DOCKETED	
Docket Number:	20-IEPR-02
Project Title:	Transportation
TN #:	233627
Document Title:	Presentation - The need for public charging and current progress
Description:	Presentation by Nicholas, ICCT
Filer:	Raquel Kravitz
Organization:	ICCT
Submitter Role:	Commission Staff
Submission Date:	6/23/2020 4:18:26 PM
Docketed Date:	6/23/2020

The need for public charging and current progress

Michael Nicholas Senior researcher

IEPR June 24th, 2020

Outline

- Overview
 - Vehicles and chargers
 - Charger ratios
 - Access to home charging
 - The use of public charging
 - The charging gap
- Business cases
 - Reasons to install charging
 - Electricity markup
 - Solutions

The electric vehicle market and infrastructure grow together

At end of 2019: About <u>7 million electric cars</u> and <u>900,000 public charge points</u>

EV to charger ratio differ from region to region

- The United States is at 16 EVs per charger
- Others are at 7-8 EVs per charger

Home charging access in the U.S. Is the glass half full or half empty?

- The U.S. EIA survey says that 48% of the population parks within 20 feet of a plug
- Renters are less likely to have charging access

icct THE INTERNATIONAL COUNCIL ON Clean Transportation U.S. Energy Information Administration (EIA) (2015). 2015 Residential Energy Consumption Survey (RECS) Data; https://www.eia.gov/consumption/residential/data/2015/#structural

However, home charging access is available for about 90% of current EV owners

- Only 11% of EV owners have no home charging. Public charging is not yet sufficient.
- Level 1 is used by 53% of owners. Level 2 is becoming more important for larger battery vehicles

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

California Air Resources Board, "California's advanced clean cars midterm review: Summary report for the technical analysis of the light duty vehicles standards Appendix B" (2017), https://www.arb.ca.gov/msprog/acc/acc-mtr.htm 6

How much charging will be needed in 2025 versus 2017?

Michael Nicholas, Dale Hall, and Nic Lutsey, Quantifying the electric vehicle charging infrastructure gap across U.S. markets, (ICCT: Washington DC, 2019), https://www.theicct.org/publications/charging-gap-US

Improving the business case

What is the business case for entities, other than government, to install nonhome charging?

- Non-traditional business models
 - Customer/employee demand
 - Employee retention/recruitment
 - Pre-tax employee benefit
 - Corporate environmental responsibility
 - Automaker vehicle promotion
- Customers shop longer
- Utility grid benefits
- Profit? Depends on gas and electricity price. Difficult in the U.S. Better in Europe.

A significant business opportunity for public charging exists when gasoline is expensive and electricity is cheap

 Low gasoline prices (CA = \$3.10) and high electricity prices (\$0.17/kWh) mean that the prices operators can charge is only 3 - 18 cents/kWh over cost. Norwegians can markup 30 – 60 cents/kWh

Clean Transportation

Nicholas, M. and D. Hall *Lessons learned on early electric vehicle fast-charging deployments*. The International Council on Clean Transportation. <u>2018.https://www.theicct.org/publications/fast-charging-lessons-learned</u>

Electricity cost for a utility varies by time of day, but costs are passed on to the customer in various ways

- Average costs per kWh are driven by high costs midday
- EVs have the potential to avoid these expensive times
 - Time of use pricing
 - Smart charging with real time pricing signals
 - V2G

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

"Avoided Cost Calculator," Energy and Environmental Economics and California Energy Commission, <u>http://www.cpuc.ca.gov/General.aspx?id=5267</u>

The utilization of nonhome charging improves over time

- Early markets (in terms of EV per million population) must have geographic coverage in advance of heavy usage
- Chargers in early markets will have low usage in hours per day
- Early market chargers must receive financial support to compensate for low usage

icct THE INTERNATIONAL COUNCIL ON Clean Transportation Nicholas, M. and D. Hall *Lessons learned on early electric vehicle fast-charging deployments*. The International Council on Clean Transportation. <u>2018.https://www.theicct.org/publications/fast-charging-lessons-learned</u>

Create the conditions for competition and vehicle to grid benefits by encouraging open standards and interoperability

- 4 relevant standards
 - ISO 15118 (car/customer to charger)
 - OCPP (charger to cloud)
 - OCPI (U.S.?) or OICP (Europe)

Hubject

Incentivize charging - especially in the early years

- Tie money with the guarantee of open charging access, data collection and sharing, and smart charging requirements
- Grants give money towards the purchase and installation of chargers at home, work, public, and DC fast
 - Utility
 - State
 - Federal
 - City
- Tax credits reduction in tax liability
- Cap and trade money dedicated to charging
- LCFS capacity and operation credits
- Utility funded nonhome infrastructure or capacity upgrades
- Utility rates
 - Specialized EV rates at home
 - Low introductory rates for fast charging
 - Electricity rates for medium and heavy duty

More info

ICCT electric vehicle page: <u>http://theicct.org/electric-vehicles</u>

Acknowledgements

EV team Mike Nicholas, Dale Hall, Nic Lutsey, Sandra Wappelhorst, Pete Slowik, Hongyang Cui Supported by Blue Marble Fund, governments of ZEV Alliance, ClimateWorks Foundation, The 11th Hour Project, Joshua and Anita Bekenstein

Create coordinated city charging tenders

- City creates a bidding process where vendors compete for the right to install and operate a set number of charging stations on publicly controlled land such as on curbsides and public parking lots
- Tenders allow for
 - Guaranteed number of chargers
 - Guaranteed maintenance
 - Adherence to interoperability or smart charging standards
- Examples
 - London <u>https://www.electrive.com/2019/03/02/richmond-ubitricity-to-install-200-lamp-post-ev-chargers/</u>
 - Berlin <u>https://www.ubitricity.com/unternehmen/newsroom/berlin-bis-zu-1-600-ladepunkte-mit-sofortprogramm-saubere-luft/</u>
 - Amsterdam <u>https://www.nuon.nl/producten/elektrisch-rijden/openbare-laadpaal/laadpaal-amsterdam/</u>