	* * *	* * *	15 Standby	Generator	Diesel	Engines	(Revised	- Kohler	Engines)	* * *	11:	54:27
															PAGE	2291

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

*** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS ***

						*	* CON	IC (OF	ОТН	ER	IN N	MICR	OGRAN	MS/M*	*3						* *		
GROUP	ID				AVE	RAG	E CON	IC				F	RECE	PTOR	(XR	, YR	, ZELE	EV,	ZHILL	, ZFI	LAG)	OF	TYPE	NETWORK GRID-ID
				8.9				-		*									-					
S4	1ST	HIGHEST	VALUE	IS			0.010	24	AT	(60316	55.00	Ο,	4121	735.0	0,	63.5	58,	63	.58,	-	1.50)	DC	
	2ND	HIGHEST	VALUE	IS			0.009	83	AT	(60318	30.00	Ο,	4121	735.0	0,	63.7	71,	63	.71,	1	1.50)	DC	
	3RD	HIGHEST	VALUE	IS			0.009	71	AT	(60815	50.00	Ο,	4121	735.0	0,	63.2	25,	63	.25,		1.50)	DC	
	4TH	HIGHEST	VALUE	IS			0.009	22	AT	(60815	50.00	0,	4121	720.0	0,	63.4	42,	63	.42,	1	1.50)	DC	
	5TH	HIGHEST	VALUE	IS			0.009	09	AT	(60816	55.00	Ο,	4121	720.0	10,	63.6	55,	63	.65,		1.50)	DC	
	6TH	HIGHEST	VALUE	IS			0.008	84	AT	(60818	30.00	Ο,	4121	750.0	0,	63.5	55,	63	.55,		1.50)	DC	
	7TH	HIGHEST	VALUE	IS			0.008	82	AT	(60813	35.00	Ο,	4121	735.0	10,	63.2	21,	63	.21,		1.50)	DC	
	8TH	HIGHEST	VALUE	IS			0.008	56	AT	(60819	95.00	Ο,	4121	750.0	10,	63.2	26,	63	.26,		1.50)	DC	
	9TH	HIGHEST	VALUE	IS			0.008	51	AT	(60813	35.00	0,	4121	720.0	10,	63.1	11,	63	.11,		1.50)	DC	
	10TH	HIGHEST	VALUE	IS			0.008	50	AT	(60816	55.00	Ο,	4121	750.0	10,	63.3	30,	63	.30,	2	1.50)	DC	
S5	1ST	HIGHEST	VALUE	IS			0.009	37	AT	(60816	55.00	Ο,	4121	735.0	0,	63.5	58,	63	.58,	:	1.50)	DC	
	2ND	HIGHEST	VALUE	IS			0.009	12	AT	(60815	50.00	Ο,	4121	735.0	10,	63.2	25,	63	.25,		1.50)	DC	
	3RD	HIGHEST	VALUE	IS			0.009	00	AT	(60818	30.00	Ο,	4121	735.0	0,	63.7	71,	63	.71,		1.50)	DC	
	4TH	HIGHEST	VALUE	IS			0.008	61	AT	(60815	50.00	Ο,	4121	720.0	10,	63.4	12,	63	.42,		1.50)	DC	
	5TH	HIGHEST	VALUE	IS			0.008	45	AT	(60816	55.00	Ο,	4121	720.0	10,	63.6	55,	63	.65,		1.50)	DC	
	6TH	HIGHEST	VALUE	IS			0.008	28	AT	(60813	85.00	Ο,	4121	735.0	0,	63.2	21,	63	.21,		1.50)	DC	
	7TH	HIGHEST	VALUE	IS			0.008	00	AT	(60813	85.00	0,	4121	720.0	0,	63.1	11,	63	.11,		1.50)	DC	
	8TH	HIGHEST	VALUE	IS			0.007	85	AT	(60818	30.00	0,	4121	750.0	10,	63.5	55,	63	.55,		1.50)	DC	
	9TH	HIGHEST	VALUE	IS			0.007	70	AT	(60819	95.00	Ο,	4121	750.0	0,	63.2	26,	63	.26,		1.50)	DC	
	10TH	HIGHEST	VALUE	IS			0.007	59	AT	(60819	95.00	0,	4121	735.0	0,	63.6	57,	63	.67,		1.50)	DC	
S6	1ST	HIGHEST	VALUE	IS			0.010	04	AT	(60816	5.00	0,	4121	735.0	0.	63.5	58,	63	.58,	14	1.50)	DC	
	2ND	HIGHEST	VALUE	IS			0.009	73	AT	(60815	50.00	0,	4121	735.0	10,	63.2	25,	63	.25,		1.50)	DC	
	3RD	HIGHEST	VALUE	IS			0.009	62	AT	(60818	30.00	0,	4121	735.0	0,	63.7	71,	63	.71,		1.50)	DC	
	4TH	HIGHEST	VALUE	IS			0.009	08	AT	(60815	50.00	0.	4121	720.0	0.	63.4	12,	63	.42,		1.50)	DC	
	5TH	HIGHEST	VALUE	IS			0.008	96	AT	(60816	55.00	0,	4121	720.0	10,	63.6	55,	63	.65,		1.50)	DC	
	6TH	HIGHEST	VALUE	IS			0.008	82	AT	(60813	85.00	0,	4121	735.0	0,	63.2	21,	63	.21,		1.50)	DC	
	7TH	HIGHEST	VALUE	IS			0.008	49	AT	(60818	30.00	0,	4121	750.0	10,	63.5	55,	63	.55,		1.50)	DC	
	8TH	HIGHEST	VALUE	IS			0.008	36	AT	(60813	85.00	0,	4121	720.0	10,	63.1	11,	63	.11,		1.50)	DC	
	9TH	HIGHEST	VALUE	IS			0.008	28	AT	(60819	95.00	0,	4121	750.0	0,	63.2	26,	63	.26,		1.50)	DC	
	10TH	HIGHEST	VALUE	IS			0.008	21	AT	(60816	55.00	Ο,	4121	750.0	10,	63.3	30,	63	.30,		1.50)	DC	
S7	1ST	HIGHEST	VALUE	IS			0.006	75	AT	(60797	70.00	Ο,	4121	930.0	0,	62.3	37,	62	.37,		1.50)	EC	
	2ND	HIGHEST	VALUE	IS			0.000	30	AT	(60800	00.00	0,	4121	945.0	0,	62.4	17,	63	.42,		1.50)	DC	
	3RD	HIGHEST	VALUE	IS			0.000	27	AT	(60798	35.00	0,	4121	945.0	10,	61.9	94,	61	.94,		1.50)	DC	
	4TH	HIGHEST	VALUE	IS			0.000	08	AT	(60795	55.00	0,	4121	930.0	0,	62.7	71,	62	.71,		1.50)	CC	
	5TH	HIGHEST	VALUE	IS			0.005	85	AT	(60794	10.00	Ο,	4121	915.0	10,	62.6	57,	62	.67,	1	1.50)	EC	
	6TH	HIGHEST	VALUE	IS			0.005	60	AT	(60797	70.00	0,	4121	945.0	10,	62.1	17,	62	.17,		1.50)	EC	
	7TH	HIGHEST	VALUE	IS			0.005	44	AT	(60800	0.00	0,	4121	960.0	10,	62.9	97,	62	.97,		1.50)	EC	
	8TH	HIGHEST	VALUE	IS			0.005	29	AT	(60803	30.00	0,	4121	960.0	10,	63.0	02,	63	.02,		1.50)	EC	
	9TH	HIGHEST	VALUE	IS			0.005	19	AT	(60792	25.00	0,	4121	855.0	10,	62.3	32,	62	.32,		1.50)	EC	
	10TH	HIGHEST	VALUE	IS			0.005	14	AT	(60801	15.00	ο,	4121	960.0	10,	63.0	05,	63	.05,		1.50)	EC	
																								125

* * *	AERMOD	-	VERSION	18081	***	***	China Mobile International (San Jose); P#24374; A#29830	* * *	10/	28/19
***	AERMET	-	VERSION	18081	***	***	15 Standby Generator Diesel Engines (Revised - Kohler Engines)	* * *	11:	54:27
									PAGE	2292

*** MODELOPTS: ReqDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ U*

*** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS ***

**

4

**	CONC	OF	OTHER	TN	MICROGRAMS /M**3
	conc	01	OTHER	113	menoonino/m

CROTTR	TD				AVERACE CONC			P	FCFDTOD		VD	ZELEV	74777	ZELAC)	OF	TYDE	NETWO	DRK	
GROUP					AVERAGE CONC		-		ECEPIOR	(AR,	1R,	ZELEV,	ZHILL,	ZFLAG)		TIPE	GRID-		-
S8	157	HIGHEST	VALUE	IS	0.00596	AT	(608000.00	, 41219	45.00,		62.47,	63.4	2,	1.50)	DC			
	2ND	HIGHEST	VALUE	IS	0.00580	AT	(607985.00	, 41219	45.00,		61.94,	61.9	4,	1.50)	DC			
	3RD	HIGHEST	VALUE	IS	0.00559	AT	(607970.00	, 41219	30.00,		62.37,	62.3	7,	1.50)	DC			
	4TH	HIGHEST	VALUE	IS	0.00552	AT	(608030.00	, 41219	60.00,		63.02,	63.0	2,	1.50)	DC			
	5TH	HIGHEST	VALUE	IS	0.00540	AT	(608000.00	, 41219	60.00,		62.97,	62.9	7,	1.50)	DC			
	6 TH	HIGHEST	VALUE	IS	0.00536	AT	(608015.00	, 41219	60.00,		63.05,	63.0	5,	1.50)	DC			
	7TH	HIGHEST	VALUE	IS	0.00501	AT	(607970.00	, 41219	45.00,		62.17,	62.1	7,	1.50)	DC			
	8TH	HIGHEST	VALUE	IS	0.00498	AT	(608030.00	, 41219	75.00,		63.01,	63.0	1,	1.50)	DC			
	9TH	HIGHEST	VALUE	IS	0.00496	AT	(608045.00	, 41219	75.00,		63.01,	63.0	1,	1.50)	DC			
	10TH	HIGHEST	VALUE	IS	0.00492	AT	(607955.00	, 41219	30.00,		62.71,	62.7	1,	1.50)	DC			
1212121												*							
S10	151	HIGHEST	VALUE	IS	0.00434	AT	(608000.00	, 41219	45.00,		62.47,	63.4	2,	1.50)	DC			
	2NE	HIGHEST	VALUE	IS	0.00430	AT	(607985.00	, 41219	45.00,		61.94,	61.9	4,	1.50)	DC			
	3RD	HIGHEST	VALUE	IS	0.00426	AT	(607970.00	, 41219	30.00,		62.37,	62.3	7,	1.50)	DC			
	4TH	HIGHEST	VALUE	IS	0.00423	AT	(607970.00	, 41219	945.00,		62.17,	62.1	7,	1.50)	DC			
	5TH	HIGHEST	VALUE	IS	0.00407	AT	(607985.00	, 41219	60.00,		61.85,	61.8	5,	1.50)	DC			
	6 TH	HIGHEST	VALUE	IS	0.00407	AT	(607970.00	, 41219	60.00,		61.88,	61.8	8,	1.50)	DC			
	7TH	HIGHEST	VALUE	IS	0.00403	AT	(607955.00	, 41219	945.00,		62.55,	62.5	5,	1.50)	DC			
	8 TH	HIGHEST	VALUE	IS	0.00401	AT	(607955.00	, 41219	30.00,		62.71,	62.7	1,	1.50)	DC			
	9TH	HIGHEST	VALUE	IS	0.00400	AT	(607955.00	, 41219	60.00,		62.20,	62.2	0,	1.50)	DC			
	10TH	HIGHEST	VALUE	IS	0.00397	AT	(608000.00	, 41219	60.00,		62.97,	62.9	7,	1.50)	DC			
S12	151	HIGHEST	VALUE	IS	0.00425	AT	(608000.00	41219	45.00.		62.47.	63.4	2.	1.50)	DC			
	2ND	HIGHEST	VALUE	IS	0.00410	AT	(607985.00	. 41219	45.00.		61.94.	61.9	4.	1.50)	DC			
	3RD	HIGHEST	VALUE	IS	0.00406	AT	(608000.00	41219	60.00.		62.97.	62.9	7.	1.50)	DC			
	4TH	HIGHEST	VALUE	IS	0.00405	AT	i	607985.00	. 41219	60.00.		61.85.	61.8	5.	1.50)	DC			
	5TH	HIGHEST	VALUE	IS	0.00403	AT	C	608015.00	41219	60.00.		63.05.	63.0	5.	1.50)	DC			
	6TH	HIGHEST	VALUE	IS	0.00392	AT	i	607970.00	. 41219	60.00.		61.88.	61.8	8.	1.50)	DC			
	7TH	HIGHEST	VALUE	IS	0.00390	AT	i	607970.00	41219	45.00.		62.17.	62.1	7.	1.50)	DC			
	8TH	HIGHEST	VALUE	IS	0.00390	AT	(608030.00	, 41219	60.00,		63.02,	63.0	2,	1.50)	DC			
	9TH	HIGHEST	VALUE	IS	0.00389	AT	(608000.00	, 41219	75.00,		63.15,	63.1	5,	1.50)	DC			
	10TH	HIGHEST	VALUE	IS	0.00388	AT	(607985.00	, 41219	75.00,		62.43,	62.4	3,	1.50)	DC			
S14	151	HIGHEST	VALUE	IS	0.00520	AT	(608045.00	, 41219	75.00,		63.01,	63.0	1,	1.50)	DC			
	2NL	HIGHEST	VALUE	IS	0.00515	AT	(608060.00	, 41219	75.00,		63.24,	63.2	4,	1.50)	DC			
	3RL	HIGHEST	VALUE	IS	0.00505	AT	(608030.00	, 41219	75.00,		63.01,	63.0	1,	1.50)	DC			
	4 TH	HIGHEST	VALUE	IS	0.00497	AT	(608030.00	, 41219	60.00,		63.02,	63.0	2,	1.50)	DC			
	5TH	HIGHEST	VALUE	IS	0.00486	AT	(608060.00	, 41219	90.00,		62.99,	62.9	9,	1.50)	DC			
	6TH	HIGHEST	VALUE	IS	0.00478	AT	(608015.00	, 41219	60.00,		63.05,	63.0	5,	1.50)	DC			
	7TH	HIGHEST	VALUE	IS	0.00473	AT	(608075.00	, 41219	90.00,		62.94,	62.9	4,	1.50)	DC			
	8TH	HIGHEST	VALUE	IS	0.00472	AT	(608105.00	, 41219	75.00,		63.13,	63.1	з,	1.50)	DC			
	9TH	HIGHEST	VALUE	IS	0.00465	AT	(608015.00	, 41219	75.00,		63.05,	63.0	5,	1.50)	DC			
	10TH	HIGHEST	VALUE	IS	0.00463	AT	(608045.00	, 41219	90.00,		62.99,	62.9	9,	1.50)	DC			

*** AERMOD - VERSION 18081 ***	*** China Mobile International (San Jose); P#24374; A#29830	* * *	10/28/19
*** AERMET - VERSION 18081 ***	*** 15 Standby Generator Diesel Engines (Revised - Kohler Engines)	* * *	11:54:27
			PAGE 2293

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ_U*

*** AERMOD - VERSION 18081 *** *** China Mobile International (San Jose); P#24374; A#29830

*** THE SUMMARY OF MAXIMUM PERIOD (43824 HRS) RESULTS ***

						**	CONC	OF	OTH	ER II	N MIC	CROGRAM	IS/M**	*3				* *		
GROUP 3	ID				AVER	AGE	CONC				REG	CEPTOR	(XR,	, YR,	ZELEV,	ZHILL,	ZFLAG)	OF 7	TYPE	NETWORK GRID-ID
				-			- (- (-)		-											
S9	1ST	HIGHEST	VALUE	IS		0	.00665	AT	(608000	.00.	41219	45.00	Э.	62.47.	63.	42,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS		0	.00627	AT	(607985	.00,	41219	45.00	Σ,	61.94,	61.	94,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS		0	.00626	AT	(607970	.00,	41219	30.00	Ο,	62.37,	62.	37,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS		0	.00610	AT	(608000	.00,	41219	60.00	ο,	62.97,	62.	97,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS		0	.00583	AT	(608030	.00,	41219	60.00	Ο,	63.02,	63.	02,	1.50)	DC	
	6TH	HIGHEST	VALUE	IS		0	.00583	AT	(608015	.00,	41219	60.00	Э,	63.05,	63.	05,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS		0	.00552	AT	(608030	.00,	41219	75.00	Э,	63.01,	63.	01,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS		0	.00550	AT	(607970	.00,	41219	45.00	Э,	62.17,	62.	17,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS		0	.00538	AT	(608045	.00,	41219	75.00	Э,	63.01,	63.	01,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS		0	.00525	AT	(608060	.00,	41219	975.00	Ο,	63.24,	63.	24,	1.50)	DC	
S11	1ST	HIGHEST	VALUE	IS		0	.00649	AT	(608000	.00,	41219	45.00	Э,	62.47,	63.	42,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS		0	.00646	AT	(608000	.00,	41219	60.00	Ο,	62.37,	62.	97,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS		0	.00621	AT	(608030	.00,	41219	60.00	Э,	63.32,	63.	02,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS		0	.00621	AT	(608045	.00,	41219	75.00	Э,	63.01,	63.	01,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS		0	.00620	AT	(608030	.00,	41219	75.00	Э,	63.)1,	63.	01,	1.50)	DC	
	6TH	HIGHEST	VALUE	IS		0	.00617	AT	(608015	.00,	41219	960.00	Э,	63.35,	63.	05,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS		0	.00602	AT	(608015	.00,	41219	975.00	Э,	63.35,	63.	05,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS		0	.00600	AT	(608060	.00,	41219	75.00	Э,	63.24,	63.	24,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS		0	.00599	AT	(607985	.00,	41219	945.00	Ο,	61.94,	61.	94,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS		0	.00548	AT	(607970	.00,	41219	30.00	Э,	62.37,	62.	37,	1.50)	DC	
S13	1ST	HIGHEST	VALUE	IS		0	.00424	AT	(608000	.00,	41219	945.00	Э,	62.47,	63.	42,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS		0	.00409	AT	(607985	.00,	41219	45.00	Э,	61.94,	61.	94,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS		0	.00404	AT	(608000	.00,	41219	60.00	Э,	62.97,	62.	97,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS		0	.00403	AT	(607985	.00,	41219	60.00	Ο,	61.35,	61.	85,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS		0	.00402	AT	(608015	.00,	41219	960.00	Э,	63.35,	63.	05,	1.50)	DC	
	6TH	HIGHEST	VALUE	IS		0	.00391	AT	(607970	.00,	41219	960.00	Э,	61.38,	61.	88,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS		0	.00390	AT	(608030	.00,	41219	960.00	О,	63.32,	63.	02,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS		0	.00390	AT	(607970	.00,	41219	945.00	Э,	62.17,	62.	17,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS		0	.00386	AT	(608000	.00,	41219	975.00	Э,	63.15,	63.	15,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS		0	.00386	AT	(607985	.00,	41219	975.00	Ο,	62.13,	62.	43,	1.50)	DC	
S15	1ST	HIGHEST	VALUE	IS		0	.00605	AT	(608030	.00,	41219	60.00	Ο,	63.02,	63.	02,	1.50)	DC	
	2ND	HIGHEST	VALUE	IS		0	.00591	AT	(608015	.00,	41219	960.00	Э,	63.35,	63.	05,	1.50)	DC	
	3RD	HIGHEST	VALUE	IS		0	.00581	AT	(608000	.00,	41219	960.00	О,	62.97,	62.	97,	1.50)	DC	
	4TH	HIGHEST	VALUE	IS		0	.00576	AT	(607985	.00,	41219	960.00	Ο,	61.35,	61.	85,	1.50)	DC	
	5TH	HIGHEST	VALUE	IS		0	.00576	AT	(608030	.00,	41219	975.00	с,	63.31,	63.	01,	1.50)	DC	
	6TH	HIGHEST	VALUE	IS		0	.00570	AT	(608045	.00,	41219	75.00	Ο,	63.31,	63.	01,	1.50)	DC	
	7TH	HIGHEST	VALUE	IS		0	.00556	AT	(608015	.00,	41219	975.00	Ο,	63.35,	63.	05,	1.50)	DC	
	8TH	HIGHEST	VALUE	IS		0	.00556	AT	(607985	.00,	41219	945.00	Ο,	61.94,	61.	94,	1.50)	DC	
	9TH	HIGHEST	VALUE	IS		0	.00550	AT	(608000	.00,	41219	945.00	Ο,	62.47,	63.	42,	1.50)	DC	
	10TH	HIGHEST	VALUE	IS		0	.00548	AT	(608060	.00,	41219	75.00	Ο,	63.24,	63.	24,	1.50)	EC	

*** RECEPTOR TYPES: GC = GRIDCART

GP = GRIDPOLR

DC = DISCCART

DP = DISCPOLR

* * *	AERMOD	-	VERSION	18081	* * *	***	Chi	na Mobil	le Internat	tional	(San Jose); P#2437	4	; A#2983	30
***	AERMET	-	VERSION	18081	* * *	* * *	15	Standby	Generator	Diesel	Engines	(Revised	-	Kohler	Engines

*** 10/28/19 *** 11:54:27 PAGE 2294

.

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL NODRYDPLT NOWETDPLT RURAL ADJ U*

*** Message Summary : AERMOD Model Execution ***

----- Summary of Total Messages -----

Α	Total	of	0	Fatal Error Message(s)
Α	Total	of	2	Warning Message(s)

- A Total of 930 Informational Message(s)
- A Total of 43824 Hours Were Processed
- A Total of 530 Calm Hours Identified
- A Total of 400 Missing Hours Identified (0.91 Percent)

******* FATAL ERROR MESSAGES *******

*** NONE ***

****** WARNING MESSAGES ******

ME W186	11324	MEOPEN:	THRESH	1MIN 1	-min	ASOS W	ind	speed	threshold	l used
ME W187	11324	MEOPEN:	ADJ_U*	Option	for	Stable	Low	Winds	used in	AERMET

**** AERMOD Finishes Successfully ***

0.50

Land Use Determination China Mobile International, Plant #24374 Application #29830

UTM Easting (meters): 608127 UTM Northing (meters): 4121779 UTM Zone: 10 Datum: NAD83 Study Radius for surface roughness (km): 3.0

Land	Cover	Counts:	Surface	Roughness	
------	-------	---------	---------	-----------	--

0	Missing, Out-of-Bounds, or Undefined:	0			
11	Open Water:	252			
12	Perennial Ice/Snow:	0			
21	Low Intensity Residential:	10090	50%	5045	
22	High Intensity Residential:	24	100%	24	
23	Commercial/Industrial/Transp:	1552	100%	1552	
31	Bare Rock/Sand/Clay:	115			
32	Quarries/Strip Mines/Gravel:	1			
33	Transitional:	0			
41	Deciduous Forest:	273			
42	Evergreen Forest:	659			
43	Mixed Forest:	856			
51	Shrubland:	1739			
61	Orchards/Vineyard/Other:	84			
71	Grasslands/Herbaceous:	10154			
81	Pasture/Hay:	1754			
82	Row Crops:	2662			
83	Small Grains:	0			
84	Fallow:	0			
85	Urban/Recreational Grasses:	1193			
91	Woody Wetlands:	0			
92	Emergent Herbaceous Wetlands:	6			
	Total:	31414		6621	

Urban % = 21%

Urban %

