DOCKETED					
Docket Number:	80-AFC-01C				
Project Title:	Sacramento Municipal Utility District SMUDGEO #1				
TN #:	233972				
Document Title:	Sonoma (Unit 3) Petition for Modification for Installation of Diesel Standby - Air District Health Risk Analysis				
Description:	N/A				
Filer:	Marichka Haws				
Organization:	California Energy Commission				
Submitter Role:	Commission Staff				
Submission Date:	7/21/2020 2:53:23 PM				
Docketed Date:	7/21/2020				

RE: Geysers Sonoma, Unit 3 diesel engine, part of the recommissioning activity

Barbara McBride <Barbara.McBride@calpine.com>

Mon 7/13/2020 12:21 PM

To: Veerkamp, Eric@Energy < Eric.Veerkamp@energy.ca.gov > **Cc:** Dave (William) Jackson < Dave.Jackson@calpine.com >

1 attachments (5 MB)

GPC20-030.pdf;

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Eric, Here is the last page of the attached application for Sonoma that was submitted to the NSCAPCD. Please let me know if you or Ann have any additional questions.

Attachment 3 Health Risk Review

Diesel PM is limited to 0.111 grams per hp The diesel engine has a rated hp of 204 hp Hourly emission is calculated to be 0.05 pounds per hour With a permitted 50 hours of operation the annual emission is calculated to be 2.5 pounds per year.

Assumptions:

Receptor proximity = 3560 meters

11700 Feet

Receptor proximity factor = 0.001

Carcinogens		Emissions	Receptor	Normalization	Unit Risk	Score
	Compound Diesel PM		Proximity 0.001	Factor 7700	Factor 3.00E-04	0.00578
Chronic Impact	Compound	Emissions (lbs/hr)	Receptor Proximity	Normalization Factor	REL ug/m3	Score
	Diesel PM	2.50	0.001	150	5	0.0750

Barbara McBride Director, Strategic Origination

Calpine Corporation 3003 Oak Road Walnut Creek, CA 94597 P: 925-570-0849

From: Veerkamp, Eric@Energy < Eric. Veerkamp@energy.ca.gov>

Sent: Monday, July 13, 2020 10:30 AM

To: Dave (William) Jackson <Dave.Jackson@calpine.com>

Cc: Barbara McBride <Barbara.McBride@calpine.com>

Subject: Fw: Geysers Sonoma, Unit 3 diesel engine, part of the recommissioning activity

External Sender: Use caution with links/attachments.

Good Morning Dave and Barbara,

Would you please see the inquiry from Ann Chu regarding the amendment for the diesel for Sonoma. It is regarding the HRA screening.\

Thanks.

Eric W. Veerkamp

Compliance Project Manager California Energy Commission 916-661-8458

www.energy.ca.gov

<u>cid:image001.jpg@01D4DFC8.81807640</u>

From: Chu, Ann@Energy < Ann.Chu@energy.ca.gov >

Sent: Wednesday, July 8, 2020 3:47 PM

To: Veerkamp, Eric@Energy < Eric.Veerkamp@energy.ca.gov>

Cc: Bemis, Gerry@Energy < Gerry.Bemis@energy.ca.gov >; Hughes, Joseph@Energy

<<u>Joseph.Hughes@energy.ca.gov</u>>

Subject: Geysers Sonoma, Unit 3 diesel engine, part of the recommissioning activity

Hi, Eric,

I have a question for Sonoma. Could you please pass it to the project owner?

I am doing the Petition for Calistoga and Sonoma at the same time since these two projects are very similar. However, the project owner of Sonoma didn't submit the similar screening HRA as Calistoga did. Could the project provide the analysis? Thanks.

Ann

COMPANY CONFIDENTIALITY NOTICE: The information in this e-mail may be confidential and/or privileged and protected by work product immunity or other legal rules. No confidentiality or privilege is waived or lost by mis-transmission. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination, or copying of this e-mail and its attachments, if any, or the information contained herein is prohibited. If you have received this e-mail in error, please immediately notify the sender by return e-mail and delete this e-mail from your computer system.

CALPINE GEYSERS POWER COMPANY, LLC

10350 Socrates Mine Road Middletown, CA 95461 10350 SOCRATES MINE ROAD
MIDDLETOWN, CALIFORNIA 95461
707.431.6000

Letter GPC20-30

February 28, 2020

Alex Saschin
Air Quality Engineer
Northern Sonoma County
Air Pollution Control District
150 Matheson Street
Healdsburg, CA 95448

Dear Mr. Saschin:

Subject: <u>Authority To Construct And Temporary Permit To Operate Applications For An</u>

Emergency Wet-Down Pump Engine at the Sonoma Power Plant

Enclosed is Geysers Power Company's application for an Authority to Construct and Temporary Permit to Operate an emergency wet-down pump engine to be located at the Sonoma Power Plant. Also attached is payment in the amount of \$1,785.00 (Check No.1000115724) for the application filing and permit processing fees.

This proposed diesel powered pump engine will support operation of the Sonoma Power Plant cooling tower wetting / fire prevention system during loss of normal site power.

Please contact me at (707) 431-6266, if you need any additional information in support of this permit application.

Sincerely,

Brian J. Berndt

EHS Manager | Geysers

Enclosure & Attachments

CC:

Eric VeerKamp, Compliance Project Manager

California Energy Commission (CEC),

1516 Ninth Street, MS-15

Sacramento, CA 95814-5512

Enclosure

Application for an Authority to Construct and Temporary Permit to Operate: Emergency Wet-Down Pump Engine at Sonoma Power Plant

- Application Form
- Project Description
- Diesel Engine Permit Application Form
- Exhaust Stack And Building Dimensions Form
- Attachment 1 Manufacturer's Specification Sheets for the Engine
- Attachment 2 U.S. EPA Certificate of Conformity with the Clean Air Act
- Attachment 3 Health Risk Review

CALPINE"

GEYSERS PWR CO, LLC 5000 John Kingcade Road

Middletown CA 95461

90-4150/1222 9080015043

DATE Feb/24/2020

Check Number 1000115724

Security fe

\$1,785.00***

****ONE THOUSAND SEVEN HUNDRED EIGHTY-FIVE AND XX/100 DOLLAR****

PAY TO THE ORDER OF NORTHERN SONOMA COUNTY 150 MATHESON AVENUE AIR POLLUTION CONTROL DIST. HEALDSBURG CA 95448

MUFG UNION BANK, N.A. San Francisco, CA

W.B. Authorized Signature

" 1000 115 7 24" 11 1 2 2 2 4 1 5 0 1 11 9 0 8 0 0 1 5 0 4 3 11 1

NORTHERN SONOMA COUNTY AIR POLLUTION CONTROL DISTRICT PERMIT APPLICATION FORM

BUSINESS NAME:	Geysers Power Co	mpany LLC		FACII	LITY ID #
Sonoma Power Plan	nt: Addition of an Eme	gency Diesel E	ingine		
	ONSTRUCT	☑ ☑ □	EPA ID SIC COI	DE	CAT080011521 4911
	GE	NERAL INFOR	MATION		
Other Business Nar	meGeysers Power C	Company LLC	Parent Comp	any	Calpine Corporation (if any)
Mailing Address:	10330 Socrates I	Mine Road,	Middletown,	CA	95461
	Street address or P.O.	Box	City	State	Zip Code
Phone Number:	(707) 431-6266	Fa	x Number:(7	707) 43	1-6246
Plant Address:	10330 Socrates Min	e Road	Middletown,	CA	95461
	Street address or P.O.	Box	City	State	Zip Code
Phone Number:	(707) 431-6266	Fa	x Number:(7	707) 43	31-6246
Principal Product / 0	Operation: Geotherm	al Electric Pow	er Generation		
Name of Responsib	le Official: Robert Pa	arker	Title:_	VP Ge	othermal Region
Total # of So	ources: 2	# of F	Permitted		2
# of Exempt	Sources	— Emis	sion Sources:		2
Plant Area (A			Employees:		~300
Is the business/facil	ity/operation located w	ithin 1,000 feet	of the outer bo	undary	of a school or school site
YES	NO	Χ			
Are all major source compliance with all	es (emissions >25 tons air pollution rules and i	per year) owne egulations?	ed or operated l	by appl	ication in California in
YES	X NO		N/A = =		_
If not in compliance emission limitations	above, is(are) the sou and standards?	rce(s) on a sch	edule for comp	liance v	vith all applicable
YES	NO		N/A	X	
Name: Brian Be (Printed)	rndt	0		_Title:_	EHS Manager
Signature	in Jam				pate: <u>2/28/2020</u>
Fees \$1,78	35.00 Receipt #		Date	Receive	ed

Project Description

BACKGROUND:

Cooling tower wet down systems are common on wood cooling towers and are used to keep the normally wetted surfaces of the cooling tower structure wet when the cooling tower is not in operation to preserve the wood. Typically, when a plant shuts down for an overhaul and the cooling tower is not circulating water, auxiliary or fire pumps are turned on to sprinkle areas of the cooling tower that can dry out, become damaged and more vulnerable to fire. These systems are not subject to NFPA or other codes. Impact spray nozzles (Rainbird™-style) are often used because they provide large coverage areas.

The desire for wetting is particularly true of cooling towers that use geothermal steam condensate for cooling. This is because, as hydrogen sulfide contained in the geothermal steam condensate is oxidized to soluble sulfur compounds, it becomes elemental sulfur for a period of time and can coat the wetted surfaces of the tower. Sulfur is a flammable solid that has a relatively low ignition temperature. Utilizing a wet down system has been very successful in preventing the ignition of cooling towers in the geothermal industry during outages.

Wet down systems are not to be confused with fire suppression systems. A wet down system prevents the ignition of vulnerable surfaces while fire suppression systems are designed to douse fires after ignition occurs. Typically, the water pumping capacity of a fire suppression system is very large and the coverage area is very small and focused (able to cover a couple of cells). Deluge systems that typically do not cover the fan or hot water decks and have limited coverage are judged not a good defense against wild land fires. In addition, plant personnel may be required to evacuate the power plant when there is an approaching wild land fire.

During the 2015 Valley Fire, four completely and one partially cooling towers were fire damaged at several Geysers power plants. Some of these cooling towers ignited while there was full cooling circulation water flow. Analysis of the burned cooling towers indicates that the center of the cooling towers burned in the non-wetted areas such as the fan deck and the area below the fans (plenum area). Field observations on cooling towers that did not burn showed indications that burning embers were deposited on the fan deck by the wild land fire as it passed the power plant.

Thus, there is a need to spray water to any areas where sulfur residue may be found, including increasing the spray coverage in the normally non-wetted areas such as the fan deck, hot water basin, and plenum areas for increased protection from wild land fire embers. Figure 1 shows a Google Earth view of the location of the power plant.

Figure 1. Google Earth View Showing Location of the Sonoma Power Plant

Project Description (continued)

PROPOSED PROJECT:

An emergency wet-down pump engine along with a separate water spray system is proposed to be added for use in the event of a plant evacuation due to the threat of an approaching wild land fire. Figure 2 illustrates the proposed flow diagram. The location of the emergency wet-down pump engine is shown adjacent to the cooling tower circulating water pit on the Unit 3 Power Plant Plot Plan (Figure 3).

The emergency wet-down pump engine will be manually started prior to evacuation of the power plant due to an approaching wild land fire to provide continued wet down of the cooling tower for approximately 24 hours or longer depending on fuel consumed. Particulate and other exhaust emissions resulting from the operation of the diesel engine would be consistent with manufacturer's specifications for this Tier 3 engine. The exhaust emissions from the engine during emergency use would be virtually undetectable amidst the combustion emissions resulting from an uncontrolled wild land fire.

TESTING AND MAINTENANCE:

Annual testing and maintenance operation hours are limited to no more than 50 hours. Test operation routines will vary through the year with more frequent test operations occurring during the dry season and less frequent test operation occurring during wet seasons. The hour meter indications will be logged as a result of routine inspections and at the start and completion of test and maintenance operations to ensure that annual hours of emergency use, and annual hours of test and maintenance operation are recorded.

APPLICABLE REGULATIONS:

Title 17, California Code of Regulations section 93115 Airborne Toxic Control Measure for Stationary Compression Ignition (CI) Engines.

The Emergency Standby Wet-Down Pump Diesel Drive Engine meets the required criteria of § 93115.4 (29) for definition as an "Emergency Standby Engine" pursuant to (29) (A), (B), (C), (D), and (E).

Operation of the Emergency Standby Wet-Down Pump Diesel Drive Engine meets multiple criteria of § 93115.4 (30) for definition as "Emergency Use" pursuant to (30) (A), (B), (D), and (F).

The Emergency Standby Wet Down Diesel Drive Engine meets the requirement of § 93115.6(a)(3)(A)(1) Table 1: Emission Standards for New Stationary Emergency Standby Diesel-Fueled CI Engines.

Figure 2
Flow Diagram Showing Emergency Wet Down Pump Engine

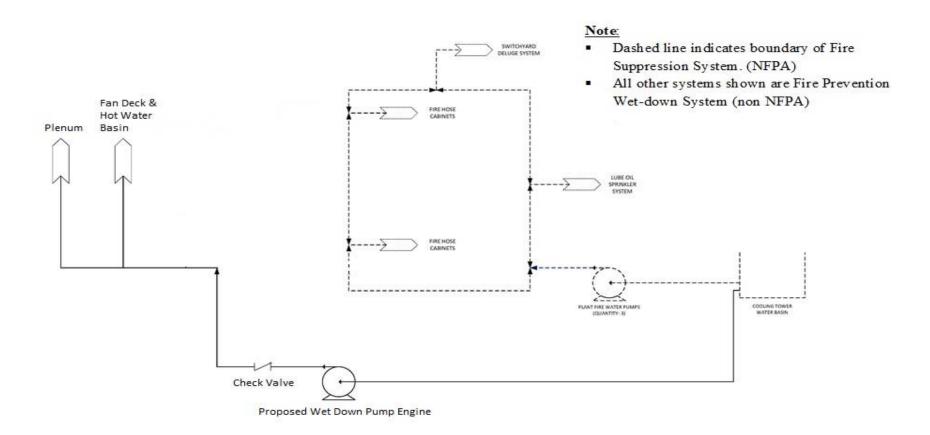
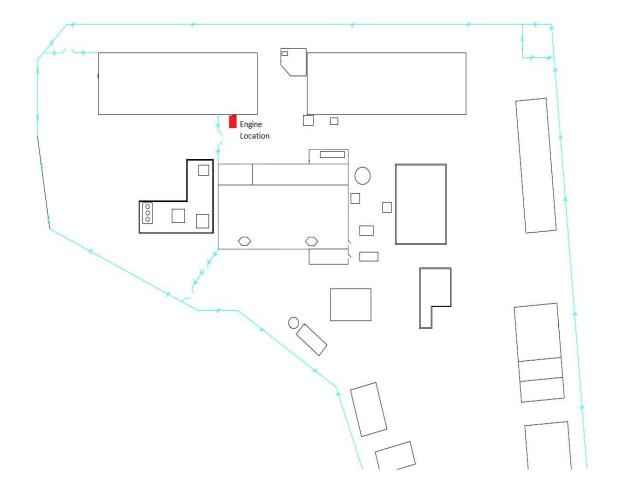



Figure 3
Sonoma Power Plant: Plot Plan Showing the Emergency Wet-Down Pump
Engine Location

NORTHERN SONOMA COUNTY AIR POLLUTION CONTROL DISTRICT

150 MATHESON STREET HEALDSBURG, CA 95448 (707) 433-5911

DIESEL ENGINE PERMIT APPLICATION FORM

1.	Business Name Geysers Power Company LLC, Sonoma Power Plant
2.	Engine Manufacturer Cummins
	Engine Family LCEXL0409AAB Model CFP7E-F40
	Serial Number Year of Manufacture 2020
	Rated Brake Horsepower Rating 204
3.	Engine Emission Factors (g/bhp-hr)
	NOx <u>2.475</u> PM <u>0.111</u> NMHC <u>0.062</u> NMHC + NOx <u>2.537</u> CO <u>1.193</u>
	Control Equipment: [] Turbocharger [] Aftercooler [] Injection Timing Retard [] Catalyst [] Diesel Particulate Filter [] <u>Tier 3 Emission Compliance</u>
4.	Fuel Used: [X] CARB Diesel [] Diesel [] Other
5.	Operation Information:
	Engine Operating Time for Testing and Maintenance:hrs/yr
	Typical load 100 % of maximum bhp rating
	Total annual hours of operation hrs/yr
	Fuel usage rate 10.6 gallons/hr
6.	Does the engine participate in an Interruptible Service Contract (ISC) <u>No</u>
7.	Person completing this form Brian Berndt Date 2/28/2020
Ma	nufacturers Information Sheets for the diesel engine provided (Attachment 1).
U.S	S. EPA Certificate of Conformity with the Clean Air Act provided (Attachment 2).

NORTHERN SONOMA COUNTY AIR POLLUTION CONTROL DISTRICT

150 MATHESON STREET HEALDSBURG, CA 95448 (707) 433-5911

EXHAUST STACK AND BUILDING DIMENSIONS FORM

1.	Business Name Geysers Power Company LLC, Sonoma Power Plant
2.	Exhaust Stack Height Above Groundft
3.	Exhaust Stack Height Above Top of Building37 ft (Exhaust stack will be below the top of the adjacent cooling tower.)
4.	Exhaust Stack Diameter <u>0.333</u> ft
5.	Exhaust Stack Flowrate 1218 CFM
6.	Exhaust Stack Direction [X] Up [] Down [] Side Raincap [X] Yes [] No
7.	Exhaust Stack Gas Temperature <u>986.7</u> °F
8.	Nearest Building Dimensions L 500' W 52' H 48'
9.	Distance from stack to nearest property line mi *
10	. Distance to nearest school grounds 3.24 mi**
11.	. Person completing this form Brian Berndt Date 2/27/2020
* I	Distance given is from the engine to the Calpine property line. (10,200 feet = 1.93 miles)
	Distance given is from the engine to the Cobb Mountain Elementary School. (17,100 feet 3.24 miles

Attachment 1 Manufacturer's Specification Sheets for the Engine

Specification sheet

Fire Pump Drive Engine

CFP7E-F40 CFP7EVS-F40

Description

Engine Series - Cummins QSB6.7 Exhaust Emissions - EPA Tier 3

When performance matters, we take notice. Our engines are an assurance of safety specifically designed to fit your needs. The Cummins CFP7E fire pump drive engine features a cast-iron parent bore block structurally designed to reduce noise and increase durability.

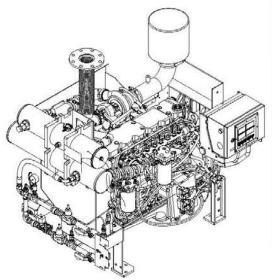
Features

Control System - The industry-leading, state-of-the-art Fire Pump Digital Panel (FPDP) provides total fire pump drive engine system integration and intuitive operation, including:

- Color touchscreen;
- Dual microprocessors for critical signal redundancy;
- Standard J1939 parameter and Cummins fault code display;
- · Engine idling;
- Electronic Control Module (ECM) self-diagnosis; and
- Optional Modbus[®] protonode remote messaging capability.

Variable Speed Pressure Limiting

Control (VSPLC) - Cummins' VSPLC-equipped fire pump drive engines are capable of maintaining a constant pump discharge pressure by controlling the engine speed down to 1200 RPM, while still maintaining T3 emissions certification. VSPLC fire pump drive engines provide design flexibility in the fire pump system for high-rise applications; compensate for varying discharge pressure; allow the system architect to apply a larger pump and/or a pump with a steeper curve; and significantly reduce water consumption during the weekly test.


Warranty and Service - Our models are backed by a comprehensive warranty and worldwide distributor network.

Certified Power - The CFP7E-F40 complies with NFPA 20 and is UL 1247-listed and FM 1333-approved. The CFP7EVS-F40 complies with NFPA 20 and is FM 1333-approved.

Ratings in HP (kW)

Operating Speed (RPM)	14	70	17	'60	19	00	21	00	23	50	26	00
CFP7E-F40	192	(143)	220	(164)	204	(152)	215	(160)	216	(161)	219	(163)
CFP7EVS-F40	192	(143)	220	(164)	204	(152)	215	(160)	216	(161)	219	(163)

© 2018 | Cummins Inc. Doc. A042J595 Rev. 1

General Engine Data

Engine Family	Industrial
Engine Type	4 Cycle; In-Line, 6 Cylinder
Aspiration	Turbocharged and Charge-Air Cooled
Bore and Stroke	4.21 x 4.88 in. (107 x 124 mm)
Displacement	409 in ³ (6.7 L)
Rotation	Counterclockwise from flywheel end
Compression Ratio	17.2:1
Valves per Cylinder	Intake - 2 Exhaust - 2
Fuel System	Bosch Electronic Common Rail
Maximum Allowable Bending Moment @ Rear Face of Block	1000 lbft. (1356 N-m)
Estimated Wet Weight*	TBD

^{*}Weight includes engine, cooling loop, heat exchanger, dual Electronic Control Modules (ECMs), Fire Pump Digital Panel (FPDP), standard air cleaner, standard exhaust flex, and all fluids.

Equipment	Standard	Optional		
Air Cleaner	Disposable; treated for high humidity, indoor service	Heavy-duty, two-stage with replaceable elements		
Alternator	12V-DC, 95 amps; includes belt guard	24V-DC, 45 amps with belt guard		
Cooling Loop (maximum pressure of 300 PSI)	3/4" diameter for fresh water; includes alarm sensors and FM-approval	Cu Ni construction available for sea water applications; approved loops up to 1 1/4"		
Cooling System	Tube and shell type, 60 PSI with NPTF connections	Radiator ¹ ; sea water tube and shell		
Engine Heater	120V-AC, 1500 watts	240V-AC, 1500 watts		
Exhaust Protection	Metal guards on manifolds and turbocharger	N/A		
Exhaust Flex Connection	Steel, flanged	Stainless steel flex, NPT		
Flywheel Power Take-Off	Flywheel	Driveshaft system, stub shaft		
Fuel Connections	Fire-resistant flexible supply and return lines	N/A		
Fuel Filter	Primary and secondary	N/A		
Governor, Speed	Constant speed, adjustable	VSPLC ²		
Fire Pump Digital Panel (FPDP)	7" color touchscreen; enclosure rated as Type 2/Type 4X; Imperial and metric values	Optional 316SS construction; custom gauges with digital panel expansion module (DPEM)		
Lube Oil Cooler	Engine-water-cooled, plate type	N/A		
Lube Oil Filter	Full-flow with by-pass valve	N/A		
Lube Oil Pump	Gear-driven	N/A		
Manual Start Controls	On FPDP and/or contactors	N/A		
Overspeed Controls	Electronic with reset and test on FPDP	N/A		
Starter	12V-DC	24V-DC		

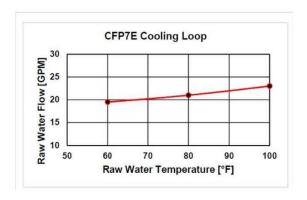
¹ Not UL-listed and not FM-approved.

© 2018 | Cummins Inc. Doc. A042J595 Rev. 1

² FM-approved, but not UL-listed.

Air Induction System

Maximum Temperature Rise Between Ambient Air and Engine Air Inlet	30.6 °F (17 °C)
Maximum Inlet Restriction with Dirty Filter	25 in. H ₂ O (635 mm H ₂ O)
Recommended Air Cleaner Element - (Standard)	Cummins Filtration AH1196
Recommended Air Cleaner Element - (Heavy Duty)	Optional: primary element AF26124; secondary element AF26125


Lubrication System

Oil Pressure Range at Rated	40-70 PSI (276-483 kPa)			
Oil Capacity of Pan (High - Low)	15-13 qt. (16-14 L)			
Total System Capacity	4 gal. (15.1 L)			
Recommended Lube Oil Filter	Cummins Filtration LF3970			

Cooling System*

Raw Water Working Pressure Range at Heat Exchanger	60 PSI (413 kPa) MAX
Recommended Minimum Water Supply Pipe Size to Heat Exchanger	.75 in. (19.05 mm)
Recommended Minimum Water Discharge Pipe Size From Heat Exchanger	1.00 in. (25.40 mm)
Coolant Water Capacity	3.75 gal. (14.2 L)
Standard Thermostat - Type	Modulating
Standard Thermostat - Range	180-199 °F (82-93 °C)
Minimum Raw Water Flow:	
- with Water Temperatures to 60 °F (16 °C)	19.5 GPM (1.23 L/sec)
- with Water Temperatures to 80 °F (27 °C)	21 GPM (1.32 L/sec)
- with Water Temperatures to 100 °F (38 °C)	23 GPM (1.45 L/sec)

^{*} A jacket water heater is mandatory on this engine. The recommended heater wattage is 1500 down to 40 °F (4 °C)

Exhaust System

Maximum Allowable Back Pressure by Complete Exhaust System	40.8 in. H ₂ O (10.2 kPa)
Exhaust Pipe Size Normally Acceptable	4 in. (102 mm)

Noise Emissions - The noise emission values are estimated sound pressure levels at 3.3 ft. (1 m).

Тор	92.5 dBa
Right Side	94.3 dBa
Left Side	93.8 dBa
Front	92.1 dBa
Exhaust	114.2 dBs

Fuel Supply/Drain System

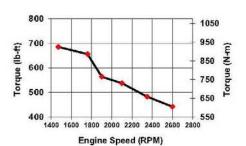
Operating Speed in RPM		470	17	760	1900		2100		2350		2600	
Fuel Rate - Gal/hr (L/hr)	9.9	(37.6)	11.4	(43.0)	10.6	(40.0)	11.3	(42.6)	11.6	(43.8)	12.3	(46.7)
Fuel Type					No. 2 diesel only							
Minimum Supply Line Size					0.5 in. (12.70 mm)							
Minimum Drain Line Size					0.375 in. (9.53 mm)							
Maximum Fuel Height above C/L Fuel Pump					360 in. (9.1 m)							
Recommended Fuel Filter - Primary					Cummins Filtration FF5612							
Recommended Fuel Filter - Secondary					Cummins Filtration FS1212							
Maximum Restriction @ Lift Pump-Inlet - With Clean Filter					5.0 in. Hg (127 mm Hg)							
Maximum Restriction @ Lift Pump-Inlet - With Dirty Filter					10.0 in. Hg (254 mm Hg)							
Maximum Return Line Restriction - Without Check Valves					5.9 in. Hg (150 mm Hg)							
Minimum Fuel Tank Vent Capability					7.1 ft ³ /hr (0.21 m ³ /hr)							
Maximum Fuel Temperature @ Lift Pump	Inlet				158 °F (70 °C)							

Starting and Electrical System

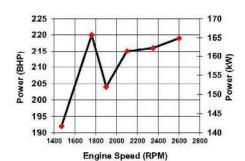
Min. Recommended Battery Capacity - Cold Soak at 0 °F (-18 °C) or Above	12V	24V
Engine Only - Cold Cranking Amperes	1400 CCA*	900 CCA*
Engine Only - Reserve Capacity	430 minutes*	430 minutes*

^{*}Based on FM requirement for a minimum of 900 CCA and 430 Reserve Capacity Minutes

Battery Cable Size - Minimum of 2/0 AWG and Maximum Cable Length Not to Exceed 6 ft. (1.5 m)	12V	24V
Maximum Resistance of Starting Circuit	0.001 Ohms	0.002 Ohms
Typical Cranking Speed	120 RPM	120 RPM
Alternator (Standard), Internally Regulated	95 amps	70 amps


Operating Conditions

Operating Speed in RPM	14	70	17	60	19	00	21	00	23	50	26	00
Output - BHP (kW)	192	(143)	220	(164)	204	(152)	215	(160)	216	(161)	219	(163)
Ventilation Air Required - CFM (litre/sec)	435	(205)	487	(230)	511	(241)	571	(270)	629	(297)	691.9	(327)
Exhaust Gas Flow - CFM (litre/sec)	1055	(498)	1219	(575)	1218	(575)	1363	(643)	1500	(708)	1650	(779)
Exhaust Gas Temperature - °F (°C)	986.7	(530)	986.7	(530)	986.7	(530)	986.7	(530)	986.7	(530)	986.7	(530)
Heat Rejection to Coolant - BTU/min. (kW)	3803	(67)	4186	(74)	3926	(69)	4263	(75)	4707	(83)	5178	(91)
Heat Rejection to Ambient - BTU/min. (kW)	1026	(18)	1091	(19)	1186	(21)	1282	(23)	1256	(22)	1231	(22)


© 2018 | Cummins Inc. Doc. A042J595 Rev. 1

Engine Performance Curve for CFP7E-F40 and CFP7EVS-F40

Torque Output				
RPM	lb-ft	N-m		
1470	686	930		
1760	657	890		
1900	564	765		
2100	538	729		
2350	483	655		
2600	442	600		

Horsepower Output				
RPM	BHP	kW		
1470	192	143		
1760	220	164		
1900	204	152		
2100	215	160		
2350	216	161		
2600	219	163		

All data is based on the engine operating with a fuel system, water pump, lubricating oil pump, air cleaner, and alternator. The fan, optional equipment, and driven components are not included. Data is based on operation at SAE standard J1394 conditions of 300 ft. (91.4 m) altitude, 29.61 in. (752 mm) Hg dry barometer, and 77 °F (25 °C) intake air temperature, using No.2 diesel fuel only.

Altitude above which output should be limited*: Correction factor per 1000 ft. (305 m) above altitude limit: Temperature above which output should be limited:

300 ft. (91.4 m) 3% 77 °F (25 °C) 1% (2%)

Correction factor per 10 °F (11 °C) above temperature limit: Above 5,000 feet, contact Cummins for derate information.

US EPA NSPS Tier 3 Emissions Compliance

				D2 Cyc	le Exha	ust Emi	ssions*			
Fuel Percentage of Sulfur	Grams per BHP - HR Gra					Grams per kW - H	HR			
	NMHC	NO _x	NMHC + NO _x	со	PM	NMHC	NOx	NMHC + NO _x	co	PM
15 PPM Diesel Fuel	0.062	2.475	2.537	1.193	0.111	0.083	3.319	3,402	1.600	0.148
300-4000 PPM Diesel Fuel	0.075	2.685	2.759	1.193	0.127	0.1	3.600	3.700	1.600	0.170

*The emissions values above are based on CARB approved calculations for converting EPA (500 ppm) fuel to CARB (15 ppm) fuel.

Refer to the engine data tag for the EPA Standard Engine Family.

No special options are needed to meet current regulation emissions for all fifty states.

Tests conducted using alternate test methods, instrumentation, fuel, or reference conditions can yield different results.

Diesel Fuel Specifications:

- Cetane Number: 40-48
- Reference: ASTM D975 No. 2-D

Reference Conditions:

- Air Inlet Temperature: 25 °C (77 °F)
- Fuel Inlet Temperature: 40 °C (104 °F) Barometric Pressure: 100 kPa (29.53 in Hg)
- Humidity: 107 g H₂O/kg (75 grains H₂O/lb) of dry air; required for NO_x correction
- Intake Restriction set to a maximum allowable limit for clean filter
- Exhaust Back Pressure set to maximum allowable limit

© 2018 | Cummins Inc. Doc. A042J595 Rev. 1

Fire Pump Digital Panel (FPDP)

The Cummins FPDP is an integrated microprocessor-based control system that provides full digital technology with enhanced accuracy and built-in redundancy.

Reliable design - Designed and tested with isolated mounting to minimize vibration for longer life and durability, the Cummins FPDP proves reliable in harsh environments.

Advanced control methodology - The Cummins FPDP allows for Input/Output (I/O) expansion and remote monitoring capabilities, as well as automatic Electronic Control Module (ECM) switching for electronic engines.

Certified Quality - The Cummins FPDP is UL 1247-listed and FM 1333-approved.

Operator Panel Features

Operator/Display Panel

- 7" TFT LCD (thin-film-transistor liquid-crystal display) - color, 24-bit, 800x480 (WVGA).
- · Auto, manual, start, stop, and fault reset.
- Assembly enclosure that meets Type 2 and Type 4X design requirements and is water, corrosion, fire, and impact-resistant.

Electronic Engine Communications - SAE J1939 protocol.

- Comprehensive full-authority engine (FAE) data: oil pressure and temperature; coolant temperature; and intake manifold pressure and temperature.
- · Cummins fault code display.
- Sensor failure indication.
- Optional RS-485 serial Modbus[®] RTU/Modbus[®] TCP/IP.

Variable Speed Pressure Limiting Control (VSPLC) Capabilities

- · Display indicates when VSPLC is active.
- Pump discharge pressure display.
- Ability to run the engine at fixed speed from the FPDP at start-up for commissioning.

Other Control Features

- Digital Panel Expansion Module (DPEM) for additional analog/digital inputs and configurable dry relay contact output.
- Ability to idle at start-up for commissioning of electronic engines.
- · Idle cool down for electronic engines.
- · DC voltage.

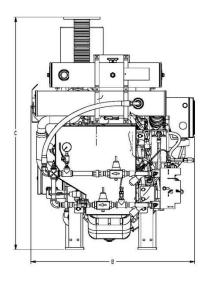
Functional

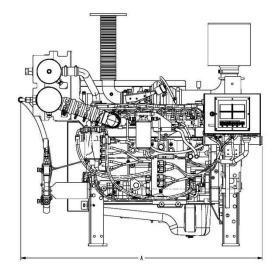
- Configurable display units for temperature in degrees Fahrenheit or Celsius and pressure in PSI or kPa
- Manual ECM selector switch on electronic engines.
- Ability to crank the fire pump drive engine from Battery A, Battery B, or both.
- Fixed engine speed adjustments in +/- 10 RPM increments.
- · Overspeed shutdown.

Environmental

- Operating temperature 4 to 158 °F (minus 20 to 70 °C).
- Storage temperature minus 22 to 176 °F (minus 30 to 80 °C).
- · Meets CISPR 11 Class B radiated emissions.
- · Vibration: 7 GPEAK; three-axis.

Electrical


- 8-30 VDC operating voltage.
- · Reverse polarity protected.
- · Spring cage terminal block interface.
- Built-in dual micro controllers for increased reliability.


Mechanical

- 1 3/8" pre-cut customer conduit knockout for easy field installation.
- Simplified internal design for efficiency and ease of customer connections.
- 16GA ASTM A366 material 316 stainless steel optional.
- RAL3001 red powder coat finish.

© 2018 | Cummins Inc.

Doc. A042J595 Rev. 1

This outline drawing is for reference only. **Do not use for installation design.**

	Dim "A"	Dim "B"	Dim "C"
	in. (mm)	in. (mm)	in. (mm)
CFP7E	60 (1514)	40 (1025)	57 (1457)

NOTE: Consult drawings or contact the factory for additional information.

This product has been manufactured under the controls established by a Bureau Veritas Certification approved management system that conforms with ISO 9001:2015.

NOTE: Codes or standards compliance may not be available with all model configurations - consult factory for availability. Specifications are subject to change without notice.

For more information, contact firepumpsales@cummins.com.

Cummins Sales and Service 875 Lawrence Drive DePere, Wisconsin 54115 1 920 337 9750

power.cummins.com/fire-power

© 2018 | Cummins Inc. Doc. A042J595 Rev. 1

Attachment 2

U.S. EPA Certificate of Conformity with the Clean Air Act

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2020 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Cummins Inc. (U.S. Manufacturer or Importer) Certificate Number: LCEXL0409AAB-027

Effective Date: 07/08/2019 Expiration Date: 12/31/2020

Byron J. Bunker, Division Director Compliance Division

Issue Date: 07/08/2019 Revision Date:

Model Year: 2020

Manufacturer Type: Original Engine Manufacturer

Engine Family: LCEXL0409AAB

Mobile/Stationary Indicator: Stationary

Emissions Power Category: 130<-kW<225

Fuel Type: Diesel

After Treatment Devices: No After Treatment Devices Installed

Non-after Treatment Devices: No Non-After Treatment Devices Installed

Pursuant to Section 111 and Section 213 of the Clean Air Act (42 U.S.C. sections 7411 and 7547) and 40 CFR Part 60, and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void ab initio for other reasons specified in 40 CFR Part 60.

This certificate does not cover engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Attachment 3 Health Risk Review

Diesel PM is limited to 0.111 grams per hp

The diesel engine has a rated hp of 204 hp

Hourly emission is calculated to be 0.05 pounds per hour

With a permitted 50 hours of operation the annual emission is calculated to be 2.5 pounds per year.

Assumptions:

Receptor proximity = 3560 meters

11700 Feet

Receptor proximity factor = 0.001

Carcinogens		Emissions	Receptor	Normalization	Unit Risk	Score
	Compound	(lbs/yr)	Proximity	Factor	Factor	
	Diesel PM	2.50	0.001	7700	3.00E-04	0.00578
Chronic Impact		Emissions	Receptor	Normalization	REL	Score
	Compound	(lbs/hr)	Proximity	Factor	ug/m3	
	Diesel PM	2.50	0.001	150	5	0.0750