DOCKETED	
Docket Number:	20-DECARB-01
Project Title:	Building Initiative for Low-Emissions Development (BUILD) Program
TN #:	234277
Document Title:	Alaska Applied Sciences, Inc. Comments - Thin-shell concrete structures, multi-purpose, for low embodied and operating energy and durability
Description:	N/A
Filer:	System
Organization:	Alaska Applied Sciences, Inc.
Submitter Role:	Public
Submission Date:	8/8/2020 9:02:54 AM
Docketed Date:	8/10/2020

Comment Received From: Alaska Applied Sciences, Inc. Submitted On: 8/8/2020 Docket Number: 20-DECARB-01

Thin-shell concrete structures, multi-purpose, for low embodied and operating energy and durability

Thin-shell concrete structures, necessarily guasi-spherical in shape, consequently limited to large radii of curvature to achieve structural integrity, also provide durable, low-cost, multi-purpose shelter with low embodied and operating and maintenance (O&M) costs. Built on-site, about one structure per forms set, per four days. California's extant concrete construction industry will easily adapt to this construction method, for residential and diverse uses -- perhaps, at first, to accommodate a wave of COVIDcaused homelessness, and to welcome temporary ag workers. Structure cost will depend primarily upon finish level: insulation (interior: sprayed, closed-cell urethane foam); plumbing and wiring; cabinetry and appliances -- if any. Concrete shell cost is relatively low; shell thickness ~ 2 cm; < 1 inch. Please consider scaling-up our proof-of-concept, scale model, prototype work from 2009, in Juneau, AK. About \$ 250 - 500 K investment will be needed for CAD, building the tools by which the concrete forms sets may be manufactured, by which the thin-shell concrete structures are built on-site, and for building several sets of forms for field tests and shelters production. Please see: www.AlaskaAppliedSciences.com/thin-shellconcrete-structures Please see attached slide presentation; larger slide presentation available on request. The original forms set, by which the prototype scale models were built in 1990, are available for further R&D use, although they were not designed for, nor probably durable enough for, production of more than a few structures.

Additional submitted attachment is included below.

Thin-shell Concrete Structures for Low Embodied and Operating Energy and Durability

TechConnect 2015Abstract # 747Washington, DC14-18 June 15

For: CEC 20-DECARB-01 Submitted: 8 Aug 20 Bill Leighty, Principal Alaska Applied Sciences, Inc. Juneau, AK wleighty@earthlink.net Rev: 15 Jan 10 Rev: 8 Aug 20

Juneau, AK 1977: 16' diameter concrete dome: 1/2" thick, ~ 5/8 sphere

Thin-shell Concrete Dome Rapid Construction Method for Remote Sites and Severe Climates Proof-of-concept scale-model prototype Juneau AK 2010

> Complete reusable form sets
> 8 ft 6 in = 2.6 m equatorial diameter, 5/8 sphere

Alaska Applied Sciences, Inc. Bill Leighty, Principal wleighty@earthlink.net 907-586-1426 206-719-5554

2010 Juneau, Alaska ~ 1/2" thick concrete shell

46% proof-of-concept scale model of 18 ft diam 2 Interior sprayed UR foam super-insulation

Goals

- 1. Minimize imported:
 - a. Materials, including aggregate
 - b. Tooling
 - c. Tools
 - d. Expert labor
 - e. Use local sand, water, semi-skilled labor
 - f. Minimize Earth impact
- 2. Build many on-site, in-situ
 - a. Reusable forms set
 - b. One every 3 4 days
- 3. Non-ferrous primary reinforcement
- 4. Spray-in insulation
- 5. Durable, strong, fireproof, vermin-proof, waterproof
- 6. Earth sheltered: compatible
- 7. Alaska village housing replace

Skylight; vent

3" Plumbing vent

Prototype: 8' 6" equatorial ID concrete shell, ~ 5/8 sphere

Framed Entry

Foam Insulated 2-pound UR, closed cell

Treated wood floor framing and plywood

Proof - of – Concept Prototype

- 46% scale model of 18' ID full-size concrete dome
- ~ 5/8 sphere (volume)
- 8' 6" equatorial ID (concrete shell)
- < 1/2" thick concrete shell
 - Need engineering to confirm adequate structurally at full scale
 - FEA necessary for stress concentrations
 - Integral waterproofing: no coating needed
 - Earth berming or burying compatible
- Unique, reusable tooling
- Mortar:
 - Rich, portland cement
 - Sand only aggregate
 - High-fiber
- Reinforcement:
 - Primary: Chomarat C-Grid
 - Secondary: Fibermesh 150
- 13-part dome form (12 side + top cap)
- Teflon dome form release surface
- UR foam insulated + protection layer

Proof - of – Concept Prototype

Slide 2 of 3

- Prototype mortared:
 - 12 Nov 09
 - Hand troweled; no vibration
 - Dome form removed 14 Nov
- No shrinkage cracking in dome; cracks in entry roof
- Concrete form sets:
 - Foundation, dome sets
 - Hand-made tooling
 - Reusable; many cycles → refurbish
 - Teflon release surface
- "Circus ring" minimal foundation: 3" x 4" cross-section
- 5/8 sphere (volume) dome
 - Shim- assembled dome: unique
 - Easy assembly, removal: team of two
 - Easy removal from cured shell
 - Staples captured by outer rubber plies
- Foundation + dome + entry = integrated structure

Proof - of – Concept Prototype

Slide 3 of 3

- Shoestring R+D project
- No engineering: concept only
- No load testing:
 - Prototype not representative: poor mortar application QC
 - Establish protocol
- Concrete Form Sets: Hand-made tooling
 - Foundation: plywood + foam + "Integument" Teflon
 - Dome:
 - Wet-layup epoxy glass: 12 + 1 pieces
 - 60 mil EPDM roofing
 - 30 mil butyl PSA
 - 5 mil Teflon
- Non-ferrous, non-corroding reinforcements
 - C-Grid primary (carbon-epoxy fiber grid)
 - SS staples tile rectangles to form
 - 1/4" self-stick rubber chairs
 - Fibermesh 150: 1/4 " + 3/4 " cut, in mortar mix
- Easy mortar application:
 - Sand-only aggregate
 - Trowel
 - Spray
 - Shotcrete
- Ideal for superinsulation:
 - Minimum surface area for volume
 - No thermal bridging through structural elements
 - Easy UR foam and interior finish spray application

Concepts Proven

Slide 1 of 2

- 1. Dome form removable, reusable
 - a. Removable shims liberate segments
 - b. Teflon surface releases concrete
- 2. Non-ferrous, non-corroding reinforcements
 - a. C-Grid primary (carbon-epoxy fiber grid)
 - I. 1/4" self-stick rubber chairs center C-Grid
 - II. Rectangles easily "tile" spherical surface
 - **III. SS staples tile C-Grid rectangles to form**
 - b. Fibermesh 150: 1/4 " + 3/4 " cut, in mortar mix
- 3. < 1/2" thick concrete shell achievable
- 4. Easy mortar application
 - a. Trowel proven, but poor QC in prototype
 - b. Unproven: Spray or shotcrete

Concepts Proven Slide 2 of 2

5. Minimal "circus ring" foundation adequate

- a. 3" x 4" cross-section
- b. One #3 rebar continuous, centered
- c. Continuous embedded fiberglass mesh: dome tie-in
- d. 6 embedded lifting lugs
- e. Entry framed structure bolted to ring
- f. Easy to build on-grade
- g. Many floor options
- 6. Integral concrete structure combines:
 - a. Foundation ring
 - b. Dome
 - c. Entry roof

Designed for:

- Alaska village housing, classroom, clinic, storage
- Permanent structures built on-site
- Minimum
 - Embodied energy
 - Operating energy: UR foam superinsulation
 - First cost
 - LCC
- Minimum imported
 - Tooling and tools
 - Materials
 - Expert labor
- External structural shell
 - Durable
 - Waterproof
 - Fireproof
 - Impervious to corrosion, vermin
- Rapid replication of shell
- Reusable male form; long life

Also useful for:

- Strategies combining development + combat
- Afghanistan and others
- Civilian
- Military
- Disaster relief
- Low cost housing
- Classrooms
- Clinics
- Storage
- Emergency shelter
- Potentially transportable

Dome Reusable Form System

Slide 1 of 2

- Fiberglass structure
- 13 pieces
 - 12 identical side "orange peel" segments;
 - Door opening in one
 - Integral threaded inserts for bolted assembly
- Top cap
- Outer adhered plies:
 - 60 mil EPDM unreinforced roofing membrane
 - "Integument":
 - P500W-MX-36 Fluorogrip MX membrane
 - 30 mil butyl adhesive
 - 5 mil Teflon film concrete release surface
 - Adhered over 60 mil EPDM

95 mil outer plies capture primary reinforcement staples

Dome Reusable Form System

Slide 2 of 2

- Two-person assembly and removal
- 12 removable side shims
 - Assemble between 12 side segments
 - 1/4" plywood + "Integument" Teflon
 - ~ 5/16" total thickness
- 12 removable bottom shims
 - Assemble under 12 side segments
 - 1/4" plywood + "Integument" Teflon
 - ~ 5/16" total thickness
- 12 removable sheet steel skid plates
 - Placed on concrete foundation
 - Ease bottom shim removal

Foundation Reusable Form System

- Designed for on-grade, permanent construction
- May be truck-transportable, depending on size
- 4" wide x 3" high foundation ring cross-section @ 46% scale
- Outer 1/2" ledge prevents water migration
- Inner 1/2" ledge supports floor
- Concentric rings, 6 segments each
- Precision splice plate ring assembly
- Precision alignment of rings
- 5/16" foam shim on inner "key" segment
- One continuous circumferential #3 bar
- Embedded continuous Sto fiberglass mesh for dome tie-in
- Embedded 1/2" steel studs for outer lifting lugs
- Teflon and vinyl concrete release surfaces

-Key section

Outer ring set

Inner ring set

Center

Inner ring splice plater

Outer ring splice plates

1/2" allthread lifting lugs

Foundation Form Set

Ring alignment interconnections

Vibrator

iteon certonolf cuouninco

dome tie-h

Fiberglass mesh dome tie-in

Precision ring alignment fixtures

Center

"Key" segment

Lifting lug studs (6 pl)

Assembled foundation form, ready for pour

1/2" Lifting lug stud -

Fiberglass mesh dome tie-in

1/2" ledge inside and outside prevents water migration

Dome form rests here

"Circus ring" foundation: 4" W x 3" H, outward view²³

Begin dome form assembly

Framed entry

mood

Bottom shims

Side wall shim (1 of 12)

Sheet steel skid plates

2

Removable side shim: this joint will be covered with 1" blue masking tape

Sto fiberglass mesh continuous dome tie-in: prototype radius too large, requiring too much mortar to encapsulate mesh Removable sheet steel skid plate, under bottom shim

Removable bottom shim

Entry-to-foundation

bolt joint

Doorway

Entry floor

8" chimney (at full scale)

Skylight, vent

Masking tape covers side shims joint; may be unnecessary for production tooling

Continuous first course C-Grid SS stapled

Prototype Mortar Mix Batch Sand – only aggregate

		Weight
•	Sand, ungraded, bagged "play sand"	61 lbs
•	Portland cement (Lafarge Type I & II)	25 lbs
•	Water	17 lbs
•	Silica Fume (BASF SF100)	6 lbs
•	Xypex #500 crystalline waterproofing	7.4 oz
	Superplasticizer (BASF PS-1466)	1.5 oz
•	Fibermesh 150: 1/4 " cut (polyprop)	1.5 oz
•	Fibermesh 150: 3/4 " cut (polyprop)	1.5 oz

TOTAL 110 lbs

7 batches used = 770 lbs 770 lbs / 3,915 lbs / cu yd = 0.2 cu yd = 5.4 cu ft x 1,728 = 9,330 cu in Total area (dome + entry roof) = 172 sq ft = 24,800 sq in Inferred average concrete thickness: 9,330 / 24,800 = 0.38 inch After dome ~ 80% mortared, hinged entry roof dropped into place for continuous concrete structural continuity

.

WERNER

Hinged Entry roof dropped into place

Continuous C-Grid embedded for structural integrity of dome and entry

> Removable entry roof form Z-flashing (4 pcs)

Entry roof hinge

- Interior concrete shell after form set removed
- Blue masking tape sealed joints; easily removed
- 1/4" high UR rubber self-stick "chairs" on lower region
- Thinner white felt chairs used on upper region
- Mortar consolidation, penetration and C-Grid capture varies
- No vibration used during mortar placement

14 Nov 09

Remaining Challenges + Opportunities

Slide 1 of 4

- Engineering design:
 - FEA for stress concentrations (windows, door, entry roof)
 - Reinforcing design at concentrations
 - Optimize C-Grid or other primary reinforcement
- Load testing: static, dynamic protocols
- Materials and process experiments
 - Mortar mix recipe
 - Indigenous aggregates: selection, qualification, preparation
 - Mortar application: potential spray or shotcrete
 - Mortar consolidation
 - Encapsulate C-Grid
 - Voids removal
 - Vibration
 - Multiple points
 - Devices integral to form
 - Manual control strategy
 - Air or electric
- Interior foam protection + finish
 - Spray: hopper gun or other
 - Same machine as concrete shell spray
 - Product: bagged mix, properties
 - Thickness required; control

Remaining Challenges + Opportunities Slide 2 of 4

- Process quality control:
 - Mixes
 - Thickness
 - Consolidation
 - Cure; insure hydration
- Special tools
 - Interior + exterior arc ladders
 - Form removal post-cure
 - Vibration, consolidation
- Potential to replace or eliminate primary reinforcement
 - May be necessary to capture and position mortar
 - C-Grid alternatives:
 - Lower cost
 - Easier to handle and apply
 - Fiberglass grid
 - "ECC" Engineered Cementitious Composite only
- Potential to replace EPDM + Integument Teflon release surface
 - Silicone paint, roofing
 - Bedliner spray

Remaining Challenges + Opportunities

- Tool for "full size" ~ 18 ft diam @ equator: \$300 500K ?
 - 3D CAD design

٠

- Mold tooling build:
 - Side wall "orange peel" segment
 - Тор сар
 - Foundation outer ring
 - Foundation inner ring
- Form sets build: fiberglass boat processes for precision
 - Foundation
 - Dome
- Framed entry kit develop
- Full-size development work by contractor & subcontractors
 - Funding source(s)
 - Markets:
 - Customers and applications
 - Cost models: various
 - Business model:
 - Franchise: sell tooling and tool sets + training + QC
 - Others

Remaining Challenges + Opportunities

- Slide 4 of 4
- Revise design from field experience
- Window, skylight options
 - Add interior partition wall:
 - Support loft
 - Private space
- Ventilation options (climate and cost determined)
 - Manual vs powered
 - Air-to-air heat exchanger
 - Equipment in entry roof peak
- Heating / cooling options (climate and cost determined)
 - Stove chimney system
 - Passive solar via south-facing window
 - Thermal mass
- Floor options (on grade; thermal break required)
 - Compacted earth
 - Foam board underlayment, closed cell, thermal insulation
 - Soil cement
 - Concrete
- Floor options (on pilings or stem wall; thermal break required)
 - Framed structurally supported by foundation ring
 - Other

Goals

- 1. Minimize imported:
 - a. Materials, including aggregate
 - b. Tooling
 - c. Tools
 - d. Expert labor
 - e. Use local sand, water, semi-skilled labor
 - f. Minimize Earth impact
- 2. Build many on-site, in-situ
 - a. Reusable forms set
 - b. One every 3 4 days
- 3. Non-ferrous primary reinforcement
- 4. Spray-in insulation
- 5. Durable, strong, fireproof, vermin-proof, waterproof
- 6. Earth sheltered: compatible
- 7. Alaska village housing replace

References

Chomarat NA	http://carbongrid.com/			
	"Broadway, Andrew" <andrew.broadway@chomaratna.com></andrew.broadway@chomaratna.com>			
Integument	http://www.integument.com/			
	"Jennifer Smyth" <jsmyth@integument.com></jsmyth@integument.com>			
CCHRC (Cold Climate Housing Research Center, Fairbanks, AK) http://www.cchrc.org/				
	ALAN WILSON renovate@alaska.com			
	Marquam George marquam.george@uas.alaska.edu			
	cole@cchrc.org, jack@cchrc.org, john@cchrc.org, ryan@cchrc.org			
Хурех	http://www.xypex.com/			
	"Les Faure" <les@xypex.com></les@xypex.com>			
Intershelter	http://intershelter.com/			
	Don Kubley (907) 789-9273			
Flexible concrete	Prof. V. S. Li, University of Michigan			
	Prof. Michael Lepech, Stanford University			
BASF (superplasticizer, silica fume, fibermesh)				
Sto (fiberglass mesh, SilcoLastic paint)				

Thin-shell Concrete Structures for Low Embodied and Operating Energy and Durability

TechConnect 2015Abstract # 747Washington, DC14-18 June 15

For: CEC 20-DECARB-01 Submitted: 8 Aug 20 Bill Leighty, Principal Alaska Applied Sciences, Inc. Juneau, AK wleighty@earthlink.net Rev: 15 Jan 10 Rev: 8 Aug 20

Juneau, AK 1977: 16' diameter concrete dome: 1/2" thick, ~ 5/8 sphere