DOCKETED	
Docket Number:	19-AB-2127
Project Title:	Implementation of AB 2127 Electric Vehicle Charging Infrastructure Assessments
TN #:	236574
Document Title:	Presentation - AB 2127 - 2-5-2021
Description:	N/A
Filer:	Spencer Kelley
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	2/2/2021 1:27:04 PM
Docketed Date:	2/2/2021

AB 2127 Electric Vehicle Charging Infrastructure Assessment

Lead Commissioner Workshop February 5, 2021, 1:00-3:30 p.m.

Opening Remarks

Commissioner Patty Monahan

- 1:00: **Opening Remarks**, Commissioner Patty Monahan
- 1:10: EVSE Deployment and Grid Evaluation, Micah Wofford
- 1:25: Vehicle-Grid Integration, Noel Crisostomo
- 1:40: Connector and Communication Standards, Jeffrey Lu
- 2:00: Questions and Answers
- 2:30: Break
- 2:35: Tailoring Charging Solutions to Local Constraints, Raja Ramesh
- 2:45: Workforce Training and Development, Larry Rillera
- 3:00: Questions and Answers
- 3:25: Closing Remarks, Commissioner Patty Monahan
- 3:30: Adjourn

Questions & Answers

Please raise your hand and the moderator will unmute you.

Thank you! Questions or comments?

Contacts:

Micah.Wofford@energy.ca.gov Noel.Crisostomo@energy.ca.gov Jeffrey.Lu@energy.ca.gov Raja.Ramesh@energy.ca.gov Larry.Rillera@energy.ca.gov

Webpage:

https://www.energy.ca.gov/programs-and-topics/programs/electricvehicle-charging-infrastructure-assessment-ab-2127

EVSE Deployment and Grid Evaluation (EDGE) Tool

Micah Wofford

Associate Energy Specialist

- Context
 - Background and Purpose
 - Objectives
- Design
 - Data sources
 - Structure
 - Analytical Relationships
 - Allocation Methodology
- Results
 - Statewide Capacity Analysis
 - Distribution of IOU Circuit Capacities
 - EVI-RoadTrip Case Study
- Conclusion
 - Limitations and Future Work
 - Need for stakeholder engagement

Background and Purpose

Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment

Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030

Gavin Newsom, Governor January 2021 | CEC-600-2021-001

- AB 2127 Assess infrastructure necessary to support 5 million ZEVs on CA roads by 2030
- Need to identify geographic locations to sufficiently, economically host charging stations
- "Early warning system"; focus infrastructure deployments and investment planning
- Iterative process which requires ongoing analysis

Front cover of AB 2127 report

- Cyclic deployment process flow infrastructure for all
- Objectives of the analysis:
 - Minimize/mitigate grid impact
 - Achieve air quality improvement goals
 - Meet EV travel demand
 - Equitable deployment
- EDGE domains:
 - Grid impact
 - Air quality
 - Travel demand
 - Equity considerations

- EVI-Pro and HEVI-LOAD infrastructure quantification results
 - Foundation on which to layer other analyses and data
- G Grid impact
 - Regional distribution grid hosting capacity Grid Needs Assessment (GNA), Integration Capacity Analysis (ICA)
- **A** Air quality
 - Energy Assessment Division (EAD) GHG emission factors
- T Travel demand
 - Statewide vehicle stock EAD Zero-Emission Vehicle and Infrastructure Statistics
- E Equity considerations
 - Disproportionality analysis SB 1000 assessment
 - Auto ownership burden Location Affordability Index

Output Domains Input Data Processing T – Travel **G** – A – Air E --**Spatial Unit** Equity Grid quality demand Quantitative **Block Group** \checkmark \checkmark Models Census Tract \checkmark \checkmark Grid impact **Traffic Analysis** EDGE Air quality \checkmark Zone (TAZ) Travel demand \checkmark \checkmark \checkmark \checkmark County Equity Air Quality \checkmark District considerations **Utility Territory** \checkmark

Analytical Relationships

Flow chart of related analyses

Allocation Methodology

Example EDGE output

Note: Charger data sourced from AFDC, not actual CEC analysis results

Allocation Methodology (cont'd)

Example EDGE output

Note: Charger data sourced from AFDC, not actual CEC analysis results

Allocation Methodology (cont'd)

Example EDGE output

Note: Charger data sourced from AFDC, not actual CEC analysis results

Results: Statewide Capacity Analysis

Limitations and Future Work

- Analytical Limitations
 - Gaps in available utility data
 - Currently no temporal component
 - Utility data integrity
 - Confidentiality concerns
- What is next for EDGE?
 - Include Grid Needs Assessment (GNA) and Distribution Deferral Opportunity Report (DDOR) datasets into grid impact analysis
 - Explore other domains
 - Develop use cases

Stakeholder Engagement

To improve upon EDGE's development, we welcome stakeholder input:

- Additional data sources?
 - Travel volumes between origins and destinations
 - Grid capacity estimation and validation
- Use cases:
 - Smart charging
 - Air quality attainment
 - Carbon emissions intensity
 - Equitable deployment of infrastructure
- User interfaces what features would be most user friendly?
- Working with utilities
 - Using the proper data for this work
 - Securing grid infrastructure data

Vehicle-Grid Integration

Noel Crisostomo Air Pollution Specialist

Charging Infrastructure Load Profiles

- EVI-Pro 2 Business As Usual, 2030 and 2035
- EVI-Pro 2 Alternative Futures, 2030
- EVI-RoadTrip, 2035
- HEVI-LOAD, 2020-2030
- Integration Objectives and Measures
 - Utility rate and grid management, via smart vehicles & equipment
 - Energy resiliency and new applications, via bidirectional charging

Residential Level 1 Residential Level 2 Work Level 2 Public Level 2 Public DCFC

		Core Forecast Scenarios	;
Values for Year 2030	Low (1.9M ZEVs)	Baseline (5M ZEVs)	High (7.9M ZEVs)
Business as Usual	~375k chargers	~1M chargers	~1.5M chargers
Unconstrained No TOU Participation	N/A	~1M chargers	N/A
Gas Station Model 40% w/ residential access	N/A	~1M + 14.3k chargers	N/A
Level 1 Charging Enabled at work & public	N/A	~1M + 251.8k chargers	N/A
PHEV eVMT Maximization Charge at every stop	N/A	~1M + 111.3k chargers	N/A

EVI-Pro 2 Alternative Future Unconstrained, 2030

Residential Level 1 Residential Level 2 Work Level 2 Public Level 2 Public DCFC

Residential L1 Residential L2 Work L2 Public L2 Public DCFC

Public DCFC

 Work Level 1
 Public Level 1

Residential Level 1 Residential Level 2 Work Level 2 Public Level 2 Public DCFC

EVI-RoadTrip, 2035 Surges Soak the Sun; Seek Storage

charging pattern by vehicle types (results_HCD_MSS_2020)

Smart Charging for Reliability, Cost, and Greenhouse Gas Savings

Integrate Renewable Energy

- August 27, 2020: 2/3 of portable gasoline generators <18 kW noted online at Home Depot sold out
- September 2-9, 2020: -37% in CAISO solar generation (v. 2019) due to wildfire smoke
- Need zero-emission alternatives during emergencies that are also extensible for other vehicle-grid integration benefits

Home **Bidirectional Charging: Vehicle-to-**Building Grid

2.0 KILOWATTS

2.4 KILOWATTS Standard on PowerBoost" / Outlets in bed: Dual 120V 20A 85-hour maximum run time on a full tank' ► fii FRAMIN **BUILDING A DECK** CEMENT/MASONRY **NEIGHBORHOOD** ONE OPERATOR CREW DRIVE-IN CREW TOOL WATTAGE WATTAGE TOOL WATTAGE 8-inch Compound Jackhammer. Loudspeakers 1100 2-inch Con Miter Saw **Compact Concrete Circular Sa** 1/2 hp Air Compressor ... 1.000 Projecto Battery Charger Gang Batte Hammer D 1/2 hp Air C SIMULTANEOUS 2,400W SIMULTANEOUS 2,300W SIMULTANEOUS 2,400W Area Flood SIMULTAN USE TOTA

7.2 KILOWATTS

	ſ		R	ð		
A HOUSE	MOBILE N CREW	MOBILE METAL SHOP		DAY AT THE ORV PARK		
WATTAGE	TOOL	WATTAGE	TOOL	WATT		
1.800 1.000 7 Charger1.200 11.200 mpressor1.000 1ghts800	120V Plasma 120V TiG Wel Chop Saw 1.5 hp Air Con Angle Grinde Work Light	Cutter 1,800 der1,700 	Two Electric Dirt Bikes Electric Griddle Portable Air Compressor	4.8 1.4		
^{US} 7,000W	SIMULTANEO USE TOTAL	^{US} 7,200W	SIMULTANEOUS USE TOTAL	7,200		

Vehicle-to-Grid Recommendations

- Support bidirectional charging by confirming paths for inverters designed for mobile energy storage
- Possibly leverage the CEC's Solar Equipment Lists
- Streamline interconnection pathways that accommodate AC and DC discharge

- Unlock greater revenue generating opportunities with bidirectional technologies
 - Alleviate local congestion
 - Switching from grid to V2B during extreme demand
- More to come in the 2021 Vehicle-Grid Integration Roadmap Update...

Charger Connectors and Communication

Jeffrey Lu

Air Pollution Specialist

Lots of siloes Multiple **connectors** Physical **keycards** Lots of **apps**

At best, **not maximally convenient** At worst, **confusing and discouraging**

I can use any charger, right ? Can't I just get a universal adapter on Amazon ?

> All I need to do is plug in ? Wait, do I have to download another app ?

Multiple Fast Charge Connectors

Similar primary purpose, three different implementations

Fragmentation will necessitate even larger charger network size
More money, more time, no tangible climate or air benefits!

Source: September 2020 analysis by CARB

By MY 2022, 51 of 59 EV models available in California will use CCS

Align technical requirements with market and CARB rulemaking

Emerging MD/HD Standardization

- Early adopters complain of widespread incompatibility
- Some repurposing of light-duty connectors (such as CCS)
- Standards for different form factors
 - Conductive Megawatt Charging System
 - Pantograph J3105
 - Wireless J2954

Prioritize chargers which conform to existing and pending standards

LOW-LEVEL COMMUNICATION

- Widely used today
- No authentication, billing, departure time, or grid signals
- Driver responsible for **baseline knowledge** and **manual inputs**

HIGH-LEVEL COMMUNICATION

- Growing use of **ISO 15118**
- Broad market direction
- Plug and Charge in near term
 - Supports smart, bidirectional, wireless charging too

Prioritize charger hardware readiness for ISO 15118 communication

→ Widespread VGI is predicated on the ability of vehicles and/or chargers to receive information about driver needs, electricity rates, power availability, demand response, carbon intensity, and so forth

- Standardizing around ISO 15118 maximizes VGI opportunities
- ISO 15118 can also **complement** other technical implementations!

Prioritize ISO 15118-ready chargers for all drivers in all communities

Networked Chargers with OCPP Maximize Choice and Management Features

Open Charge Point Protocol avoids lock-in and enables greater choice

- Site host can pick mix of chargers to use with their management solution
- Site host can pick management solution to use with their mix of chargers

Networking enables rich management features

- Access and priority
- Billing and payment
- Reservations
- Grid signals

Prioritize OCPP-compliant chargers

Questions & Answers

Please raise your hand and the moderator will unmute you.

Break

Return at 2:35

Tailoring Charging Solutions to Local Constraints

Raja Ramesh

Air Pollution Specialist

How do we ensure charger deployment is equitable and effective?

- Greenlining Institute's Participatory Budgeting
- <u>CARB's Community Outreach Guidance</u>
- <u>CEC's EV Ready Community Blueprints</u>

cleaner transportation for all communities

- Building Codes
- Streamlining Permitting
- Public Funding

	Streamlined Jurisdictions (Numbers of cities and counties)	
Streamlined: 123	Streamlining in Progress: 155	Not Streamlined: 262

BESTFIT Phase 1 Applications

Workforce Training and Development

Larry Rillera Air Pollution Specialist

EV Chargers and Workforce

<u>1.5 million chargers are needed</u> to support the nearly 8 million ZEVs required under the new Executive Order.

Photo: KIGT Inc.

Clean Transportation Program: Workforce Portfolio

Workforce Portfolio

- Approximately \$35 M invested
- State Workforce Partners
- Over 20,000 trainees: transit agencies, municipal fleets, independent repair shops, car dealerships, freight sector, schools, Electric Vehicle Infrastructure Training Program, and charger infrastructure contractors
- Equity

Manufacturing Portfolio

- Approximately \$55 M invested
- About 14,000 jobs across 34 ZEV-related companies
- Electric vehicle infrastructure manufacturers

FREEWiRE

-chargepoin+.

- Develop workforce to support charging infrastructure deployment
- The State must seek to align PEV charging with renewable energy generation
- Growing electrification of the medium- and heavy-duty sectors

• Consider whether any incremental workforce training is needed to support the scale of transportation electrification infrastructure installation

Photos: KIGT Inc.

Project Milestone Activities

Site Design / Engineering	Project Review/ Approval	Demolition / Construction	Installation	Commissioning	Operation	Maintenance
			Inspection			

Key Occupations

Private Engineer	Municipal Engineer	Project Contractor	Construction Apprentice	Electrician	Electrician Apprentice
Technician	Environmental Planner	Land Use Planner	Building Code Enforcement	Utility Engineer	Inspector

Workforce Considerations

- Equity: Geographic, Population, Economic, Environmental
- AB 841: Electric Vehicle Infrastructure Training Project
- CARB Clean Transportation Regulations
- Putting California on the High Road: A Jobs and Climate Action Plan for 2030
- Just Transition Roadmap
- Market and Technology Advancements

Photo: KIGT Inc.

Questions & Answers

Please raise your hand and the moderator will unmute you.

Submit Comments to Docket 19-AB-2127

Electronic Commenting System

Visit: https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber=19-AB-2127

Comment by E-mail

E-mail: <u>docket@energy.ca.gov</u>

Subject Line: "Workshop on Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment"

All comments due by 5:00 pm on February 26, 2021

* If answering or providing comments on a specific matter included in this presentation, please reference the workshop session (date) and slide number.