DOCKETED		
Docket Number:	19-BSTD-03	
Project Title:	2022 Energy Code Pre-Rulemaking	
TN #:	235136	
Document Title:	Noresco Slides on Nonresidential Electric Baseline presented on October 6	
Description:	This document is the slide presentation given by Noresco at the October 6 workshop on the topic of a nonresidential electric baseline in the Energy Code.	
Filer:	Peter Strait	
Organization:	California Energy Commission	
Submitter Role:	Commission Staff	
Submission Date:	10/8/2020 1:09:28 AM	
Docketed Date:	10/8/2020	

Title 24 2022 ACM: Heat Pump Baseline Analysis – Nonresidential Buildings

October 6, 2020

Roger Hedrick, Eric Shadd, Rahul Athalye

OBJECTIVES

2

- Identify heat pump based HVAC systems for consideration as 2022 ACM Baselines
- Evaluate performance relative to current ACM Baselines
 - All current baselines use gas heat
 - TDV expected to increase when switching to electric heat
- Identify systems that have lower TDV consumption, but result in a minimal increase in stringency
 - A new baseline with higher TDV consumption would <u>decrease</u> stringency for projects with electric heat
 - Systems with large differences from the baseline in TDV consumption are excluded from the results that will follow

NÔRESCO

APPROACH

3

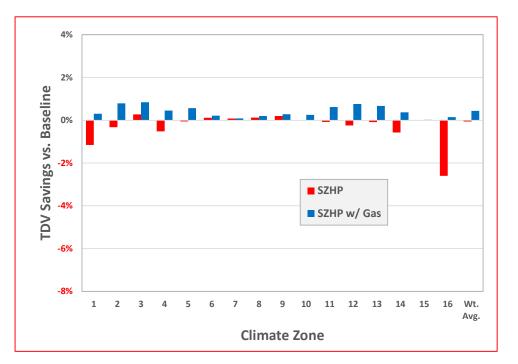
- Use CEC prototypes
 - Office Small, Medium and Large
 - Retail Small, Medium and Large
 - Small Restaurant
 - Small School
 - Warehouse
- Service and Domestic Hot Water Systems Electric Only
- Cooling parameters match baseline
 - Federal standards may impact this if baselines change in CBECC-Com
- Fan parameters also match baseline
- For similar system types, impacts are due to heating type only.

ALTERNATIVE SYSTEM OPTIONS

	Current Baseline	Systems Analyzed
Small Office	Single Zone Rooftop – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Supplemental Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat Variable Refrigerant Flow + DOAS
Medium Office	Packaged Variable Air Volume – Hot Water Heat with Gas Boiler	 Packaged VAV – Electric Resistance Reheat Packaged VAV – Electric Reheat & Parallel Fan Boxes Packaged VAV w/ Heat Pump Boiler Variable Refrigerant Flow + DOAS Water Source Heat Pump w/ Elec. Boiler + DOAS
Large Office	Built-Up Variable Air Volume – Hot Water Heat with Gas Boiler	 Variable Air Volume (VAV) w/ Elec. Reheat VAV w/ Electric Reheat & Parallel Fan Boxes VAV w/ Heat Pump Boiler Water Source Heat Pump w/ Elec. Boiler + DOAS

ALTERNATIVE SYSTEM OPTIONS

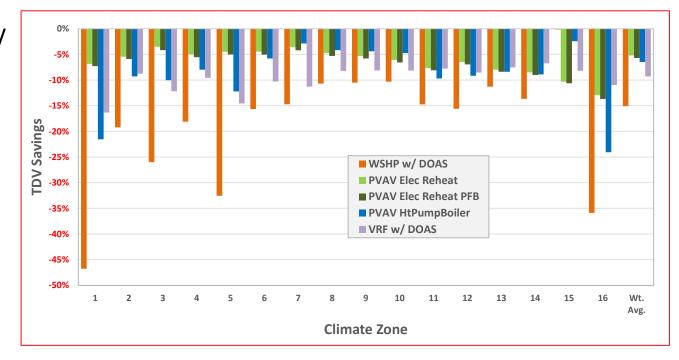
	Current Baseline	Systems Analyzed
Small Retail	Single Zone and Single Zone Variable Air Volume (VAV) – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
Medium Retail	Single Zone and Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
Large Retail	Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat


ALTERNATIVE SYSTEM OPTIONS

Current Baseline	Systems Analyzed
Single Zone and Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
Single Zone and Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat Packaged VAV – Electric Resistance Reheat Packaged VAV – Electric Reheat & Parallel Fan Boxes Variable Refrigerant Flow Water Source Heat Pump w/ Elec. Boiler + DOAS
Single Zone VAZ (Office), Heating Ventilating System (Storage) – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
	Single Zone and Single Zone VAV – Gas Furnace Heat Single Zone and Single Zone VAV – Gas Furnace Heat Single Zone VAZ (Office), Heating Ventilating System (Storage) –

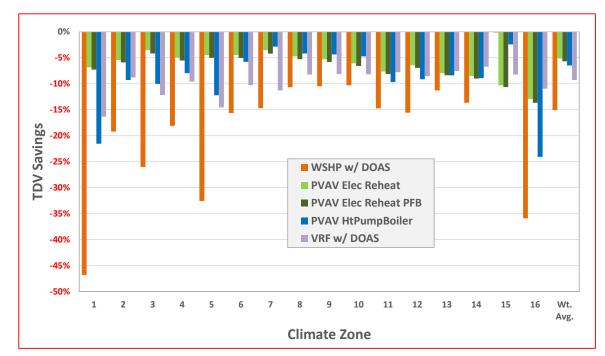
7

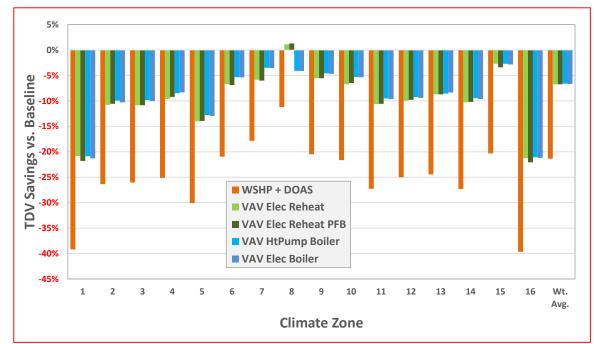
Small Office


- Baseline is single zone air conditioners (SZAC) with gas furnace heat
- Changing furnace to heat pump heat - small reduction in TDV in some climate zones, small increase in others
- Changing supplemental heat to gas gives TDV savings in all CZ

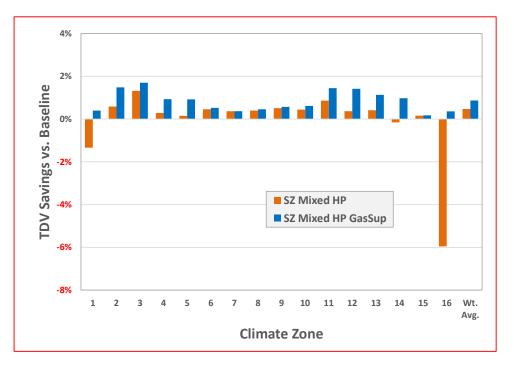
8

Medium Office

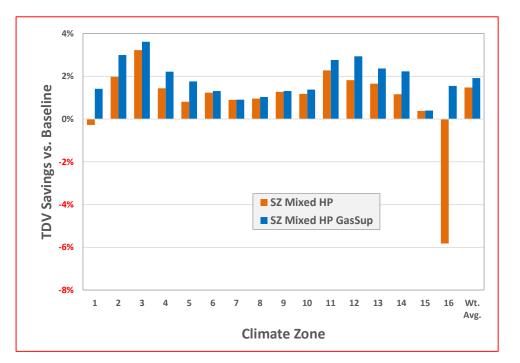

- Baseline is Packaged VAV with hot water reheat from a gas boiler
- Electric reheat options increase TDV
- Heat Pump Boiler and VRF models do not provide TDV savings


Medium Office

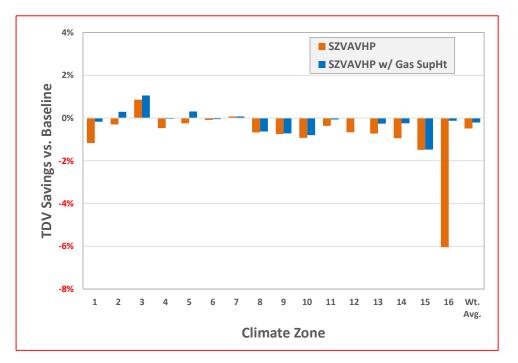
- Baseline is Packaged VAV with hot water reheat from a gas boiler
- WSHP shows much higher TDV consumption
- Electric reheat, heat pump boiler and VRF models do not provide TDV savings


Large Office

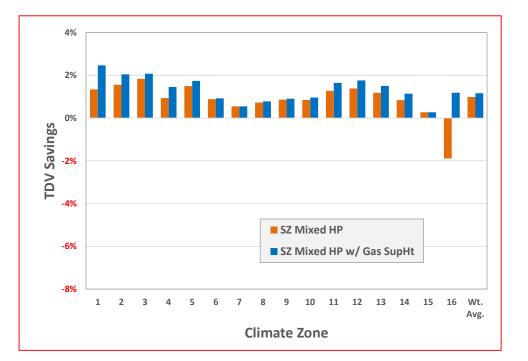
- Baseline is a Built-up VAV with chillers and hot water reheat from a gas boiler
- WSHP shows much higher TDV consumption
- Electric reheat options increase
 TDV except in CZ8
- Electric boiler options do not perform much better


Small Retail

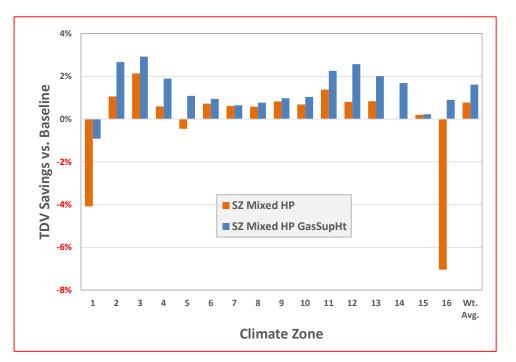
- Baseline is a mix of SZAC and single zone VAV air conditioners (SZVAVAC), all with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1 and CZ16
- Changing supplemental heat to gas gives TDV savings in all CZ


Medium Retail

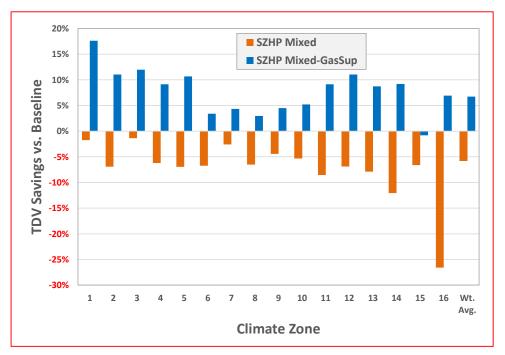
- Baseline is a mix of SZAC and SZVAVAC, with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1 and CZ16
- Changing supplemental heat to gas gives TDV savings in all CZ


Large Retail

- Baseline is SZVAVAC with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1 and CZ16
- Changing supplemental heat to gas gives TDV savings in all CZ


Small Restaurant

- Baseline is a mix of SZAC and SZVAVAC, both with gas furnace heat
- Switch to heat pump provides TDV savings in every climate zone except CZ16
- Gas supplemental heat gives TDV savings in CZ16 too


Small School

- Baseline is a mix of SZAC and SZVAVAC, all with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1, CZ5 and CZ16
- Changing supplemental heat to gas provides TDV savings except in CZ1

Warehouse

- Baseline is a SZVAVAC serving the office and heating/ventilating units serving storage areas, all with gas furnace heat.
- No direct electric heat alternative to the H/V units
- Constant volume heat pumps show increased TDC
- Change to gas supplemental heat reduces TDV in all climate zones

CONCLUSIONS

- Switch of baseline from gas furnace to heat pump appears viable
 - Need to evaluate impact of Federal minimum cooling efficiencies
 - Need to investigate additional options to avoid baseline with higher TDV consumption
 - Envelope changes?
 - Climate zone specific additional measures?
- Electric alternatives to gas boilers problematic
- Need to evaluate Federal cooling efficiency minimums
- Will be looking at inclusion of DOAS options

