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Abstract

Renewable natural gas (RNG) is a fuel comprised of essentially pure methane, usually derived from
climate-neutral (e.g. biogenic or captured) carbon dioxide (CO,). RNG is proposed as a climate
friendly direct substitute for fossil natural gas (FNG), with the goal of enabling diverse natural gas
users to continue operating without substantial infrastructure overhauls. The assumption that such
substitution is climate friendly relies on a major condition that is unlikely to be met: namely, that
RNG is manufactured from waste methane that would otherwise have been emitted to the
atmosphere. In practice, capturable waste methane is extremely limited and is more likely to be
diverted from a flare than from direct atmospheric release in a climate-conscious policy context,
which means that RNG systems need to be more destructively efficient than a flare to provide
climate benefits versus the likely alternative management strategy. Assuming demand levels
consistent with the goal of using existing FNG infrastructure, RNG is likely to be derived from
methane that is either intentionally produced or diverted from a flare, so essentially any methane
leakage is climate additional. Further, in a decarbonizing system, RNG will likely compete with
lower-emissions resources than FNG and thus provides fewer net emissions benefits over time.
Anticipated leakage is climatically significant: literature estimates for methane leakage from biogas
production and upgrading facilities suggest that leakage is in the 2%—4% range (mass basis), up to
as much as 15%. Policy makers should consider that under reasonable leakage and demand

assumptions, RNG could be climate intensive.

1. Introduction

Climate change motivates an urgent global transition
away from the use of fossil fuels for energy (Intergov-
ernmental Panel on Climate Change 2014, Geels et al
2017, Mccauley and Heffron 2018, Davis et al 2018).
Fossil fuels account for 85% of global commercial
energy consumption (2018) (BP 2019) and domin-
ate global energy infrastructure. Given the scale, costs,
and economic implications of abandoning infrastruc-
ture before the end of its useful life, and given the chal-
lenge of transitioning energy systems quickly, there is
substantial interest in the idea of renewable drop-in
fuels (Rye et al 2010, Horvath 2016, Lynd 2017) that
can use existing infrastructure without creating the

© 2020 The Author(s). Published by IOP Publishing Ltd

problems of fossil fuel use. This interest is particu-
larly salient in the context of end uses that use spe-
cific fossil fuels directly. For example, transportation
services currently rely primarily on refined oil, and
many industrial and other heating applications dir-
ectly burn natural gas. These direct users of fossil fuels
are often unable to accommodate alternative fuels
without abandoning functional infrastructure (e.g.
internal combustion engine cars and natural gas-fired
water heaters) in favor of infrastructure compatible
with the new fuels (e.g. electric cars and electric water
heaters).

This work assesses renewable natural gas (RNG)
(Gotz et al 2016, Gasper and Searchinger 2018), here
referring both to biomethane (Parker etal 2017,
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Paolini et al 2018) and power-to-gas (Gotz et al 2016,
Collet et al 2017), as a direct substitute for fossil nat-
ural gas (FNG). Drop-in substitutes for FNG specific-
ally are valued due to the diversity of uses, and thus
infrastructure, for FNG. In the United States (US),
FNG accounts for about 30% of primary energy con-
sumption (EIA 2018), split relatively evenly among
power generation (~40%), industrial uses (~30%),
and commercial and residential uses (~30%) (Energy
Information Administration 2020). RNG has been
proposed as a way to decarbonize this system while
leveraging existing fossil infrastructure, including
pipelines and end use equipment like home and
industrial heating devices (Washington State Univer-
sity Energy Program 2018, Bataille 2019). This substi-
tution is particularly relevant for non-electricity uses
because they are often more difficult to decarbonize
(Davis et al 2018, Bataille 2019), though RNG is also
valued as an electricity fuel because RNG plants could
provide fully dispatchable electricity generation that
could reduce the need for costly electricity storage
or demand management (Tarroja et al 2020). Sim-
ilarly, like hydrogen, RNG manufacturing has been
proposed as a sink for excess variable electricity that
can be stored for later use, in the form of power-to-gas
schemas (Gotz et al 2016).

Like FNG, RNG is primarily methane (Gasper and
Searchinger 2018), a potent greenhouse gas (GHG)
(Intergovernmental Panel on Climate Change 2014)
second only to carbon dioxide (CO,) in its overall
contribution to climate change (Weyant et al 2006).
When RNG is produced from waste methane, con-
verting it to CO, by burning it has climate bene-
fits because of methane’s much higher climate for-
cing potential (Intergovernmental Panel on Climate
Change 2014) relative to CO,. If the waste meth-
ane were going to be emitted to the atmosphere any-
way, any system leakage (i.e. methane emissions) is
a lost opportunity but not a climate stressor; oth-
erwise, it contributes to climate change. This ana-
lysis shows that 1) RNG from intentionally produced
methane, even from climate-neutral CO, sources,
has substantial climate impacts at methane leakage
levels observed in the existing, mature biogas industry
(Pertl er al 2010, Flesch et al 2011, Whiting and Aza-
pagic 2014, Ravina and Genon 2015, Hijazi et al 2016,
Liebetrau et al 2017, Paolini et al 2018, Vo et al 2018,
Ramirez-Islas et al 2020); (2) for any meaningful sys-
tem scale, RNG is likely to be derived from intention-
ally produced methane; and (3) even RNG from waste
methane can have negative climate impacts relative to
the most likely alternative of flaring, not venting, the
methane when leakage from RNG production and use
exceeds flaring loss rates.

2. Methods

This analysis evaluates the GHG intensity of RNG,
focused on three methane feedstock pathways for
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RNG production: (1) from waste methane that would
have otherwise been emitted to the atmosphere; (2)
from waste methane that would have otherwise been
flared; and (3) from intentionally created methane
that would otherwise not have existed. The car-
bon for RNG is assumed to be climate neutral, for
example, biogenic or sourced from a carbon cap-
ture activity. Reported GHG intensities use IPCC’s
Fifth Assessment Report (AR5) 20- and 100-year
GWPs with climate-carbon feedback, distinguishing
between fossil and nonfossil methane GWPs (see
Working Group 1, chapter 8, Tables 8.7 and 8.A.1).
For comparison, the GHG intensity of FNG, generic
resources with life cycle 2050 GHG intensity consist-
ent with 2 °C warming (Pehl et al 2017), and zero car-
bon resources are also included. Full details and calcu-
lations are available in the Supplementary Data File.
The absolute GHG intensity of RNG is assumed
to derive from methane leakage only (because com-
bustion GHG emissions for RNG are climate neut-
ral by assumption), drawing the system boundary
at the point when the methane is diverted from
the alternative management strategy (venting, flar-
ing, or not existing) and excluding embodied GHGs
in infrastructure or any of the production feedstocks.
For example, power-to-gas pathways are implicitly
assumed to use GHG-neutral power in facilities with
zero embodied GHGs. GHG intensity is given as kilo-
grams (kg) of carbon dioxide equivalent (CO,e) per
gigajoule (GJ) of methane consumed—that is, the
denominator is the amount of methane that is ulti-
mately delivered to the entity that combusts it, which
is less than the amount of methane that is produced
or withdrawn if system leakage exceeds 0%. Emissions
associated with leakage are thus calculated as follows:

absolute leakage — related GHG intensity =
(mass CH4 produced x system leakage x GWPcH, )

_ mass CHy delivered

x system leakage x GWPcp,

(1)

~ (1 — system leakage)

where system leakage is mass methane emit-
ted/mass methane produced. Net emissions relative to
the alternative fate for methane are calculated by sub-
tracting the counterfactual methane emissions. For
Path 1 (waste methane would have otherwise been
emitted to the atmosphere), counterfactual emissions
are that system leakage = 100%. For Path 2 (waste
methane would have otherwise been flared), counter-
factual emissions are that system leakage = (1-flare
efficiency). For Path 3 (methane would not otherwise
have existed), counterfactual emissions are 0. Thus,
net emissions are given as:

net leakage emissions = (mass CH4 produced

X GWPch, ) X (system leakage — counterfactual leakage)

(2)
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For the three paths, Equation 2 becomes:

Path 1, net leakage emissions = (mass CHs produced

X GWPch,) X (system leakage — 1) (3)

Path 2, net leakage emissions = (mass CH4 produced

X GWPch,) X (system leakage — flare leakage) (4)

Path 3, net leakage emissions = (mass CH4 produced

X GWPcp,) X (system leakage — 0) (5)

Note that because of the presentation of results per
unit of methane combusted by a user and the fact
that methane production = methane delivered/(1—
system leakage) (equation (1)), equation (3) reduces
to (mass CHydelivered x —GWPcy,) and is inde-
pendent of leakage rate. For Path 2, emissions
upstream of the flare are not considered because waste
methane that is vented prior to diversion to the flare
is not diverted to the flare, thus falling under Path 1.

Leakage from the RNG system is evaluated as a
range because of substantial uncertainty about what
leakage levels would be under future conditions, par-
ticularly if newer RNG pathways (e.g. power-to-gas)
became widespread. This work considers the implica-
tions of RNG system leakage between 0%—15% mass
leakage/mass produced in order to inform consider-
ation of potential RNG futures. The range is most
proximately based on Scheutz and Fredenslund’s

(2019) evaluation of 23 biogas plants, including seven
facilities encompassing production through biogas
upgrading to biomethane, where facility leakages
from 0.4 to 14.9% of production were observed (see
Supplementary Data File for details). Specific leak-
age sources are not always evident but might be cor-
related with plant complexity (e.g. number of units),
maintenance regimes, and the status of biogas pro-
duction as a core or non-core function (Scheutz and
Fredenslund 2019). Published values in other studies
and GHG protocols reflect ranges generally narrower
than but consistent with Scheutz and Fredenslund’s
findings (Flesch et al 2011, Liebetrau et al 2013, 2017,
Hrad et al 2015, Vo et al 2018, Bartoli et al 2019).

Leakage downstream of production and pro-
cessing (i.e. during transportation, storage, and end
use) is assumed to be identical for FNG and RNG.
Although it is challenging to assign a value for these
processes due to the diversity of end uses, lack of
information about leakage during end uses, differ-
ential use of transmission, storage, and distribution
by end users, and the dependence of transportation
leakage on distance, a value of 0.8% (mass leaked
per mass withdrawn or produced) was chosen in
service of estimating absolute GHG intensities for
comparison with zero-GHG systems. This value is
based on assumptions and data from the literature

(Liebetrau et al 2013, Lavoie et al 2017, Alvarez et al
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2018) (see Supplementary Data File for details). For
FNG, this value is added to an estimate of production
and processing leakage of 2.1% mass leakage/mass
withdrawn (Alvarez et al 2018), and for RNG, it is
assumed to be included in the assessed 0%—15% range
for full system potential leakage rates.

3. Results

3.1. GHG intensity of renewable natural gas

Table 1 shows the estimated GHG intensity of RNG
for three production pathways as a function of sys-
tem methane leakage: (1) RNG produced from waste
methane that would have otherwise been emitted to
the atmosphere (Path 1); (2) RNG produced from
waste methane that would have otherwise been flared
with 99% destructive efficiency (Path 2); and (3)
RNG produced from intentionally created methane
(Path 3).

In all cases, this analysis assumes that the CO,
emitted from burning RNG is climate neutral for the
RNG user, e.g. because it is sourced from biogenic or
captured carbon that was taken up from and returned
to the atmosphere over a period of time that is short
from a climate perspective. Further, to emphasize the
particular challenge posed by methane leakage, this
analysis assumes RNG has no GHG intensity other
than that associated with net impacts from methane
leakage or destruction—that is, inputs to RNG pro-
duction like electricity, hydrogen, and support infra-
structure are assumed to be climate neutral. This
assumption is consistent with the notion that zero-
GHG electricity or hydrogen are potential alternat-
ives to RNG. Note that because conversion processes
are never 100% efficient, any GHG intensity for RNG
associated with electricity or hydrogen inputs would
exceed that of the electricity or hydrogen available for
use.

As table 1 shows, the GHG intensity of RNG is
driven by the counterfactual—that is, what would
have otherwise happened to the source methane. Path
1, waste methane diversion from the atmosphere, is
highly GHG negative because the counterfactual is
that all utilized methane would have been emitted as
methane. Leakage is irrelevant to GHG impact per
unit of utilized methane because any leaks are meth-
ane that would have escaped anyway. Although Path
2 also uses waste methane, the counterfactual is that
the waste methane would have been nonproductively
burned in a flare, so RNG is GHG negative in this
case only if the RNG system’s total leakage is lower
than leakage from the flare (1%), which is unlikely
given that a best-guess estimate of downstream emis-
sions alone is 0.8%. Path 3 uses intentionally pro-
duced methane. Here, the counterfactual is that no
methane would have been released to the atmosphere,
so any system leakage is GHG positive.
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Table 1. Renewable natural gas carbon dioxide equivalent intensity by pathway, assuming climate-neutral combustion emissions of

carbon dioxide.

(a) GWP-100, kg CO2e/GJ methane productively consumed

system leakage (mass CH4 emitted/mass CH4 produced) 0 0.025 0.05 0.075 0.1 0.125 0.15
Path 1: Waste methane diverted from emission to atmosphere —680 —680 —680 —680 —680 —680 —680
Path 2: Waste methane diverted from a 99% efficient flare -7 10 29 48 68 89 112
Path 3: Intentionally produced methane used 0 17 36 55 76 97 120

(b) GWP-20. kg CO2e/GJ methane productively consumed

system leakage (mass CH4 emitted/mass CH4 produced)

0 0.025 0.05 0.075 0.1 0.125 0.15

Path 1: Waste methane diverted from emission to atmosphere —1720 —1720 —1720 —1720 —1720 —1720 —1720

Path 2: Waste methane diverted from a 99% efficient flare
Path 3: Intentionally produced methane used

—-17 26 72 121 172 226 283
0 44 91 139 191 246 304

350

300
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2
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Figure 1. Greenhouse gas intensity of renewable natural gas from intentionally produced methane as a function of system
methane leakage. GWP-20 and GWP-100 are shown for intentionally produced RNG for RNG system methane leakage of 0-15%,

with GWP-20 and GWP-100 of FNG shown for reference.

3.2. Intentionally produced methane for RNG

A major finding of this analysis is that, as with FNG
(Brandt et al 2014, Alvarez et al 2018, Grubert and
Brandt 2019, Zhou et al 2019), RNG can have signi-
ficant climate impacts associated with system meth-
ane leakage if the methane is intentionally produced
(Path 3; table 1). Figure 1 shows the GHG intens-
ity (kg CO,e/GJ CH,4 productively consumed, e.g. for
heat or electricity generation) of RNG from inten-
tionally produced methane as a function of RNG sys-
tem methane leakage.

As figure 1 shows, RNG from intentionally pro-
duced methane is always GHG positive unless total
system leakage is 0. Given demonstrated transport-
ation and end use leakage values on the order of
0.4-0.8% (Liebetrau et al 2013, Lavoie etal 2017,
Alvarez etal 2018), RNG from intentionally pro-
duced methane cannot outperform zero-GHG hydro-
gen or electricity systems on GHG intensity. Although

4

this analysis does not consider non-operational, non-
methane GHGs, note that both hydrogen and electri-
city are likely inputs to intentionally produced meth-
ane for RNG, which therefore inherits and amplifies
embodied emissions. The estimated methane-only
GHG footprint of such RNG exceeds the combustion
plus methane leakage GHG footprint of FNG when
RNG system leakage is higher than about 10% (GWP-
100) or 6% (GWP-20) on a mass leaked per mass
produced basis. Accounting for IPCC stated uncer-
tainty in the GWP of methane (Intergovernmental
Panel on Climate Change 2014), the estimated leak-
age range within which RNG becomes more GHG
intensive than FNG is about 9.1-11.1% (GWP-100)
or 5.0-6.6% (GWP-20). Although power-to-gas sys-
tems and evaluations remain rare enough that data on
leakage are not widely available (though leakage has
been discussed (Vo et al 2018)), such leakage rates—
particularly for a full system—are not uncommon



10P Publishing

Environ. Res. Lett. 15 (2020) 084041

for biogas to RNG systems (Liebetrau etal 2013,
2017, Scheutz and Fredenslund 2019). For electri-
city, assuming the heat rate of a US natural gas com-
bined cycle power plant and GWP-100, RNG’s oper-
ational methane GHG intensity surpasses the 15 kg
CO,e/MWh total life cycle 2050 GHG intensity con-
sistent with a 2 °C warming limit (Pehl et al 2017)
for system leakage of 0.3%, which is less than some
observed leakage from power plants alone (Lavoie
et al 2017). Calculations can be found in the Supple-
mentary Data File.

3.3. At scale, most methane feedstocks for RNG
would likely be intentionally produced

How much RNG is likely to come from intention-
ally produced methane, which includes all power-
to-gas RNG and RNG produced from feedstocks
that would not degrade anaerobically (i.e. to meth-
ane rather than CQO,) absent intentional interven-
tion (Meyer-Aurich et al 2012, Borjesson et al 2015,
Agostini et al 2015)? The answer depends on assump-
tions about total demand and the availability of waste
methane for diversion to RNG production. If the goal
is to maintain the usefulness of FNG infrastructure,
one potential assumption for RNG demand is that
it would match current FNG demand. In 2017, US
consumer consumption was 27.2 exajoules (EJ) of
ENG, including 10.1 EJ for electric power and 8.7
EJ for often difficult-to-decarbonize industrial uses
(see Supplementary Data File). The energy content of
2017 US uncontrolled methane emissions was about
1.6 E]J/year, about 0.3 EJ of which were emitted from
biogenic sources (as opposed to, say, the ENG sys-
tem) that could reasonably be captured (wastewater
treatment plants and landfills, not enteric fermenta-
tion) (US EPA 2019, Grubert 2020), not all of which
would become consumable RNG (i.e. due to parasitic
energy requirements, conversion losses, etc). Thus,
although some capturable waste methane (Paths 1
and 2) clearly exists, the degree to which RNG systems
can depend on such resources at scale is low (<1%)
relative to current natural gas demand.

One important observation for contextualizing
these values is that not all methane from waste is
waste methane. For example, the National Renew-
able Energy Laboratory (NREL) estimates that the
energy content potential from methanogenic US
wastes is about 5% the size of the US natural
gas system (National Renewable Energy Laborat-
ory 2013), including a methane potential estimate
from wastewater (2.3 million tonnes/year) (National
Renewable Energy Laboratory 2013) that is four times
the US Greenhouse Gas Inventory (GHGI) estim-
ate for methane emissions from wastewater treat-
ment plants as of 2017 (0.57 million tonnes/year,
Table 2-2) (US EPA 2019). Why? Unintentionally
produced waste methane typically results from nat-
ural anaerobic digestion of wet organic wastes, like
animal manure, sewage, and landfilled wastes, but this
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digestion process does not completely convert carbon
wastes to methane. Rather, digestion produces bio-
gas, a blend of methane and CO, that can then be
upgraded into near-pure biomethane, a form of RNG.
Crucially, in part because biogas and biomethane can
generate revenue, it is not only possible but expected
to intervene in biological systems to increase meth-
ane production beyond what would have happened
anyway when there is an incentive to do so (Hijazi
et al 2016, Ferreira et al 2019, Garcia et al 2019). Thus,
a single facility might produce both Path 1 (GHG-
negative) and Path 3 (GHG-positive) methane from
the same wastes.

Despite its limited availability, Path 1 meth-
ane is so GHG negative (table 1) that it is reason-
able to investigate whether climate benefits can be
retained if small amounts of very climate-negative
RNG are blended with RNG from intentionally pro-
duced methane. Figure 2 shows GHG intensity of
RNG for blends of 0%—-100% Path 3 methane (inten-
tionally produced) with Path 1 methane (waste meth-
ane diverted from release).

Figure 2 suggests that blending very GHG-
negative RNG with GHG-positive RNG can enable a
fairly large RNG system that is overall at least some-
what GHG-negative, assuming leakage levels within
a typically observed range (see Supplementary Data
File for detailed calculations and values). Assuming
all 0.3 EJ of uncontrolled methane emissions from
landfills and wastewater treatment plants could be
captured and converted to consumer-ready RNG,
either current industrial demand or electric power
demand for FNG could be fulfilled by an RNG sys-
tem with up to about 3% system leakage and theoret-
ically remain GHG-negative (GWP-100; see Supple-
mentary Data File). As the next section shows, how-
ever, such an outcome is unlikely because of the actual
nature of waste methane management.

3.4. Capturable waste methane would be flared, not
vented

The possible conclusion that sufficient highly GHG
negative methane exists to support a large (e.g. FNG
electricity system-sized) GHG negative RNG system
is based on the assumption that waste methane is
diverted from emission to the atmosphere (Path 1).
This assumption is flawed if one also assumes that
GHG emissions reductions are a policy priority, as
existing practice is not the appropriate baseline for
determining the counterfactual management prac-
tice for waste methane that could be available for
RNG production (Haya et al 2019). Specifically, if the
methane can be captured for RNG production, it can
be captured for diversion to a flare, and it is unreal-
istic to assume that capturable methane would be
vented under a GHG conscious policy regime. Even
without federal climate regulation, the US regulates
methane emissions from new landfills (US EPA 2016),
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methane leakage for RNG; upper bound of shaded areas = 15% system methane leakage for RNG. GWP-20 and GWP-100 for
RNG and FNG are shown for blends of 0% to 100% RNG from intentionally produced methane.
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Figure 3. Greenhouse gas intensity of RNG systems that blend waste methane that would otherwise have been flared with
intentionally produced methane, for 0%-15% system leakage. Panel A: Flare with 99% destruction efficiency. Panel B: Flare with
86% destruction efficiency. Lower bound of shaded areas = 0% system methane leakage for RNG; upper bound of shaded

areas = 15% system methane leakage for RNG. GWP-20 and GWP-100 for RNG and FNG are shown for blends of 0% to 100%

RNG from intentionally produced methane.

and many methanogenic facilities use methane cap-
ture with flares for safety reasons. Flaring destroys the
methane with the same destructive benefit as com-
busting the methane productively. Figure 3 updates
the assumptions used in figure 2 to show the same res-
ults, but assuming that RNG using Path 3 (intention-
ally produced) methane is blended with RNG using

Path 2 (waste diverted from flare) rather than Path
1 (waste diverted from release) methane. Figure 3
assumes 99% flare efficiency, described in the GHGI
as a median value (US EPA 2019). Figure S1 (available
at stacks.iop.org/ERL/15/084041/mmedia) shows res-
ults assuming the GHGI’s lower flare efficiency bound
of 86 (US EPA 2019).
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As figure 3 shows, conclusions about the viab-
ility of a large, GHG-negative RNG system change
radically when the more realistic counterfactual of
methane destruction rather than methane venting
is applied. RNG system leakage would need to be
essentially O (that is, lower than the flare’s leakage)
to be GHG-negative versus typical flare perform-
ance. Based on literature values for leakage, includ-
ing the estimate of 0.8% leakage for processes down-
stream of production and processing, productive use
of waste methane is unlikely to be more destruct-
ively efficient than a flare. Although waste methane
being diverted for productive use arguably would not
have been captured without the financial incentive
of energy sales, given that capture infrastructure is
not free, flaring is most likely the less GHG intensive
alternative for waste methane once it has been cap-
tured. In a decarbonized energy system where RNG
would be less likely to be replacing GHG-intensive
fuels (and thus offsetting their emissions), and when
a policy regime requiring or incentivizing destruction
of GHG-intensive wastes might reasonably be expec-
ted to be in place, expected levels of methane leakage
suggest that RNG is unlikely to be a low GHG energy
resource relative to alternatives.

4. Discussion

RNG is not inherently climate friendly. Based on con-
sideration of both the source of methane used to
produce RNG and the likely alternative fate of that
methane, and using reasonable assumptions about
likely system methane leakage, it is unlikely that an
RNG system could deliver GHG-negative, or even
zero GHG, energy at scale. Substantial GHG bene-
fits can be attained when waste methane is genuinely
diverted from emission to the atmosphere, but the
availability of such methane is low (Liu and Rajago-
pal 2019, US EPA 2019) relative to potential demand
for climate friendly RNG, especially when considering
that the alternative fate of capturable methane is more
likely flaring than venting in a GHG-conscious set-
ting. Under some system leakage rates that have been
observed for biogas systems (Liebetrau etal 2017,
Scheutz and Fredenslund 2019), RNG might not even
meet the less stringent threshold of outperforming
FNG from a GHG perspective.

Designing a system that depends on RNG, or
delaying transition to a system that does not depend
on natural gas because of the promise of RNG,
could delay climate mitigation because of induced
demand for intentionally produced methane. Partic-
ularly given that past experience demonstrates that
policy can rapidly drive resource allocation to RNG
(Bartoli et al 2019), RNG’s environmental perform-
ance should be carefully compared with that of its
likely long-term competitors—not just FNG—before
resources are allocated. Current literature on RNG
often assumes the context of a fossil-based system
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(see e.g. the reference systems for papers included in
a review of LCA of biogas production (Hijazi et al
2016)), which leads to the crediting of lower envir-
onmental burden relative to this context (e.g. when
RNG is given credit for avoided GHG impacts from
FNG consumption (Scheutz and Fredenslund 2019,
Ramirez-Islas et al 2020)). Such fossil-linked benefits
disappear in a context where RNG could be substitut-
ing for zero-GHG alternatives like zero-GHG electri-
city or hydrogen rather than FNG, petroleum fuels,
and GHG-intensive electricity.

Even beyond GHG emissions, environmental
burdens associated with RNG that are acceptable
relative to FNG merit deeper investigation when
the alternative is, e.g. zero-GHG electricity. RNG is
designed to be effectively indistinguishable from FNG
at the point of use, so local combustion impacts
are likely to be similar for clean RNG, and poten-
tially worse for less pure RNG (Paolini et al 2018).
Upstream of use, RNG would likely have different
socioenvironmental impacts than FNG. Although
RNG can use existing pipeline and user infrastruc-
ture, for example, it would obviate the need for
ENG’s production infrastructures, which have sub-
stantial socioenvironmental impacts (Jacquet et al
2018). RNG production facilities using primar-
ily waste products (e.g. agricultural wastes, land-
fill gas, wastewater treatment gas, excess electricity
generation) would likely not qualitatively change
socioenvironmental impacts from those activities,
though making certain practices financially viable
could extend their life and extent (Haya et al 2019).
Relatedly, having access to RNG could extend the life
of existing fossil infrastructure, with mixed socioen-
vironmental outcomes.

To the extent that RNG facilitates lower impact
energy systems, e.g. by avoiding the need for min-
eral (Sovacool et al 2020)- and cost-intensive electri-
city storage to help match supply and demand (Tar-
roja et al 2020), some of the marginal impacts of RNG
could be offset by system benefits. These benefits are
not guaranteed, however. As demonstrated by exper-
ience with renewable drop-in transportation fuels,
the potential for drop-in renewable fuel use might
not actually lead to renewable fuel use (Pouliot and
Babcock 2017), and the renewable fuels themselves
might have undesirable environmental characteristics
(Liu and Rajagopal 2019). This work shows that RNG
needs to be carefully evaluated in the context of expec-
ted long-run system conditions before it is adopted as
a component of a zero GHG energy system, partic-
ularly given its potential for methane leakage-related
climate pollution.
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