DOCKETED		
Docket Number:	19-MISC-01	
Project Title:	Distributed Energy Resources (DER) Roadmap	
TN #:	233198	
Document Title:	e: DER Research Roadmap Workshop Slidedeck	
Description: Navigant's Slidedeck		
Filer: Liet Le		
Organization:	California Energy Commission	
Submitter Role: Commission Staff		
Submission Date:	5/28/2020 11:03:27 AM	
Docketed Date:	5/28/2020	

Distributed Energy Resources Research Roadmap Summary Workshop

5/29/2020, 10am –12pm WebEx Hosted Meeting

Workshop Agenda

Workshop Purpose and Agenda	10:00 - 10:10
Team Introductions	10:10 - 10:15
Project Purpose	10:15 - 10:30
Project Approach	10:30 - 10:45
Load-Modifying Technology Research Needs	10:45 - 11:10
DER Communications and Controls Research Needs	11:10 - 11:30
DER Planning and Strategy Research Needs	11:30 - 11:50
Conclusion	11:50 - 12:00

Join The Meeting Remotely:

Via Computer: Please go to https://energy.webex.com/ec
Meeting number: 924 024 437
Meeting Password:
cec@1516

Via Telephone: (no visual presentation):
Call 1-866-469-3239
(toll free in the U.S. and Canada)
Meeting number: 924 024 437

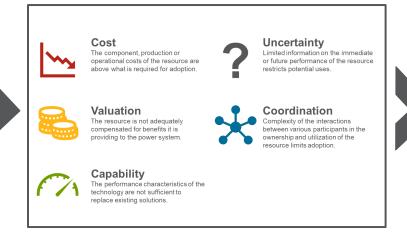
- 1. Do the research priorities identified in the Draft Final DER Research Roadmap Report accurately reflect the needs of California?
- 2. What improvements do you suggest to the Draft Final DER Research Roadmap Report?
- 3. Do you have any suggestions on performance targets for these research opportunities?

Roadmap Strategy Overview

Energy System Goals

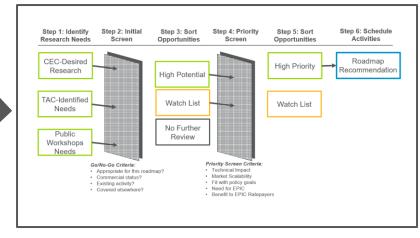
Flexibility

Ability of the grid to respond to future uncertainties that stress the system in the short term and may require adaptation in


Security

The ability to resist external disruptions to the energy supply infrastructure caused by intentional physical or cyber attacks or by limitation of access to critical materials.

Source: Grid Modernization Laboratory Consortium (DoE) Metrics Analysis


What do these technologies need to do?

Market Barriers

What are the current limitations?

Research Solutions

What research can resolve the issues?

Energy System Goals

Sustainability

The operation of the power system in a manner that contributes to the reduction of pollutants, considering environmental, social and economic factors.

Affordability

The ability of the system to provide electric service at a cost that does not exceed customers' willingness and ability to pay for those services.

Reliability

Uninterrupted delivery of electricity with acceptable power quality in the face of routine uncertainty in operation conditions.

Resiliency

The ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions, including deliberate attacks, accidents, or natural disasters.

Flexibility

Ability of the grid to respond to future uncertainties that stress the system in the short term and may require adaptation in the long run.

Security

The ability to resist external disruptions to the energy supply infrastructure caused by intentional physical or cyber attacks or by limitation of access to critical materials.

Source: Grid Modernization Laboratory Consortium (DoE) Metrics Analysis

Market Barriers

Cost

The component, production or operational costs of the resource are above what is required for adoption.

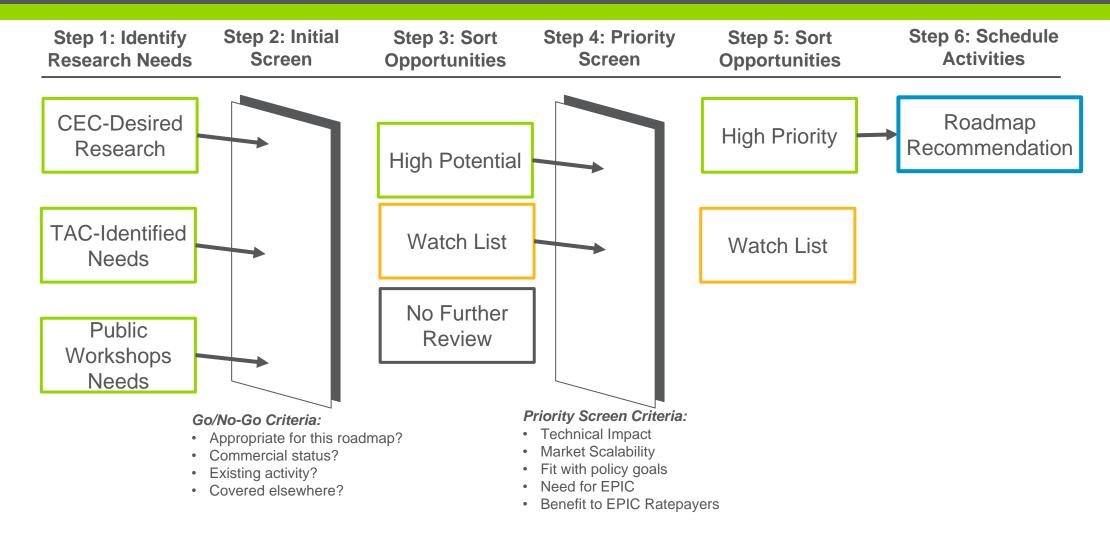
Uncertainty

Limited information on the immediate or future performance of the resource restricts potential uses.

Valuation

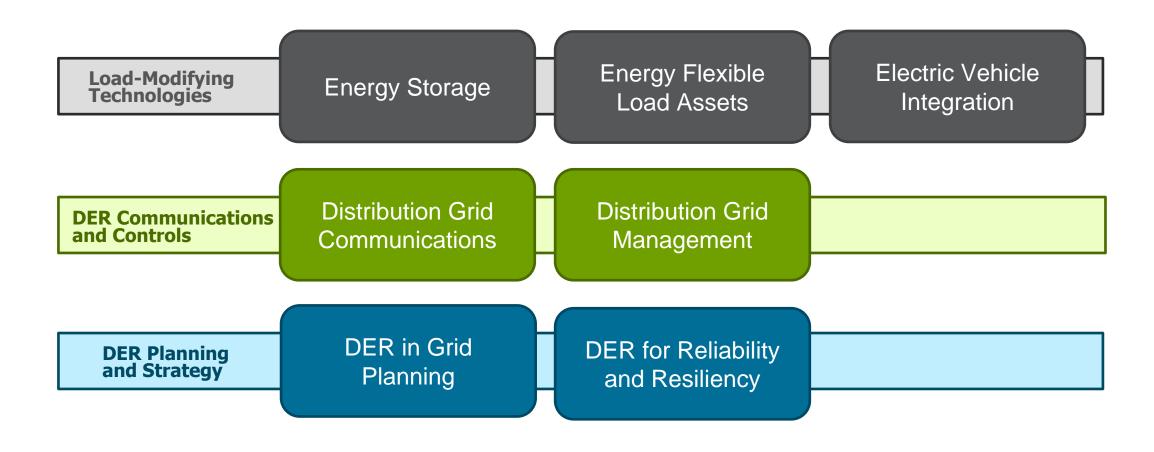
The resource is not adequately compensated for benefits it is providing to the power system.

Coordination


Complexity of the interactions between various participants in the ownership and utilization of the resource limits adoption.

Capability

The performance characteristics of the technology are not sufficient to replace existing solutions.


Roadmap Methodology

Research Need Definitions

Research Description	What research would be performed?
Barriers Resolved	Which barrier or barriers will this research alleviate?
Policy Goals Addressed	Which of California's policy goals would be addressed by this research?
EPIC Investment Area	Which of the CEC EPIC Program Areas would be the funding source?
Metrics Impacted	How much is the research expected to improve DER technical metrics?
Benefit to EPIC Ratepayers	How would EPIC ratepayers benefit from this research?

Research Need Areas

Energy Storage

Distributed Thermal Energy Storage Aggregation

Control aggregate behind-the-meter thermal loads in response to wholesale grid signals including communications and controls

Battery Performance Testing Protocols

Establish testing checklist for repeated practical issues like communications gaps, incorrect state of charge measurement, efficiency expectations and conflicting customer and grid instructions

Storage Safety Standards

Develop standards for battery cells, enclosures, ventilation and fire control strategies to ensure code meets safety standards while not being overly restrictive

Evaluate Alternative Storage Technologies

Evaluate non-lithium ion storage technologies with a particular focus on multi-day energy shifting applications

Next Generation Lithium-ion Storage

Continue to develop lithium-ion batteries with a focus on improved controls for extended battery life as well as the opportunity for local geothermal-backed lithium extraction

Energy Storage Recycling

Study most efficient re-use or recycling of different battery cell chemistries as well as information needed to inform potential regulation around recycling efficiency

Green Electrolytic Hydrogen for Long-Duration Storage

Implement distributed multi-day green electrolytic hydrogen solution to reduce wind and solar generation curtailment

Time Horizon

	Short	Medium	Long
High	Evaluate Alternate Storage Technologies Next Generation Lithium-ion Storage Distributed Thermal Energy Storage Aggregation	Green Electrolytic Hydrogen for Long- Duration Storage	
Medium	Storage Safety Standards		Energy Storage Recycling
Low	Battery Performance Testing Protocols for Grid Applications		

- 1. Do the research priorities identified in the Draft Final DER Research Roadmap Report accurately reflect the needs of California?
- 2. What improvements do you suggest to the Draft Final DER Research Roadmap Report?
- 3. Do you have any suggestions on performance targets for these research opportunities?

Energy Flexible Load Assets (1 of 2)

Assess Costs of Demand Response Automation

Develop a generalized cost characterization tool for cost / benefit decisions around deploying demand response technology in new buildings

Enable Load Flexibility Alongside Fuel Shifting

Provide market facilitation for smart controls in space and water heating as loads are decarbonized

Coordinate Water Heater Design and Controls

Inform heat pump water heater system design with likely grid request signals; adjust design to operate efficiently to meet grid requests

Evaluate the Effect of Demand Response on Market Decisions

Compare the effectiveness of market-integrated versus utility rate-based DR programs to provide estimates of responsiveness of different types of load management programs

Develop NEC-Approved HEMS to Reduce Panel Upgrade Costs

Develop home energy management system to control increased loads from PEVs and electrification in order to avoid panel upgrade costs

Improve Building-to-Grid Coordination

Use DoE open source VOLTTRON platform to coordinate building loads, EVSE and storage to response to wholesale grid signals

Enhance Commercial Building Monitoring and Controls

Explore opportunities for high granularity data on building operation and environmental controls preference of occupants to better characterize load flexibility opportunity

Time Horizon

	Short	Medium	Long
		Assess Costs of Demand Response Automation in New Buildings	Assess Device-Level Lifespan Effects of Load Flexibility
		Develop National Electric Code-Approved Home Energy Management System to Reduce Panel Upgrade Costs	Enhance Commercial Buildings Monitoring and Control
High		Derive Capacity Value of Variable Distributed Energy Resources	Coordinate Residential Loads with Commercial Home Automation Hubs
		Enable Load Flexibility Alongside Fuel Shifting	
		Study Load-Modifying Participation Models	
		Coordinate Water Heater Design and Controls	
		Evaluate the Effect of Demand Response on Market Decisions	
Medium		Evaluate Distributed Resources Performance in New Construction	Improve Building-to-Grid Coordination

Energy Flexible Load Assets (2 of 2)

Coordinate Residential Loads with Commercial Home Automation Hubs

Explore opportunities to use home automation hubs to control loads based on inferred customer preferences

Study Load-Modifying Participation Models

Assess market and non-market integrated participation models for their ability to enable value stacking and multiple services

Evaluate DER Performance in New Construction

Review the effectiveness of previously installed DERs to ensure they are meeting the expected efficiency; provide corrective suggestions for other installations if not

Assess Device-Level Lifespan Impact of Load Flexibility

Perform lab tests of the impact of responding to grid requests for load changes on customer appliance lifespan

Derive Capacity Value of Variable DER

Study the practical capability of different types of loads to provide demand flexibility at different times across all seasons

Time Horizon

	Short	Medium	Long
		Assess Costs of Demand Response Automation in New Buildings	Assess Device-Level Lifespan Effects of Load Flexibility
		Develop National Electric Code-Approved Home Energy Management System to Reduce Panel Upgrade Costs	Enhance Commercial Buildings Monitoring and Control
High		Derive Capacity Value of Variable Distributed Energy Resources	Coordinate Residential Loads with Commercial Home Automation Hubs
		Enable Load Flexibility Alongside Fuel Shifting	
		Study Load-Modifying Participation Models	
		Coordinate Water Heater Design and Controls	
		Evaluate the Effect of Demand Response on Market Decisions	
Medium		Evaluate Distributed Resources Performance in New Construction	Improve Building-to-Grid Coordination

- 1. Do the research priorities identified in the Draft Final DER Research Roadmap Report accurately reflect the needs of California?
- 2. What improvements do you suggest to the Draft Final DER Research Roadmap Report?
- 3. Do you have any suggestions on performance targets for these research opportunities?

Vehicle Grid Integration

Vehicle-to-Building for Resiliency

Test ability of electric vehicle batteries to power community resiliency centers during unplanned outages and Public Safety Power Shutoffs

Model EV Charging and Price Responsiveness

Investigate the ability of direct managed charging and differential price signals to meet explicit load flexibility requirements at the individual distribution circuit level

Assess EV Charging Technology Efficiencies

Research the impact on charging efficiency of charging at different SoC, current and transformer capacity levels to optimize V2G requests with respect to losses

EV Charging Device Performance Standards

Provide comprehensive performance metrics on EVSE capabilities, deployment status, consumer acceptance, cost and other categories

Assess Second Life EV Batteries

Resolve questions on second life EV batteries such as degradation rate, optimal cell matching, customer concerns, and target market price

VGI Data Program

Collect results of VGI projects and programs including time series charging profiles for use by grid planners and policy makers

Time Horizon

	Short	Medium	Long
High	Vehicle-to-Building for Resiliency	Assess Second Life Electric Vehicle Batteries	
Ë		Assess Electric Vehicle Charging Technology Efficiencies	
Medium	Model Electric Vehicle Charging and Price Responsiveness		VGI Data Program
Low		Electric Vehicle Charging Device Performance Standards	

- 1. Do the research priorities identified in the Draft Final DER Research Roadmap Report accurately reflect the needs of California?
- 2. What improvements do you suggest to the Draft Final DER Research Roadmap Report?
- 3. Do you have any suggestions on performance targets for these research opportunities?

DER Communications and Controls

Low-Cost Telemetry for Aggregated DER

Assess different costs and requirements for DER participation in wholesale markets

Secure Communications for DER

Coordinate distribution grid operators and DER providers to resolve identified cybersecurity issues preventing open communications

Standardization of Device Protocols

Demonstrate proposed standards for DER data accessibility to limit need to support multiple protocols

Sensors for Circuit De-Energization

Evaluate adapters to allow existing utility assets with limited communications to coordinate with the distribution operator to provide alerts for de-energization

Local DER Transaction Platform

Demonstrate platform for local distributed energy transactions allowing local energy sources and sinks to schedule and conduct transactions

Real-Time Estimation of PV Power

Develop hardware and estimation-based methods of calculating BTM generation

Hosting Capacity Expansion Planning

Study how flexible DER can be used to increase the hosting capacity of a circuit for less flexible DER

Estimating Distributed Inertia Requirements

Evaluate inertia requirements for subsets of the electrical grid that might be sectionalized during Public Safety Power Shutoffs or other adverse conditions

Time Horizon

	Short	Medium	Long
High	Secure Communications for DER	Low-Cost Telemetry for Aggregated DER	
		Standardization of Device Protocols and Data Transparency and Availability	Local DER Transaction Platform
Medium		Estimating Distributed Inertia Requirements	
		Sensors for Circuit De- energization	
Low		Hosting Capacity Expansion Planning and Operational Controls	
P		Real-Time Estimation of PV Power	

ייניים סייים

- 1. Do the research priorities identified in the Draft Final DER Research Roadmap Report accurately reflect the needs of California?
- 2. What improvements do you suggest to the Draft Final DER Research Roadmap Report?
- 3. Do you have any suggestions on performance targets for these research opportunities?

DER Planning and Strategy (1 of 2)

Behind-the-Meter DER Load Flexibility

Study the ability of behind-the-meter DER to provide local load flexibility at given cost profiles as well as the timeframe such resources can be visible to the planning process

DER Controls to Minimize Integration Costs

Demonstrate how DER controls can be used to avoid expensive service upgrades

Sociotechnical Demand Response Impact

Evaluate how social an technological factors combine to influence demand response capacity

DER Integration in Low-Income Communities

Expand on SB350 Barriers Study to assess differences in DER adoption and usage in low-income communities

Dynamic Photovoltaic Modeling

Study how variable DER profiles can be used in planning rather than fixed profiles

Time Horizon

	Short	Medium	Long
	Behind-the-Meter DER Load Flexibility	DER Controls to Minimize Integration Costs	
High	Outage Grid Support Fuels	Risk Mitigation Metrics	
	Residential Wildfire Resilience - Outage Backup	Valuing Resiliency for Microgrids	
Medium		DER Integration in Low Income Communities	
Med		Sociotechnical Demand Response Impact	
Low		Dynamic Photovoltaic Modeling	Direct Current Microgrid

DER Planning and Strategy (2 of 2)

Valuing Resiliency for Microgrids

Develop consensus benefit figures to be used in determining the effectiveness of a microgrid or other technology that improves resiliency

Residential Outage Backup

Prototype small battery backup systems that would seamlessly operate garage doors, emergency lighting and life safety devices in the event of wildfire or safety shutoff

DC Microgrid with Electric Vehicles

Design and implement a DC microgrid to integrate natural DC technologies like electric vehicles and photovoltaic generation to avoid conversion losses

Risk Mitigation Metrics

Establish a framework for including severe events in standard distribution planning processes

Outage Grid Support Fuels

Research low emissions fuels that achieve the availability and energy density requirements currently met by back up diesel generation

Time Horizon

	Short	Medium	Long
	Behind-the-Meter DER Load Flexibility	DER Controls to Minimize Integration Costs	
High	Outage Grid Support Fuels	Risk Mitigation Metrics	
	Residential Wildfire Resilience - Outage Backup	Valuing Resiliency for Microgrids	
Medium		DER Integration in Low Income Communities	
Med		Sociotechnical Demand Response Impact	
Low		Dynamic Photovoltaic Modeling	Direct Current Microgrid

- 1. Do the research priorities identified in the Draft Final DER Research Roadmap Report accurately reflect the needs of California?
- 2. What improvements do you suggest to the Draft Final DER Research Roadmap Report?
- 3. Do you have any suggestions on performance targets for these research opportunities?

Next Steps

Public Comment

Written comments can be submitted to the Docket Unit until 5:00 p.m. on June 12, 2020

Project Conclusion

The project team will work with Energy Commission staff to address any additional comments and enter the Final Research Roadmap into the public docket

Project Impact

The final Research Roadmap will be used to inform future Energy Commission research planning around DER integration

Karin Corfee

Partner karin.corfee@navigant.com (415) 356-7178

James Hansell

Associate Director james.hansell@navigant.com (972) 742-6764

Vania Fong

Consultant vania.fong@navigant.com (415) 356-7133