DOCKETED	
Docket Number:	19-BSTD-03
Project Title:	2022 Energy Code Pre-Rulemaking
TN #:	235047
Document Title:	LBNL Kitchen Ventilation Panel Presentation
Description:	This file contains the presentation given by Brett Singer of Lawrence Berkeley National Laboratory at the September 30, 2020 hearing and panel discussion on kitchen ventilation, indoor cooking, and indoor air quality.
Filer:	Peter Strait
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	10/6/2020 12:59:52 AM
Docketed Date:	10/6/2020

Gas Burners, Cooking and Kitchen Ventilation

Presentation to CEC Indoor Cooking and Air Quality Workshop

Brett C. Singer Lawrence Berkeley National Lab <u>bcsinger@lbl.gov</u>

Research presented here was supported by the following institutions:

Relevant CEC Studies

Natural Gas Variability in California: Environmental Impacts and Device Performance, CEC-500-05-026

Residential Energy Savings from Airtightness and Ventilation Excellence Program, CEC-500-05-061

Energy and Indoor Environmental Quality (IEQ) Retrofits In Low-Income Apartments, CEC-500-09-022

Healthy Homes: Exposure to Unvented Combustion Gases, CEC-500-09-042

Effective Kitchen Ventilation for Healthy ZNE Homes with Natural Gas, PIR-16-012

Partner for Field Study: ASSOCIATION FOR ENERGY AFFORDABILITY 을

Summary Points - 1

- Gas burners and cooking each generate pollutants that degrade IAQ
 - Using gas burners w/o venting can cause indoor 1h NO_2 to exceed thresholds for outdoor standards
 - Cooking w/o venting can cause 24h PM_{2.5} to exceed ambient standards & guidelines
- Pollutant levels increase with cooking and higher in smaller homes
- Venting range hoods can effectively control cooking pollutants
- Over the range microwaves perform similarly to common range hoods

Summary Points - 2

- Capture efficiency varies by airflow & front vs. back burners
- Venting at the 100 cfm as currently required by Title24 is inadequate
- Use of hoods with CE up to 65-75% needed to protect IAQ in all new homes, particularly in those <1000 sf
- Range hoods not used routinely and much less than people claim

Cooking & burners are important sources

$CO_2 \& H_2O$

NO,NO₂, HONO, Formaldehyde

Ultrafine particles

Ultrafine particles

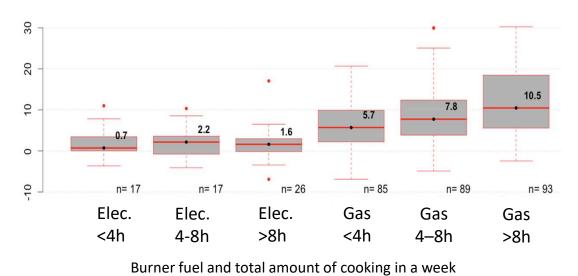
Ultrafine particles, PM_{2.5} Formaldehyde, Acetaldehyde Acrolein, PAH

Induction burners appear to emit many fewer ultrafine particles¹ and no NO_X

Simulations using cooking data from homes and measured emission rates indicate possible widespread NO₂ problems

- Physics based simulations of 6634 SoCal homes from 2003 RASS
- Self-reported cooking frequencies by meal
- · Cooking durations from web-based survey
- Emissions measured from 10 used ranges
- Winter week including NO₂ from outdoors
- Compare to acute ambient AQ standards
 - NO₂: 100 ppb for 1 h
 - CO: 20 ppm for 1 h
 9 ppm for 8h

	% of homes above acute standard – No RH use	Estimated # of CA homes affected
СО	7-8 %	1.7M
NO ₂	55-70%	12M


Note: cooktop CO emissions much lower with modern burner designs with higher grills, better air supply. Ovens likely still susceptible to higher CO as spreader plates degrade

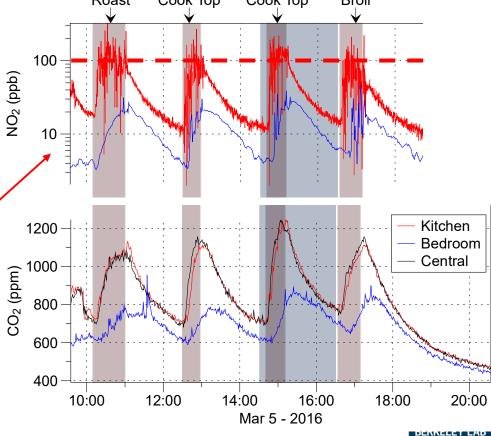
6 Logue et al., 2014, Environ. Health Perspectives.

Measurements in homes support simulations

1-week integrated measurements in 350 California homes; heating season

Indoor source contribution to Bedroom NO₂

Kitchens were ~50% higher Median areas for gas homes: 105-128 m² These are higher than NO_2 increments in simulations


Measurements in homes support simulation results for acute concentrations

Simulate cooking of modest meal for 4

Example: 1400 sf house with continuous ventilation of 0.5 ach by ERV

 NO₂ in kitchen exceeds ambient AQ threshold value

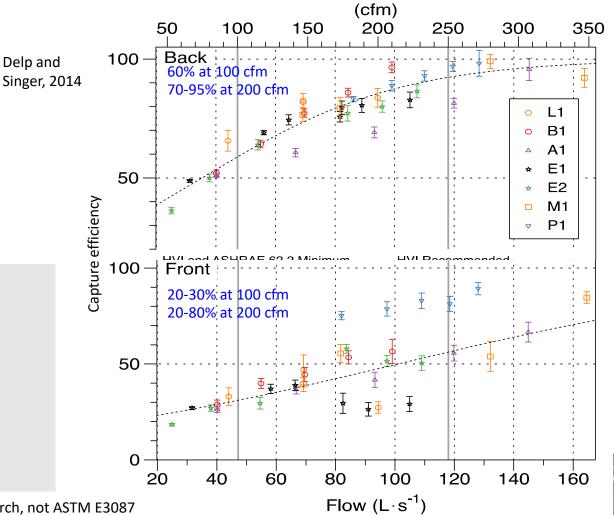
4 of 9 homes had kitchen NO₂ exceed 100 ppb over 1h

8

Lab studies of range hood performance

Capture efficiency is the fraction of emitted pollutants removed by the range hood.

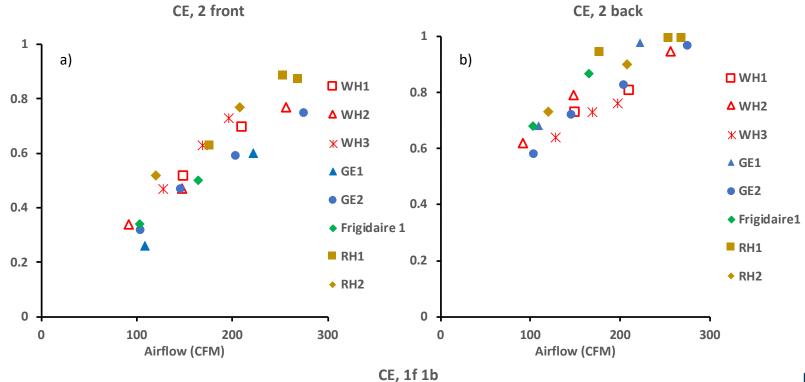
Delp and Singer, 2014; Lunden et al., 2015



Lab study results

L1: Low-cost \$40 B1: Basic, quiet \$150 A1: 62.2-compliant, \$250 E1: Energy Star, \$300 E2: Energy Star, \$350 M1: Microwave, \$350 P1: Performance, \$650

Based on LBNL dynamic method used for research, not ASTM E3087

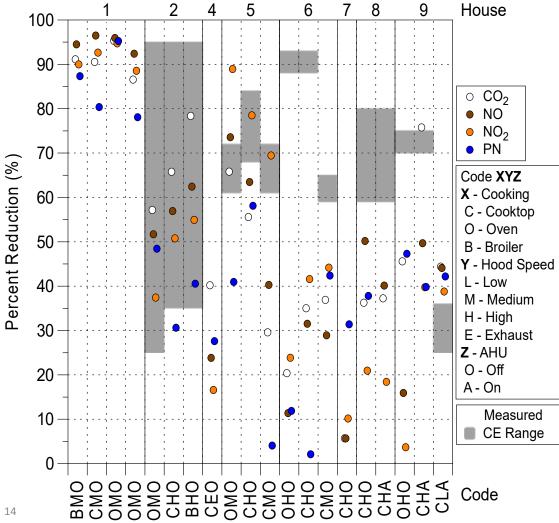

Do over the range microwaves perform similarly to conventional range hoods?

OTR microwave range hood tested:

Frigidaire GE Whirlpool (HVI listed) FFMV1645TS JVM3160RFSS (GE1) \$228 220cfm blower WMH31017 \$208 300cfm blower (WH1) 0 \$238 300cfm blower WMH32519HV-4 (WH3) JVM7195SKSS (GE2) \$298 \$357 400cfm blower 300cfm blower 0 منوباتة WMH53520CB (WH2) \$377 400cfm blower

BERKELEY LAB

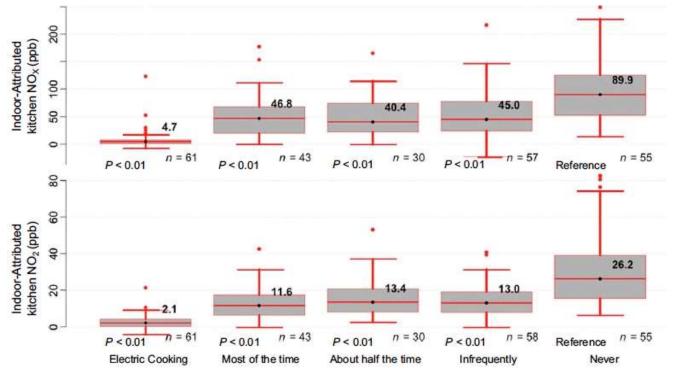
OTR microwaves have similar trend with airflow


Note: results based on LBNL dynamic method used for research, not ASTM E3087, see Zhao et al. 2020

Simulation analysis suggested that using even an average range hood could help a lot

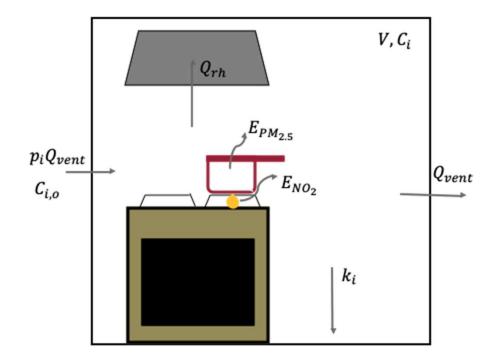
- Ran SoCal simulations assuming range hood use during all cooking events
- Assumed CE = 55%
 - Mean from Singer et al. 2012 field study
 - Higher than CE for front burner with base hood at 100 cfm
- Compared to acute ambient air quality standards

	% of homes above acute standard – No RH use	% of homes above acute standard – WITH RH use
СО	7–8%	2%
NO ₂	55–70%	18–30%



Range hoods showed range of performance in 9 homes with scripted cooking

Participants that reported ever using hoods had lower NO_2 and NO_X in 350-home study


But did **<u>not</u>** scale with self-reported *frequency*!

Mullen et al., 2015, Indoor Air

How high does capture efficiency need to be?

Simulations to calculate concentrations from cooking with various CE levels

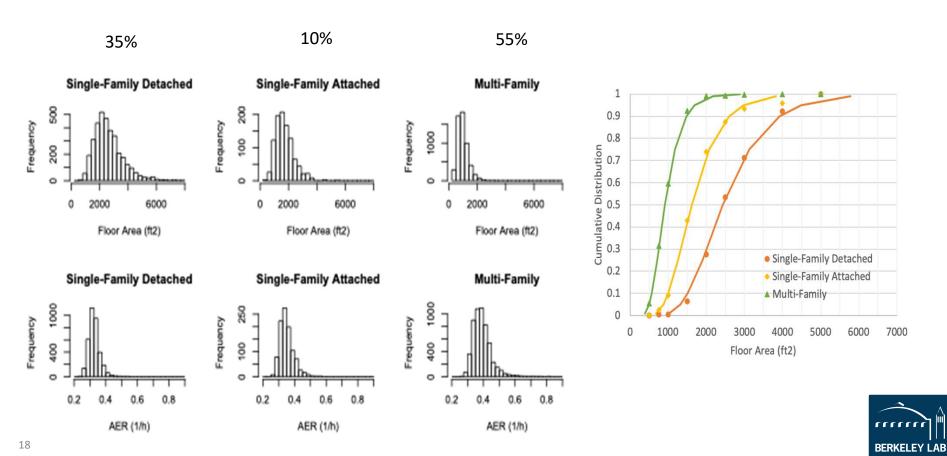
$$V\frac{dC_i}{dt} = (p_i C_{i,o} - C_i)Q + (1 - CE)E_i - k_i VC_i$$

Variable	Description	Units		
V	Volume of Home	1/hr		
p_i	Penetration Factor	unitless		
Q_vent	Mechanical Ventilation Flow Rate	m^3/hr		
CE	Capture Efficiency	unitless		
Q_rh	Range Hood Flow Rate	cfm		
k	NO ₂ Deposition Rate	1/hr		
C_(i,o)	Outdoor Concentration	ppb or µg/m^3		
E_i	Cooking Emission Rate	μg/hr		

BERKELEY LAE

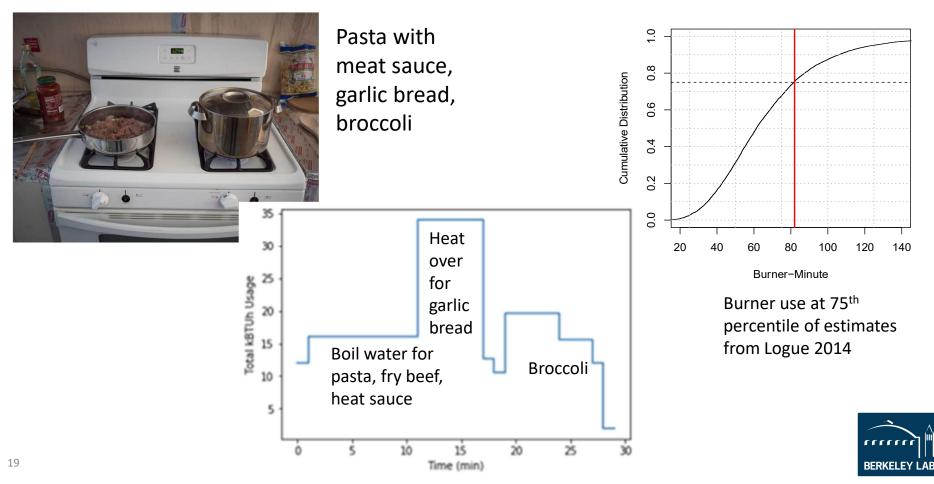
How high does capture efficiency need to be?

Framework:


Every, or almost every, new California home should have ventilation equipment that, if used, enables occupants to cook routinely without being exposed to hazardous air pollutant levels inside.

<u>Pollutants* of Focus</u>: Nitrogen dioxide from gas burners -> target is 1-h NAAQS of 100 ppb $PM_{2.5}$ from cooking -> target is 24-h WHO guideline of 25 µg/m³

<u>Outdoor contributions</u>: Distributions from California monitoring sites NO₂ from 5-9 pm in winter PM_{2.5} 24-h data over course of year


BERKELEY LAB

*Acrolein relevant but problematic

Inputs: California new homes

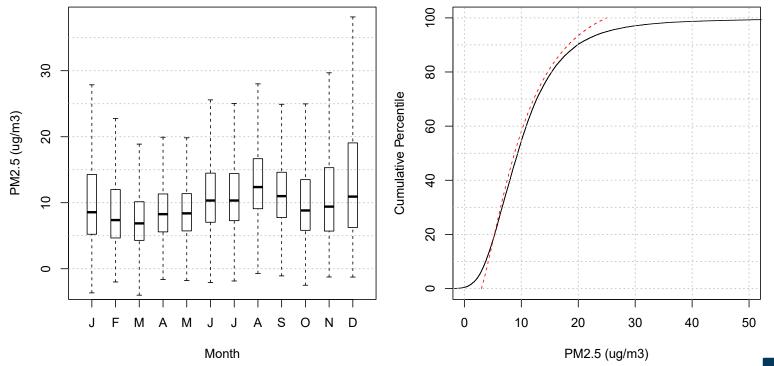
Inputs: NO2 emissions from a typical dinner with gas burner

Inputs: 3 meals with particle emissions (24h standard)

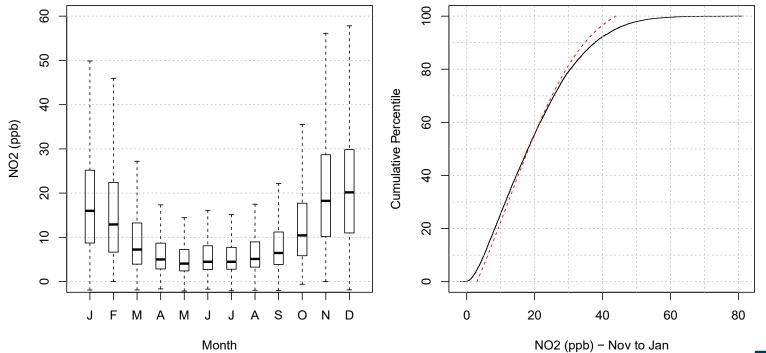
Breakfast: bacon, eggs and hash browns, 19 min, 100 mg (80th); Lunch: stir-fry of chicken and vegetables, 17 min, 50 mg (50th); Dinner: pasta Bolognese, 20 min, 50 mg (50th).

Compilation of published

data on PM emissions for


dishes and meals

1.0 ... 0.9 Cumulative Distribution 0.2 0.1 0.0 50 450 500 0 100 150 200 300 350 400 250 PM2.5 Emitted (mg)


20

Outdoor PM2.5

Outdoor NO2

Other Parameters

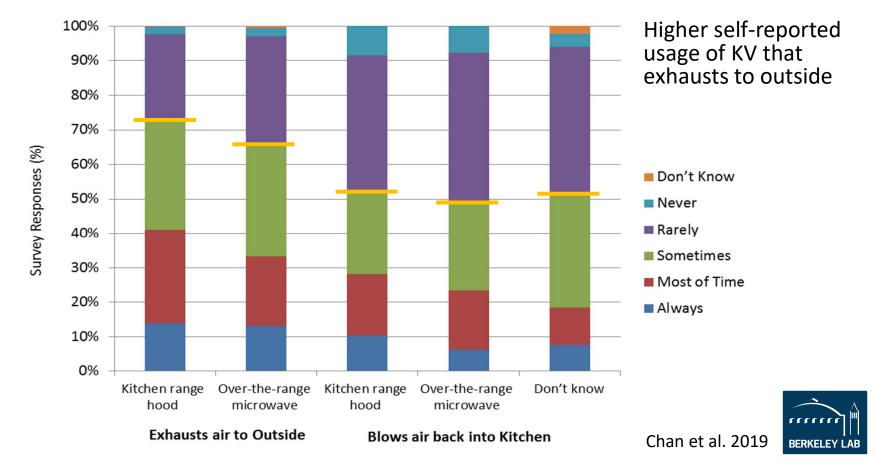
- PM2.5 penetration: Uniform, 0.4–0.6
- PM2.5 deposition: Triangular, Mode=0.6/h, Range: 0.3–1.2/h
- NO2 penetration: 1.0
- NO2 deposition: Triangular, Mode=0.75/h, Range: 0.5–1.0/h

Percent exceeding 1h NO₂ of 100 ppb

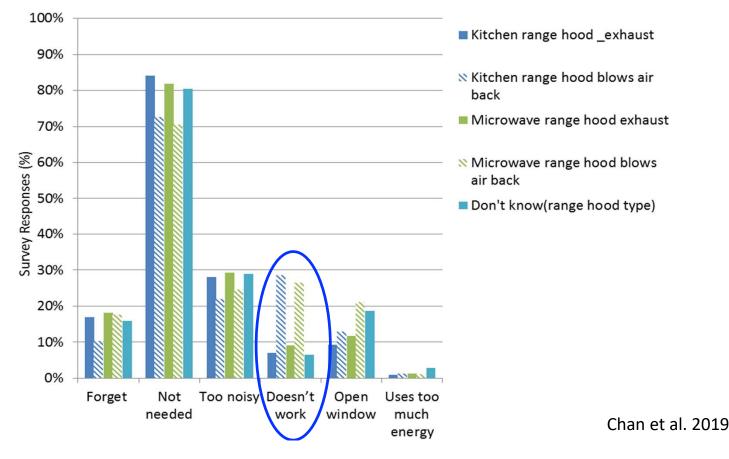
CE	All Homes	<750 sf	750-1000	1000-1500	>1500 sf
0	53%	100%	100%	88%	19%
0.5	10%	57%	22%	3%	0.003%
0.55	7%	44%	13%	0.7%	0
0.6	4%	30%	5%	0.09%	0
0.65	2%	16%	0.8%	0	0
0.7	0.8%	7%	0.01%	0	0
0.75	0.2%	1%	0	0	0
0.8	0.01%	0.1%	0	0	0

Percent exceeding 24h PM_{2.5} of 25 microg/m³

CE	All Homes	<750 sf	750-1000	1000-1500	>1500 sf
0	56%	100%	100%	76%	8%
0.50	3%	% 18% 1%		0.01%	0
0.55	1%	8%	0.3%	0	0
0.60	0.4%	3%	0.03%	0	0
0.65	0.08%	0.5%	0	0	0
0.70	0.007%	0.04%	0	0	0
0.75	0.001%	0.006%	0	0	0



Percent exceeding 24h PM_{2.5} of 35 microg/m³


CE	All Homes	<750 ft2	750-1000	1000-1500	>1500 sf
0	34%	99%	71%	76%	8%
0.50	0.03%	0.2%	0	0.01%	0
0.55	0.004%	0.02%	0	0	0
0.60	0.001%	0.006%	0	0	0

Self-reported range hood use Web-based on survey of mostly SoCal homes built 2003-2010

Why do people not use their range hoods? Web-based on survey of mostly SoCal homes built 2003-2010

28

Range hoods used less often than self-reported

Survey response ¹	# houses	CT events	Any hood use N (%)	
Always/most of time (4–5 out of 5 times)	26	349	158 (45%)	
Sometimes (2–3 out of 5 times)	13	97	20 (21%)	
Rarely/never (0–1 out of 5 times)	13	70	11 (<mark>16%</mark>)	
Don't know	0	0	0	
No response	2	10	4 (40%)	
p-value ²		<0.01		

Single detached houses

Range hoods used less often than self-reported

				•	,		
Survey response ¹	# houses	CT events	Any hood use N (%)	Survey response ¹	# apts	CT events	Any hood use N (%)
Always/most of time (4–5 out of 5 times)	26	349	158 (45%)	Usually or always	6	83	32 (39%)
Sometimes (2–3 out of 5 times)	13	97	20 (21%)	Sometimes / as needed	6	51	10 (20%)
Rarely/never (0–1 out of 5 times)	13	70	11 (<mark>16%</mark>)	Rarely or never	0	0	0
Don't know	0	0	0	Don't know	3	46	6 (<mark>13</mark> %)
No response	2	10	4 (40%)	No response	2	15	5 (33%)
p-value ²			<0.01	p-value ²			0.02

Single detached houses

Income-qualifying apartments

Zhao et al. Submitted

References

- Chan WR, Kim Y-S, Less B, Singer BC, Walker IS. 2019 Ventilation and Indoor Air Quality in New California Homes with Gas Appliances and Mechanical Ventilation. <u>LBNL-2001200R1</u>.
- Chan WR, Kumar S, Johnson AL, Singer BC. 2020. Simulations of short-term exposure to NO2 and PM2.5 to inform capture efficiency standards. Lawrence Berkeley National Laboratory, Berkeley, CA. <u>LBNL-2001332</u>.
- Delp WW and Singer BC. 2012. Performance assessment of U.S. residential cooking exhaust hoods. *Environmental Science & Technology* 46(11): 6167-6173. <u>LBNL-5545E</u>.
- Less BD, Singer BC, Walker IS, Mullen NA. 2015. Indoor air quality in 24 California residences designed as high performance homes. *Science and Technology for the Built Environment*, 21(1): 14-24. LBNL-6937E
- Logue et al. 2014. Pollutant exposures from unvented gas cooking burners: A simulation-based assessment for Southern California. Environmental Health Perspectives 122(1): 43-50. LBNL-6712E.
- Lunden MM, Delp WW, Singer BC. 2015. Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods. Indoor Air 25(1): 45-58. LBNL-6664E.
- Mullen et al. 2015. Results of the California Healthy Homes Indoor Air Quality Study of 2011-13: Impact of natural gas appliances on air pollutant concentrations. *Indoor Air 26(2): 231-245.* LBNL-185629.
- Singer BC, Delp WW, Apte MG, Price PN. 2012. Performance of installed cooking exhaust devices. Indoor Air 22: 224-234. LBNL-5265E.
- Singer et al. 2017. Pollutant concentrations and emission factors from scripted natural gas cooking burner use in nine Northern California homes. *Building and Environment* 122: 215-229. <u>LBNL-1006385</u>.
- Zhao H, Delp WW, Chan WR, Walker IS, Singer BC. 2020. Measured Performance of Over the Range Microwave Range Hoods. Lawrence Berkeley National Laboratory, Berkeley, CA. <u>LBNL-2001351</u>.

• Zhao H, Chan WR, Singer BC, Delp WW, Tang H, Walker IS. Factors impacting range hood use in California houses and low-income ³¹ apartments. *International Journal of Environmental Research in Public Health. Submitted 05-Sep-2020.*

Extra Slides

Field experiments of burners and range hoods

• Controlled experiments with cooking burners

- Cooktop: boil/simmer pot (4L water) and heat/simmer pan (1L water)
- Oven: preheat to 425°F + 30 min (pot w/1L water)
- Broiler: preheat 20 min, 15 min (pot w/1L water)
- No food preparation

• 9 homes in Northern California

- 8 houses/flats 108–226 m² + 26 m² apt; 1-2 stories; Built 1904–1991
- 6 with venting hood, 1 bath fan, 1 recirc hood

33 Singer et al., 2017, Building Environment