DOCKETED	
Docket Number:	19-BSTD-07
Project Title:	Photovoltaic System Requirement Determination for City of Needles
TN \#:	236112
Document Title:	Staff Review and Analysis for City of Needles Application for a Solar Photovoltaic Determination
Description:	N/A
Filer:	Cheng Moua
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Dubmission Date:	$12 / 23 / 2020$ 12:35:35 PM
Docketed Date:	$12 / 23 / 2020$

California Energy Commission
STAFF PAPER

Staff Review and Analysis for City of Needles' Application for a Solar Photovoltaic Determination

Cheng Moua, PE Author

Building Standards Office Efficiency Division

DISCLAIMER

Staff members of the California Energy Commission prepared this report. As such, it does not necessarily represent the views of the Energy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Energy Commission nor has the Commission passed upon the accuracy or adequacy of the information in this report.

Abstract

The California Energy Commission (CEC) adopted amendments to the California Building Standards Code and specifically the Administrative Code and the 2019 Energy Code (California Code of Regulations, Title 24, Part 1, Chapter 10, and Part 6) that went into effect January 1, 2020. These amendments included provisions requiring the installation of solar photovoltaic (PV) systems on newly constructed, low-rise residential buildings, in section 150.1(c)14 of the Energy Code.

As part of the adoption, Administrative Code section 10-109(k), Photovoltaic System Requirement Determination, states, "The Commission may, upon written application or its own motion, determine that the photovoltaic requirements in [section] 150.1(c)14 shall not apply, if the Commission finds that the implementation of public agency rules regarding utility system costs and revenue requirements, compensation for customer-owned generation, or interconnection fees, causes the Commission's cost effectiveness conclusions, made pursuant to Public Resources Code 25402(b)(3), to not hold for particular buildings."

The City of Needles submitted an application for a determination regarding whether the solar PV system requirements should apply to homes in its jurisdiction. CEC staff has reviewed the application and found it complete. Staff has performed a cost-effectiveness analysis based on the public agency rules adopted by the City of Needles and recommends approval of the application. This staff report documents the analysis completed in making the recommendation.

Keywords: Solar photovoltaic determination, 10-109(k), solar PV requirement, solar, PV, Building Energy Efficiency Standards.

Please use the following citation for this report:
Moua, Cheng. 2020. Staff Review and Analysis for City of Needles' Application for a Solar Photovoltaic Determination. California Energy Commission. Publication Number: CEC-400-2020-014.

TABLE OF CONTENTS

Page
Abstract i
Table of Contents iii
List of Figures iii
List of Equations iii
Executive Summary. 1
Background. 1
Recommendation 2
CHAPTER 1: City of Needles 3
Summary of Needles' Application 3
CHAPTER 2: Staff Analysis 5
Staff Analysis of Needles' Application. 5
Life Cycle Cost-Effectiveness Results 11
CHAPTER 3: Conclusion 13
Staff Recommendation 13
GLOSSARY 14
APPENDIX A: Life-Cycle Cost-Effectiveness Analysis
APPENDIX B: Energy Cost Savings Analysis
APPENDIX C: Needles PV Determination Application
APPENDIX D: Needles Financial Management Plan D
APPENDIX E: Needles Historical Rate Schedules E
APPENDIX F: Resources F
LIST OF TABLES
Page
Table 1: Weighted Average PV Size and Production for Prototype Homes 7
Table 2: 2021-2030 Energy Cost Savings 10
Table 3: Cost-Effectiveness Results 12
LIST OF EQUATIONS
Page
Equation 1: Benefit-to-Cost Ratio 6
Equation 2: Present Value. 11

EXECUTIVE SUMMARY

Background

On May 9, 2018, the California Energy Commission (CEC) adopted the 2019 Energy Code, which includes solar photovoltaic requirements for all newly constructed low-rise residential buildings in section 150.1(c)14. Low-rise residential buildings are defined as single-family houses, duplexes, and townhomes, as well as multifamily buildings that are three stories or fewer. These requirements, along with the rest of the 2019 Energy Code, went into effect January 1, 2020.

As part of the adoption, section 10-109(k), Photovoltaic System Requirement Determination, states, "The Commission may, upon written application or its own motion, determine that the photovoltaic requirements in §150.1(c)14 shall not apply, if the Commission finds that the implementation of public agency rules regarding utility system costs and revenue requirements, compensation for customer-owned generation, or interconnection fees, causes the Commission's cost effectiveness conclusions, made pursuant to Public Resources Code 25402(b)(3), to not hold for particular buildings."

The regulations require that an applicant must provide information on the differences between public agency rules and Energy Commission's cost-effectiveness determinations and the way in which these differences cause the statewide determination to not be applicable within a jurisdiction or territory, including any information requested by the Commission to enable full review of the application. Applications from public agencies must be submitted to the Commission only after public review within the jurisdiction of the agency or service area of the utility. The regulations do not require applicants to submit a cost-effectiveness analysis.

The City of Needles (Needles) submitted an application to the Energy Commission on August 14, 2019, to determine, as specified under section 10-109(k), whether the solar PV system requirements should apply to newly constructed, low-rise residential buildings in its jurisdiction. Staff reviewed the Needles application and requested additional information. Needles conducted an electric rate plan study and submitted that to the Commission on July 16, 2020. Staff then determined that the application was complete and included sufficient information for staff to make a recommendation.

Recommendation

Staff reviewed the Needles application and the supplemental electric rate plan study. Based on all the information received, staff performed a life-cycle cost-effectiveness analysis to determine if Needles' public agency rules would cause solar PV not to be cost-effective in its jurisdiction. Staff found that applying Needles' residential rates and net-energy-metering rules for the analysis resulted in solar PV not being cost-effective. The results showed that the cost savings generated from having solar PV were less than the solar PV system cost, a benefit-to-cost ratio of less than 1.0.

Based on the analysis presented, staff has determined that Needles' rules regarding residential rates and compensation for customer-owned generation cause the Commission's cost-effectiveness conclusion for solar PV systems not to hold.

CHAPTER 1: City of Needles

Summary of City of Needles' Application

Needles is a small community of roughly 5,000 residents in eastern San Bernardino County, near the borders of Nevada and Arizona. The City of Needles provides electric service to its residents through Needles Public Utility Authority (NPUA).

NPUA structures its electric rates based on the season and customer consumption. A large portion of its electricity is from hydroelectric power. NPUA electric rates vary slightly year-to-year and include a winter "hydro" rate, a winter "over hydro" rate, a summer "hydro" rate, and a summer "over hydro" rate, with a hydro allotment specified for each season.

As an example, for the current rate schedule, the winter hydro allotment is 405 kilowatt-hours (kWh), and the summer hydro allotment is 758 kWh per monthly billing period. During the winter months, customers are charged a "hydro" rate of $\$ 0.0636$ per kWh for electric consumption up to 405 kWh and an "over hydro" rate of $\$ 0.0872$ per kWh for any electric consumption above 405 kWh . During the summer months, customers are charged a "hydro" rate of $\$ 0.0594$ per kWh for electric consumption up to 758 kWh and an "over hydro" rate of $\$ 0.0872$ per kWh for any electric consumption above 758 kWh. (See Appendix C, Residential Energy Rate Schedules)
For customers with solar PV, NPUA's net-energy-metering (NEM) rules allow electricity generation from PV systems installed on customers' homes to be valued at these same rates. Any net-monthly consumption of electricity is calculated according to the terms of the rate schedule. If a customer is a net generator over a billing period, the net kWh generated is valued at the same rate NPUA would charge for the baseline quantity of electricity during that billing period ("hydro" rate). If the number of kWh generated exceeds the baseline quantity, the excess is valued at the same rate as NPUA would charge for electricity over the baseline quantity during the billing period ("over hydro" rate). (See Appendix C, Photovoltaic Interconnection Agreement)
On August 14, 2019, Needles submitted an application identifying that NPUA residential energy rates are lower than the energy rates used by the California Energy Commission (CEC) when determining cost-effectiveness of solar PV system requirements. Moreover, the 2019 residential solar PV requirements are not cost effective when the NPUA rates are used. Needles also proposed that NPUA energy rates escalate at a lower rate than the 2.7 percent that the CEC used for its cost-effectiveness determination.

Needles' application includes:

- A cover letter that summarizes the proposal.
- A residential energy rate schedule.
- The NPUA electric rate calculation template.
- The NPUA PV interconnection agreement.
- The signed resolution requesting a PV requirement determination.

Needles conducted a public hearing on August 13, 2019 and approved the decision to seek a determination from the CEC under Title 24, Part 1, section 10-109(k).
Staff made the application available for comment to interested parties by posting it on CEC's website. ${ }^{1}$ The application was docketed (19-BSTD-07) for a 60-day public comment period, which concluded November 19, 2019.

In addition, staff requested that Needles provide information that supports determining reasonable escalation for NPUA energy rates. Needles responded by submitting 10 years of historical rate schedule data and hiring a consultant to perform a financial management plan that analyzes the electric cost of service for its utility through 2030. This financial management plan that includes energy rate projection was completed and approved at a public hearing on July 14, 2020. Needles submitted it to the CEC shortly after. (See Appendix D, Needles Financial Management Plan)

Needles' additional information considered:

- Needles Financial Management Plan for Energy Rate Projection.
- 10 years of historical rate schedule data.

[^0]
CHAPTER 2: Staff Analysis

Staff Analysis of the Needles Application

Development of the new solar PV requirement for newly constructed low-rise homes for the 2019 Energy Code relied largely on two main sources to develop technical information and determine cost effectiveness:

- 2019 Time Dependent Valuation Methodology Report²
- Measure Proposal Rooftop Solar PV Systems ${ }^{3}$

These reports describe the CEC's life-cycle cost method used to evaluate proposed changes to the 2019 Energy Code and, specifically, the energy cost-savings method used for determining the cost-effectiveness of the solar PV requirement. CEC staff used the same life-cycle cost approach to determine the cost-effectiveness of solar PV systems subject to the public agency rules adopted by Needles to establish residential rates and solar PV compensation.

Staff developed spreadsheets to perform calculations for the Needles application.

2 California Energy Commission. February 2017. Time Dependent Valuation of Energy for Developing Building Efficiency Standards: 2019 Time Dependent Valuation (TDV) Data Sources and Inputs. https://efiling.energy.ca.gov/getdocument.aspx?tn=216062.

3 California Energy Commission. September 2017. Building Energy Efficiency Measure Proposal to the California Energy Commission for the 2019 Update to the Title 24 Part 6 Building Energy Efficiency Standards Rooftop Solar PV System. https://efiling.energy.ca.gov/GetDocument.aspx?tn=222201\&DocumentContentId=2737.1

Life-Cycle Cost-Effectiveness Determination

Staff evaluated whether implementing Needles' rules would cause the cost-effectiveness of solar PV not to hold. Staff used Needles' current residential rates, approved future residential rates through 2030, NEM compensation rules, California Building Energy Code Compliance software (CBECC-Res 2019) runs, and the inputs described below to evaluate cost-effectiveness.

A measure is cost-effective if the benefit-to-cost ratio is greater than 1.0. The ratio is calculated by dividing the total present value of the life-cycle cost benefits by the present value of the total incremental costs. Specific to the solar PV measure, this ratio would be the present value of cost savings divided by the present value of the PV system costs.

Equation 1: Benefit-to-Cost Ratio

$$
\text { Benefit-to-Cost Ratio }=\frac{\text { Present Value of Cost Savings }}{\text { Present Value of PV System Costs }}
$$

Calculating PV Size and Annual Production

The 2019 Energy Code requires a solar PV system that generates enough electricity to match the annual electricity consumption needed by a mixed-fuel, low-rise home complying with the energy efficiency requirements of the 2019 Energy Code. The minimum solar PV size and the annual generation applicable to a given building are able to be calculated using CBECC-Res 2019, which is an open-source software program for demonstrating compliance with the 2019 Energy Code when using the performance approach. The National Renewable Energy Laboratory (NREL) algorithms underlying the PV Watts program are installed in CBECC-Res for PV system analysis. CBECC-Res establishes energy budget requirements, including PV system size requirements.

To determine the PV size for the life-cycle cost calculation, staff used a weighted average from CBECC-Res runs for the CEC's two low-rise, residential, single-family prototype homes. These homes met all standard design requirements, including:

Energy efficiency features.

- High-performance attic (certain climates): R19 below deck
- High-performance walls (certain climates): 0.043 U-factor wall
- Quality insulation inspection (QII)
- High-performance windows: U-factor 0.30 , SHGC 0.23 for cooling climates and 0.50 for mild climates
- Doors: U-factor 0.20
- 2016 American Society of Heating, Refrigeration and Air-Conditioning

Engineers (ASHRAE) 62.2 ventilation rates. Heating, ventilation and air-
conditioning (HVAC) fan efficacy: 0.40 watts per cubic feet per minute (W/cfm)

- Federal appliance standard efficiency for furnaces, air conditioners, and water heaters
Solar PV system features.
- 170° south-facing orientation
- $5 / 12$ pitch roof
- $\quad 96$ percent inverter efficiency
- Standard module type
- No shading

Climate Zone

Needles is located entirely in Climate Zone 15. Using the above methodology an average minimum PV size of 5.42 kilowatts is required in Climate Zone 15. This system produces 9,072 kWh per year.

Table 1: Weighted Average PV Size and Production for Prototype Homes (CBECC)

	2,100 Square Foot Prototype (45%)	2,700 Square Foot Prototype (55\%)		Weighted Average
PV Size	4.91	5.84	$\mathbf{5 . 4 2}$	
Annual Production	8,223	9,766	$\mathbf{9 , 0 7 2}$	

Source: California Energy Commission

Inputs Used for Life-Cycle Cost-Effectiveness Calculation

Inputs for the following parameters in the life-cycle cost calculation described in the following sections are consistent with those used to determine the cost-effectiveness of the solar PV system measure proposal or determined by Needles' public agency rules.

Life-Cycle Analysis Period

The life-cycle analysis period of 30 years is consistent with the 2019 TDV Methodology Report. ${ }^{4}$ All cost-effectiveness analyses completed for the 2019 Energy Code low-rise residential requirements were used for this analysis period.

PV Cost per Watt

The statewide PV cost-per-watt input of $\$ 3.08$ per watt was obtained from the Measure Proposal Rooftop Solar PV Systems ${ }^{5}$ report. In 2016, the incremental first cost was determined to be $\$ 2.93$ per watt according to NREL's estimate of the first quarter 2016 cost of a 5.6 kilowatt residential solar PV system installed in California. This cost includes the PV module, inverter, structural balance of system, electrical balance of system, supply chain costs, sales tax, installation labor, permitting, inspection, interconnection, customer acquisition, general and administrative overhead, and net profit to the installer.
Applying inflation rates and NREL cost reduction forecast assumptions, the incremental cost was estimated to be $\$ 2.63$ per watt in 2020 dollars. A lifetime incremental maintenance cost was then added to account for periodic equipment maintenance and two inverter replacements over 30 years. This addition resulted in the solar PV system cost of $\$ 3.08$ per watt in 2020 dollars.
Complete information regarding PV cost per watt can be found in Chapter 5 of the Measure Proposal Rooftop Solar PV Systems ${ }^{6}$ report.

4 Ibid.
5 Ibid.
6 Ibid.

Energy Escalation

An energy escalation input of 2.7 percent was specified in the 2019 TDV Methodology Report' and used to evaluate code changes proposed for the 2019 Energy Code. The report references the 2015 Integrated Energy Policy Report (IEPR), which calculates average residential rates for Pacific Gas and Electric, Southern California Edison, San Diego Gas \& Electric, Los Angeles Department of Water and Power, and Sacramento Municipal Utility District through 2026. All cost-effectiveness analyses completed for 2019 Energy Code low-rise residential requirements therefore used a compound average growth rate of 2.7 percent per year nominal increase for forecasting residential rates.

Needles proposed that its energy escalation rate is lower than the 2.7 percent statewide escalation rate used to determine the cost-effectiveness of the PV measure. Historically, its energy rates have been low-cost and remained flat over the last 10 years. Needles hired a consultant to prepare a detailed financial management plan that analyzes the electric cost of service for its utility through 2030. This financial management plan that includes energy rate schedules through 2030 was completed and approved at a public hearing on July 14, 2020. The highest year-over-year escalation seen in this study was 1.0 percent. (See Appendix D, Needles Financial Management Plan)

For this analysis staff used the actual approved energy rate schedules for 2021 through 2030 found in the financial management plan and a 1.0 percent energy escalation rate for 2031 through 2050.

Discount Rate

The real discount rate input of 3 percent was obtained from the 2019 TDV Methodology Report. ${ }^{8}$ All cost-effectiveness analyses completed for 2019 Energy Code requirements used a 3 percent real (inflation-adjusted) discount rate to calculate the net present

7 California Energy Commission. February 2017. Time Dependent Valuation of Energy for Developing Building Efficiency Standards: 2019 Time Dependent Valuation (TDV) Data Sources and Inputs. https://efiling.energy.ca.gov/getdocument.aspx?tn=216062.
8 California Energy Commission. February 2017. Time Dependent Valuation of Energy for Developing Building Efficiency Standards: 2019 Time Dependent Valuation (TDV) Data Sources and Inputs. https://efiling.energy.ca.gov/getdocument.aspx?tn=216062.
value. It is a long-standing practice for the cost-effectiveness analysis of energy code requirements to use a 3 percent real discount rate.

Present Value of Cost Savings

The energy cost savings were determined by using the hourly building loads and hourly PV generation calculated from CBECC-Res 2019 for each prototype home, the Needles energy rate schedules from 2021 through 2030, and its NEM rules. Needles' NEM rules allow customers with solar PV to receive credit for all electricity generated by the solar PV system. The credit is equal to energy rates specified in the customer's rate schedule.

Staff performed the analysis by generating energy charges (monthly utility bills) for the non-PV customer and the PV customer for each prototype home. CBECC-Res hourly data for consumption and generation were applied to appropriate energy rates throughout the year for each customer to calculate the energy charges (or credits). The difference in annual charges, comparing the non-PV customer versus the PV customer, is the annual energy cost savings of having a PV system.

Following the CEC method, the weighted average of 45 percent for the 2,100 square foot (SF) prototype and 55 percent for the 2,700 SF prototype was used to determine the final annual energy cost savings. This analysis performed for years 2021 through 2030. (See Appendix B, Energy Cost Savings Analysis) Table 2 summarizes the final energy cost savings.

Table 2: 2021-2030 Energy Cost Savings

Climate Zone	15
PV Size (kW)	5.420
Annual Production (kWh)	9,072
Year	Energy Cost Savings
2021	\$ 623.82
2022	\$ 624.82
2023	\$ 625.20
2024	\$ 633.20
2025	\$ 641.60
2026	\$ 647.68
2027	\$ 658.53
2028	\$ 666.84
2029	\$ 675.96
2030	\$ 685.28

[^1]Staff calculated the present value of the cost savings by using an equivalent method to the standard financial equation for calculating present value of a growing annuity, as shown below. This equation calculates the present value of total future cost savings based on the annual cost savings, the discount rate, the growth (escalation) rate, and the number of periods compounded.

Equation 2: Present Value

$$
\text { Present Value }=\frac{\mathrm{p}}{\mathrm{r}-\mathrm{g}} \times\left[1-\left(\frac{1+\mathrm{g}}{1+\mathrm{r}}\right)^{\mathrm{n}}\right]
$$

$\mathrm{P}=$ annual cost savings
$r=$ discount rate $=3 \%$
$\mathrm{g}=$ growth (escalation) rate per period of $=1.0 \%$
$\mathrm{n}=$ number of periods of analysis period $=30$ years
Staff used the net present value function (NPV) in Microsoft Excel ${ }^{\circledR}$ to perform the calculation. For 2021 through 2030, staff used the actual calculated energy cost savings described above. The energy cost savings for 2030 was then escalated at 1.0 percent to determine the energy cost savings for 2031 through 2050. Staff then applied the NPV function to the whole 30 -year period using a 3.0 percent discount rate. This application resulted in a present value of cost savings of $\$ 13,868.79$.

Table 3 in the "Life-Cycle Cost-Effectiveness Results" section below shows the calculations.

Present Value of PV System Cost

The present value of PV system costs is determined by the PV size as calculated by CBECC-Res 2019 and the cost per watt as described earlier in the assumptions. The solar PV production estimated by CBECC-Res 2019 for the prototype home (weighted average) in Needles was 5.42 kilowatts. Multiplying by the PV cost per watt assumption of $\$ 3.08$ resulted in a PV system cost of $\$ 16,693.60$.

Life-Cycle Cost-Effectiveness Results

Staff developed spreadsheets including all equations and assumptions discussed in the previous sections. Applying Needles energy rates and NEM rules into the spreadsheet calculations resulted in the solar PV requirement not being cost-effective.

As shown in Table 3, the benefit-to-cost ratio for Needles was 0.83 , lower than the benefit-to-cost threshold of 1.0 . The analysis determines that the solar PV requirement loses $\$ 2,824.81$ over the life-cycle period of 30 years.

Table 3: Cost-Effectiveness Results

Inputs		
Applicant	Needles	
Climate Zone		15
PV Size (kW)		9.420
Annual Production (avoided kWh)	$\$$	623.82
2021 Energy Cost Savings	$\$$	624.82
2022 Energy Cost Savings	$\$$	625.20
2023 Energy Cost Savings	$\$$	633.20
2024 Energy Cost Savings	$\$$	641.60
2025 Energy Cost Savings	$\$$	647.68
2026 Energy Cost Savings	$\$$	658.53
2027 Energy Cost Savings	$\$$	666.84
2028 Energy Cost Savings	$\$$	675.96
2029 Energy Cost Savings	$\$$	685.28
2030 Energy Cost Savings		

Assumptions	
PV Cost per Watt (\$/W)	3.08
Energy Escalation Rate*	1.00%
Discount Rate, Real	3.00%
Life Cycle Period (years)	30

*Applies year 2031 through 2050

Results		
Present Value of PV System Cost	$\$$	$16,693.60$
Present Value of Energy Cost Savings	$\$$	$13,868.79$
Net Savings	$\$$	$(2,824.81)$
Benefit-to-Cost Ratio		0.83

Source: California Energy Commission

CHAPTER 3:
 Conclusion

Staff Recommendation

Based on CEC staff's analysis, staff recommends that the CEC determine that the public agency rules of the City of Needles regarding residential rates and compensation for customer-owned generation cause the CEC's cost-effectiveness conclusion for the solar PV requirement not to hold. This recommendation applies to newly constructed, lowrise homes in the City of Needles subject to the 2019 Energy Code.

GLOSSARY

American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) is a professional association seeking to advance heating, ventilation, air conditioning, and refrigeration systems design and construction.

Climate zones are the 16 geographic areas of California for which the California Energy Commission has established typical weather data, prescriptive packages, and energy budgets.

Hydroelectricity is a form of energy that harnesses the power of flowing water to generate electricity.

National Renewable Energy Laboratory (NREL) is a government-owned facility funded through the United States Department of Energy with research and development in renewable electricity, energy productivity, energy storage, systems integration, and sustainable transportation.

Net Energy Metering (NEM) is a utility billing mechanism that allows customers who generate electricity to receive credit for electricity they add to the utility grid.

Performance approach is an approach to show compliance with the 2019 Energy Code by using an approved software program to model a proposed building and compare it to a calculated energy budget.

PV Watts is a calculator developed by NREL that estimates the energy production and cost of solar photovoltaic systems.
\mathbf{R}-value is the measure of the thermal resistance of insulation or any material or building component expressed in $\mathrm{ft}^{2}-\mathrm{hr}-{ }^{-} \mathrm{F} / \mathrm{Btu}$.

Solar heat gain coefficient (SHGC) is the ratio of the solar heat gain entering the space through the fenestration area to the incident solar radiation. Solar heat gain includes directly transmitted solar heat and absorbed solar radiation, which is then reradiated, conducted, or convected into the space.

U-factor is the overall coefficient of thermal transmittance of a fenestration, wall, floor, or roof/ceiling component, in $\mathrm{Btu} /\left(\mathrm{hr} \mathrm{xt}^{2} \mathrm{x}^{\circ} \mathrm{F}\right.$), including air film resistance at both surfaces.

APPENDIX A:
 Life-Cycle Cost-Effectiveness Analysis

Inputs		Needles
Applicant		15
Climate Zone		5.420
PV Size (kW)		9,072
Annual Production (avoided kWh)	$\$$	623.82
2021 Energy Cost Savings	$\$$	624.82
2022 Energy Cost Savings	$\$$	625.20
2023 Energy Cost Savings	$\$$	633.20
2024 Energy Cost Savings	$\$$	641.60
2025 Energy Cost Savings	$\$$	647.68
2026 Energy Cost Savings	$\$$	658.53
2027 Energy Cost Savings	$\$$	666.84
2028 Energy Cost Savings	$\$$	675.96
2029 Energy Cost Savings	$\$$	685.28
2030 Energy Cost Savings		

Assumptions	
PV Cost per Watt (\$/W)	3.08
Energy Escalation Rate*	1.00%
Discount Rate, Real	3.00%
Life Cycle Period (years)	30

*Applies year 2031 through 2050

Results		
Present Value of PV System Cost	$\$$	$16,693.60$
Present Value of Energy Cost Savings	$\$$	$13,868.79$
Net Savings	$\$$	$(2,824.81)$
Benefit-to-Cost Ratio		0.83

Year	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Savings	$\$ 623.82$	$\$ 624.82$	$\$ 625.20$	$\$$	633.20	$\$ 641.60$	$\$ 647.68$	$\$ 658.53$	$\$ 666.84$	$\$ 675.96$	$\$ 685.28$
Year	2031	2032	2033		2034	2035	2036	2037	2038	2039	2040
Savings	$\$ 692.13$	$\$ 699.05$	$\$ 706.04$	$\$$	713.10	$\$ 720.23$	$\$ 727.44$	$\$ 734.71$	$\$ 742.06$	$\$ 749.48$	$\$ 756.97$
Year	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	
Savings	$\$ 764.54$	$\$ 772.19$	$\$ 779.91$	$\$$	787.71	$\$ 795.59$	$\$ 803.54$	$\$ 811.58$	$\$ 819.69$	$\$ 827.89$	$\$ 836.17$

APPENDIX B:

Energy Cost Savings Analysis

2021 Energy Cost Savings
Rate Schedule
\qquad Summer (March - September)
Winter (October- - February)
\(\begin{array}{cc}Hydro Allotment (kWh)

\begin{array}{c}740

395

3\end{array} \&\)| Hydro Rate |
| :--- |
| |\({ }^{0.0603}

0.0645\end{array}\)

Climate Zone 15	55\% Weighted	PV Size (kW)	5.42									
		No PV Customer			PV Customer							
Month	Load (kWh)	Consumption Hydro (kWh)	$\underset{(\mathrm{KWh})}{\text { Consumption Over Hydro }}$	Energy Charge	PV Production (kWh)	$\underset{(\mathrm{kWh})}{\text { Net Consumption Hydro }}$	Net Consumption Over Hydro (kWh)	PVExports (kWh)		Energy Charge		Export Credit
${ }^{1}$	393.35	${ }^{393} 35$	- s	25.37	621.37	-		228.01	\$	-	\$	14.71
2	334.62	334.62	- 5	21.58	603.67	-		269.05	s	.	s	17.35
3	${ }^{371.32}$	377.32		22.39	808.16	-		436.84	s		s	26.34
4	${ }^{426.48}$	426.48	- 5	25.72	875.91	-		449.43	\$	-	\$	27.10
5	767.25	740.00	27.25 \$	46.97	892.07	-		124.83	\$			7.53
6	1,172.74	740.00	432.74 \$	81.84	855.70	317.04		.	\$	19.12	s	-
7	1,505.32	740.00	765.32 \$	110.44	842.52	66.81		-	s	39.97	s	-
8	1,498.13	740.00	758.13 \$	109.82	849.49	648.64			\$		s	
9	1,168.03	740.00	428.03 \$	81.43	${ }^{725.55}$	442.48		-	\$	26.68	\$	\cdots
10	660.74	395.00	265.74 \$	48.33	756.26	.		95.51	s		\$	6.16
11	37.59	377.59		24.35	651.88	-		27.29	S		s	17.69
12	396.10	395.00	1.10 \$	25.57	589.11	-		193.00	s		s	12.45
Total	9,071.67	6,393.36	2,678.31 \$	${ }^{623.82}$	9,071.67	2,070.97	-	2,070.97	\$	124.88	s	129.33
										Annual True Up Charge	\$	(4.45)
			Total Annual Charge s	$6_{623.82}$						Total Annual Charge		
			Annual	st Savings with PV	\$ 623.82							

2022 Energy Cost Savings

2023 Energy Cost Savings
Rate Schedule

Climate Zone 15	SF Protoype	PV Size (kW)	5.84									
		No PV Customer			pV Customer							
Month	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	$\underset{(\mathrm{kWh})}{\text { Net Consumption Hydro }}$	Net Consumption Over Hydro (kWh $)$	PV Exports (kWh)		Energy Charge		Export Credit
Jan	421.15	385.00	36.15	27.98	668.94			247.78	\$	-	\$	16.03
Feb	358.38	355.38		23.19	F-699.89	-		29.51	s		\$	18.86
Mar	40.24	40.24	- $\$$	24.31	- 870.03	-		468.79	\$	-	\$	28.41
Apr	46.57	468.57	-	28.40	F 942.97	-		474.40	s	-	\$	28.75
May	${ }^{837.33}$	721.00	116.33	53.56	F-960.37	-		123.04	\$	-	s	7.46
Jun	1,271.76	721.00	550.76 \$	90.40	- 921.21	350.55			\$	21.24		
jul	1,622.37	721.00	901.37 \$	${ }^{120.13}$	" 907.02	715.35		-	\$	43.35	\$	-
Aug	1,006,31	721.00	885.31 \$	118.77	914.53	69.79			\$			-
Sep	1,251.15	721.00	530.15 \$	88.65	781.09	470.05		-	\$		\$	-
Oct	696.91	385.00	311.91 \$	51.36	814.15			117.25	\$	-	\$	7.59
Nov	405.12	385.00		26.62	701.79	\checkmark		296.67	s		\$	19.19
Dec	${ }^{425.91}$	385.00	40.91 \$	28.38	${ }^{634.21}$			208.30	\$		\$	13.48
Total	9,76.18	6,373.18	3,393.00 \$	681.72	9,76.18	2,27.74		2,227.74	\$	135.00	\$	139.76
										Annual True Up Charge	\$	(4.76)
			Total Annual Charge \$	681.72						Total Annual Charge	s	
			Annual	Oost Savings with PV	\$ 681.72							

2024 Energy Cost Savings
Rate Schedule

Climate Zone 152100	SF Protoype	PV Size (kW) 4.9

2025 Energy Cost Savings

2026 Energy Cost Savings

Climate Zone 152100 SF Protoype		$\begin{array}{ll}\text { PV Size (kW) } & 4.91\end{array}$													
		PV Customer													
Month	Load (kWh)				Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro (kWh)	$\underset{\substack{\text { Ny } \\ \text { Hydro (kWh })}}{\text { Consumption Over }}$	PVExports (kWh)		Energy Charge		Export Credit
	359.37	359.37	- \$	23.97	563.22			203.85	\$		s	13.60			
	30.58	305.58		20.38	547.18			241.60	\$		s	16.12			
	334.76	334.76	- 5	21.29	732.54	-	.	397.78	\$	-	\$	25.30			
	375.05	375.05	- 5	23.85	793.95	-	-	418.90	s	-		26.64			
	681.59	681.59	- $\$$	43.35	88.60	.	.	127.01	\$	-	\$	8.08			
	1,051.71	696.00	355.71 \$	74.68	775.63	27.08			\$			-			
	1,362.26	696.00	666.26 \$	101.23	763.68	598.58	.	-	\$			-			
	1,365.90	696.00	669.90 \$	101.54	770.00	595.90		-	\$	37.90	\$	-			
	1,066.44	696.00	370.44 \$	75.94	657.66	408.79			\$						
	616.54	372.00	244.54 \$	45.72	685.49	.	-	68.95	\$		\$	4.60			
	343.94	343.94		22.94	590.89	-	-	246.94	\$		\$	16.47			
	359.68	359.68	- ${ }^{\text {s }}$	23.99	533.98		-	174.30	\$	-	\$	11.63			
	8,222.82	5,915.97	2,306.86 \$	578.89	8,222.82	1,879.35	-	1,879.35	\$	119.53	s	122.43			
										Annual True Up Charge	\$	(2.90)			
				578.89						Total Annual Charge					
Annual Cost Savings with PV \$ 578.89															

Climate Zone 15 45\%/55\% Weighted		PV Size (kW) 5.42			PV Customer							
		No PV Customer										
Month	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro (kWW)	Net Consumption Over Hydro $(k W h)$	PV Exports (kWh)		Energy Charge		Export Credit
	393.35	372.00	21.35	\$ $\quad 26.64$	621.37	-	,	228.01	\$		\$	15.21
	334.62	334.62		\$ 22.32	603.67	-	-	269.05	\$		\$	17.95
	371.32	37.132	-	\$ 23.62	808.16	-		436.84	\$		\$	27.78
	${ }^{426.48}$	426.48		\$ 27.12	875.91	-	-	449.43	\$		\$	28.58
	767.25	696.00	71.25	\$ ${ }^{50.36}$	892.07	-	.	124.83	\$		\$	7.94
	1,172.74	696.00	476.74	\$ 85.03	855.70	317.04	-		\$	20.16		
	1,50.32	696.00	809.32	\$ 113.46	842.52	662.81	-		\$	42.15	\$	-
	1,498.13	696.00	802.13	\$ 112.85	849.49	648.64	-	-	\$	41.25	\$	-
	1,168.03	${ }^{696.00}$	472.03	\$ 84.62	725.55	442.48	.	-	\$	28.14		
	660.74	372.00	288.74	\$ 49.50	756.26	.	-	95.51	\$		\$	6.37
	377.59	372.00		\$ 25.29	651.88	-	-	277.29	\$		\$	18.30
	396.10	372.00	24.10	\$ 26.87	589.11	-	.	193.00	\$		\$	12.87
	9,071.67	6,100.42	2,971.25	\$ 647.68	9,071.67	2,000.97		2,07.97	\$	131.71	\$	135.00
										Annual True Up Charge	\$	(3.29)
	Total Annual Charge \$ 647.68				Total Annual Charge \$							
			Annual	l Cost Savings with PV	\$ 647.68							

2027 Energy Cost Savings

Climate Zone 15	55\% Weighted	PV Size (kW)	5.42									
		No PV Customer			PV Customer							
Month	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro (kWh)	Net Consumption Over Hydro (kWh)	PV Exports (kWh)		Energy Charge		Export Credit
Jan	393.35	367.00	26.35	27.47	${ }^{621.37}$			228.01	\$	-	\$	15.66
Feb	334.62	334.62		22.99	603.67			269.05	\$		\$	18.48
Mar	37.132	371.32	-	24.06	808.16	-		436.84	\$	-	\$	28.31
Apr	426.48	426.48	-	27.64	875.91	-		499.43	\$	-	s	29.12
May	767.25	688.00	79.25 \$	51.38	892.07	-		124.83	\$	-	\$	8.09
Jun	1,172.74	688.00	484.74	86.17	855.70	317.04			\$	20.54		
Jul	1,505.32	688.00	817.32 \$	114.71	84.52	66.81	.	-	\$	42.95	s	-
Aug	1,498.13	688.00	810.13 \$	114.09	849.49	648.64	.	-	\$	42.03	\$	\cdot
Sep	1,168.03	688.00	480.03 \$	85.77	725.55	442.48			\$	28.67	\$	-
Oct	660.74	367.00	293.74 \$	50.42	756.26			95.51	\$	-	\$	6.56
Nov	37.59	367.00	10.59 \$	26.12	651.88			274.29			\$	18.84
Dec	396.10	367.00	29.10 \$	27.71	589.11	-	-	193.00	\$	-	s	13.26
Total	9,071.67	6,040.42	3,031.25	658.53	9,071.67	2,070.97	-	2,070.97	\$	134.20	\$	138.33
										Annual True Up Charge	\$	(4.13)
			Total Annual Charge \$	658.53						Total Annual Charge		
			Annual	cost Savings with PV	\$ 658.53							

2028 Energy Cost Savings
Rate Schedule

Climate Zone 15	SF Protoype	PV Size (kW)	4.91									
		No PV Customer			PV Customer							
Month	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro	Net Consumption Over	PVExports (kWh)		Energy Charge		Export Credit
Jan	359.37	359.37		\$ $\quad 25.08$	563.22	.		203.85	\$	-	\$	14.23
Feb	305.58	305.58	-	\$ ${ }^{21.33}$	547.18	-		241.60	\$	-	\$	16.86
Mar	334.76	334.76		\$ 22.06	732.54	.		397.78	\$		\$	26.21
Apr	375.05	375.05	-	\$ 24.72	793.95	-		418.90	\$	-	\$	27.61
May	68.59	680.00	1.59	\$ 44.95	80.60			127.01	s		\$	8.37
Jun	1,051.71	680.00	371.71	\$ 76.78	775.63	27.08		.	\$	8. 19	\$	
Jul	1,362.26	680.00		\$ 103.49	76.68	598.58		-	\$	39.45		\cdots
Aug	1,365.90	680.00	685.90	\$ 103.80	770.00	595.90		-	s	39.27		
Sep	1,066.44	680.00	386.44	\$ 78.05	657.66	408.79		-	\$	26.94	\$	\cdot
Oct	61.54	363.00	253.54	\$ 47.14	685.49	.		68.95	\$		\$	4.81
Nov	343.94	343.94		\$ 24.01	590.89	-		246.94	\$	-	\$	17.24
Dec	359.68	359.68		\$ ${ }^{25.11}$	533.98			177.30	\$		\$	12.17
Total	8,22.82	5,841.38	2,381.45	\$ 596.50	8,22.82	1,879.35		1,879.35	s	123.85	\$	127.50
										Annual True Up Charge	\$	(3.65)
			Total Annual Charge	\$ 596.50						Total Annual Charge		
			Annua	l Cost Savings with PV	\$ 596.50							

					PV Customer							
		No PV Customer										
	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro (kWh)	Net Consumption Over Hydro $(k W h)$	PV Exports (kWh)		Energy Charge		Export Credit
	${ }^{421.15}$	363.00	58.15	\$ 30.34	668.94	-	-	24.78	\$		\$	17.30
	358.38	358.38		\$ 25.01	649.89	-	-	29.51	\$	-	\$	20.35
	40.24	40.24		\$ 26.44	87.03	-		468.79	\$	-	\$	30.89
	468.57	468.57	-	\$ 30.88	942.97	-	-	474.40	\$	-	\$	31.26
	${ }^{837.33}$	680.00	157.33	\$ 58.34	960.37	-	.	123.04	\$	-	\$	8.11
	1,271.76	680.00	591.76	\$ 95.70	921.21	350.55	-	.	\$	23.10	\$	-
	1,622.37	${ }^{680.00}$	942.37	\$ 125.86	907.02	715.35	-	-	\$	47.14	\$	-
	1,606.31	680.00	926.31	\$ 124.47	914.53	691.79	-	-	\$	45.59	\$	-
	1,251.15	680.00	571.15	\$ 93.93	78.09	470.05	-		\$	30.98	\$	-
	69.91	363.00	333.91	\$ 54.05	814.15	.	.	117.25	\$		s	8. 18
	405.12	363.00		\$ 28.96	70.79	-	-	296.67	\$		\$	20.71
	425.91	363.00		\$ 30.75	634.21			208.30	\$		s	14.54
	9,76.18	6,080.18	3,686.00	\$ 724.74	9,76.18	2,227.74	.	2,227.74	\$	146.81	\$	151.34
										Annual True Up Charge	\$	(4.53)
	Total Annual Charge \$ 724.74									Total Annual Charge		
Annual Cost Savings with PV \$ 724.74												

Climate Zone 15 45\%/55\% Weighted		PV Size (kW) 5.42			PV Customer							
		No PV Customer										
	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro (kWh)	Net Consumption Over Hydro (kWh)	PV Exports (kWh)		Energy Charge		Export Credit
	393.35	363.00	30.35	27.95	621.37			228.01	\$.	\$	15.92
	334.62	334.62	-	23.36	603.67	-		269.05	\$	-	\$	18.78
	371.32	371.32	- $\$$	24.47	808.16	.		436.84	\$	-	\$	28.79
	426.48	426.48	-	28.11	875.91	-		499.43	s	-	\$	29.62
	767.25	680.00	87.25	52.32	892.07	-		124.83	\$	-	\$	8.23
	1,172.74	680.00	492.74 \$	87.19	855.70	317.04			\$	20.89	\$	-
	1,505.32	${ }^{680.00}$	825.32 s	115.79	84.52	662.81			s		\$	-
	1,498.13	680.00	818.13 \$	115.17	849.49	648.64		-	\$	42.75	\$	-
	1,168.03	${ }^{680.00}$	488.03 S	86.78	${ }^{725.55}$	442.48			\$		\$	-
	${ }^{660.74}$	363.00	297.74 \$	50.94	756.26			95.51	\$		\$	6.67
	37.59	363.00		26.59	651.88	\checkmark		274.29	s	-	\$	19.15
	396.10	363.00	33.10 \$	28.18	589.11			193.00	\$		\$	13.47
	$9,971.67$	5,984.42	3,087.25 \$	${ }_{666.84}$	9,071.67	2,070.97	-	2,070.97	\$	136.48	\$	140.61
										Annual True Up Charge	\$	(4.13)
			Total Annual Charge \$	666.84						Total Annual Charge		
Annual Cost Savings with PV \$					\$ 666.84							

2029 Energy Cost Savings
Rate Schedule

\mathbf{s}	0.08
s	

Climate Zone 152100 SF Protoype		PV Size (kW) 4.91			PV Customer							
		No PV Customer										
Month	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro (kWh)	$\underset{\substack{\text { Net Consumption Over } \\ \text { Hydro (kWh) }}}{\text { N }}$	PV Exports (kWh)		Energy Charge		Export Credit
	359.37	359.00	0.37 \$	\$ 25.52	56.22	.		20.85	\$		\$	14.47
	305.58	305.58		\$ 21.70	547.18	-		241.60	\$		\$	17.15
	334.76	334.76	- 5	\$ 22.46	732.54	-		397.78	\$	-	\$	26.69
	37.05	375.05	- $\$$	\$ 25.17	793.95	-	.	418.90	\$	-	\$	28.11
	68.159	672.00	9.59 \$	\$ 45.92	808.60	-	-	127.01	s	-	\$	8.52
	1,051.71	672.00	379.71 \$	\$ 77.86	775.63	27.08	-		\$	18.52		
	1,362.26	672.00	690.26 \$	\$ 104.66	763.68	59.58	-	-	\$	40.16	\$	-
	1,365.90	672.00	693.90 \$	\$ 104.97	770.00	595.90	-		\$	39.98	\$	-
	1,066.44	672.00	394.44 \$	\$ 79.13	657.66	40.79			\$	27.43	\$	
	61.54	359.00	257.54 \$	\$ 47.72	685.49	.	-	68.95	\$	-	\$	4.90
	343.94	343.94		\$ ${ }^{24.42}$	590.89	-	-	246.94			\$	17.53
	359.68	359.00	0.68 \$	\$ ${ }^{25.55}$	533.98	-	-	177.30	\$		\$	12.38
	8,222.82	5,796.33	2,426.50 \$	\$ 605.07	8,222.82	1,879.35	-	1,879.35	\$	126.10	\$	129.75
										Annual True Up Charge	\$	(3.65)
										Total Annual Charge	\$	
Annual Cost Savings with PV \$ 605.07												

2030 Energy Cost Savings
Rate Schedu

Climate Zone 152100 SF Protoype		PV Size (kW) 4.91									
Month		No PV Customer			PV Customer						
	Load (kWh)	Consumption Hydro (kWh)	Consumption Over Hydro (kWh)	Energy Charge	PV Production (kWh)	Net Consumption Hydro (kWh)	Net Consumption Over Hydro (kWh)	PV Exports (kWh)	Energy Charge		Export Credi
	359.37	${ }^{354.00}$	5.37 s	25.99	563.22			20385 s	,	5	Export Creait ${ }_{14.70}$
	30.58	305.58	- 5	22.03	547.18	-		241.60			7.42
	334.76	334.76	- \$	22.90	732.54	.		397.78 \$.	\$	27.21
	375.05	375.05	-	25.65	793.95			418.90	-	\$	28.65
	681.59	664.00	17.59 \$	46.94	808.60	-		127.01	-	\$	8.69
	1,051.71	664.00	387.71 \$	78.99	775.63	276.08		.		\$	
	1,362.26	664.00	698.26 \$	105.89	763.68	598.58					
	1,365.90	664.00	70.90 \$	106.20	770.00	595.90			40.76	\$	
	1,066.44	664.00	402.44 \$	80.27	657.66	408.79		-	27.96	\$	
	61.54	354.00	262.54 \$	48.26	685.49	.		68.95 \$	-	\$	4.97
	343.94	343.94		24.80	590.89			24.94 \$	-	\$	17.80
	359.68	354.00		26.02	53.98	-		174.30 \$		\$	12.57
	8,222.82	5,741.33	2,481.50 \$	613.94	8,222.82	1,879.35	-	1,879.35 ${ }^{\text {' }}$	128.55	\$	2.01
									Annual True Up Charge	\$	${ }^{13.46}$
			Total Annual Charge s	613.94					Total Annual Charge		.
			Annual Cost Savings with PV \$		\$ 613.94						

APPENDIX C:
 Needles PV Determination Application

1. Signed Resolution Requesting a PV Requirement Determination
2. Cover Letter
3. Residential Energy Rate Schedule
4. Electric Rate Calculation Template
5. PV Interconnection Agreement

RESOLUTION NO. 2019-51

A RESOLUTION OF THE CITY OF NEEDLES, CALIFORNIA, REQUESTING A COSTEFFECTIVENESS DETERMINATION BY THE CALIFORNIA ENERGY COMMISSION PURSUANT TO SECTION 10-109(k) OF THE 2019 ENERGY CODE

WHEREAS, the California Energy Commission updated the California Code of Regulations, Title 24, Part 6, known as the Building Energy Efficiency Standards (Standards);

WHEREAS, Section 150.1 (c)14 of the Standards now requires the installation of solar photovoltaics (PV) for all low-rise residential buildings, which includes all new multifamily homes of three stories or less and all new single-family homes;

WHEREAS, Section 10-109(k) of the administrative regulations associated with the Standards provides a process whereby the California Energy Commission can determine that the solar PV requirements are not cost-effective and should not apply within a service area;

WHEREAS, the City of Needles held a public hearing as required by Section 10-109(k);

WHEREAS, the City of Needles requests a determination from the California Energy Commission that Section 150.1 (c) 14 is not cost-effective and should not apply within the City of Needles service area;

WHEREAS, the request for a determination would still allow anyone within Needles' service area to add solar PV to new or existing buildings at their discretion;

NOW, THEREFORE, BE IT RESOLVED that the City Council of the City of Needles, California hereby approves Resolution No. 2019-51 requesting a cost-effectiveness determination by the California Energy Commission pursuant to Section 10-109(k) of the 2019 Energy Code.

PASSED, APPROVED AND ADOPTED at a regular meeting of the City Council of the City of Needles, California, held on the 13th day of August, 2019, by the following roll call vote:

AYES: Councilmembers Gudmundson, Terra1, Paget, Belt and Longacre

NOES: None

ABSENT: Councilmember Hazlewood

APPROVED AS TO FORM:

City Attorney

July 2, 2019

Maziar Shirakh, P.E.
Senior Engineer, Building Energy Efficiency Standards
California Energy Commission
1516 Ninth Street
Sacramento, CA 95814-5512
Maziar.Shirakh
Re: City of Needles' Request for a Residential Photovoltaic Determination
Dear Mr. Shirakh,

On behalf of the City of Needles ("City" or "Needles"), I am writing to seek a determination from the California Energy Commission ("Commission") under Section 10-109(k) of the 2019 Energy Code. Section 10-109(k) allows the Commission to determine that the photovoltaic ("PV") requirements of Section 150.1 (c) 14 should not apply, if the Commission finds that "the implementation of public agency rules regarding utility system costs and revenue requirements, compensation for customer-owned generation, or interconnection fees, causes the Commission's cost effectiveness conclusions to not hold for particular buildings."

The City of Needles is a small community of roughly 5,000 residents nestled on the eastern edge of California, touching Arizona and a short distance from Nevada. Needles provides electric service to its residents through Needles Public Utility Authority ("NPUA"). The median household income is $\$ 31,372$, making Needles a severely disadvantaged community. Currently, very few new houses (approximately 2-3) are built in Needles each year; residents' economic condition likely contributes to this lack of new development. Adding the residential PV requirement in this community may worsen Needles already precarious position.

Importantly, the residential PV requirement is not cost-effective for Needles' citizens. While Needles electric rates fluctuate based on the season and customer consumption, they are some of the lowest in the state. For example, this summer an NPUA customer will receive hydropower for the first 742 kWhs at a rate of $\$ 0.0621 / \mathrm{kWh}$. When they exceed this amount, the price increases to an "over hydro" rate of $0.0917 / \mathrm{kWh}$. For the typical residential electric customer, we believe that the Section 150.1(c)14 mandate is not cost-effective within Needles' service area and a determination under Section 10-109(k) is appropriate.

NPUA reviewed and approved this application for a determination from the Commission. Needles then held a public meeting and received public comment on the submission of this request for a determination regarding the cost-effectiveness of the PV requirement, and the city council approved this action. The City of Needles respectfully requests that the California Energy Commission make a determination under Section 10-109(k) of the 2019 Energy Code that the photovoltaic requirements of Section 150.1(c)14 do not apply within Needles' service area.

Sincerely,

Rick Daniels
City of Needles, City Manager
rdaniels@cityofneer

Co (email only): Robeora Westmom
Bill Penningion
Christopher Meycr
Danny Tam

Winter Rates - October 1 thru February 28
Basic Service Charge
\$29.82
Hydro Allotment 406 KWH . 0652
Over Hydro . 0917
CA Conservation Charge . 0033
Utility Users Tax 2.5\%

Summer Rates - March 1 - October 30
Basic Service Charge
\$29.82
Hydro Allotment 742 KWH . 0621
Over Hydro . 0917
CA Conservation Charge . 0033
Utility Users Tax 2.5\%
Electric Bates - Eftective October 2017 (Rates were calculated using CPI of 2%)
Winter Rates - October 1 thru February 2018
Basic Service Charge $\$ 28.90$
Hydro Allotment asarmu 0660
Over Hydro 0844
CA Conservation Charge 0038
Utility Users Tax 2.5%
Flectric Rates - Effective March 1, 2018 (Rates were calculated using CPI of 2%)
Summer Rates - March 1 thru September 2018
Basic Service Charge $\$ 28.90$
Hydro Allotment 756 KWH 0629
Over Hydro 0844
CA Conservation Charge 0038
Utility Users Tax 2.5\%

Electric Rates - Effective October 1, 2016 (Rates were calculated using CPl of 1.61\%)	
Winter Rates - October 1 thru December 31	
Basic Service Charge	\$28.33
Hydro Allotment 411 kWH	. 0693
Over Hydro	. 0933
CA Conservation Charge	. 0039
Utility Users Tax	2.5\%
Electric Rates - Effective January 1, 2017 (Rates were calculated using CPI of 1.61\%)	
Winter Rates - January 1 thru February 28	
Basic Service Charge	\$28.33
Hydro Allotment 411 KWNH	. 0693
Over Hydro	. 0459
CA Conservation Charge	. 0039
Utility Users Tax	2.5\%
Electric Rates - Effective March 1, 2017 (Rates were calculated using CPI of 1.61\%)	
Summer Rates - March 1 thru March 30	
Basic Service Charge	\$28.33
Hydro Allotment 751 KWWH	. 0651
Over Hydro	. 0459
CA Conservation Charge	. 0039
Utility Users Tax	2.5\%

Electric Rates - Effective November 1, 2015 (Rates were calculated using CPI of 1.1\%)

Winter Rates - November 1 thru February 28
Basic Service Charge \$27.88
Hydro Allotment 389 KWWH .0713

Over Hydro . 1007

CA Conservation Charge . 0039

Utility Users Tax 2.5\%

Summer Rates - March 1 thru October 31

Basic Service Charge \$27.88
Hydro Allotment 712 KWH . 0680

Over Hydro . 1007
CA Conservation Charge . 0039
Utility Users Tax 2.5\%

The electric rates for November 2014

Basic Service Charge	$\$ 27.58$
ElHydro	370 kWH
El Usage	.0843
El Conservation	.1123

The electric rates for March 2015

Basic Service Charge $\$ 27.58$
El Hydro 697 KWH . 0804
El Usage . 1123
El Conservation .0039

The electric rates for April 2015 (.0025\% PCA attached to Usage to offset the PCA being in the red until September 2015)

Basic Service Charge $\quad \$ 27.58$
El Hydro 697 KWH .0804

El Usage
El Conservation
.0039

PHOTOVOLTAIC INTERCONNECTION AGREEMENT FOR
 NET ENERGY METERING
 FROM
 RESIDENTIAL AND SMALL COMMERCIAL SOLAR ELECTRIC GENERATING FACILITIES
 OF 10 KILOWATTS OR LESS

("Customer-Generator"), and
Needles Public Utility Authority ("NPUA") referred to collectively as "Parties" and individually as "Party", agree as follows:

1. SOLAR-ELECTRIC GENERATING FACILITY:
1.1 PVID Number: \qquad
1.2 PV Array Rating: \qquad kW.
1.3 Address: \qquad
1.4 Facility will be ready for operation on or about
1.5 Location of NPUA Substation and Circuit:

1.6 Operating Option

Customer-Generator has elected to operate its solar-electric generating facility in parallel with NPUA's facilities. The solar-electric generating facility is intended primarily to offset part or all of the CustomerGenerator's own electrical requirements.

2. PAYMENT FOR NET ENERGY

2.1 For eligible residential and small commercial customer-generators, the net energy metering calculation shall be made by measuring the difference between the electricity supplied to the eligible customergenerator and the electricity generated by the eligible customer-generator and fed back to the electric grid over a monthly and 12-month period. The following rule shall apply to the annualized net metering calculation:
2.2 Customer will be billed on a monthly basis, regardless of Customer's previous billing cycle. The monthly Net Energy Metering calculation shall be made by measuring the difference between the electricity supplied to the Customer and the electricity generated by the Customer and fed back to the grid over a normal one-month billing period.
2.3 At the end of each one-month billing period following the date of first interconnection, NPUA shall determine if Customer was a net consumer or a net producer of electricity during the one-month time period.
2.4 In the event the electricity supplied by NPUA during the one-month period exceeds the electricity generated and fed back to the grid by Customer during the same period, Customer is a net energy consumer. If Customer is a net energy consumer, NPUA shall bill Customer for the net energy consumption during such billing period based on the Customer's Rate Schedule and Customer shall pay for such net energy consumption monthly in accordance with Customer's monthly billing statement.
2.5 In the event the electricity supplied by NPUA during the one-month period is less than the electricity generated and fed back to the grid by Customer during the same period, Customer is a net energy producer. If Customer is a net energy producer, any excess kilowatt-hours generated during the billing cycle shall be carried over to the following billing period on a monetary basis until the end of the 12-month period.
2.6 Any net monthly consumption of electricity shall be calculated according to the terms of the rate schedule. If Customer is a net generator over a billing period, the net kilowatt-hours generated shall be valued at the same price per kilowatt-hour as NPUA would charge for the baseline quantity of electricity during that billing period, and if the number of kilowatt-hours generated exceeds the baseline quantity, the excess shall be valued at the same price per kilowatt-hour as NPUA would charge electricity over the baseline quantity during the billing period.
2.7 The eligible customer -generator account shall, at the end of the 12month period following the date of final interconnection of the customergenerator's system with the NPUA distribution system, and at each anniversary month thereafter, be evaluated and reconciled for electricity used or generated during the period.
2.8 NPUA shall retain any Net Surplus Energy generated by Customer, including any associated environmental attributes or renewable energy credits ("RECs"), and Customer's credits shall be reset to zero for the subsequent 12 -month period. No payment will be made to Customer for the excess energy delivered to NPUA's grid, unless Customer elects a compensation option in Subsection 2.11.
2.9 NPUA will determine if the customer-generator was a net consumer or a net producer of electricity during that period.
2.10 Customer may be eligible for Net Surplus Energy Compensation. The Customer's Net Surplus Energy Compensation shall be calculated over a 12-month period. If Customer is eligible for Net Surplus Compensation, customer shall be compensated pursuant to the method selected by Customer in Subsection 2.11. Such Net Surplus Compensation Rate shall provide just and reasonable compensation for the value of the Net Surplus Energy, and shall be adopted by the Board of Public Utilities and the Needles Public Utility Authority. Such Net Surplus Compensation Rate shall be reviewed and subject to change on an annual basis.
2.11 At the end of the 12-month period, upon certification by the Customer that they have sole ownership of the environmental attributes and RECs associated with the energy generated from the Generating Facility in accordance with Subsection 2.12 Customer may receive Net Surplus Energy Compensation for Net Surplus Energy by affirmatively electing one of the following methods (Please initial just one): The Customer will be required to complete this form annually prior to the end of a 12 -month period. If an annual form is not returned by the requested due date the response below will automatically be the default response.
(a). \qquad Receive monetary compensation for Net Surplus Generation exported to NPUA during the prior 12-month period at the Net Surplus Energy Compensation Rate
(b). \qquad Receive the Net Surplus Energy Compensation as a kilowatthour credit calculated using the Net Surplus Energy Compensation rate and applied against future billing periods.
\qquad (Please initial) By making this election, I also agree that all environmental attributes and RECs associated with the kilowatt-hours generated shall be the property of NPUA.
2.12 Customer hereby certifies that they have sole ownership of the environmental attributes and RECs associated with the energy generated from the Generating Facility. For Customers who elect to receive Net Surplus Energy Compensation based on a per kilowatt-hour rate in accordance with Subsection 2.11, the environmental attributes and RECs associated with the kilowatt-hours in which the Customer received Net Surplus Energy Compensation at the per kilowatt-hour rate shall be the property of the NPUA. Customer hereby transfers to the NPUA all rights, title, and interest Customer has to such environmental attributes and RECs. Customers who elect to receive Net Surplus Energy Compensation based on a per kilowatt-hour credit calculated using the net surplus energy compensation rate and applied in accordance with Subsection 2.11 may elect to transfer to City all rights, title, and interest Customer has to such environmental attributes and RECs.
2.13 All net consumption over 12 months will be charged the Utility Users Tax, not to exceed the rate of two and a half percent (2.5%) as
established by Ordinance No. 545-AC and the Mandated Conservation fee (adopted every October) as established by Resolution No. 7-24-07.

3. INTERRUPTION OR REDUCTION OF DELIVERIES

3.1 NPUA shall not be obligated to accept or pay for, and may require Customer-Generator to interrupt or reduce, deliveries of as-available energy:
(a) When necessary in order to construct, install, maintain, repair, replace, remove,
Investigate, or inspect any of its equipment or any part of its system; or
(b) If NPUA determines that curtailment, interruption, or reduction is necessary because of emergencies, forced outages, force majeure, or compliance with prudent electrical practices.
3.2 Whenever possible, NPUA shall give Customer-Generator reasonable notice of the possibility that interruption or reduction of deliveries may be required.
3.3 Notwithstanding any other provisions of this Agreement, if at any time NPUA determines that either:
(a) the facility may endanger NPUA personnel, or
(b) the continued operation of Customer-Generator's facility may endanger the integrity of NPUA's 's electric system, NPUA shall have the right to disconnect Customer-Generator's facility from NPUA's electric system. Customer-Generator's facility shall remain disconnected until such time as NPUA is satisfied that the conditions(s) referenced in (a) or (b) of this Section 3.3 have been corrected.

4. INTERCONNECTION

4.1 Customer-Generator shall deliver the as-available energy to NPUA at the utility's meter.
4.2 Customer-Generator shall pay for designing, installing, operating, and maintaining the solar-electric generating facility in accordance with all applicable laws and regulations and shall comply with NPUA's Appendix A, which is attached hereto.
4.3 Customer-Generator shall not commence parallel operation of the generator facility until written approval of the interconnection facilities has been given by NPUA. Such approval shall not be unreasonably withheld. NPUA shall have the right to have representatives present at the initial testing of Customer-Generator's protective apparatus.

5. METER REQUIREMENTS

5.1 NPUA shall own, operate and maintain on Customer's premises a single meter capable of registering the flow of electricity in two directions ("Required Meter"). In addition, the meter shall be capable of recording time-of-use information for all customers. NPUA may waive metering requirements of this Section; provided such waiver shall be applied in a non-discriminatory manner.
5.2 If the existing electrical meter of Customer is not capable of measuring the flow of electricity in two directions or supplying time-of-use information, Customer shall be responsible for all expenses involved in NPUA purchase and installation of a Required Meter. NPUA may waive metering expenses of this Section; provided such a waiver shall be applied in a non-discriminatory manner.

6. OWNERSHIP OF ENVIRONMENTAL ATTRIBUTES

Customer shall assign NPUA any and all environmental attributes, renewable energy credits ("RECs"), green tags, energy or carbon credits/allowances with respect to the PV solar systems, and agree that NPUA shall have sole discretion and full benefits of any and all environmental attributes from distributed solar generation within NPUA service territory.

5. MAINTENANCE AND PERMITS

Customer-Generator shall obtain any governmental authorizations and permits required for the construction and operation of the solar-electric generating facility and interconnection facilities and shall maintain all facilities in a safe and prudent manner and in conformance with all applicable laws and regulations including, but not limited to, NPUA's Appendix A.

Customer-Generator shall reimburse NPUA for any and all losses, damages, claims, penalties, or liability it incurs as a result of CustomerGenerator's failure to obtain or maintain any governmental authorizations and permits required for construction and operation of CustomerGenerator's generating facility.

6. ACCESS TO PREMISES

NPUA may enter Customer-Generator's premises:
(a) to inspect, at all reasonable hours, Customer-Generator's protective devices and read or test meter; and
(b) to disconnect, without notice the interconnection facilities if, in NPUA's opinion, a hazardous condition exists and such immediate action is necessary to protect persons, or NPUA's facilities, or
property of others from damage or interference caused by CustomerGenerator's solar-electric facilities, or lack of properly operating protective devices.

7. INDEMNITY AND LIABILITY

7.1 Each party as indemnitor shall defend, hold harmless, and indemnify the other Party and the directors, officers, employees, and agents of such other Party against and from any and all loss, liability, damage, claim, cost, charge, demand, or expense (including any direct, indirect, or consequential loss, liability, damage, claim, cost, charge, demand, or expense, including attor4ney's fees) for injury or death to persons including employees of either Party and damage to property including property of either Party arising out of or in connection with (a) the engineering, design, construction, maintenance, repair, operation, supervision, inspection, testing, protection or ownership of, or (b) the making of replacements, additions, betterments to, or reconstruction of, the indemnitor's facilities; provided, however, Customer-Generator's duty to indemnify NPUA hereunder shall not extend to loss, liability, damage, claim, cost, charge, demand, or expense resulting from interruptions in electrical service to NPUA's customers other than Customer-Generator. This indemnity shall apply notwithstanding the active or passive negligence of the indemnitee. However, neither Party shall be indemnified hereunder for its loss, liability, damage, claim, cost, charge, demand, or expense resulting from its sole negligence or willful misconduct.
7.2 Not withstanding the indemnity of Section 7.1, and except for a Party's willful misconduct or sole negligence, each Party shall be responsible for damage to its facilities resulting from electrical disturbances or faults.
7.3 The provisions of this Section 7 shall not be construed to relieve any insurer of its obligations to pay any insurance claims in accordance with provisions of any valid insurance policy.
7.4 Except as otherwise provided in Section 7.1, neither Party shall be liable to the other Party for consequential damages incurred by that Party.
7.5 If Customer-Generator fails to comply with the insurance provisions of this Agreement, if any, Customer-Generator shall, at its own cost, defend, hold harmless and indemnify NPUA, its directors, officers, employees, agents, assignees, and successors in interest from and against any and all loss, liability, damage, claim, cost, charge, demand, or expense of any kind or nature (including attorneys' fee and other costs of litigation) resulting from the death or injury to any person or damage to any property, including the personnel and property of NPUA, to the extent that NPUA would have been protected had Customer-Generator complied with all such insurance provisions. The inclusion of this Section 7.5 is not intended to create any express or implied right in Customer-Generator to elect not to provide any such required insurance.
8. INSURANCE (Optional)
8.1 Customer-Generator shall maintain, during the term of this Agreement Comprehensive Personal Liability Insurance with a combined single limit of not less than one hundred thousand dollars $(\$ 100,000)$ for each occurrence.
8.2 Such insurance required in Section 8.1 shall, by endorsement to the policy or policies, provide for thirty (30) calendar days written notice to NPUA prior to cancellation, termination, alterations, or material change of such insurance.
8.3 NPUA shall have the right to inspect or obtain a copy of the original policy or policies of insurance.
8.4 Customer-Generator shall furnish the required certificates and endorsements to NPUA prior to commencing operation.
8.5 All insurance certificates, endorsements, cancellations, terminations, alterations, and material changes of such insurance shall be issued and submitted to the following:

NPUA - 817 Third Street
Needles, California 92363

9. GOVERNING LAW

This Agreement shall be interpreted, governed, and construed under the laws of the State of California as if executed and to be performed wholly within the State of California.

10. AMENDMENT MODIFICATION OR WAIVER

Any amendments or modifications to this Agreement shall be in writing and agreed to by both Parties, The failure of any Party at any time or times to require performance of any provision hereof shall in no manner affect the right at a later time to enforce the same.

No waiver by any Party of the breach of any term of covenant contained in this Agreement, whether by conduct or otherwise, shall be deemed to be construed as a further or continuing waiver of any such breach or waiver of the breach of any other term or convent unless such waiver is in writing.

11. APPENDIX

The Agreement includes the following appendix, which is attached and incorporated by reference:

Appendix A: NPUA's Photovoltaic Interconnection Standards for Residential Solar Electric Generating Facilities of 10 kW or Less
12. NOTICES

All written Notices shall be directed as follows:
NPUA- 817 Third Street
Needles, California 92363

CUSTOMER-GENERATOR:

Name
Address
City
Customer-Generator's notices to NPUA pursuant to this Section 12 shall reference the PVID Number set forth in Section 1.1
12.1 In the event of an emergency, Customer shall immediately notify NPUA at its 24-hour emergencies number, 760-326-5700, of any emergency situation related to the Generating Facility.

13. TERM OF AGREEMENT

This Agreement shall be in effect when signed by the CustomerGenerator and NPUA and shall remain in effect thereafter month-tomonth unless terminated by either Party on thirty (30) days' prior written notice in accordance with Section 12.

14. ASSIGNMENT PROHIBITED

Customer-Generator understands and agrees that this Agreement is personal to Customer and that Customer-Generator shall not assign or transfer in any way all or any portion of this Agreement to any other person or entity of any kind. Any attempt by Customer-Generator to assign or transfer in any way all or any portion of this Agreement shall be void ab initio.

15. SIGNATURES

IN WITNESS WHEREOF, the Parties hereto have caused two originals of this Agreement to be executed by their duly authorized representatives.
(CUSTOMER-GENERATOR) NPUA

By:
Name:
Title:

Date: \qquad

By: Name
Title:

Date: \qquad

NEEDLES PUBLIC UTILITY AUTHORITY
 ANNUAL BASE RATE CALCULATION SPREADSHEET－FY 2017／2018

3asic Service Charge for New Rate Year

गY Non－Power Carry Forward Asset Replacement Fund Target「otal－Non Power Related Expenses

Jower Supply with Line Losses

「otal Power Supply－Sales KWHRs Jower Supply－Winter Hydro Jower Supply－Summer Hydro ºwer Supply－Total Hydro ºwer Supply－Non Hydro
Power Supply Expenses

「otal Power Purchased
’ower Supply－Winter Hydro
sower Supply－Summer Hydro
？ower Supply－Non Hydro

Revenue From Other Than Power Sold 3asic Service Charge
Jther Revenue
Total Non－Power Revenue

Total Expenses

Non－Power Related Expenses
Total Power Cost
Total Operating Expense

Rate Calculations

Rate For Non－Power Related Expenses
Winter Hydro Sales－（Oct－Feb） jummer Hydro Sales－（Mar－Sept）
Jver Hydro Allotment Sales
Zalifornia Energy Efficiency Program
$\$ 29.82$

$\$ 0$
$\$ 590,419$
$\$ 5,221,671$

$60,486,000$
$6,096,633$
$15,594,714$
$21,691,347$
$38,794,653$

Hydro Allotment／Cust

\square
Cost Per Kwhr

	$\$ 0.0364$
	$\$ 0.0202$
	$\$ 0.0171$
	$\$ 0.0467$

$\$ 1,073,924$
$\$ 1,225,940$
$\$ 2,299,864$

$\$ 5,221,671$
$\$ 2,200,000$
$\$ 7,421,671$

Cost Per Kwhr

$\$ \$ 0.0364$ Use this rate for PCA Annual Base Rate for power purchased．

Bill Rate Per Kwhr

0.0652
0.0621
0.0917
0.0033

CITY OF NEEDLES

CERTIFICATION

A noticed public hearing was held at the regular Needles City Council Meeting of August 13, 2019 for Resolution No. 2019-51, A Resolution of the City of Needles, California requesting a cost-effectiveness determination by the California Energy Commission pursuant to Section 10-109(k) of the 2019 Energy Code.
There were no public comments.

I, Dale Jones, CMC, City Clerk of the City of Needles, California, do hereby certify that the foregoing is a true and correct copy of Resolution Number 2019-51.

(SEAL)

Date:
August 14, 2019

APPENDIX D:

City of Needles Financial Management Plan

City of Needles, California - Electric Utility

FY 2020 Electric Cost of Service Analysis - 3 Month Operating Reserve
Assumptions \& Preliminary Results Workbook

(3) Stantec

Preliminary Financial Management Plan

Assumptions	FY 2020		FY 2021		FY 2022		FY 2023		FY 2024					FY 2026			FY 2028 7/1/2027				Schedule 1							
				$\begin{aligned} & \text { FY } 2029 \\ & 7 / 1 / 2028 \end{aligned}$		$\begin{aligned} & \text { FY } 2030 \\ & 7 / 1 / 2029 \end{aligned}$																						
Rate Increase Adoption Date		7/1/2019												7/1/2020		7/1/2021				7/1/2022		7/1/2023		7/1/2024		7/1/2025		
Annual Growth																												
Electric																												
Ending \# of Accounts		3,004		3,073		3,115		3,153		3,191		3,229		3,268		3,307		3,346		3,386		3,426						
Account Growth		3		69		42		38		38		38		39		39		39		40		40						
\% Change in Accounts		0.10\%		2.30\%		1.37\%		1.22\%		1.21\%		1.19\%		1.21\%		1.19\%		1.18\%		1.20\%		1.18\%						
Usage per Account \% Change in Usage per Account		$\begin{gathered} 1,709.17 \\ 0.00 \% \end{gathered}$		$\begin{gathered} 1,773.97 \\ 3.79 \% \end{gathered}$		$\begin{array}{r} 1,851.15 \\ 4.35 \% \end{array}$		$\begin{array}{r} 1,962.22 \\ 6.00 \% \end{array}$		$\begin{array}{r} 1,993.23 \\ 1.58 \% \end{array}$		$\begin{gathered} 2,024.88 \\ 1.59 \% \end{gathered}$		$\begin{array}{r} 2,057.12 \\ 1.59 \% \end{array}$		$\begin{array}{r} 2,090.02 \\ 1.60 \% \end{array}$		$\begin{gathered} 2,123.57 \\ 1.61 \% \end{gathered}$		$\begin{gathered} 2,157.76 \\ 1.61 \% \end{gathered}$		$\begin{gathered} 2,192.64 \\ 1.62 \% \end{gathered}$						
Usage		61,612,000		65,416,859		69,195,823		74,242,503		76,324,883		78,459,985		80,672,120		82,940,282		85,265,771		87,674,273		90,143,665						
\% Change in Usage		0.00\%		6.18\%		5.78\%		7.29\%		2.80\%		2.80\%		2.82\%		2.81\%		2.80\%		2.82\%		2.82\%						
\% Paying Capital Charges		0\%		0\%		0\%		0\%		0\%		0\%		0\%		0\%		0\%		0\%		0\%						
Capital Spending																												
Annual Capital Budget (Future Year Dollars)	\$	190,000	\$	190,000	\$	453,200	\$	1,633,786	\$	480,800	\$	956,682	\$	695,564	\$	716,431	\$	737,924	\$	760,062	\$	782,864						
Annual Percent Executed		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%						
Impact Fees																												
North Needles Impact Fees	\$	781		\$781.00		\$781.00		\$781.00		\$781.00		\$781.00		\$781.00		\$781.00		\$781.00		\$781.00		\$781.00						
South Infill Areas Impact Fees	\$	480		\$480.00		\$480.00		\$480.00		\$480.00		\$480.00		\$480.00		\$480.00		\$480.00		\$480.00		\$480.00						
Average Annual Interest Earnings Rate																												
On Fund Balances		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%						
Operating Budget Reserve																												
Target (Number of Months of Reserve)		3.0		3.0		3.0		3.0		3.0		3.0		3.0		3.0		3.0		3.0		3.0						
Operating Budget Execution Percentage																												
Personal Services		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%						
Variable Operations and Maintenance		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%						
Fixed Operations and Maintenance		100\%		91\%		91\%		91\%		91\%		91\%		91\%		91\%		91\%		91\%		91\%						
Capital Outlay		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%						

Stantec Grouping of Funds in Model	Revenue Fund		Restricted Reserves		Large User Connection Fees		Asset Replacement Fund	
Current Unrestricted Assets								
Cash and Cash Equivalents	\$	3,262,910	\$	-	\$	168,297	\$	2,842,415
Rate Stabilization Fund		-		504,202		-		-
PCA Balancing Fund		-		200,000		-		
City LAIF (106-01-00)		154,810		-		-		
Total Assets	\$	3,417,720	\$	704,202	\$	168,297	\$	2,842,415
Current Liabilities								
Accounts and Contracts Payable	\$	-	\$	-	\$	-	\$	-
Calculated Fund Balance (Assets - Liabilities)	\$	3,417,720	\$	704,202	\$	168,297	\$	2,842,415
Funds Encumbered or Reserved for Projects not in the CIP		-		-		-		-
Available Fund Balance	\$	3,417,720	\$	704,202	\$	168,297	\$	2,842,415
Fund Summary								
Revenue Fund \$ 3,417,720								
Rate Stabilization Fund 704,202								
Large User Connection Fees 168,297								
Asset Replacement Fund 2,842,415								
Total Available Funds \$ 7,132,634								

Proj	ection of Cash Inflows																					Schedule 3	
			FY 2020		FY 2021		FY 2022		FY 2023		FY 2024		FY 2025		FY 2026		FY 2027		FY 2028		FY 2029		FY 2030
1	Rate Revenue Growth Assumptions Electric																						
2	\% Change in Accounts		0.10\%		2.30\%		1.37\%		1.22\%		1.21\%		1.19\%		1.21\%		1.19\%		1.18\%		1.20\%		1.18\%
3	\% Change in Consumption		0.00\%		6.18\%		5.78\%		7.29\%		2.80\%		2.80\%		2.82\%		2.81\%		2.80\%		2.82\%		2.82\%
	Assumed Rate Revenue Increases																						
4	Assumed Electric Rate Increase		0.00\%		0.00\%		0.00\%		0.00\%		0.75\%		0.75\%		0.75\%		0.75\%		0.75\%		0.75\%		0.75\%
5	Base Rate COLA Increse		0.00\%		0.00\%		2.20\%		2.20\%		2.20\%		2.20\%		2.20\%		2.20\%		2.20\%		2.20\%		2.20\%
	Electric Rate Revenue																						
6	Base Rate Revenue	\$	1,102,900	\$	1,153,054	\$	1,194,527	\$	1,235,700	\$	1,278,105	\$	1,321,779	\$	1,367,174	\$	1,413,926	\$	1,462,074	\$	1,512,103	\$	1,563,625
7	Usage Rate Revenue		4,979,666		5,287,187		5,592,614		6,000,502		6,215,072		6,436,848		6,667,969		6,906,860		7,153,769		7,411,011		7,676,894
8	Total Electric Rate Revenue	\$	6,082,567	\$	6,440,241	\$	6,787,141	\$	7,236,201	\$	7,493,177	\$	7,758,627	\$	8,035,143	\$	8,320,786	\$	8,615,843	\$	8,923,113	\$	9,240,519
	Other Operating Revenue																						
10	Establishment Fee	\$	11,000	\$	11,000	\$	11,000	\$	11,000	\$	11,000	\$	11,000	\$	11,000	\$	11,000	\$	11,000	\$	11,000	\$	11,000
11	Damage Claims		5,000		5,000		5,000		5,000		5,000		5,000		5,000		5,000		5,000		5,000		5,000
12	Jnt Use Attach Fee-Poles		11,000		11,000		11,000		11,000		11,000		11,000		11,000		11,000		11,000		11,000		11,000
13	Total Other Operating Revenue	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000
	Non-Operating Revenue																						
14	Miscellaneous	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000
15	Refunds/Reimbursements		40,000		40,000		40,000		40,000		40,000		40,000		40,000		40,000		40,000		40,000		40,000
16	Total Non-Operating Revenue	\$	50,000	\$	50,000	\$	50,000	\$	50,000	\$	50,000	\$	50,000	\$	50,000	\$	50,000	\$	50,000	\$	50,000	\$	50,000
17	Total Cash Inflows	\$	6,169,567	\$	6,527,241	\$	6,874,141	\$	7,323,201	\$	7,580,177	\$	7,845,627	\$	8,122,143	\$	8,407,786	\$	8,702,843	\$	9,010,113	\$	9,327,519

Section of Cash Outfows Schedul																									
	Accoun t Code	Account Code	Expense Line Item		FY 2020		FY 2021		FY 2022		FY 2023		FY 2024		FY 2025		FY 2026		FY 2027		FY 2028		Y 2029		FY 2030
1			$\frac{\text { O\&M }}{\text { Personal Services }}$																						
2	OMF	O\&M	*Salaries	\$	627,805	\$	811,182	\$	831,462	\$	852,248	\$	873,554	\$	895,393	\$	917,778	\$	940,722	\$	964,240	\$	988,346	\$	1,013,055
4	OMF	O\&M	*Overtime		58,129		75,000		76,875		78,797		80,767		82,786		84,856		86,977		89,151		91,380		93,665
5	OMF	O\&M	*Fica Soc Sec/M-Care Ins		47,221		67,793		74,572		82,030		90,232		99,256		109,181		120,099		132,109		145,320		159,852
6	OMF	O\&M	*Group Insurance		124,594		190,926		210,019		231,020		254,123		279,535		307,488		338,237		372,061		409,267		450,194
7	OMF	O\&M	*Workers' Compensation		24,469		19,100		19,387		19,677		19,972		20,272		20,576		20,885		21,198		21,516		21,839
8	OMF	O\&M	*Pers/Retirement Contrib.		45,166		65,019		65,994		66,984		67,989		69,009		70,044		71,095		72,161		73,243		74,342
9	OMF	O\&M	Employee Meals Operations \& Maintenance		342		1,000		1,025		1,051		1,077		1,104		1,131		1,160		1,189		1,218		1,249
10	OMF	O\&M	*Pers-Unfunded Liability	\$	50,108	\$	68,570	\$	69,599	\$	70,643	\$	71,702	\$	72,778	\$	73,869	\$	74,977	\$	76,102	\$	77,244	\$	78,402
11	OMF	O\&M	Consulting Services		462		11,000		11,275		11,557		11,846		12,142		12,445		12,757		13,076		13,402		13,737
12	OMF	O\&M	Lwr Col Multi-Sp Cons Pro		5,227		7,500		7,688		7,880		8,077		8,279		8,486		8,698		8,915		9,138		9,366
13	OMF	O\&M	Engineering Services				4,000		4,100		4,203		4,308		4,415		4,526		4,639		4,755		4,874		4,995
14	OMF	O\&M	Medical Exams		1,207		1,300		1,333		1,366		1,400		1,435		1,471		1,508		1,545		1,584		1,624
15	OMF	O\&M	Educational Training		6,945		10,000		10,250		10,506		10,769		11,038		11,314		11,597		11,887		12,184		12,489
16	OMF	O\&M	*Audit Fees		15,364		11,700		11,993		12,292		12,600		12,915		13,237		13,568		13,908		14,255		14,612
17	OMF	O\&M	*Legal Fees-Electric		32,592		35,000		35,875		36,772		37,691		38,633		39,599		40,589		41,604		42,644		43,710
18	OMF	O\&M	Other Professional Svs.		530		20,000		20,500		21,013		21,538		22,076		22,628		23,194		23,774		24,368		24,977
19	OMF	O\&M	Street Light/Area Lights		34,691		38,000		38,950		39,924		40,922		41,945		42,994		44,068		45,170		46,299		47,457
20	OMF	O\&M	Water Utilities		610		1,000		1,025		1,051		1,077		1,104		1,131		1,160		1,189		1,218		1,249
21	OMF	O\&M	Sanitation Utilities		255		1,500		1,538		1,576		1,615		1,656		1,697		1,740		1,783		1,828		1,873
22	OMF	O\&M	Vehicle Maint/Repair		271		1,000		1,025		1,051		1,077		1,104		1,131		1,160		1,189		1,218		1,249
23	OMF	O\&M	Equipment Maint Repair		707		6,500		6,663		6,829		7,000		7,175		7,354		7,538		7,726		7,920		8,118
24	OMF	O\&M	Structures MaintRepair		1,742		1,500		1,538		1,576		1,615		1,656		1,697		1,740		1,783		1,828		1,873
25	OMF	O\&M	Right Of Way/Easements		29,923		40,566		41,580		42,620		43,685		44,777		45,897		47,044		48,220		49,426		50,661
26	OMF	O\&M	Street Lights Maint/Repai		6,468		13,456		13,792		14,137		14,491		14,853		15,224		15,605		15,995		16,395		16,805
27	OMF	O\&M	Damage Claims Repairs		10,385		15,000		15,375		15,759		16,153		16,557		16,971		17,395		17,830		18,276		18,733
28	OMF	O\&M	Tools Maint/Repair		14,867		18,500		18,963		19,437		19,922		20,421		20,931		21,454		21,991		22,540		23,104
29	OMF	O\&M	Storm Damage Repairs		10,986		5,000		5,125		5,253		5,384		5,519		5,657		5,798		5,943		6,092		6,244
30	OMF	O\&M	Usa Alert		262		500		513		525		538		552		566		580		594		609		624
31	OMF	O\&M	*Liability Insurance		28,550		31,810		32,605		33,420		34,256		35,112		35,990		36,890		37,812		38,757		39,726
32	OMF	O\&M	*Blanket Bond Insurance		144		230		236		242		248		254		260		267		273		280		287
33	OMF	O\&M	*Property Insurance		25,027		38,755		39,724		40,717		41,735		42,778		43,848		44,944		46,068		47,219		48,400
34	OMF	O\&M	Telephone/Cell Phones		8,870		7,242		7,423		7,609		7,799		7,994		8,194		8,398		8,608		8,824		9,044
35	OMF	O\&M	Postage		616		1,000		1,025		1,051		1,077		1,104		1,131		1,160		1,189		1,218		1,249
36	OMF	O\&M	Advertising		519		1,000		1,025		1,051		1,077		1,104		1,131		1,160		1,189		1,218		1,249
37	OMF	O\&M	*Economic Dev. Consulting		11,208		29,190		29,920		30,668		31,434		32,220		33,026		33,851		34,698		35,565		36,454
38	OMF	O\&M	Conservation		1,536																				
39	OMF	O\&M	Conservat/Solar Rebates		10,636		18,248		18,704		19,172		19,651		20,142		20,646		21,162		21,691		22,233		22,789
40	OMF	O\&M	Travel Per Diem		1,173		5,000		5,125		5,253		5,384		5,519		5,657		5,798		5,943		6,092		6,244
41	OMF	O\&M	Dues And Membership		7,161		8,000		8,200		8,405		8,615		8,831		9,051		9,278		9,509		9,747		9,991
42	OMF	O\&M	Licensing				100		103		105		108		110		113		116		119		122		125
43	OMF	O\&M	*Utility Business Office		125,654		115,513		118,401		121,361		124,395		127,505		130,692		133,960		137,309		140,741		144,260
44	OMF	O\&M	*Central Purchasing Adm		58,720		102,779		105,348		107,982		110,682		113,449		116,285		119,192		122,172		125,226		128,357
45	OMF	O\&M	*Mgmt Info Sys/0 \& M		44,785		45,050		46,176		47,331		48,514		49,727		50,970		52,244		53,550		54,889		56,261
46	OMF	O\&M	*Fleet Maintenance		124,300		122,070		125,122		128,250		131,456		134,742		138,111		141,564		145,103		148,730		152,449
47	OMF	O\&M	*Vehicle Replacement Fund		110,000		110,000		112,750		115,569		118,458		121,419		124,455		127,566		130,755		134,024		137,375
48	OMF	O\&M	*Finance Dept. Services		3,500		5,000		5,125		5,253		5,384		5,519		5,657		5,798		5,943		6,092		6,244
49	OMF	O\&M	Hazardous Waste Removal		137		5,000		5,125		5,253		5,384		5,519		5,657		5,798		5,943		6,092		6,244
50	OMF	O\&M	Boots		695		2,500		2,563		2,627		2,692		2,760		2,829		2,899		2,972		3,046		3,122
51	OMF	O\&M	Office Supplies		372		1,000		1,025		1,051		1,077		1,104		1,131		1,160		1,189		1,218		1,249
52	OMF	O\&M	Computer/Printer Supplies		1,898		3,500		3,588		3,677		3,769		3,863		3,960		4,059		4,160		4,264		4,371
53	OMF	O\&M	Uniforms		8,151		9,000		9,225		9,456		9,692		9,934		10,183		10,437		10,698		10,966		11,240
54	OMF	O\&M	Safety Equip./Training		11,399		25,000		25,625		26,266		26,922		27,595		28,285		28,992		29,717		30,460		31,222
55	OMF	O\&M	Vehicle Fuel		11,736		15,000		15,375		15,759		16,153		16,557		16,971		17,395		17,830		18,276		18,733
56	OMF	O\&M	Ab32 Surcharge Rps/C\&T		22,528		100,000		105,341		111,903		115,910		120,064		124,395		128,892		133,563		138,443		143,519
57	OMF	O\&M	Power Scheduling Consult		467		10,000		10,534		11,190		11,591		12,006		12,439		12,889		13,356		13,844		14,352
58	OMF	O\&M	Hank Service Charge		9		100		103		105		108		110		113		116		119		122		125
59	OMF	O\&M	Substation/Generation Imp		-		10,000		10,250		10,506		10,769		11,038		11,314		11,597		11,887		12,184		12,489
60	OMF	O\&M	Plant		41,320				-		-		-		-		-		-						
61	OMF	O\&M	Substation MaintRepair		1,450		13,100		13,428		13,763		14,107		14,460		14,821		15,192		15,572		15,961		16,360
62			Total O\&M	\$	1,837,376	\$	2,376,799	\$	2,457,221	\checkmark	2,542,768	\$	2,629,572		2,720,924	\$	2,817,198	\$	2,918,759	\$	3,026,028		3,139,491	\$	3,259,629

Preliminary Financial Management Plan

Expense Line Item Description	FY 2021	FY 2022	FY 2023	FY 2024	FY 2025	FY 2026	FY 2027	FY 2028	FY 2029	FY 2030
Salaries \& Wages	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%
Health Insurance	10.00\%	10.00\%	10.00\%	10.00\%	10.00\%	10.00\%	10.00\%	10.00\%	10.00\%	10.00\%
Retirement	1.50\%	1.50\%	1.50\%	1.50\%	1.50\%	1.50\%	1.50\%	1.50\%	1.50\%	1.50\%
Repair \& Maintenance	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%
Fuel, Utilities, Chemicals	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%
Admin Services	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%	2.50\%
Electric Accounts Growth	2.30\%	1.37\%	1.22\%	1.21\%	1.19\%	1.21\%	1.19\%	1.18\%	1.20\%	1.18\%
Electric Usage Growth	6.18\%	5.78\%	7.29\%	2.80\%	2.80\%	2.82\%	2.81\%	2.80\%	2.82\%	2.82\%
Electric Power Purchase	5.76\%	7.78\%	9.46\%	3.93\%	3.88\%	3.87\%	3.83\%	3.79\%	3.78\%	3.74\%
Winter Hydro	3.59\%	3.59\%	3.59\%	3.59\%	3.59\%	3.59\%	3.59\%	3.59\%	3.59\%	3.59\%
Summer Hydro	3.66\%	3.66\%	3.66\%	3.66\%	3.66\%	3.66\%	3.66\%	3.66\%	3.66\%	3.66\%
Composite O\&M	4.16\%	5.34\%	6.23\%	3.58\%	3.58\%	3.61\%	3.61\%	3.62\%	3.65\%	3.67\%
No Escalation	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Default Inflation Factor ${ }^{1}$	2.20\%	2.20\%	2.20\%	2.20\%	2.20\%	2.20\%	2.20\%	2.20\%	2.20\%	2.20\%
Weighted Average Increase in O\&M Expenses ${ }^{2}$	4.16\%	5.34\%	6.23\%	3.58\%	3.58\%	3.61\%	3.61\%	3.62\%	3.65\%	3.67\%

${ }^{1}$ Federal Reserve Forecast, Long-Term Annual Average CPI
${ }^{2}$ The Weighted Average Increase in O\&M Expenses is reflective of the cost escalation factors presented on this schedule and the cost execution factors on Schedule 1.

Preliminary Financial Management Plan

Capital Improvement Program																						chedule 6
	FY 2020		FY 2021		FY 2022		FY 2023		FY 2024		FY 2025		FY 2026		FY 2027		FY 2028		FY 2029		FY 2030	
1 Meter replacement	\$	30,000	\$	30,000	\$	30,000	\$	30,000	\$	30,000	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
2 Cure Farms substation		-		-		-		1,100,000		-		-		-		-		-		-		-
3 Electric circuit reliability program		160,000		160,000		160,000		160,000		160,000		-		-		-		-		-		-
41 MW Solar Project		-		-		250,000		250,000		250,000		250,000		-		-		-		-		-
5 AMI Project		-		-		-		-		-		-		-		-		-		-		-
6 Long-Term Average CIP		-		-		-		-		-		600,000		600,000		600,000		600,000		600,000		600,000
7 Total CIP Budget (in current dollars)	\$	190,000	\$	190,000	\$	440,000	\$	1,540,000	\$	440,000	\$	850,000	\$	600,000	\$	600,000	\$	600,000	\$	600,000	\$	600,000
8 Cumulative Projected Cost Escalation ${ }^{1}$		0.0\%		0.0\%		3.0\%		6.1\%		9.3\%		12.6\%		15.9\%		19.4\%		23.0\%		26.7\%		30.5\%
9 Resulting CIP Funding Level	\$	190,000	\$	190,000	\$	453,200	\$	1,633,786	\$	480,800	\$	956,682	\$	695,564	\$	716,431	\$	737,924	\$	760,062	\$	782,864
10 Annual CIP Execution Percentage		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%		100\%
11 Final CIP Funding Level	\$	190,000	\$	190,000	\$	453,200	\$	1,633,786	\$	480,800	\$	956,682	\$	695,564	\$	716,431	\$	737,924	\$	760,062	\$	$\underline{782,864}$

Preliminary Financial Management Plan

Capital Project Funding Summary

Final Capital Projects Funding Sources FY 2020 FY 2021 FY 202
Asset Replacement Fund
\$ 190,000 \$
FY 2021
FY 2022
FY 2023
FY 2024
Y 2025
FY 2824
2025
FY 2026 FY 2027 FY 2028 FY 2029 Schedule 9 Asset Replacement Fund
Revenue Fund Total Projects Paid $\begin{array}{llll}\text { \& } & 1,633,786 & \$ 180,800 & \$ \\ 95\end{array}$

Preliminary Financial Management Plan

Funding Summary by Fund Schedule 10																						
	FY 2020		FY 2021		FY 2022		FY 2023		FY 2024		FY 2025		FY 2026		FY 2027		FY 2028		FY 2029		FY 2030	
Asset Replacement Fund																						
Balance At Beginning Of Fiscal Year	\$	2,842,415	\$	3,052,415	\$	3,262,415	\$	3,209,215	\$	3,142,419	\$	3,061,619	\$	2,524,937	\$	2,259,372	\$	1,982,941	\$	1,685,016	\$	1,374,954
Annual Revenues		400,000		400,000		400,000		400,000		400,000		420,000		430,000		440,000		440,000		450,000		460,000
Less: Annual Expenses						-																
Less: Payment Of Debt Service		-		-		-		-		-		-						-		-		
Subtoal	\$	3,242,415	\$	3,452,415	\$	3,662,415	\$	3,609,215	\$	3,542,419	\$	3,481,619	\$	2,954,937	\$	2,699,372	\$	2,422,941	\$	2,135,016	\$	1,834,954
Less: Restricted Funds																						
Total Amount Available For Projects		3,242,415		3,452,415		3,662,415		3,609,215		3,542,419		3,481,619		2,954,937		2,699,372		2,422,941		2,135,016		1,834,954
Amount Paid For Projects		$(190,000)$		$(190,000)$		$(453,200)$		$(466,796)$		$(480,800)$		$(956,682)$		$(695,564)$		(716,431)		(737,924)		(760,062)		(782,864)
Subtotal	\$	3,052,415	\$	3,262,415	\$	3,209,215	\$	3,142,419	\$	3,061,619	\$	2,524,937	\$	2,259,372	\$	1,982,941	\$	1,685,016	\$	1,374,954	\$	1,052,091
Add Back: Restricted Funds		-		-		-		-		-		-		-		-		-		-		
Plus: Interest Earnings		-		-		-		-		-		-		-								
Less: Interest Allocated To Cash Flow		-										-		-		-						
Balance At End Of Fiscal Year	\$	3,052,415	\$	3,262,415	\$	3,209,215	\$	3,142,419	\$	3,061,619	\$	2,524,937	\$	2,259,372	\$	1,982,941	\$	1,685,016	\$	1,374,954	\$	1,052
Revenue Fund																						
Balance At Beginning Of Fiscal Year	\$	3,417,720	\$	2,945,169	\$	2,617,762	\$	2,356,812	\$	2,202,939	\$	2,091,542	\$	2,003,270	\$	1,949,905	\$	1,931,841	\$	1,959,264	\$	2,023,545
Net Cash Flow		$(472,550)$		$(327,407)$		$(260,951)$		$(153,873)$		$(111,396)$		$(88,273)$		$(53,364)$		$(18,065)$		27,423		64,281		100,913
Less: Cash-Funded Capital Projects		-		-		-		-		-		-		-		-						
Less: Payment Of Debt Service		-		-		-		-		-		-		-		-		-		-		
Subtotal	\$	2,945,169	\$	2,617,762	\$	2,356,812	\$	2,202,939	\$	2,091,542	\$	2,003,270	\$	1,949,905	\$	1,931,841	\$	1,959,264	\$	2,023,545	\$	2,124,457
Less: Restricted Funds		$(1,200,731)$		$(1,250,640)$		$(1,317,432)$		$(1,399,509)$		$(1,449,612)$		$(1,501,566)$		$(1,555,732)$		$(1,611,970)$		$(1,670,398)$		$(1,731,419)$		$(1,794,907)$
Total Amount Available For Projects		1,744,439		1,367,122		1,039,380		803,430		641,931		501,704		394,174		319,871		288,865		292,126		329,550
Amount Paid For Projects		-		-		-		-		-		-		-		-		-		-		
Subtotal	\$	1,744,439	\$	1,367,122	\$	1,039,380	\$	803,430	\$	641,931	\$	501,704	\$	394,174	\$	319,871	\$	288,865	\$	292,126	\$	329,550
Add Back: Restricted Funds		1,200,731		1,250,640		1,317,432		1,399,509		1,449,612		1,501,566		1,555,732		1,611,970		1,670,398		1,731,419		1,794,907
Plus: Interest Earnings		-		-		-		-		-		-		-		-		-		-		
Less: Interest Allocated To Cash Flow		-		-		-		-		-		-		-		-		-		-		
Balance At End Of Fiscal Year	\$	2,945,169	\$	2,617,762	\$	2,356,812	\$	2,202,939	\$	2,091,542	\$	2,003,270	\$	1,949,905	\$	1,931,841	\$	1,959,264	\$	2,023,545	\$	2,124,457

		FY 2020	FY 2021	FY 2022	FY 2023	FY 2024	FY 2025	FY 2026	FY 2027	FY 2028	FY 2029	FY 2030
1	Rate Escalation											
2	Consumption Rate Revenue Inc.		0.0\%	0.0\%	0.0\%	0.75\%	0.75\%	0.75\%	0.75\%	0.75\%	0.75\%	0.75\%
3	CPI Forecast		2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%	2.2\%
4	Winter Rates (effective October											
5	Basic Service Charge	\$30.60	\$31.27	\$31.96	\$32.66	\$33.38	\$34.11	\$34.86	\$35.63	\$36.41	\$37.21	\$38.03
6	Hydro Allotment	\$0.0635	\$0.0645	\$0.0646	\$0.0647	\$0.0657	\$0.0667	\$0.0677	\$0.0687	\$0.0698	\$0.0710	\$0.0721
7	Over Hydro	\$0.0871	\$0.0860	\$0.0854	\$0.0848	\$0.0850	\$0.0853	\$0.0855	\$0.0858	\$0.0860	\$0.0863	\$0.0866
8	CA Conservation Charge	\$0.0032	\$0.0031	\$0.0030	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028
9	Summer Rates (effective March											
10	Basic Service Charge	\$30.60	\$31.27	\$31.96	\$32.66	\$33.38	\$34.11	\$34.86	\$35.63	\$36.41	\$37.21	\$38.03
11	Hydro Allotment	\$0.0593	\$0.0603	\$0.0605	\$0.0606	\$0.0616	\$0.0626	\$0.0636	\$0.0648	\$0.0659	\$0.0671	\$0.0684
12	Over Hydro	\$0.0871	\$0.0860	\$0.0854	\$0.0848	\$0.0850	\$0.0853	\$0.0855	\$0.0858	\$0.0860	\$0.0863	\$0.0866
13	CA Conservation Charge	\$0.0032	\$0.0031	\$0.0030	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028	\$0.0028
14	Sample Bills											
15	Winter Bill											
16	Winter Hydro Allotment	404	395	390	385	381	376	372	367	363	359	354
17	Total Usage	1,405	1,405	1,405	1,405	1,405	1,405	1,405	1,405	1,405	1,405	1,405
18	Basic Service Charge	\$30.60	\$31.27	\$31.96	\$32.66	\$33.38	\$34.11	\$34.86	\$35.63	\$36.41	\$37.21	\$38.03
19	Winter Hydro Usage	\$25.67	\$25.49	\$25.19	\$24.94	\$25.00	\$25.07	\$25.15	\$25.24	\$25.35	\$25.45	\$25.57
20	Above Hydro Usage	\$87.13	\$86.86	\$86.73	\$86.52	\$87.12	\$87.73	\$88.36	\$88.99	\$89.64	\$90.29	\$90.96
21	CA Energy Program	\$4.56	\$4.30	\$4.16	\$3.98	\$3.96	\$3.95	\$3.94	\$3.93	\$3.92	\$3.91	\$3.89
22	Total Bill	\$147.96	\$147.91	\$148.04	\$148.09	\$149.46	\$150.87	\$152.32	\$153.80	\$155.31	\$156.87	\$158.46
23	Annual Winter Bill Escalation	0.0\%	0.0\%	0.1\%	0.0\%	0.9\%	0.9\%	1.0\%	1.0\%	1.0\%	1.0\%	1.0\%
24	Summer Bill											
25	Summer Hydro Allotment	757	740	730	721	713	704	696	688	680	672	664
26	Total Usage	2,258	2,258	2,258	2,258	2,258	2,258	2,258	2,258	2,258	2,258	2,258
27	Basic Service Charge	\$30.60	\$31.27	\$31.96	\$32.66	\$33.38	\$34.11	\$34.86	\$35.63	\$36.41	\$37.21	\$38.03
28	Summer Hydro Usage	\$44.91	\$44.65	\$44.14	\$43.71	\$43.88	\$44.08	\$44.29	\$44.53	\$44.80	\$45.08	\$45.38
29	Above Hydro Usage	\$130.69	\$130.56	\$130.53	\$130.36	\$131.42	\$132.48	\$133.56	\$134.66	\$135.76	\$136.89	\$138.03
30	CA Energy Program	\$7.33	\$6.90	\$6.69	\$6.39	\$6.37	\$6.35	\$6.33	\$6.31	\$6.30	\$6.28	\$6.26
31	Total Bill	\$213.52	\$213.38	\$213.32	\$213.12	\$215.05	\$217.02	\$219.05	\$221.14	\$223.27	\$225.46	\$227.70
32	Annual Summer Bill Escalatior	0.0\%	-0.1\%	0.0\%	-0.1\%	0.9\%	0.9\%	0.9\%	1.0\%	1.0\%	1.0\%	1.0\%

Ten Years of Electric Rates

Winter Rates - October 1 through February 28, 2009
Basic Service Charge 25.76
Hydro Allotment 446 KWH 0.0906
Over Hydro . 1075
Conservation . 0035

Summer Rates - March 1 through April 30, 2010
Basic Service Charge 25.76
Hydro Allotment 850 KWH 0.0906
Over Hydro 0.0875
Conservation . 0035

Summer Rates - May 1 through September 30, 2010

Basic Service Charge
25.76

Hydro Allotment 850 KWH
0.0671

Over Hydro
0.0875

Conservation . 0035

Winter Rates - October 1 through January 30, 2011
Hydro Allotment 400 KWH 0.0876

Over Hydro 0.0908
Conservation . 0037
Summer Rates - February 1 through April 30, 2011
Basic Service Charge 25.94
Hydro Allotment 400 KWH 0.0876
Over Hydro 1168
Conservation 0037
Summer Rates - May 1 through August 30, 2011
Basic Service Charge 25.94
Hydro Allotment 753 KWH 0.0844
Over Hydro 1187
Conservation 0037
Winter Rates - September 1 through October 31, 2011
Basic Service Charge 25.94
Hydro Allotment 753 0.0844
Over Hydro 1087
Conservation 0037
Winter Rates - November 1 through April 30, 2012
Basic Service Charge 26.80
Hydro Allotment 392 KWH 0.0857
Over Hydro 1133
Conservation 0037
Summer Rates - May 1 through September 30, 2012
Basic Service Charge 26.80
Hydro Allotment 738 KWH 0.0824
Over Hydro 1133
Conservation 0037
Winter Rates - October 1 through February 28, 2013
Basic Service Charge 27.28
Hydro Allotment 391 KWH 0.07730
Over Hydro 0853
Conservation 0037
Summer Rates - March 1 through July 31, 2013
Basic Service Charge 27.28
Hydro Allotment 737 KWH 0773
Over Hydro 0853
Conservation 0037
Utility Users Tax 2.5\%
Summer Rates - August 1 through September 30, 2013
Basic Service Charge 27.28
Hydro Allotment 737 KWH 0773
Over Hydro 1053
Conservation 0037
Utility Users Tax 2.5\%
Summer Rates - October 1 through October 31, 2013
Basic Service Charge 26.21
Hydro Allotment 737 KWH 0721
Over Hydro 1027
Conservation 0036
Utility Users Tax 2.5\%
Winter Rates - November 1 through February 28, 2014
Basic Service Charge 27.01
Hydro Allotment 413 KWH 0721
Over Hydro 0945
Conservation 0034
Utility Users Tax 2.5\%
Summer Rates - March 1 through June 30, 2014
Basic Service Charge 27.01
Hydro Allotment 778 KWH 0687
Over Hydro 0945
Conservation 0034
Utility Users Tax 2.5\%
Summer Rates - July 1 through September 30, 2014
Basic Service Charge 27.01
Hydro Allotment 778 KWH 0687
Over Hydro 1145
Conservation 0034
Utility Users Tax 2.5\%
Winter Rates - October 1 through October 31, 2014
Basic Service Charge 27.01
Hydro Allotment 778 KWH 0687
Over Hydro 0945
Conservation 0034
Utility Users Tax 2.5\%
Winter Rates - November 1 through February 28, 2015
Basic Service Charge 27.58
Hydro Allotment 370 KWH 0843
Over Hydro 1123
Conservation 0039
Utility Users Tax 2.5\%
Summer Rates - March 1 through March 30, 2015
Basic Service Charge 27.58
Hydro Allotment 697 KWH 0804
Over Hydro 1123
Conservation 0039
Utility Users Tax 2.5\%
Summer Rates - April 1 through August 30, 2015
Basic Service Charge 27.58
Hydro Allotment 697 KWH 0804
Over Hydro 1148
Conservation 0039
Utility Users Tax 2.5\%
Summer Rates - September 1 through October 31, 2015
Basic Service Charge 27.58
Hydro Allotment 697 KWH 0804
Over Hydro 1123
Conservation 0039
Utility Users Tax 2.5\%
Winter Rates - November 1 through January 31, 2016
Basic Service Charge 27.88
Hydro Allotment 389 KWH 0713
Over Hydro 1007
Conservation 0039
Utility Users Tax 2.5\%
Winter Rates - February 1 through February 28, 2016
Basic Service Charge 27.88
Hydro Allotment 389 KWH 0713
Over Hydro 0657
Conservation 0039
Utility Users Tax 2.5\%
Summer Rates - March 1 through May 31, 2016
Basic Service Charge 27.88
Hydro Allotment 712 KWH 0680
Over Hydro 0657
Conservation 0039
Utility Users Tax 2.5\%
Summer Rates - June 1 through September 30, 2016
Basic Service Charge 27.88
Hydro Allotment 712 KWH 0680
Over Hydro 1007
Conservation 0039
Utility Users Tax 2.5\%
Winter Rates - October 1 through December 31, 2016
Basic Service Charge 28.33
Hydro Allotment 411 KWH 0693
Over Hydro 0933
Conservation 0039
Utility Users Tax 2.5\%
Winter Rates - January 1 through February 28, 2017
Basic Service Charge 28.33
Hydro Allotment 411 KWH 0693
Over Hydro 0459
Conservation 0039
Utility Users Tax 2.5\%
Summer Rates - March 1 through March 31, 2017
Basic Service Charge 28.33
Hydro Allotment 751 KWH 0651
Over Hydro 0459
Conservation 0039
Utility Users Tax 2.5\%
Summer Rates - April 1 through September 30, 2017
Basic Service Charge 28.33
Hydro Allotment 751 KWH 0651
Over Hydro 0933
Conservation 0039
Utility Users Tax 2.5\%
Winter Rates - October 1 through February 28, 2018
Basic Service Charge 28.90
Hydro Allotment 414 KWH 0660
Over Hydro 0844
Conservation 0038
Utility Users Tax 2.5\%
Summer Rates - March1 through September 30, 2018
Basic Service Charge 28.90
Hydro Allotment 756 KWH 0629
Over Hydro 0844
Conservation 0038
Utility Users Tax 2.5\%
Winter Rates - October 1 through February 28, 2019
Basic Service Charge 29.82
Hydro Allotment 406 KWH 0652
Over Hydro 0917
Conservation 0033
Utility Users Tax 2.5\%
Summer Rates - March 1 through September 30, 2019
Basic Service Charge 29.82
Hydro Allotment 742 KWH 0621
Over Hydro 0917
Conservation 0033
Utility Users Tax 2.5\%
Winter Rates - October 1 through February 28, 2020
Basic Service Charge 30.60
Hydro Allotment 405 KWH 0636
Over Hydro 0872
Conservation 0032
Power Cost Adjustment 0207
Utility Users Tax 2.5\%
Summer Rates - March 1 through September 30, 2020
Basic Service Charge 30.60
Hydro Allotment 758 KWH 0594
Over Hydro 0872
Conservation 0032
Power Cost Adjustment 0207
Utility Users Tax 2.5\%

APPENDIX F: Resources

City of Needles Solar PV Determination Application documents and other information submitted to the California Energy Commission Docket https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=19-BSTD-07.

2019 Time Dependent Valuation Methodology Report https://efiling.energy.ca.gov/getdocument.aspx?tn=216062.

Building Energy Efficiency Measure Proposal to the California Energy Commission for the 2019 Update to the Title 24 Part 6 Building Energy Efficiency Standards Rooftop Solar PV System. https://efiling.energy.ca.gov/GetDocument.aspx?tn=222201\&DocumentContentId=273 71.

2019 Building Energy Efficiency Standards https://ww2.energy.ca.gov/2018publications/CEC-400-2018-020/CEC-400-2018-020CMF.pdf.

Frequently Asked Questions on the 2019 Solar PV Requirements https://ww2.energy.ca.gov/title24/2019standards/documents/Title24_2019_Standards_ detailed_faq.pdf.

[^0]: 1 California Energy Commission Proceedings. https://ww2.energy.ca.gov/dockets/index_cms.php.

[^1]: Source: California Energy Commission

