DOCKETED	
Docket Number:	00-AFC-01C
Project Title:	Contra Costa Power Plant Project Compliance
TN #:	232520
Document Title:	ACR RY 2019 for GGS_1of4 parts
Description:	N/A
Filer:	Angel B. Espiritu
Organization:	PG&E Gateway Generating Station
Submitter Role:	Applicant Representative
Submission Date:	3/24/2020 11:50:25 AM
Docketed Date:	3/24/2020

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

March 20, 2020

Mr. John Heiser Compliance Project Manager California Energy Commission Siting, Transmission and Environmental Protection Division 1516 Ninth Street, MS-15 Sacramento, CA 95814

Reference:

PG&E Gateway Generating Station (00-AFC-01C)

Subject:

Annual Compliance Report for Reporting Period of January 2019 to

December 2019

Dear Mr. Heiser,

In compliance with the General Condition of Certification as set forth in the California Energy Commission's Final Decision for Pacific Gas and Electric Company Gateway Generating Station (GGS) pages 179-180, attached is the Annual Compliance Report for the reporting period of January 2019 to December 2019.

Included in this report are documents specifically required by Conditions of Certification SOILS&WATER-10, SOILS&WATER-4, HAZ-1, and SOILS&WATER-3, BIO-2 to be submitted along with the Annual Compliance Report and are attached herewith as Exhibits 3, 4, 5, 6, and 7, respectively. Also included in this report are summary facility emissions and statements of compliance with Conditions of Certifications VIS-1, and VIS-4.

If you have any questions regarding this report, please contact Angel Espiritu at (925) 522-7838 or abe4@pge.com.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachments: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 11 (Reporting Period: January 2019 - December 2019)

March 30, 2020

Table of Contents

Annual Compliance Report

Introduction	1
Compliance Activities	
Compliance Matrix	1
2. Summary of Project Operating Status	1
3. Documents Required by Specific Conditions	1
4. Cumulative Listing of Post Certification Changes	
5. Missed Submittal Deadlines	
6. List of Filings/Permits	
7. Projected Compliance Activities for the Succeeding Year	
8. Listing of Year's Addition to On-site Compliance File	
9. Evaluation of On-site Contingency Plan	
10. Complaints, NOVs, and Citations	
List of Attachments	
1. Updated Compliance Matrix	Exhibit 1
2. Key Events List	
3. Water Use Summary (SOIL&WATER-10)	Exhibit 3
4. Semi-annual Self-Monitoring Reports to Delta Diablo District	
(SOIL&WATER-4)	
5. HAZ-1 Appendix C Table 8.12-4 (HAZ-1), and Hazardous	
Materials Inventory as submitted to CUPA through CERS	Exhibit 5
6. Copy of Notice of Intent (NOI), AND Revised SWPPP to	
comply with the requirements of new	
Statewide Industrial General Permit	
(SOIL & WATER-3)	Exhibit 6
7. Biological Record Summaries (BIO-2)	

Introduction

This document constitutes PG&E's Annual Compliance Report (ACR) for the Gateway Generating Station (GGS) Project. The information contained in this report covers the reporting period of January 2019 to December 2019 (RY 2019).

Compliance Activities

This section of the Annual Compliance Report focuses on PG&E's activities related to ensuring that compliance with all the Conditions of Certification, as specified in the California Energy Commission's Final Decision for the Gateway Generating Station Project, are achieved in a timely and satisfactory manner. The following information is provided per the requirements set forth on page 179 and 180 of the Final Decision, specifically General Conditions on Annual Compliance Report.

- Updated Compliance Matrix The compliance matrix has been updated for the reporting period to reflect the status of all conditions of certification. See matrix in Exhibit 1.
- 2. Current Project Operating Status The PG&E Gateway Generating Station (GGS) achieved Plant Commercial Operation status on January 4, 2009. During the reporting period of January 2019 to December 2019, GGS continued its normal commercial operation activities. The Project key events list is included in Exhibit 2.
- Required Documents Submitted With This Report The Final Decision sets forth specific conditions, many of which include reporting requirements that must be addressed in the project's ACR. The following paragraphs provide the status of ongoing compliance activities that were completed during the reporting period:
 - 3.1 <u>SOIL&WATER-10</u> GGS utilized potable water, supplied by the City of Antioch. The Water Use Summary for RY 2019 is included in this report as **Exhibit 3**. Also included in Exhibit 3 is monthly water consumption invoices information from the City of Antioch. The total water use for the reporting period is 53.45 AF (acre-feet). The metering devices are owned, and maintained by the City of Antioch,

- hence GGS is not allowed to do servicing, testing, and calibration of the metering devices.
- 3.2 VIS-1 The maintenance works on treatment of structures, buildings, and tanks at Gateway Generating Station (GGS) were performed on regular basis expeditiously. There are at least 3 separate routine plant inspections, which include among other items, the identification of treatment re-works on structures, buildings, and tanks. These are: (1) Semi-annual (Spring and Fall) Facility-wide Inspection by Safety Committee, (2) Weekly Plant Engineer's Walk-down, and (3) Daily Plant Technician's Walk-down Inspection. In each of these inspections, maintenance work is identified (as may be needed), and a job request notification is submitted. At GGS, there is Work Management (SAP) System which tracks job requests to ensure that work is completed in a timely manner.
- 3.3 VIS-4 In compliance with the Condition of Certification VIS-4, GGS confirms that appropriate maintenance was performed to ensure continued establishment (of growth) of the planted trees and shrubs. A suitable drip irrigation system, equipped with automatic sprinkler timer, was installed and is in operation.
- 3.4 <u>SOIL&WATER-4</u> In compliance with Condition of Certification SOIL&WATER-4, attached in **Exhibit 4a** are copies of Quarterly Self-Monitoring Reports submitted to and received by the Delta Diablo (DD) on April 10, 2019, July 12, 2019, October 7, 2019 and January 9, 2020 to cover the reporting year (RY) 2019. Attached in **Exhibit 4b** are communications with the DD related with approval of Criteria Pollutant Monitoring Waiver. Also attached in **Exhibit 4c** is status on agency citation. No Notice of Violation (NOV) was received from DD during the reporting period.

- 3.5 <u>HAZ-1</u> In compliance with Condition of Certification HAZ-1, attached in **Exhibit 5** is Updated Table 8.12-4: Hazardous Materials to be Added at Gateway Generating Station During the Operational Phase (of the Project). Also, a copy of Annual (2019) Update on Hazardous Materials Inventory as submitted to Local CUPA (Contra Costa Health Services) through the California Environmental Reporting System (CERS) is attached.
- 3.6 <u>SOIL & WATER-3</u> In compliance with Condition of Certification SOIL & WATER-3, a copy of the correspondence with the State Water Resources Control Board, through SMARTS (Stormwater Application & Report Tracking Systems) on the most current NOI and Revised SWPPP to comply with the requirements of the Industrial General Permit (WQ Order No. 2014-0057-DWQ) is submitted with this ACR. (See **Exhibit 6**.)
- 3.7 <u>BIO-2</u> In compliance with Condition of Certification BIO-2, the biology record summaries of the tasks described in BIO-2 is submitted with this ACR. (See **Exhibit 7**)
- Cumulative Listing of All Post-Certification Changes Approved by the CEC – The following is a cumulative listing of all post-certification changes as approved by the CEC or cleared by the CPM.
 - 4.1 ORDER Approving Addition, of Pacific Gas and Electric Company as

 Co-Owner and Operator with Mirant Delta, LLC on the Gateway

 Power Plant Unit 8 Project Approved on July 19, 2006.
 - 4.2 Removing Mirant Delta LLC As A Co-Owner, And Changing The
 Name Of The Project To The Gateway Generating Station –
 Approved on January 3, 2008
 - 4.3 Order to Change Construction Work Hours And Noise-8 for the Gateway Generating Station – Approved on May 23, 2007

- 4.4 Order Amending the Energy Commission Decision to Eliminate the use of San Joaquin River Water as the Cooling Water Source and Complete Ten Associated project design Changes Approved on August 1, 2007
- 4.5 Order to Amend the Energy Commission Decision to Allow Use of Anhydrous Ammonia as the Refrigerant in the Inlet Air Chiller Approved on December 5, 2007.
- 4.6 Order Approving a Petition to Amend the Energy Commission

 Decision to Allow Use of Two Additional Water Tanks January 2,

 2008
- 4.7 <u>Petition for Insignificant Project Change -</u> On February 4, 2008, PG&E filed a request for an insignificant project change related to a modification to the route for the sewer line. The CEC approved PG&E's request on March 10, 2008.
- 4.8 Approval of the Pacific Gas & Electric Company Petition to use a diesel fire pump engine, and make other minor changes to Air Quality Conditions of Certification of the Energy Commission Decision for the Gateway Generating Station (Order Amending the CEC Decision to Modify Equipment & Change Air Quality Conditions of Certification) Approved August 26, 2009.
- 4.9 <u>Commission Adoption Order Adoption of the Proposed Decision of the Siting Committee on the Complaint for Noncompliance Approved on February 17, 2010</u>
- 4.10 Notice of Approval to Modify Gateway Generating Station Project:

 Petition for Insignificant Project Change to Plant Facility Approved on October 18, 2010
- 4.11 On May 27, 2010, the CEC (Mr. Joseph Douglas) approved AQ-SC-11 submittal on the Preliminary Compliance Review on the Authority to Construct Application for the Fire Pump Diesel Engine.
- 4.12 Order Approving a Petition to Modify Several Air Quality Conditions to reflect the Bay Area Management District current conditions and

- the Prevention of Significant Deterioration (PSD) Action, September 7, 2011.
- 4.13 <u>Notice of Decision by California Energy Commission</u> on: Amendment to Modify Several Air Quality Conditions to Reflect the (BAAQMD) current conditions and the Prevention of Significant Deterioration (PSD) Enforcement Actions, dated and posted: September 9, 2011.
- 4.14 <u>Storage of One Spare Generator Step-Up (GSU) Transformer,</u> January 26, 2012
- 4.15 Notice of Determination on Petition to Install additional 40,000-gallon Storage Tank, April 3, 2012
- 4.16 Approval of Project Change: to Install additional 40,000-gallon Storage Tank, April 19, 2012
- 4.17 Approval of Petition for Insignificant Project Change to Plant Facility: (a) to acquire the 29% aqueous ammonia system (from NRG, Inc., (b) to install a new stainless steel above-ground aqueous ammonia delivery piping system, and (c) to build security fence around the aqueous ammonia system and remainder of the west side of facility property. Staff-level approval: April 9, 2013. A request to modify this petition to include installation of 2 gate structures (one for GGS and the other for NRG, Inc., was sent to CEC on October 23, 2013. The modification was approved on October 23, 2013. A second modification to install only one gate structure for GGS was sent to CEC on November 13, 2014. The second modification was approved on November 13, 2014.
- 4.18 Approval of proposed stormwater BMP: Construction Work to Cover the Asphalt Drainage Ditch: The request was submitted to CEC on October 14, 2013. The request was approved on October 14, 2013.
- 4.19 <u>Approval of proposed construction of additional turbine decking</u>: The request was submitted on May 23, 2014. The request was approved on September 15, 2014.

- 4.20 <u>Approval of proposed access stairs upgrades at three separate switchgear rooms</u>: The request was submitted on August 11, 2014. The request was approved on October 2, 2014.
- 4.21 Approval of proposed installation of fixed hydrogen tube bank at the south side of the facility: The request was submitted on December 5, 2014. The request was approved on March 19, 2015
- 4.22 <u>Approval of proposed construction of additional grating-type decking</u> on the east side of the steam turbine: The request was submitted on May 21, 2015. The request was approved on August 14, 2015.
- 4.23 <u>Approval of proposed construction of a temporary stormwater treatment system</u>. The request was submitted on August 26, 2016. The request was approved on December 22, 2016.
- 4.24 Response to a project change questionnaire for work to be conducted by PG&E Gas Department on natural gas pipelines located within the site parcel boundaries of Gateway Generating Station, RE: Removal and Replacement of Underground Natural Gas Pipelines at Gateway Generating Station. The questionnaire was submitted to CEC on January 24, 2019. The CEC responded on March 15, 2019. The CEC determined that the approval by the CEC is not required. However, the trees that would be impacted by the pipeline work would have to be replanted when the work is completed. This is to comply with the Condition of Certification VIS-4
- Missed Submittal Deadline: None
- 6. **Filings Submitted to / Permits Issued by Other Government. Agencies During the Reporting Period** The following is a list of filings submitted to, or permits issued by other government agencies during the reporting period:
 - 6.1. January 7, 2019 (Conditions of Certification AQ-31) GGS submitted to BAAQMD and CEC the 2018 Annual RATA and Source Test Protocol for the proposed dates of January 22-26, 2019

- 6.2. January 9, 2019 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: October 2018 to December 2018
- 6.3. January 16, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for December 2018
- 6.4. January 18, 2019 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q4-2018Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.5. January 23, 2019 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q4-2018 was submitted to CEC/BAAQMD
- 6.6. January 24, 2019 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2018 (Part 75 Compliance)
- 6.7. February 22, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for January 2019
- 6.8. February 22, 2019 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on January 15, 2019 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.9. February 22, 2019 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on February 1, 2019 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.10. February 27, 2019 The Delta diablo Sanitation District (DD) issued the renewal of Industrial Wastewater Discharge Permit to expire on February 28, 2023

- 6.11. February 28, 2019 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Annual Update for 2019, through the California Environmental Reporting System (CERS)
- 6.12. March 22, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for February 2019
- 6.13. March 26, 2019 (Condition of Certification AQ-29, AQ-30, AQ-31 and AQ-32) GGS submitted to BAAQMD/CEC Source Test Report and 2018 Relative Accuracy Test Audit & Compliance Test Report. The tests were completed January 22-26, 2019
- 6.14. March 26, 2019 (General Condition of Certification, pages 179-180): GGS submitted the Annual Compliance Report for RY 2018
- 6.15. April 8, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for March 2019
- 6.16. April 8, 2019 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q1-2019 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.17. April 10, 2019 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: January 2019 to March 2019
- 6.18. April 15, 2019 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q1 2019 was submitted to CEC/BAAQMD
- 6.19. April 18, 2019 GGS submitted to BAAQMD/CEC the Semi-annual Monitoring report for the period October 1, 2018 to March 31, 2019. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit.
- 6.20. April 19, 2019 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Notification on Visual Emission Evaluation for the earliest anticipated re-start date of April 27, 2019.

- 6.21. April 23, 2019 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q1-2019 (Part 75 Compliance)
- 6.22. April 30, 2019 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Report on Visual Emission Evaluation for the restart date of April 27, 2019.
- 6.23. May 9, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for April 2019
- 6.24. June 12, 2019 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.25. June 20, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for May 2019
- 6.26. July 1, 2019 GGS received the renewal on the Permit to Operate (PTO) from Contra Costa County Hazardous Materials Program (CUPA). The PTO expires on June 30, 2020.
- 6.27. July 2, 2019 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, the 2018-2019 Annual Report was submitted to Central Valley Regional Water Quality Control Board
- 6.28. July 12, 2019 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: April 2019 to June 2019
- 6.29. July 22, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for June 2019
- 6.30. July 22, 2019- (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q2 2019 was submitted to CEC/BAAQMD

- 6.31. July 22, 2019 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q2-2019 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.32. July 23, 2019 The Delta diablo Sanitation District (DD) granted the PG&E Gateway Generating Station an exemption to forego sampling of the 126 priority pollutants in accordance with 40 CFR 423.17(a)(4)(ii) upon completion of Priority Pollutant Sampling Exemption Form certifying that (1) The facility does not discharge to sanitary sewer system any priority pollutants listed in 40 CFR 423, appendix A-126 Priority Pollutants in concentration greater than 10 ppb; and (2) There had been no changes to the chemical inventory for cooling tower maintenance at the facility since the engineering calculations demonstrating that the regulated pollutants are not detectable in the final discharge by the analytical methods in 40 CFR part 136 was submitted; provided further that the Priority Sampling Exemption expires annually and that the Priority Pollutant Sampling Exemption Form be submitted annually to maintain the exemption status.
- 6.33. July 23, 2019 The Priority Pollutant Exemption Form with Certification Statement was submitted to DD.
- 6.34. July 24, 2019 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q2-2019 (Part 75 Compliance)
- 6.35. August 1, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for July 2019
- 6.36. August 9, 2019 GGS submitted to BAAQMD the Permit to Operate (PTO) Renewal Data update (November 2019-October 2020)
- 6.37. September 12, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for August 2019

- 6.38. September 23, 2019 GGS submitted to BAAQMD/EPA, and copied CEC, on the Annual Compliance Certification for the reporting period of September 1, 2018 to August 31, 2019 as required under permit condition I.G of the Major Facility Review (Title V) permit.
- 6.39. October 7, 2019 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: July 2019 to September 2019
- 6.40. October 8, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for September 2019
- 6.41. October 8, 2019 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q3-2019 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.42. October 15, 2019 GGS submitted to BAAQMD/CEC the Semiannual Monitoring report for the period April 1, 2019 to September 30, 2019. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit
- 6.43. October 28, 2019 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q3-2019 (Part 75 Compliance)
- 6.44. October 28, 2019 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q3 2018 was submitted to CEC/BAAQMD
- 6.45. November 15, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for October 2019
- 6.46. December 5, 2019 The Priority Pollutant Exemption Form with Certification Statement was submitted to DD.
- 6.47. December 9, 2019 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the

- requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.48. December 9, 2019 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for November 2019
- 6.49. October 287, 2019 GGS received the renewal on the Permit to Operate (PTO) from BAAQMD. The PTO expires on November 1, 2020.
- 6.50. December 13, 2019 (Conditions of Certification AQ-31) GGS submitted to BAAQMD and CEC the 2018 Annual RATA and Source Test Protocol for the proposed dates of January 6-10, 2020
- 6.51. December 19, 2019 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on December 4, 2019 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 7. Projected Compliance Activities for Next Year (RY January 1, 2020 December 31, 2020) The following is a list of compliance activities/documents that PG&E anticipates for the January 1, 2020 to December 31, 2020 reporting period:
 - 7.1 (Condition of Certification AQ-14) Quarterly Air Compliance Reports will be submitted within 30 days after the reporting period
 - 7.2 (Condition of Certification AQ-33) Monthly CEMS Reports will be submitted to BAAQMD within 30 days after the reporting period
 - 7.3 (Air Quality Compliance) PG&E anticipates the issuance of Permit to Operate (PTO Annual Renewal) in October 2020
 - 7.4 Quarterly Air Quality EDR reports to EPA due on January 30, 2020, April 30, 2020, July 30, 2020 and October 30, 2020
 - 7.5 Quarterly Self-Monitoring Reports to DD due on January 15, 2020, April 15, 2020, July 15, 2020 and October 15, 2020

- 7.6 Quarterly Industrial Flow Data Report to DD due January 15, 2020, April 15, 2020, July 15, 2020 and October 15, 2020
- 7.7 Annual HMBP update due to CCHS on March 1, 2020
- 7.8 2019-2020 Annual Report to comply with General Permit for Storm Water Associated with Industrial Activity, due to Central Valley Regional Water Quality Control Board on July 15, 2020
- 7.9 Sampling results of all qualified storm events due to Central Valley Regional Water Quality Control Board within 30 days of receiving analytical results from laboratory
- 7.10 (Conditions of Certification AQ-30 and AQ-31) To submit to BAAQMD and CEC the Annual Source Test and RATA Plan for 2020
- 7.11 (Conditions of Certification AQ-29, AQ-30, AQ-31, and AQ-32) To submit to BAAQMD and CEC Source Test Report and 2020 Relative Accuracy Test Audit & Compliance Test Report within 60 days of test date.
- 7.12 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on January 30, 2020, April 30, 2020, July 30, 2020 and October 30, 2020
- 7.13 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the CO Projected Exceedance Date (on semi-annual basis). This is incompliance with the requirement of Paragraph 11 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on June 15, 2020 and December 15, 2020.
- 7.14 To submit to BAAQMD/EPA Annual and Semi-annual Title V reports. These reports are due on September 30, 2020, April 30, 2020 and October 31, 2020, respectively.
- 7.15 (Conditions of Certification General Conditions) CEC Annual

Compliance Report for RY2018 due March 30, 2020, as prenegotiated with the CPM

8. **Listing of the Year's Addition to Compliance File** - During the reporting period, the following compliance submittals were submitted to the CEC CPM and other regulatory agencies as required for review and approval.

Date	То	Condition	Subject
1/7/2019	BAAQMD/CEC	AQ-31	2019 Relative Accuracy Test Audit and Compliance Test Protocol for the proposed date of January 22-26, 2019
1/9/2019	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: Oct 2018 to Dec 2018
1/16/2019	BAAQMD	AQ-33	Monthly CEMS Report for December 2018
1/18/2019	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q4-2018
1/23/2019	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q4-2018
1/24/2019	EPA	Part 75	EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2018
2/22/2019	BAAQMD	AQ-33	Monthly CEMS Report for January 2019
2/22/2019	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Jan 15, 2019, and Feb 1, 2019
2/28/2019	CCHS/CERS		Hazardous Materials Business Plan Annual Update for 2019

Date	То	Condition	Subject
3/22/2019	BAAQMD	AQ-33	Monthly CEMS Report for February 2019
3/26/2019	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Source Test Report and 2018 Relative Accuracy Test Audit and Compliance Test Report; the tests were completed January 22-26, 2019
3/26/2019	CEC	GEN (pp.179- 180)	Annual Compliance Report #10 RY 2018
4/8/2019	BAAQMD	AQ-33	Monthly CEMS Report for March 2019
4/8/2019	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q1-2019
4/10/2019	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: January 2019 to March 2019
4/15/2019	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q1 2019
4/18/2019	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Oct 1, 2018 to Mar 31, 2019
4/19/2019	CEC/BAAQMD	AQ-SC13	Notification on Visual Emission Evaluation (VEE) for Apr 27, 2019 Restart of Units
4/23/2019	EPA	Part 75	EPA ECMPS ED) for Q1-2019
4/30/2019	CEC/BAAQMD	AQ-SC13	Report onVisual Emission Evaluation (VEE) for Apr 27, 2019 Restart of Units
5/9/2019	BAAQMD	AQ-33	Monthly CEMS Report for April 2019
6/12/2019	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date
6/20/2019	BAAQMD	AQ-33	Monthly CEMS Report for May 2019

Date	То	Condition	Subject
7/2/2019	CVRWQCB- SMARTS	IGP	Storm Water Annual Report for 2018-2019
7/12/2019	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: April 2019 to June 2019
7/22/2019	BAAQMD	AQ-33	Monthly CEMS Report for June 2019
7/22/2019	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q2-2019
7/22/2019	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q2 2019
7/23/2019	DD	SOILS&WATER- 4	Priority Pollutant Exemption Form/Certification Statement
7/24/2019	EPA	Part 75	EPA ECMPS EDR for Q2-2019
8/1/2019	BAAQMD	AQ-33	Monthly CEMS Report for July 2019
8/9/2019	BAAQMD	PTO	PTO Renewal Data Update
9/12/2019	BAAQMD	AQ-33	Monthly CEMS Report for August 2019
9/23/2019	BAAQMD/EPA /CEC	Title V	Annual Compliance Certification (Sep 1, 2018- Aug 31, 2019)
10/7/2019	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: July 2019 to September 2019
10/8/2019	BAAQMD	AQ-33	Monthly CEMS Report for September 2019
10/8/2019	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q3-2019
10/15/2019	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Apr 1, 2019 to Sep 30, 2019
10/28/2018	EPA	Part 75	EPA ECMPS EDR for Q3-2019

Date	То	Condition	Subject
10/28/2018	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q3 2019
11/15/2018	BAAQMD	AQ-33	Monthly CEMS Report for October 2019
12/5/2019	DD	SOILS&WATER- 4	Priority Pollutant Exemption Form/Certification Statement
12/9/2019	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date
12/9/2019	BAAQMD	AQ-33	Monthly CEMS Report for November 2019
12/13/2019	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Notification on 2020 Source Test and Relative Accuracy Test Audit for Jan 6-10, 2020
12/19/2019	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSE that occurred on Dec 4,2019

- 9. **Evaluation of On-site Contingency Plan** The On-site Contingency Plan for Unexpected Facility Closure (previously submitted to CEC 12/30/2008) has been evaluated. PG&E determined that the plan is adequate and does not need revision. PG&E, however, will continue to evaluate the plan and make necessary revisions as may be needed. A copy of the revision will be submitted to CEC promptly.
- Listing of Complaints, NOVs, Citations Received None for RY
 2019

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 11

Exhibit 1 Updated Compliance Matrix

Color Code Legend	Code Legend	
-------------------	-------------	--

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-13	3_OPS	CTs and HRSGs shall be fired on gas with a maximum sulfur content of no greater than 1 grain per 100 standard cubic feet.	Conduct monthly sulfur analysis and incorporate results into QAQR.	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-14	3_OPS	Combined heat input rate to each power train shall not exceed 2,227 MM BTU per hour over any rolling 3 hour period.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-15	3_OPS	Combined heat input rate to each power train shall not exceed 49,950 MM BTU per calendar day.	Demonstrate compliance in QAQR due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-16	3_OPS	Combined cumulative heat input rate for the CTs and HRSG shall not exceed 34,900,000 MM BTU per year.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-17	3_OPS	HRSG duct burners shall not be fired without CT in operation.	Include info on date, time, an duration of any violation in Quarterly Air Quality Reports (due January 30, April 30, July 30, and October 30)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-18	3_OPS	CT 1 and HRSG 1 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-19	3_OPS	CT 2 and HRSG 2 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-20	3_OPS	CTs and HRSGs to comply with requirements as listed in the Condition under all operating scenarios, including duct burner firing mode and steam injection power aug mode. Requirements do not apply to CT start-up or shut down. (BACT, PSD)	Provide info listed in Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-21	3_OPS	Regulated air pollutant mass emission rates shall not exceed limits shown in the Condition. (PSD)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-22	3_OPS	CTs shall not run in startup mode simultaneously (PSD).	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-23	3_OPS	Total combined emissions from CTs and HRSG shall not exceed limits specified in Condition during any calendar day.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 (of each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	

Color Code Legend

|--|

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-24	3_OPS	Cumulative combined emissions shall not exceed limits specified in Condition during any consecutive 12 month period.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-25	3_OPS	Maximum projected annual toxic air contaminant emissions from CTs and HRSGs shall not exceed limits specified in Condition.	Owner shall perform a health risk assessment using emission rates determined by source test and most current BAAQMD approved procedures and unit risk factors in effect at the time of the analysis.	Within 60 days of source test date	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-26	3_OPS	Demonstrate compliance with Conditions AQ-14 through 17, 20(a) through 20 (d), 21, 23 (a), 24(a), and 24(b) with CEMs during all hours of operation including equipment startup and shutdowns for all parameters listed in Condition.	Detailed plan on how the measurements and recordings will be performed. CEMS Monitoring Plan	At least 60 days prior to initial operation	8/21/2008		Submitted to CEC & BAAQMD	Record keeping to demonstrate compliance is ongoing.
AQ-27	3_OPS	Calculate and record daily the POC, PM10, and SO2 from each power train using actual heat input rates calculated per AQ-26, actual CT startup and shutdown times, and CEC/BAAQMD approved emission factors to calculate emissions. (See additional reporting requirements listed in Condition.)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-28	3_OPS	Calculate and record on an annual basis the maximum projected emissions of formaldehyde, benzene, and specified PAHs.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-30	3_OPS	Conduct District approved source test on exhaust points while CTs and HRSGs are operating at max. load and min. load to demonstrate compliance with AQ-20, and to verify accuracy of CEMS (per Condition AQ-26).	Submit Source Test Protocols/Conduct Source Test 60 days of initial operation and annually thereafter	Within 60 days of first fire, & annually thereafter	Notification: 12/13/2019 (for 2020 ST/RATA), Test (01/6/2020 to 01/10/2020)			
AQ-31a	3_OPS	Obtain approval for all source test procedures from BAAQMD Source Test Section and CPM prior to conducting tests.	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates.	At least 7 days prior to source test dates	Notification: 12/13/2019 (for 2020 ST/RATA), Test (01/6/2020 to 01/10/2020)			
AQ-31b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/5/2020			
AQ-32a	3_OPS	Conduct source test on exhaust point P-11 or P-12 while CT and HRSGs are operating at maximum allowable operating rates to demonstrate compliance with AQ-25 (see Condition for more details).	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates. Conduct Source test 60 days of initial operation and biennial thereafter	At least 7 days prior to source test dates	Notification: 12/13/2019 (for 2020 ST/RATA), Test (01/6/2020 to 01/10/2020)			

Color Code Legend

Construction Phase	Commissioning	Operations Phase	Submitted	Submitted / Approved /
Condition	Phase Condition	Condition		Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-32b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/5/2020			
AQ-33	3_OPS	Submit all reports (monitor breakdowns, CEMS, emission access reports, equipment breakdowns) as required by District Rules or Regulations	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-34	3_OPS	Maintain ongoing records and reports on site for a minimum of 5 years (to include but not limited to: CEMS records (firing hours, fuel flows, emission rates, monitor excesses, breakdowns, etc.). Source and analytical records, natural gas sulfur content analysis results, emission calculation record, plant upsets and related incidents.)	Make records available to BAAQMD, ARB, EPA, and CEC.	Ongoing	N/A		On-going (Records are maintained)	
AQ-35	3_OPS	Notify District and CPM of violation of any permit conditions in accordance with applicable BAAQMD rules and regulations.	Submit written notification to Enforcement Division within 96 hours of the violation.	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	event occurred on 10/19/16
AQ-44	3_OPS	Take monthly gas samples.		Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-45b	3_OPS	WSAC shall be properly installed/maintained to minimize drift losses	Sample the water once in July, August and September each year while WSAC is in operation and submit results in QACR.	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-46b	3_OPS	Have WSAC field rep inspect drift eliminators and certify installation was performed satisfactorily. Verify that PM10 emissions do not exceed 4.7 lbs/day based on most recent TDS (see formula in condition).	Report calculated PM10 emissions from WSAC in QACR.	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-47	3_OPS	Fuel gas preheater shall not be operated more than 16 hours in any day.	Submit verification of hours of operation as part of QACR.	Quarterly after COD (Recurring)	Q1: 4/15/2019, Q2: 7/22/2019, Q3:10/28/2019, Q4: 1/16/2020		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AM-1	3_OPS	Conduct Source Test to determine ammonia emission concentration	Submit the results of Source Test with in 60 days of completion	Annually (recurring)	3/5/2020			
BIO-02	3_OPS	Designated Biologist to submit record summaries in the Annual Compliance Report	Provide statement in the Annual Compliance Report whether any actions that affected biological resources occurred on site for the reporting year.	Annually in ACR	3/26/2019		Submitted with this Annual Compliance Report (ACR)	

Color Code Legend

Condition Phase Condition Condition Completed		Construction Phase Condition	Commissioning Phase Condition	Operations Phase Condition	Submitted	Submitted / Approved / Completed
---	--	---------------------------------	----------------------------------	-------------------------------	-----------	-------------------------------------

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
BIO-09	3_OPS	Incorporate a Biological Resource Element that includes biological resource facility closure measures into the facility closure plan and BRMIMP.	at least 12 months prior to commencement of permanent closure activities.	at least 12 months prior to facility closure or earlier if needed				Not needed yet
GEN	3_OPS	Annual Compliance Report (ACR)	Submit Annual Compliance Report (ACR): March 31st of the following calendar year	Annually (recurring)	3/26/2019		Submitted w/ this report	
GEN-09	3_OPS	Submit closure/decommissioning plan	Submit closure/decommissioning plan. Meet with CPM prior to submittal.	12 months prior to closing				Not needed yet
HAZ-01	3_OPS	Do not use any hazardous material not listed in Appendix C of the Final Decision.	Provide list of all hazardous materials used at site in the Annual Compliance Report	Annually in ACR	3/26/2019		Submitted w/ this report (see Exhibit 5)	
PAL-07	3_OPS	Include in facility closure plan a description regarding facility closure activity's potential to impact paleontological resources.	Include description of closure activities.	12 months prior to closure of the facility.				Not needed yet
SOILS & WATER- 03	3_OPS	Keep the CPM informed of any modification to the permit, Stormwater Industrial General Permit (IGP).	Submit to CPM: any modification of IGP, submit copy of correspondence with the County on MS4 permit and CVRWQCB, maintain in SWPPP a copy of NOI.	during operation	3/26/2019		Submitted w/ this report	NOI and revised SWPPP was submitted to Waterboard through SMARTS copied on this report
SOILS & WATER-4	3_OPS	During operation, any monitoring reports provided to DD shall be provided to the CPM. The CPM shall be notified of any violations of discharge limits/amounts	Submit any water quality monitoring required by DD to the CPM in annual compliance report. Submit any NOV from DD to the CPM within 10 days of receipt explaining corrective actions taken.	Annually	3/26/2019		Submitted w/ this report	
SOILS & WATER- 10b	3_OPS	Submit a water use summary to the CPM in the annual compliance report. Also report on the servicing, testing, and calibration of the meters in the ACR.	Provide information in annual compliance report.	Annually in ACR	3/26/2019		Submitted with ACR: Water use for RY 2016 = 63.6 AF	

	Color C	ode Legend		
Construction Phase	Commissioning	Operations Phase	Submitted	Submitted / Approved /
Condition	Phase Condition	Condition		Completed

CEC Cond.	Droiget Phace	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
TLSN	3_OPS		Submit reports of line-related interferences and action taken to CPM for the first five year of operation.	Annually in ACR (for 2009-2013)	No longer required starting in RY 2014			
VIS-0	c 3_OPS		Verify in the annual compliance report that maintenance has been performed	Annually in ACR	3/26/2019		Submitted with ACR: appropriate maintenance was performed in RY 2016	

Key Dates:

First Fire	11/1/2008	(CT-A = 11/01/08, CT-B = 11/04/08)	
Perf. Tests (Target)	12/6/2008		
Source Test (Started)	1/4/2009	Unit A:1/4/2009, Unit B: 01/06/2009	
Source Test (Completed)	1/14/2009	For Both Units	
COD (Target)	2/5/2009		
COD (Actual)	1/4/2009		
COD (Guaranteed)	2/28/2009		
Aq. Ammonia on Site	12/4/2008		
Steam Blow	11/4/2008		
Install Catalyst (SCR/CO)	11/24/2008	(SCR Catalyst = 11/24/08)	
Q4 2009 Report	1/30/2010		
Sulfuric Acid on Site	3/1/2009	Planned: March 2009	
First Lube	7/14/2008		
Noise Survey(Completed)	1/21/2009	Both Community and in-plant surveys	
Sustained output	1/4/2009		
Connection Potable Water	3/17/2008		
Pre-energy E/MF	5/19/2008		
Post-energy E/MF	5/9/2009	(W/in 6 mos of start of operation = first synchronization to grid)	
First Synchronization	11/10/2008	(First Synchronization to grid: CT-A : 11/11/08, CT-B : 11/10/08)	
Start of operation	1/4/2009		
Annual Compliance Report	3/26/2019	RY 2018 ACR	

Gateway Generating Station (03-AFC-01)

Annual Compliance Report No. 11

Exhibit 2 Key Events List

KEY EVENTS LIST

PROJECT: GATEWAY GENERATING STATION

DOCKET #: 00-AFC-1C

EVENT DESCRIPTION

DATE

Date of Certification	05-30-01
POWER PLANT SITE ACTIVITIES	
Start Site Pre-Mobilization	01-08-07
Start Ground Disturbance	02-02-07
Start Grading	03-12-07
Start Construction	02-05-07
Begin Pouring Major Foundation Concrete	04-09-07
Begin Installation of Major Equipment	02-12-07
Completion of Installation of Major Equipment	10-16-08
First Combustion of Gas Turbine	10-25-08
Start Commercial Operation	12-31-08
Acquisition of second ammonia tank, tank farm facility, and associated property	December 2013
Regulated Substances Deregistration of Anhydrous Ammonia	05/23/2016
Granted exemption to forego sampling of 126 priority pollutants per 40CFR423.17(a)(4)(ii)	7/23/2019
SWITCHYARD & TRANSMISSION TIE-IN ACTIVITIES	
Start Switchyard Construction	10-01-07
Switchyard & Tie-in Complete	04-30-08
Synchronization with Grid and Interconnection	12-01-08
FUEL SUPPLY LINE ACTIVITIES	
Started Gas Pipeline Construction and Interconnection	07-13-07
Completed Gas Pipeline Construction	07-01-08

Gateway Generating Station (03-AFC-01)

Annual Compliance Report No. 11

Exhibit 3 Water Use Summary and City of Antioch Invoices

(To comply with CEC Condition of Certification: SOIL & WATER-10)

PG&E Gateway Generating Station Water Use Summary Reporting Period: Jan 2019 - Dec 2019

Date	Wa	ater Consumption	
Date	(gals.)	(cu. feet)	(acre-feet)
Jan-19	784,652	104,892.72	2.41
Feb-19	1,119,008	149,589.61	3.43
Mar-19	1,228,216	164,188.60	3.77
Apr-19	478,720	63,995.56	1.47
May-19	1,068,144	142,790.08	3.28
Jun-19	1,377,068	184,087.22	4.23
Jul-19	2,508,044	335,276.72	7.70
Aug-19	2,692,800	359,975.00	8.26
Sep-19	2,255,220	301,479.06	6.92
Oct-19	1,676,268	224,084.44	5.14
Nov-19	1,280,576	171,188.11	3.93
Dec-19	946,968	126,591.21	2.91
Annual Total:	17,415,684.00	2,328,138.31	53.45

Utility Service Billing - Customer Service (925) 779-7060

Account: 004-01511-00 For service at: 3225 WILBUR AVE

CREATED ON 2/08/2019 Water Service From: 1 / 0 2 / 2 0 1 9

2/01/2019 To: Units: 1,049

Zone Charge:

COM ZONE 2

DTTDFADFFTDFFOTATEAAAAFTDTFOTDFTFAFTAATAFFTTFTDFADTDFFATFFDDDDDTF

3225 WILBU WILBUR AVE OCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE
2 " WATER MAINT FEE
SEWER NON-RES

BACKFLOW RP 3"
FOR WATERING TIPS AND WATER CONSERVATION PLEASE VISIT https://www.h2ouse.org/

Amount 5,751.99

4.16

155.00 189.59

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

3/01/2019 Due Date >

Amount Now Due, 5% Late Penalty if Not Received by Due Date

5,736.12

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current Previous 4 3 4 9 8 42449

Units 1,049 1,104

CONSUMPTION INFORMATION

Gallons 784,652 825,792

Days 30 3 0

Gallons / Day 26,155 27,526

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

3/01/2019

Customer Name:

Account:

004-01511-00

For Service At:

3225 WILBUR AVE

PG&E

Amount Now Due:

5,736.12

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

Natalia Manalah Halla an Halana Halahah

Utility Service Billing - Customer Service (925) 779-7060

Account: 004-01512-00 For service at: 3225 WILBUR AVE

2/08/2019

Water Service From: 1/02/2019

To:

2/01/2019

Units:

Zone Charge:

DODADTFDADAFAFDADTTTFTTTTFFATTDAAFDDTAFAATTAFTATFFDFTTADAFFFDAFFA

3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE 5/8"X3/4" MAINT FEE FL DET CHK 6" BACKFLW DC 5/8"X3/4"

FOR WATERING TIPS AND WATER CONSERVATION PLEASE VISIT https://www.h2ouse.org/

Amount

79.35 0.00

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

3/01/2019 Due Date >

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

79.35

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current Previous

Units

CONSUMPTION INFORMATION

Days

Gallons / Day

NO HISTORY AVAILABLE

Gallons

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

3/01/2019

Customer Name:

PG&E

Account:

004-01512-00

For Service At: 3225 WILBUR AVE

Amount Now Due:

79.35

Amount \$

Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

Ndalladadkan Idalladkan didan (idalah

Utility Šervice Billing - Customer Service (925) 779-7060 Account: 004-01511-00 For service at: 3225 WILBUR AVE

CREATED ON 3/08/2019 Water Service From: 2/01/2019

2/28/2019

COM ZONE 2

Units: Zone Charge:

To:

DTEAFTTFATTDFFTAFFTAFAFDTAFTADTTAFAFTATTFATEFTTTODDATFFODFADDTAFF

3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED ADJUSTMENTS

CREDIT BALANCE WATER USAGE 2 " WATER MAINT SEWER NON-RES

BACKFLOW RP 3 "

Amount 736.12 736.12-736.12-736.12-139.50

BILL **
ED. TO AVOID ** This is your FINAL BILL **
YOUR ACCOUNT IS NOW CLOSED. TO AVOID ANY FUTURE
COLLECTION ACTIVITY, PLEASE SEND IN YOUR PAYMENT PROMPLTY.

For questions regarding this invoice, call Customer Service at (925) 779-7060.

Previous

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date >

3/29/2019

24.92

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

5,567.90-

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

Units

CONSUMPTION INFORMATION

Gallons

Days

Gallons / Day

1,119,008

37,300

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

3/29/2019

Customer Name:

Account:

004-01511-00

For Service At:

3225 WILBUR AVE

Amount Now Due:

5,567.90

CREDIT-DO NOT PAY

Amount

Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

PG&E

Thlidfidiallianihldlidliandliblanthliblid

Utility Service Billing - Customer Service (925) 779-7060 Account: 004-01512-00 For service at: 3225 WILBUR AVE

CREATED ON 3/08/2019

Water Service From: 2/01/2019

To: 2/28/2019

Units:

Zone Charge:

ATOTFTDAFATFFTAATFDFAAFAATATDOTOOTFFFDTADFAADDTFATFODFDDFTTTADDAF

3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED ADJUSTMENTS CREDIT BALANCE WATER USAGE 5/8"X3/4" MAINT FEE FL DET CHK 6" BACKFLW DC 5/8"X3/4"

FINAL BILL

** This is your YOUR ACCOUNT IS N S NOW CLOSED. TO AVOID ANY FUTURE PLEASE SEND IN YOUR PAYMENT PROMPLTY. COLLECTION ACTIVITY,

For questions regarding this invoice, call Customer Service at (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email

Previous

publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441. Amount Now Due, 5% Late Penalty if Not Received by Due Date

Units

7.94-

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

Gallons

CONSUMPTION INFORMATION Days

Due Date >

Gallons / Day

3/29/2019

Amount

79.35-

0.00 0.61 6.97

3.83

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

3/29/2019

Customer Name:

Account:

004-01512-00

For Service At:

Amount Now Due:

7.94

CREDIT-DO NOT PAY

Amount §

Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

PG&E

llidallindiailllinndidladlinnidlidaidlidalidl

3225 WILBUR AVE

Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01511-01

For service at:

3225 WILBUR AVE

CREATED ON **COM ZONE 2**

04/04/2019

Water Service From:

03/03/2019

To:

04/02/2019

Units:

1.642

Zone Charge:

4.16

CANO404A AUTO 5-DIGIT 94509 7000000742 00.0003.0056 728/1

ՈւրՈլիկիլիկիլիլը և բերհեր Արևիրիլիկիլի լուրհիսին

3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE 5% LATE PENALTY ADJUSTMENT(S) WATER USAGÈ 2 " WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3" FOR WATERING TIPS AND WATER CONSERVATION PLEASE VISIT HTTPS://WWW.H2OUSE.ORG/

Amount 382,52 7.026.20 349.81 -5.231.466,830.72 155.00 1,859.68 28.09

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.anlioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date

04/25/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

11,400.56

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings

Current

Previous

Units

Gallons

CONSUMPTION INFORMATION Days

Gallons / Day

46459

44817

1,642

1,228,216

30

40941

Last Year

1,496

1,119,008

30

37300

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

04/25/2019

Customer Name:

PG&E

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

11,400.56

Please remit your payment to:

City of Antioch

P.O. Box 6015

Artesia, CA 90702-6015 լաի[ոտկի[կի]ԱվցԱլվ]]Լոտր[հոլլ]իի[Ալ][ևոդ]

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01511-01

For service at:

3225 WILBUR AVE

CREATED ON

05/03/2019

Water Service From:

04/02/2019

05/02/2019 To:

Units:

640

COM ZONE 2

Zone Charge:

4.16

CANOSO3C AUTO 5-DIGIT 94509 7000000741 00.0003.0055 727/1

լ][հինցիլիլինքբը][իլ|ՈՈլեի]]ըսկցինեիցիցի[իլե

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED ADJUSTMÈNT(S) WATER USAGE 2 " WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3'

THE CUSTOMER SERVICE COUNTER WILL BE CLOSED UNTIL 10 AM ON 5/17/19

Amount 0.00 11,400,56 -11,064.12 -336.44 2.662.40 155.00 727.42 28.09

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441,

Due Date

05/24/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

3,572.91

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings

Current

47099

Previous 46459

Units 640

CONSUMPTION INFORMATION

Gallons 478,720 Days 30

Gallons / Day

Last Year

427

319,396

30

15957 10647

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

05/24/2019

Customer Name:

PG&F

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

3,572.91

Please remit your payment to:

City of Antioch

Amount Paid:

P.O. Box 6015 Artesia, CA 90702-6015

րոկվումիվԱվՈՒիլիկովՈւսարվեսկյիկիկիկիկինում

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01512-01

For service at:

3225 WILBUR AVE

CREATED ON

05/03/2019

Water Service From:

04/02/2019

05/02/2019 To:

Units:

Zone Charge:

CANOSO3C AUTO 5-DIGIT 94509 7000000742 00.0003.0055 727/2

> PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED 5/8"X3/4" MAINT FEE FL DET CHK 6" BACKFLW DC 5/8"X3/4" THE CUSTOMER SERVICE COUNTER WILL BE CLOSED UNTIL 10 AM ON 5/17/19

Amount 0.00 118.17 -118.17 22,90 52.19 7.53

For questions regarding this invoice, contact Customer Service by email at customerservice@cl.antioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date

05/24/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

82.62

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings Current

Previous

Units

CONSUMPTION INFORMATION Gallons

Days

Gallons / Day

0

0

0

0

0

00

0

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[2/2]

Due Date:

05/24/2019

Customer Name:

PG&E

Account:

004-01512-01

Last Year

For Service At:

3225 WILBUR AVE

Amount Now Due:

82.62

Please remit your payment to:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

Amount Paid:

Payment must be received by the City. on or before due date above to avoid 5% late penalty.

Utility Service Billing-Customer Service (925) 779-7060 004-01511-01

Account:

For service at:

CREATED ON COM ZONE 2

06/05/2019

Water Service From:

05/02/2019

06/01/2019

To: Units:

1.428 4.16

Zone Charge:

CANO605B AUTO 5-DIGIT 94509 7000000736 00.0003.0050 722/1

ՈՈՐԻ։ Որգեկն ինկան ին ին ին ին հետում ին հայան

3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED WATER USAGE 2 " WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3"

SIGN UP TODAY FOR YOUR NO-COST GREEN HOUSE CALL FROM RISING SUN. LED'S, SMART POWER STRIPS, ENERGY COACHING AND MOREI REGARDLESS OF IF YOU OWN OR RENT. CALL 510-665-1501 EXT 30

Amount 0.00 3,572.91 -3,572.91 5,940.48 155.00 1.617.86 28.09

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date

06/26/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

7,741.43

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings

Current 48527 Previous 47099

Units 1,428 CONSUMPTION INFORMATION Gallons 1,068,144

Days 30

Gallons / Day 35605

Last Year

1,629

1,218,492

30

40616

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

06/26/2019

Customer Name:

PG&E

Account:

004-01511-01

3225 WILBUR AVE

Amount Now Due:

7,741.43

For Service At:

Amount Paid:

Please remit your payment to:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

լովվասկվելինիլլեր]][հոււր[հոյլ[իլ]]հլ][հույլ

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Utility Service Billing-Customer Service (925) 779-7060 2-01 3225 WILBUR AVE 004-01512-01

For service at:

CREATED ON

06/05/2019

Water Service From:

05/02/2019

06/01/2019

To: Units:

Zone Charge:

CANO605B AUTO 5-DIGIT 94509 7000000737 00,0003.0050 722/2

> PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED 5/8"X3/4" MAINT FEE FL DET CHK 6" BACKFLW DC 5/8"X3/4"

SIGN UP TODAY FOR YOUR NO-COST GREEN HOUSE CALL FROM RISING SUN. LED'S, SMART POWER STRIPS, ENERGY COACHING AND MORE! REGARDLESS OF IF YOU OWN OR RENT. CALL 510-665-1501 EXT 30

Amount 0.00 82.62 -82.62 22.90 52.19 7.53

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antloch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date

06/26/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

82,62

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings Current

0

Previous

Units

CONSUMPTION INFORMATION Gallons

Days 00

Gallons / Day

Last Year

0 0

0 0

0

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[2/2]

Due Date:

06/26/2019

Customer Name:

PG&E

Account:

004-01512-01

For Service At:

3225 WILBUR AVE

Amount Now Due: 82.62

Amount

Paid:

Please remit your payment to:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

լովվառնվելի և իլլեր իլևութ իսյլիի իլիեցինում

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

0040727507000095P54

Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01511-01

For service at:

3225 WILBUR AVE

CREATED ON COM ZONE 2

07/10/2019

Water Service From:

06/01/2019

07/01/2019

To: Units:

1,841

Zone Charge:

4.55

CANO710B AUTO 5-DIGIT 94509 7000000741 00.0003.0055 727/1

հիցե[կցիի]][իիհացեհերթը[գոյելուների]ել[

3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED WATER USAGE 2" WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3"

USE ONLINE BILL PAY? MAKE SURE YOUR ACCOUNT NUMBER AND REMIT ADDRESS MATCH THIS BILL.

Amount 0.00 7,741.43 -7.741.43 8,376.55

165.00 2,213.64

25.10

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date >

07/31/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

10,780.29

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings

Previous

Units

CONSUMPTION INFORMATION

Gallons

Days

50368

Current

48527

1,841

1,377,068

Gallons / Day

30

45902

Last Year

3,049

2,280,652

30

76022

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

07/31/2019

Customer Name:

PG&E

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

10,780.29

Please remit your payment to:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

րոկվումի Միկակրկի Միտուր Մոլդ Ոլի Միկի Մայի

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01512-01

For service at:

3225 WILBUR AVE

CREATED ON

07/10/2019

Water Service From:

06/01/2019 To: 07/01/2019

Units:

Zone Charge:

CAN0710B AUTO 5-DIGIT 94509 7000000742 00.0003.0055 727/2

> PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED 5/8"X3/4" MAINT FEE FL DET CHK 6" BACKFLW DC 5/8"X3/4"

USE ONLINE BILL PAY? MAKE SURE YOUR ACCOUNT NUMBER AND REMIT ADDRESS MATCH THIS BILL.

Amount 0.00 82.62

-82.62 24.40 47.80

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date

07/31/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings Current Previous

0

Units 0

CONSUMPTION INFORMATION Gallons

Days 00

Gallons / Day

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[2/2]

Due Date:

07/31/2019

Customer Name:

PG&E

Account:

004-01512-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

77.50

0

Please remit your payment to:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

լովլ[ոսժ[գ][իլեն]լլեր][[նուսգի]հոլլլ[[լել[նդ][նուգ]

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

City of Antioch - Finance Department Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01511-01

For service at:

3225 WILBUR AVE

CREATED ON COM ZONE 2

08/06/2019

Water Service From:

07/01/2019

To:

08/01/2019

Units:

3,353

Zone Charge:

4.55

CAN0806B AUTO 5-DIGIT 94509 7000000745 00.0003.0059 731/1

ԱլՈլոյգելիկգնելիոնըլիցվյիլիՈւումերդիվիիկի

PG&E

3225 WILBUR AVE

ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED WATER USAGE 2 " WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3"

USE ONLINE BILL PAY? MAKE SURE YOUR ACCOUNT NUMBER AND REMIT ADDRESS MATCH THIS BILL.

Amount 0.00 10.780.29 -10,780.29 15,256.15 165.00 4.028.04

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date

08/27/2019

25.10

Amount Now Due, 5% Late Penalty if Not Received by Due Date

19,474,29

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings

Previous

Units

CONSUMPTION INFORMATION

Current 53721

50368

Gallons

Days

Gallons / Day

3,353

2,508,044

31

80905

Last Year

2,814

2,104,872

31

67899

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

08/27/2019

Customer Name:

PG&E

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

19,474.29

Please remit your payment to:

Amount Paid:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

լովչիտոկվիիիկեիյնիվիիտութվագրիկիլիկերիհուղի

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

City of Antioch - Finance Department Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01511-01

For service at:

3225 WILBUR AVE

08/01/2019

CREATED ON COM ZONE 2

09/05/2019

Water Service From:

To:

09/01/2019

Units:

3,600

Zone Charge:

4.55

CAN0905C AUTO 5-DIGIT 94509 7000000745 00.0003.0059 731/1

մորդմիկոյլըդիմիկոկնիկոյնիկորդիկիկիկի

3225 WILBUR AVE ANTIOCH CA 94509-8546

Amount

19,474.29

-19,474.29

16,380.00 165.00

4,324.44

PAYMENT(S) APPLIED WATER USAGE 2 " WATER MAINT FEE SEWER NON-RES **BACKFLOW RP 3'**

AGED BALANCE PRIOR BALANCE

USE ONLINE BILL PAY? MAKE SURE YOUR ACCOUNT NUMBER AND REMIT ADDRESS MATCH THIS BILL.

Due Date

09/26/2019

or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antioch.ca.us

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

20,894.54

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings

Previous

Units

Gallons

CONSUMPTION INFORMATION

57321

Current

3,600

Days

Gallons / Day

53721

2,692,800

31

86865

Last Year

1,753

1,311,244

31

42298

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

09/26/2019

Customer Name:

PG&E

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

20,894.54

Please remit your payment to:

Amount

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

յոկիուհի ի ի և իրկր իրև ուրկնութի իրիկին հուլ

Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

City of Antioch - Finance Department Utility Service Billing-Customer Service (925) 779-7060

Account: 004-01511-01

For service at:

3225 WILBUR AVE

CREATED ON

COM ZONE 2

10/02/2019

Water Service From: 09/01/2019

To: Units: 10/01/2019

3,015

Zone Charge:

4.55

CAN1002B AUTO 5-DIGIT 94509 7000000744 00.0003.0058 730/1

ունվեր ՈՈլենիերՈՈլենիի անկերութենի ինչև ինի

3225 WILBUR AVE ANTIOCH CA 94509-8546

Amount

20,894.54 -20,894.54 13,718.25 165.00

3,622.44 25.10

AGED BALANCE PRIOR BALANCE PAYMENT(S) APPLIED WATER USAGE 2" WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3'

THE CITY OF ANTIOCH GSA INVITES YOU TO HELP DEVELOP A GROUNDWATER SUSTAINABILITY PLAN (GSP) BY VISTING HTTPS://WWW.ECC-IRWM.ORG/ABOUT-SGMA.

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antioch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date

10/23/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

17,530.79

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings Current

Previous

Units

CONSUMPTION INFORMATION Gallons

Days

Gallons / Day

60336

57321

3.015

2,255,220

30

75174

Last Year

1,674

1,252,152

31

40392

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

10/23/2019

Customer Name:

PG&E

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

17,530.79

Please remit your payment to:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

լոիիոսնիկնինիրկրիկնութիերըիկինկինդինուցի

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Utility Service Billing-Customer Service (925) 779-7060

Account:

004-01511-01

For service at:

3225 WILBUR AVE

CREATED ON

11/06/2019

Water Service From:

10/01/2019

To:

11/01/2019

Units:

2,241

COM ZONE 2

Zone Charge:

4.55

CAN1106A AUTO 5-DIGIT 94509 7000000740 00.0003.0054 726/1

յլլ]||ԽՄ|||Մբ||կՄերոլՄ||իվՄՄ|Մ|ԵլՄլՈւլլևումը|

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

AGED BALANCE PRIOR BALANCE 5% LATE PENALTY PAYMENT(S) APPLIED WATER USAGE 2 " WATER MAINT FEE SEWER NON-RES BACKFLOW RP 3"

THE CITY OF ANTIOCH GSA INVITES YOU TO HELP DEVELOP A GROUNDWATER SUSTAINABILITY PLAN (GSP) BY VISTING HTTPS://WWW.ECC-IRWM.ORG/ABOUT-SGMA.

Amount 0.00 17,530.79 876,54 -17,530.79 10,196.55 165.00 2,693.64 25.10

For questions regarding this invoice, contact Customer Service by email at customerservice@ci.antloch.ca.us or call (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us Alter hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date >

11/27/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

13,956.83

PLEASE SEE REVERSE SIDE FOR PAYMENTS OPTIONS

Meter Readings

Previous

Units

CONSUMPTION INFORMATION Gallons

Days

Gallons / Day

62577

Current

60336

2,241

1,676,268

31

54073

Last Year

1,611

1,205,028

30

40168

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

[1/2]

Due Date:

11/27/2019

Customer Name:

PG&E

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

13,956.83

Please remit your payment to:

City of Antioch P.O. Box 6015

Artesia, CA 90702-6015

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Utility Service Billing - Customer Service (925) 779-7060 Account: 004-01511-01 For service at: 3225 WILBUR AVE

CREATED ON 12/10/2019

Water Service From: 11/01/2019

12/02/2019 To: 1,712

COM ZONE 2

Units: Zone Charge:

4.55

DDTFDAFDAFFFFFDADTATFDTADFTFTTFAAFDTTTFAATDTDTFDFATFATDTAAAAFADDT

3225 WILBUR AVE ANTIOCH CA 94509-8546

Amount

,956.83 13,956.83-789.60 165.00 058.84

PAYMENTS APPLIED

PRIOR BALANCE

WATER USAGE
2 " WATER MAINT FEE
SEWER NON-RES
BACKFLOW RP 3"
PLEASE REMEMBER IRRIGATION TIMERS SHOULD BE OFF SAVE WATER AND REDUCE YOUR WATER FOR THE WINTER. BILL.

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Due Date >

12/31/2019

Amount Now Due, 5% Late Penalty if Not Received by Due Date

10,038.54

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current 64289

Previous 62577

Units 1,712

1,151

CONSUMPTION INFORMATION Gallons 1,280,576 860,948

Days 3 1

Gallons / Day

41,308 27,772

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

12/31/2019

Customer Name:

PG&E

Account:

0 0 4 - 0 1 5 1 1 - 0 1

For Service At:

3225 WILBUR AVE

Amount Now Due:

10,038.54

Amount

Paid: Payment must be received by the City, on or before due date above to avoid

5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

Haladaallaadallaadalaallaadalaalla

City of Antioch - Finance Department Utility Service Billing - Customer Service (925) 779-7060

Account: 004-01512-01 For service at: 3225 WILBUR AVE

CREATED ON 12/10/2019

Water Service From: 11/01/2019

12/02/2019 To:

Units:

Zone Charge:

EFFATDAATFATTFFOFATDDTDFAFATFATATOTFDDFDTTTFTFADDAFAATTFTDFAAATFA

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED WATER USAGE 5/8"X3/4" MAINT FEE FL DET CHK 6" BACKFLW DC 5/8"X3/4

PLEASE REMEMBER IRRIGATION TIMERS SHOULD BE FOR THE WINTER. SAVE WATER AND REDUCE YOUR Amount

0.00

24.40 47.80

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

12/31/2019 **Due Date**

77.50

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current

Previous

Units

CONSUMPTION INFORMATION

Days

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Gallons

Due Date:

12/31/2019

Customer Name:

Account:

004-01512-01

For Service At: 3225 WILBUR AVE

Amount Now Due:

77.50

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

PG&E

Haladaallaandahdhallaandhdaadhdaladl

City of Antioch - Finance Department Utility Šervice Billing - Customer Service (925) 779-7060

Account: 004-01511-01 For service at: 3225 WILBUR AVE

1/08/2020 CREATED ON

Water Service From: 12/02/2019

1/02/2020 To: Units: 1,266

COM ZONE 2

Zone Charge: 4.55

3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE PAYMENTS APPLIED

WATER USAGE 2 " WATER MAINT

Amount

10,038.54 760.30 165.00

SEWER NON-RES
BACKFLOW RP 3"
PLEASE REMEMBER IRRIGATION TIMERS SHOULD BE SAVE WATER AND REDUCE YOUR THE WINTER.

For questions regarding this invoice, call Customer Service at (925) 779-7060.

For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

FEE

1/29/2020 **Due Date**

7,474.04

Amount Now Due, 5% Late Penalty if Not Received by Due Date

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current Previous 65555 64289

1,266

Units 1,052

CONSUMPTION INFORMATION Gallons 946,968 786,896

Days 31

Gallons / Day 30,547 25,383

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

1/29/2020

Customer Name: PG&E

Account:

004-01511-01

For Service At:

3225 WILBUR AVE

Amount Now Due:

7,474.04

Amount Paid:

Payment must be received by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

Bdalladadhaaddhalladhaalbdaladd

City of Antioch - Finance Department Utility Service Billing - Customer Service (925) 779-7060

Account: 004-01512-01 For service at: 3225 WILBUR AVE

CREATED ON 1/08/2020

Water Service From: 12/02/2019

To: 1 / 0 2 / 2 0 2 0

Units:

Zone Charge:

TFÄTTOÄFDDAOTTODAADTTTODTOFAAATFFATFAAFDADFFATAFTFDTFTAFTADFDFTAT

PG&E 3225 WILBUR AVE ANTIOCH CA 94509-8546

PRIOR BALANCE
PAYMENTS APPLIED
WATER USAGE
5/8"X3/4" MAINT FEE
FL DET CHK 6"
BACKFLW DC 5/8"X3/4

FL DET CHK 6"

BACKFLW DC 5/8"X3/4"
PLEASE REMEMBER IRRIGATION TIMERS SHOULD BE OFF
FOR THE WINTER. SAVE WATER AND REDUCE YOUR WATER

Amount
77.50
77.500.00
24.40

5.30

For questions regarding this invoice, call Customer Service at (925) 779-7060. For sewer problems, water leaks, potholes and street lights call Public Works at (925) 779-6950 or email publicworks@ci.antioch.ca.us. After hours, weekends and holidays call Police dispatch at (925) 778-2441.

Amount Now Due, 5% Late Penalty if Not Received by Due Date >

1/29/2020

77.50

PLEASE SEE REVERSE SIDE FOR PAYMENT OPTIONS

Meter Readings

Current Previous

Units

CONSUMPTION INFORMATION

PG&E

Gallons

Days

Due Date >

Gallons / Day

NO HISTORY AVAILABLE

Last Year

PLEASE DETACH AND RETURN THIS PORTION WITH PAYMENT

Due Date:

1/29/2020

Customer Name:

Account:

004-01512-01

For Service At:

3225 WILBUR AVE

Amount Now Due: 77.50

Amount Paid:

\$.

Payment must be <u>received</u> by the City, on or before due date above to avoid 5% late penalty.

Please remit your payment to:

City of Antioch PO BOX 6015

Artesia, CA 90702-6015

Daladhadidaaddaddaaddaaddalaadd

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 11

Exhibit 4 Quarterly Self-Monitoring Reports to DD, Notice of Violation/Corrective Action (Condition of Certification SOIL&WATER-4)

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 11

Exhibit 4a
Quarterly Self-Monitoring Reports to DD,
(Condition of Certification SOIL&WATER-4)

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509

(925) 522-7801

RECEIVED BY

APR 1 0 2019

April 10, 2019

Michael Auer Delta Diablo Sanitation District (DDD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DDSD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending March 31, 2019)

Dear Mr. Auer,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2019, as required under DDD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

April 10, 2019

Michael Auer Delta Diablo Sanitation District (DDD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DDSD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending March 31, 2019)

Dear Mr. Auer,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2019, as required under DDD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in March 31, 2019

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DDSD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business:

PG&E Gateway Generating Station

Address:

3225 Wilbur Avenue, Antioch, CA. 94509

Phone:

925-522-7805

Period Covered:

Period ending March 31, 2019

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tim Wisdom Date: Apr. 10, 2019 Signature:

Print Name:

Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Michael Auer Fax # (925)756-1961 Phone: (925)756-1929 From: Tim Wisdom Company: Pacific Gas and Electric Company – Gateway Generating Station Period Covered: Period ending March 31, 2019
Industrial User Checklist for self –monitoring reports, as specified by the wastewater discharge permit issued by Delta Diablo Sanitation District:
Self-monitoring reports
 ✓ Flow discharge summary (Discharge Permit Section E.1.h.) (See Attachment 4) Calibration of flow meters, as required. (Section E.1.g.) (Submitted in Q2 2018 SMR) ✓ Monitoring results- <u>All</u> required tests completed, results reviewed, results included, QA/QC, chain of custody (section F.7.) (See Attachment 8) ✓ Certification statement included (See Attachment 1)
Violations (if applicable)
All wastewater discharge exceedance are reported during this reporting period Delta Diablo was contacted. (See Additional Notes below) A follow-up report on characterization re-sampling was submitted on Corrective actions to resolve violation: Other violations - i.e. Reporting, spills to sewer, or prohibited discharges Additional Notes:
Significant changes Anticipated changes that may alter the nature quality or values of the west avectors.

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

IU NAME : PG&E Gateway Generating Station

ID #: 0208841-C

ADDRESS: 3225 Wilbur Avenue

TYPE: Power Generation Plant

CITY: Antioch

PARAMETERS

DATE	
TYPE	
STATION	
SMP.BY	

PURPOSE

LIMITS

	3/27/2019	3/28/2019	3/28/2019	3/28/2019	3/28/2019		
	G	G	C24	G	G		
	E-001	E-001	E-001	E-001	E-001		
- 6							
	Muskan	Muskan	Muskan	Muskan	Muskan		
ŀ	Compliance	Compliance	Compliance	Compliance Semi-	Compliance		

0.027442

ND (<0.05)

SIC:

4911

Units: mg/L

FLOW, DAILY (gal)	51,120						
FLOW, MONTH (gal)							
рН	6-10 s.u.		8.13				
BOD				4.3			
COD				ND(<10)			
TDS				138.0			
TSS				ND(<1.0)			
Arsenic	0.15			0.00067			
Cadmium	0.1			ND(<0.0005)			
Chromium	0.5			ND(<0.001)			
Copper	0.5			0.0041			
Iron				0.12			
Lead	0.5			ND(<0.0005)			
Mercury	0.003			ND(<0.0002)			
Molybdenum				0.059			
Nickel	0.5			0.0015			
Selenium	0.25			ND(<0.0005)			
Silver	0.2			ND(<0.0005)			
Zinc	1.00			0.053			
Cyanide	0.2		0.0089				
Phenol	1.00		0.0766				
Ammonia	200		35				
O&G Petro/Min (E1664A w/ Silica)	100	ND(<5.0)	ND(<5.0)				
O&G Animal/Vegetable Oil	300	6.7	ND(<5.0)				
TTO EPA 608					ND(<0.00002)		
TTO EPA 624					0.002570		
TTO EPA 625					0.024872		

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

TTO Sulfide

Sulfate

2.00

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

January 2019-March 2019

		Industria	l Flow		Sanitary Flow				
	ı		Did it ever				Did it ever		
		Time Over	go over	l		Time Meter	go over		
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(mins?			(minutes)	mins?		
1/1/2019	34.5	0.0	NO.	8,701	0.1	0	NO.		8,701
1/2/2019	34.8	0.0	NO	6,070	20.9	0	NO	375	6,444
1/3/2019	35.0	0.0	NO	5,965	0.0	0	NO		5,965
1/4/2019	34.7	0.0	NO	29,169	20.1	0	NO	378	29,547
1/5/2019	34.5	0.0	NO	8,861	0.1	0	NO		8,861
1/6/2019	35.0	0.0	NO	25,892	0.0	0	NO		25,892
1/7/2019	34.6	0.0	NO	41,158	20.9	0	NO	388	41,545
1/8/2019	34.7	0.0	NO	21,027	0.0	0	NO		21,027
1/9/2019	34.4	0.0	NO	8,112	21.1	0	NO	392	8,504
1/10/2019	34.5	0.0	NO	16,319	19.5	1	NO	392	16,711
1/11/2019	37.4	11.0	NO	26,653	0.0	1	NO		26,653
1/12/2019	-0.2	0.0	NO		0.0	0	NO	000	-
1/13/2019	-0.3	0.0	NO	20.470	19.7	0	NO	392	392
1/14/2019	34.5	0.0	NO	33,478	0.1	0	NO	6	33,484
1/15/2019	34.7	0.0	NO	38,851	19.5	0	NO	406	39,257
1/16/2019	34.7	0.0	NO NO	26,691	19.1	0	NO	386	27,078
1/17/2019 1/18/2019	34.9 34.4	0.0	NO	31,387 10,657	20.0	0	NO NO	370	31,757 10,657
1/19/2019	34.5	0.0	NO	22,379	0.0	0	NO		22,379
1/19/2019	34.3	0.0	NO	8,119	0.0	0	NO		8,119
1/21/2019	34.5	0.0	NO	18,336	20.1	0	NO	377	18,714
1/21/2019	34.4	0.0	NO	6,183	0.1	0	NO	311	6,183
1/23/2019	35.0	0.0	NO	12,690	20.4	0	NO	414	13,104
1/24/2019	34.6	0.0	NO	26,690	19.1	0	NO	379	27,069
1/25/2019	35.0	0.0	NO	21,539	0.1	0	NO	1	21,539
1/26/2019	34.6	0.0	NO	7,141	0.0	0	NO		7,141
1/27/2019	35.0	0.0	NO	25,752	0.0	0	NO		25,752
1/28/2019	35.1	0.0	NO	27,908	20.5	0	NO	391	28,299
1/29/2019	34.7	0.0	NO	30,126	0.1	0	NO	2	30,128
1/30/2019	35.1	0.0	NO	13,478	19.7	0	NO	394	13,872
1/31/2019	34.8	0.0	NO	18,301	20.2	0	NO	388	18,689
						Max D	aily Flow (Lir	mit: 51,120):	41,545
							М	onthly Total:	583,462
2/1/2019		0.0	NO	14,706	0.0	0	NO		14,706
2/2/2019		0.0		12,435	0.0				12,435
2/3/2019		0.0	NO	17,409	0.0	0	NO		17,409
2/4/2019		0.0	NO	33,538	20.7	0	NO	394	33,932
2/5/2019		0.0	NO	14,505	0.1	0	NO		14,505
2/6/2019		0.0	NO	34,040	20.0	0	NO	391	34,432
2/7/2019		0.0	NO	14,388	20.1	0	NO	374	14,762
2/8/2019		0.0	NO	19,372	0.1	0	NO	2	19,374
2/9/2019		0.0	NO	14,520	0.0	0	NO		14,520
2/10/2019 2/11/2019		0.0	NO	15,889	0.0	1	NO	207	15,889
		2.0 0.0	NO NO	30,448	21.0	1 0	NO NO	387	30,835 46,376
2/12/2019 2/13/2019		0.0	NO	46,376 25,342	0.0 20.2	0	NO	391	25,734
2/13/2019		0.0	NO	42,174	20.2	0	NO	391	42,544
2/14/2019		0.0	NO	15,539	0.0	0	NO	310	15,539
2/16/2019		0.0	NO	22,190	0.0	0	NO		22,190
2/10/2019		0.0	NO	7,035	0.0	0	NO		7,035
2/17/2019		0.0	NO	41,801	21.0	0	NO	388	42,188
2/19/2019		0.0	NO	36,421	0.0		NO	300	36,421
2/20/2019		1.0		40,845	21.1	0	NO	407	41,252
	00.7	1.0	NO	10,070	41.1	0	NO	393	, 202

PG&E Gateway Generating Station

Discharge Flow Data

January 2019-March 2019

		Industria	l Flow			Sanitary	Flow		
			Did it ever			Time Meter	Did it ever		
	Instantaneous	Time Over	go over	Daily Total	Instantaneous	went Bad	go over	Daily Total	Site Total
Date	Flow (GPM)	35.5 GPM	35.5 GPM	(Gallons)	Flow (GPM)	Quality	35.5 GPM	(Gallons)	(Gallons)
	Flow (GPIVI)	(minutes)	for 15	(Gallolis)	Flow (GPIVI)		for 15	(Gallotis)	(Gallolis)
			mins?			(minutes)	mins?		
2/22/2019	34.8	0.0	NO	15,043	0.0	0	NO		15,043
2/23/2019	35.3	0.0	NO	7,170	0.0	0	NO		7,170
2/24/2019	34.7	0.0	NO	17,349	0.0	0	NO		17,349
2/25/2019	35.1	0.0	NO	21,769	20.6	0	NO	379	22,148
2/26/2019	35.2	0.0	NO	26,876	0.1	0	NO	4	26,881
2/27/2019	38.9	1.0	NO	13,678	20.7	0	NO	389	14,068
2/28/2019	34.5	0.0	NO	18,617	20.2	0	NO	380	18,998
						Max D	aily Flow (Lir		46,376
						1		onthly Total:	642,154
3/1/2019	34.5	0.0	NO	31,705	0.0	0	NO	3	31,707
3/2/2019	34.5	0.0	NO	8,419	0.0	0	NO		8,419
3/3/2019	34.5	0.0	NO	14,438	0.0	0	NO		14,438
3/4/2019	34.9	0.0	NO	31,205	20.9	0	NO	386	31,591
3/5/2019	34.5	0.0	NO	23,795	20.4	0	NO	378	24,172
3/6/2019	34.5	0.0	NO	14,478	0.0	0	NO	100	14,478
3/7/2019	34.6	0.0	NO	34,082	21.6	0	NO	400	34,483
3/8/2019	34.5	0.0	NO	23,005	0.1	0	NO		23,005
3/9/2019	34.8	0.0	NO	27,064	0.0	0	NO		27,064
3/10/2019	34.6	0.0	NO	12,805	20.7	0	NO		12,805
3/11/2019	34.7	0.0	NO	32,862	0.0	61	NO	400	32,862
3/12/2019	34.7	0.0	NO	31,925	21.3	0	NO	422	32,348
3/13/2019	34.4	0.0	NO	17,826	0.1	0	NO	004	17,826
3/14/2019	35.2	0.0	NO	24,902	20.3	0	NO	381	25,284
3/15/2019	35.0	0.0	NO	15,678	0.0	0	NO	070	15,678
3/16/2019	35.0	0.0	NO	20,939	21.4	0	NO	378	21,316
3/17/2019	34.4	0.0	NO NO	16,749	0.1	0	NO	7	16,757
3/18/2019	35.0	0.0		42,933	0.0	0	NO NO	200	42,933
3/19/2019	35.0	0.0	NO	29,517	20.5			386	29,903
3/20/2019 3/21/2019	35.0 35.7	0.0	NO NO	21,869	0.0 21.0	0	NO NO	207	21,869 33,531
		1.0	_	33,133				397	
3/22/2019	35.1	0.0	NO NO	22,493	21.2 0.0	0	NO NO	398	22,891
3/23/2019 3/24/2019	34.6 34.5	0.0	NO	37,519 12,035	0.0	0	NO NO		37,519 12,035
3/24/2019	34.5 34.5	0.0	NO NO	33,070	20.5	0	NO NO	373	33,443
3/25/2019	34.5	0.0	NO	12,626	19.8	0	NO	389	13,015
3/26/2019	34.5	0.0	NO	29,798	20.7	0	NO	295	30,093
3/28/2019	3 4 .7	0.0	NO	48,720	20.7	0	NO	283	49,003
3/28/2019	35.1	0.0	NO	32,590	0.1	0	NO	10	32,600
3/29/2019		0.0	NO	27,713	0.1	0	NO	10	27,713
	34.6 34.8	0.0	NO		0.0	0	NO		22,830
3/31/2019	34.8	0.0	NO	22,830	0.0	1 0	NU	Ī	∠∠,ŏ30

Max Daily Flow (Limit: 51,120):

Monthly Total: 793,611

49,003

 $\frac{\textit{Notes}\,:}{\textit{(1)} \textit{ The high flow on 1/11 was due to yearly automatic high flow testing.}}$

(2) PI did not record values for 61 minutes on 3/11. There was no flow at that time.

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2019**

Month	Flow (gallons)	Due Date
January	583,462	4/15/2019
February	642,154	4/15/2019
March	793,611	4/15/2019
April		
May		
June		
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report January 2019 to March 2019

	WSAC Operation
Month	Hours of Operation
January-19	0.00
February-19	0.00
March-19	7.41
April-19	
May-19	
June-19	
July-19	
August-19	
September-19	
October-19	
November-19	
December-19	

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report January 2019 to March 2019

	WSAC Operation
Month	Average Daily Blowdown Cycles
January-19	No Operation
February-19	No Operation
March-19	4.58
April-19	
May-19	
June-19	
July-19	
August-19	
September-19	
October-19	
November-19	
December-19	

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Quarterly, Semi-annual, and Annual Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1903D77

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (March 2019)

Project Received: 03/28/2019

Analytical Report reviewed & approved for release on 04/04/2019 by:

Angela Rydelius

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Analytical Qualifiers

b1 Aqueous sample that contains greater than ~1 vol. % sediment

Quality Control Qualifiers

F13 Indigenous sample results too high for a representative matrix spike analysis.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 4/2/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001	1903D77-001B	Water	03/27/20	19 09:15	O&G	175726
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		04/03/2019 21:45

Analyst(s): PHU

Analytical Comments: b1

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	1903D77-002B	Water	03/28/20	19 11:45	O&G	175726
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		04/03/2019 21:50

Analyst(s): PHU

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 4/1/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001	1903D77-001A	Water	03/27/20	19 09:15	O&G	175359
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	6.7		5.1	1		04/02/2019 17:40

Analyst(s): PHU

Analytical Comments: b1

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001	1903D77-002A	Water	03/28/20	19 11:45	O&G	175359
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		04/02/2019 17:45

Analyst(s): PHU

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 4/3/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: E350.1

Analytical Method: E350.1

Unit: mg/L

Ammonia As Nitrogen

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	1903D77-002C	Water	03/28/201	19 11:45	WC_SKALAR 040319A1_23	175522
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed
Ammonia, total as N	35		5.0	50	04/03	3/2019 11:26

Analyst(s): NM

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/28/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77 Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	1903D77-003A	Water	03/28/201	9 11:30	WetChem	175410
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
BOD	4.3		4.0	1		04/02/2019 16:09

Analyst(s): AL

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 4/1/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: μg/L

Cyanide, Total

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001	1903D77-002D	Water	03/28/20	19 11:45	WC_SKALAR 040119A1_24	175568
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date	Analyzed
Total Cyanide	8.9		1.0	1	04/0	1/2019 14:58

Analyst(s): NM

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 4/1/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	1903D77-003B	Water	03/28/20		SPECTROPHOTOMETER	175597
<u>Analytes</u>	<u>Result</u>		RL	<u>DF</u>	<u>Da</u> i	te Analyzed
COD	ND		10	1	04/	01/2019 12:42

Analyst(s): RB

 $\mu g/L$

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/28/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: E245.2

Analytical Method: E245.2

Unit:

				Ι		
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	1903D77-003E	Water	03/28/2019	9 11:30	AA1 _13	175391
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Mercury	ND		0.20	1		03/29/2019 10:39

Analyst(s): JC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/28/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Metals								
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID		
E-001	1903D77-003F	Water	03/28/2019	11:30	ICP-MS1 045SMPL.D	175367		
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed		
Arsenic	0.67		0.50	1		04/03/2019 12:36		
Cadmium	ND		0.50	1		04/03/2019 12:36		
Chromium	ND		1.0	1		04/03/2019 12:36		
Copper	4.1		1.0	1		04/03/2019 12:36		
Iron	120		50	1		04/03/2019 12:36		
Lead	ND		0.50	1		04/03/2019 12:36		
Molybdenum	59		0.50	1		04/03/2019 12:36		
Nickel	1.5		0.50	1		04/03/2019 12:36		
Selenium	ND		0.50	1		04/03/2019 12:36		
Silver	ND		0.50	1		04/03/2019 12:36		
Zinc	53		25	1		04/03/2019 12:36		
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>					
Terbium	100		70-130			04/03/2019 12:36		
Analyst(s): MIG								

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 4/2/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: E420.4

Analytical Method: E420.4

Unit: $\mu g/L$

Phenolics

		1 1101101	.105			
Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	1903D77-002C	Water	03/28/201	9 11:45	WC_SKALAR 040219C1_14	175640
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed
Phenolics	76.6		2.0	1	04/02	2/2019 18:32

Analyst(s): NM

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55 **Date Prepared:** 3/29/19

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	1903D77-003C	Water	03/28/2019	11:30	WetChem	175474
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	138		10.0	1		04/01/2019 07:44

Analyst(s): RB

1903D77

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Received:3/28/19 13:55Extraction Method:SM2540 D-1997Date Prepared:3/29/19Analytical Method:SM2540 D-1997

Project: Quarterly Sampling (March 2019) Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	1903D77-003D	Water	03/28/2019	11:30	WetChem	175438
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Suspended Solids	ND		1.00	1		03/29/2019 12:15

Analyst(s): AL

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 4/3/19 **Date Analyzed:** 4/3/19 **Instrument:**

O&G

Matrix: Water **Project:** Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175726

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Sample ID:

MB/LCS/LCSD-175726

QC Summary Report for E1664A							
Analyte	MB Result	MDL	RL				
SGT-HEM	ND	0.72	5.0	-	-	-	

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	13	11	10.42	125	103	64-132	19.2	30

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D77Date Prepared:3/28/19BatchID:175359Date Analyzed:3/28/19Extraction Method:E1664AInstrument:O&GAnalytical Method:E1664A

Instrument:O&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (March 2019) Sample ID: MB/LCS/LCSD-175359

QC Summary Report for E1664A								
Analyte	MB Result	MDL	RL					
HEM	ND	1.2	5.0	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
НЕМ	18	18	20.83	85	87	78-114	2.87	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 4/3/19 **Date Analyzed:** 4/3/19

Instrument: WC_SKALAR

Matrix: Water

Analyte

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175522

Extraction Method: E350.1

Analytical Method: E350.1

Unit: mg/L

Sample ID: MB/LCS/LCSD-175522

QC Summary Report for E350.1 MB MDL RL			
MB Result	MDL	RL	

Ammonia, total as N ND 0.084 0.10 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	4.1	4.2	4	102	104	88-113	2.06	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/28/19 **Date Analyzed:** 4/2/19 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175410

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Sample ID: MB/LCS/LCSD-175410

1903D77-003A

	QC Summary Re	eport for	BOD			
Analyte	MB Result	MDL	RL			
BOD	ND	4.0	4.0	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	190	200	198	97	99	80-120	1.81	16

	0.110	2112		
Analyte	SAMP Result	DUP Result	RPD	RPD Limit
BOD	4.3	4.5	2.7	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 4/1/19 **Date Analyzed:** 4/1/19

Instrument: WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175568

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-175568

1903D77-002DMS/MSD

QC Summary	Report	for	SM4500-C	N- CE
QC Sullillar y	rchorr	101	SW14300-C	

Analyte	MB Result	MDL	RL			
Total Cyanide	ND	0.84	1.0	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	41	41	40	103	103	80-120	0	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Total Cyanide	1	46	47	40	8.9	93	94	80-120	0.481	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 4/1/19 **Date Analyzed:** 4/1/19

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175597

Extraction Method: SM5220 D-1997

Analytical Method: SM5220 D-1997 **Unit:** mg/L

Sample ID: MB/LCS/LCSD-175597

	QC Summary Report for COD								
Analyte	MB Result	MDL	RL						
COD	ND	7.2	10	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	90	91	100	90	91	90-110	1.10	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/28/19 Date Analyzed: 3/29/19 **Instrument:** AA1 **Matrix:**

Water

Project: Quarterly Sampling (March 2019) WorkOrder: 1903D77 **BatchID:** 175391

Extraction Method: E245.2 **Analytical Method:** E245.2 Unit:

Sample ID: MB/LCS/LCSD-175391 1903D77-003EMS/MSD

	QC Summary Report for Mercury								
Analyte	MB Result	MDL	RL						
Mercury	ND	0.14	0.20	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	2.2	2.1	2	110	103	85-115	6.40	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Mercury	1	2.1	2.0	2	ND	104	101	80-120	2.78	20

Analyte	DLT Result	DLTRef Val	%D	%D Limit
Mercury	ND<1.0	ND	-	-

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/28/19 Date Analyzed: 3/29/19 ICP-MS3 **Instrument: Matrix:** Water

Project: Quarterly Sampling (March 2019) WorkOrder: 1903D77

BatchID: 175367 **Extraction Method:** E200.8

Analytical Method: E200.8 **Unit:** μg/L

Sample ID: MB/LCS/LCSD-175367

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.13	0.50	-	-	-
Cadmium	ND	0.066	0.50	-	-	-
Chromium	ND	0.77	1.0	-	-	-
Copper	ND	0.55	1.0	-	-	-
Iron	ND	20	50	-	-	-
Lead	ND	0.19	0.50	-	-	-
Molybdenum	ND	0.033	0.50	-	-	-
Nickel	ND	0.34	0.50	-	-	-
Selenium	ND	0.20	0.50	-	-	-
Silver	ND	0.043	0.50	-	-	-
Zinc	ND	18	25	-	-	-

Surrogate Recovery

Terbium 480 500 96 70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	54	54	50	108	108	85-115	0	20
Cadmium	53	52	50	105	104	85-115	1.13	20
Chromium	52	51	50	103	102	85-115	0.895	20
Copper	52	53	50	105	106	85-115	0.608	20
Iron	5100	5100	5000	102	102	85-115	0	20
Lead	51	51	50	103	103	85-115	0	20
Molybdenum	51	50	50	101	99	85-115	1.72	20
Nickel	53	52	50	105	105	85-115	0	20
Selenium	53	52	50	106	105	85-115	1.14	20
Silver	49	48	50	97	96	85-115	1.24	20
Zinc	540	540	500	108	108	85-115	0	20
Surrogate Recovery								
Terbium	500	490	500	100	99	70-130	0.945	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 4/2/19 **Date Analyzed:** 4/2/19

Instrument: WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175640

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: μg/L

Sample ID: MB/LCS/LCSD-175640

1903D77-002CMS/MSD

	QC Summary	Report for	E420.4			
Analyte	MB Result	MDL	RL			
Phenolics	ND	2.0	2.0	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	42	42	40	106	104	80-120	0.686	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Phenolics	1	120	120	40	77	99	98	70-130	0.640	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/29/19

Date Analyzed: 4/1/19 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175474

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Sample ID: MB-175474

QC Summary Report for Total Dissolved Solids

Analyte	MB Result	MDL	RL			
Total Dissolved Solids	ND	10.0	10.0	-	-	-

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/29/19

Date Analyzed: 3/29/19 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (March 2019)

WorkOrder: 1903D77

BatchID: 175438

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Sample ID: MB-175438

QC Summary Report for Total Suspended Solids

Analyte	MB Result	MDL	RL			
Total Suspended Solids	ND	1.00	1.00	-	-	-

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1903D77 □WaterTrax ☐ WriteOn □ EDF Excel

ClientCode: PGEA **EQuIS** ✓ Email ☐ HardCopy

☐ ThirdParty □ J-flag

Detection Summary

Dry-Weight

Report to: Bill to: Angel Espiritu Email: abe4@pge.com

Requested TATs: 5 days: 7 days:

PG&E Gateway Generating Station

FAX:

Angel Espiritu PG&E Gateway Generating Station

Date Received: 03/28/2019

3225 Wilbur Avenue Antioch, CA 94509

(925) 459-7212

cc/3rd Party: A1HE@pge.com; J5LD@pge.com:tlWy@p PO:

3225 Wilbur Avenue

Project: Quarterly Sampling (March 2019) Antioch, CA 94509

Date Logged: 03/28/2019

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date F	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1903D77-001	E-001	Water	3/27/2019 09:15		В	Α										
1903D77-002	E-001	Water	3/28/2019 11:45		В	Α	С		D				С			
1903D77-003	E-001	Water	3/28/2019 11:30					Α		В	Е	F		С	D	

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	TDS_W

3	AMMONIA_W	
7	HG_W	
11	TSS_W	

4	BOD_W
8	METALSMS_TTLC_W
12	

Project Manager: Angela Rydelius

Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (March 2019) Work Orde

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments:

Date Logged: 3/28/2019

		WaterTrax	WriteOn EDF	Excel	EQuIS Email	HardC	opyThirdPart	у 🗀	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1903D77-001A	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl		3/27/2019 9:15	5 days	1%+	
1903D77-001B	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl		3/27/2019 9:15	5 days	1%+	
1903D77-002A	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl		3/28/2019 11:45	5 days	Present	
1903D77-002B	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl		3/28/2019 11:45	5 days	Present	
1903D77-002C	E-001	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO4		3/28/2019 11:45	5 days	Present	
			E350.1 (Ammonia)					5 days	Present	
1903D77-002D	E-001	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH + Na2S2O3		3/28/2019 11:45	5 days	Present	
1903D77-003A	E-001	Water	SM5210B (BOD)	1	1L HDPE, unprsv.		3/28/2019 11:30	7 days	Present	
1903D77-003B	E-001	Water	SM5220D (COD)	2	aVOA w/ H2SO4		3/28/2019 11:30	5 days	Present	
1903D77-003C	E-001	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		3/28/2019 11:30	5 days	Present	
1903D77-003D	E-001	Water	SM2540D (TSS)	1	1L HDPE, unprsv.		3/28/2019 11:30	5 days	Present	
1903D77-003E	E-001	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3		3/28/2019 11:30	5 days	Present	
1903D77-003F	E-001	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3		3/28/2019 11:30	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1903D77

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269									CHAIN OF CUSTODY RECORD TURN AROUND TIME CHAIN OF CUSTODY RECORD TURN AROUND TIME CHAIN OF CUSTODY RECORD TURN AROUND TIME CHAIN OF CUSTODY RECORD CHAIN OF CUSTODY											□								
Report To	: Angel Esp	piritu	1		E	ill To: l	PG&I	E Ga	tew	ay					T		ues			anne con the constant		Remarks						
Company:	PG&E G	atewa	ay Genera	ting Stat	ion		-								丁		_		П			,,	Π		Γ	П		
										4	Ę Š	iium Je	rith q	7	13-G		in .				П							
E-Mail: <u>abe4@pge.com</u> , <u>A1HE@pge.com</u> , <u>J5Ld@pge.com</u> , tlWY@pge.com Tel: (925) 522-7838, (510) 861-1597 (Cell)										-	efore	seler moo	(USEPA 1664A) with	1 420	as N (SM 4500-NH3-		, chro er, zinc)											
	ame: Qua	-	The State of the S	The second liverage of the least of the leas											+	ated ite bi	and	A 166 gel c	SEP	M 45		nium, I, silv,				П		
Project Lo						17)					00	5			1	retre sulfa by 5	enic / rea	SEP.	Cs (U	N (S	<u>(2</u>	cadn nicke	10B)	5220D)	5	<u>a</u>		
Sampler S	THE RESERVE OF THE PERSON NAMED IN		skan/	THE RESERVE THE PERSON NAMED IN	me	Lotes	Ž	olic	Æ		1	1]	e (P thio ing)	(Ars 8 m by	ise (L	enoli	ia as	, (245	200.8 lead,	M 52	M 52	A 254	1254		
		Composite	SAMP				Matrix METHOD PRESERVED						Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 C ABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (U	Total Phenolics (USEPA 420.4)	Ammonia	Mercury (245.2)	Metals (200.8 cadmium, chromium, copper, lead, nickel, silver, Molybdenum, iron, and zinc)	BOD (SM 5210B)	COD (SM	TDS (SM 2540C)	TSS (SM 2540D)					
SAMPLE ID	LOCATION / Field Point Name	Sample Type Cor /Grab	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	History	NaOH	HCL	HNO	Other	100	×				0			0			·	
E-001		G	3/27/19	09:15	2	1L Amb	X			Х	T	2	X	T	T			X							Γ	П		
E-001		_	3/28/19		2	1L Amb	X		\Box	Х	Т	2	X	T	T			X	П				Γ			П		
E-001		G	3/28/19		1	500ml Amb	X		П	X 2	X	T	T	T	T				Х	X			Π		Γ	П		
E-001		G	3/28/19		1	250-ml Poly	X		\Box	Х	Х	(T	T	T	X			П				Γ		Γ	П		
E-001		-	3/28/19		1	1L Poly	X		X	Х	T	T	T	T	T				П				Х			П		
E-001		С	3/28/19		2	43-ml VOA	X		П	X 2	X	T	T	T	Ť				П				Γ	X	Γ	П		
E-001		С	3/28/19		1	500-ml poly	X		Х	Х	T	T	T	T	T				П				T		Х			
E-001			3/28/19	, , , , ,	1	1L poly	X		Х	Х	T	T	T	T	T								T		Г	Х		
E-001		С	3/28/19		1	250-ml Poly	X			X	T	T	1	X	T				Г		X		T		T	П		
E-001	1 7/1	С	3/28/19		1	250-ml poly	X			X	T	\top	1	X	1		X				·	X						
											I		I	T	I								L		L	Ц		
Relinquishec	I By:		Date: 3/28/19 Date:	Time:	Rece	eived By:	4/2	ale	u	is				ICE/t°C GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB						'S:								
Relinquished	I By:		Date:	Time:	Reco	eived By:										PRESERVA	vo		0&		METALS pH<2		R				Page 28 of 2	

PG&E Gateway Generating Station

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received 3/28/2019 13:55

Sample Receipt Checklist

Project:	Quarterly Sampling	g (March 2019)			Date Logged:	3/28/2019
WorkOrder №:	1903D77	Matrix: <u>Water</u>			Received by: Logged by:	Nancy Palacios Kena Ponce
Carrier:	Client Drop-In				30 7	
		Chain of 0	Custody	y (COC) Info	rmation	
Chain of custody	present?		Yes	✓	No 🗆	
Chain of custody	signed when relinqu	ished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆	
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗌	
COC agrees with	Quote?		Yes		No 🗆	NA 🗸
		<u>Samp</u>	le Rece	eipt Informat	<u>ion</u>	
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good cor	ndition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	?	Yes	✓	No 🗌	
Sample containe	rs intact?		Yes	✓	No 🗆	
Sufficient sample	e volume for indicated	d test?	Yes	✓	No 🗌	
		Sample Preservati	ion and	Hold Time (HT) Information	
All samples rece	ived within holding tir	me?	Yes	✓	No 🗆	NA 🗌
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ісе Тур	e: WE	TICE)		
Sample/Temp Bl	ank temperature			Temp: 2.	6°C	NA 🗌
Water - VOA vial	s have zero headspa	ace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	necked for correct pre	eservation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.		2; Nitrate 353.2/4500NO3:	Yes	✓	No 🗆	NA 🗌
		eipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗌	NA 🗸
Free Chlorine t	tested and acceptable	e upon receipt (<0.1mg/L)?	Yes		No 🗌	NA 🗹
Comments:	======		==:	====	======	========

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1903D90

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Sanjiv Gill

Project P.O.:

Project: pH Sampling (March 2019)

Project Received: 03/28/2019

Analytical Report reviewed & approved for release on 04/04/2019 by:

Jennifer Lagerbom

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: pH Sampling (March 2019)

WorkOrder: 1903D90

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 14:15

Date Prepared: 3/28/19

Project: pH Sampling (March 2019)

WorkOrder: 1903D90

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

рH

Client ID	Lab ID	Matrix	Date Collec	cted	Instrument	Batch ID
E-001	1903D90-001A	Water	03/28/2019 1	2:25	WetChem	175464
Analytes	Result		<u>Accuracy</u>	<u>DF</u>		Date Analyzed
рН	8.13		±0.05	1		03/28/2019 12:25

Analyst(s): PHU

McCampbell Analytical, Inc.

□WaterTrax

Email:

Project:

PO:

cc/3rd Party:

☐ WriteOn

sanjivgill@comcast.net

pH Sampling (March 2019)

□ EDF

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

PG&E Gateway Generating Station

FAX:

Report to:

Sanjiv Gill

3225 Wilbur Avenue

Antioch, CA 94509

(925) 459-7212

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder:	1903D90	ClientCode:	PGEA
, or more	1,000	Chemicouc.	

 Excel
 ■ EQuIS
 Email
 ■ HardCopy
 ■ ThirdParty
 ■ J-flag

Detection Summary Dry-Weight

Bill to: Requested TAT: 5 days;

Angel Espiritu

PG&E Gateway Generating Station

					Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date H	lold 1		2	3	4	5	6	7	8	9	10	11	12	
1903D90-001	E-001	Water	3/28/2019 12:25		١.												

Test Legend:

1	pH_Field	2	3	4
5		6	7	8
9		10	11	12

Project Manager: Angela Rydelius Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

1903D90-001A	E-001	Water	SM4500H+B	(Field pH)		0 No C	ontainer Received		3/28/2019 12:25	5 days			
Lab ID	Client ID	Matri	x Test Name			tainers Bottle nposites	e & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOu	t
		WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCo	opyThirdParty	J-	-flag		
Contact's Er	nail: sanjivgill	@comcast.net			Comments:					Date	Logged:	3/28/2019	
Client Conta	act: Sanjiv Gi	ill								Q	C Level:	LEVEL 2	
Client Name	: PG&E G	ATEWAY GENERA	ATING STATIC	PΝ	Project: p	oH Sampling (N	March 2019)			Work	k Order:	1903D90	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1903 D90

																							22				U	/			3. 2. 5.
McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701										Т	URI	N A						C	US		DY 24 HR		E C □ 48 H	CORD	D. 61						
			e: (877) 25		<u>m</u> Em		n@mc ax: (9								G	eoT	rac	ker	ED						Exc	el [7	Wri	te On (E d "J" flag	(W)	
Report '	Γο: Sanjiv	Gill			В	ill To:	Musk	an E	nvir	onm	enta	ıl		\neg						Ana	lvsi	Rec	And in case of the last					\neg	THE RESERVE TO SHARP WHEN PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	marks	
	y: PG&E		wav Gene	rating S										\neg			T	T	\top	\top	Ť	Т	ÌП		7	T	100	\Box			
										\neg																					
E-Mail: sanjivgill@comcast.net										\neg																					
Tel: (40	8) 666-449	4 (Cel	II)			ax: ()	8	2000					\neg																	
	Name: pl			Mac			19)						\neg																	
Project	Location: F	G&F	GGS An	tioch – I	E-001	Co	mhi	200	\ C	4:5	97	FI	10				1														
Sampler	Signature	· W	nc Ka.	Farin	m.	ne t	10	1100	plin	-	10	12	OK	\dashv																	
		ij.	W2 LWV	LIVI	1000	TVI CON	1	10000	V	0	-6	0		\dashv			i														
		ype Composite. Grab	SAMP	LING		srs	Mat	trix	МЕТ	НОІ	D PR	ESE	RVI	ED																	
SAMPLE ID	LOCATION / Field Point Name	Sample Type Co /Grab	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	H,SO,	NaOH	HCL	HNO,	Zinc Acetate	Hq																
E-001		0	3/28/19	12:25	NA	NA	Х		Х						X														Grab Time Analysis T	12:3 ime:12:	26
																													Temperatu pH: 8.1	e: / 4.	q
38																														/ 1	
																	\neg	\top		+	+	1		\neg		1					
						-		\vdash		+								+	-	_	+	-			-	-		\vdash			
					_		_			+		\vdash		-				-	-	-	+	+		_	-	-	-	\vdash			
										-									_		_			_		_					
							_											\top	\top		+										
							-		\vdash	+				\vdash				-		-	+	+-		-	-	-	-				-
									-	-				\vdash	1			-	-		+	-			-	-	+-	H			
August 1	-									(1	,	_										- Ima		
Relinquished by: Date: Time: Received By: 3/28/19 /4:15 Auch Pulce								OD C			ON								CON	IME	NTS:										
3/28/19 14:15 / Valley Prece						HE	AD S	PACI	EAB	SENT																					
Relinquished By: Date: Time: Received By:						AP	CHLO	RIA	TE C	ONT	AINI			_																	
Relinquished By: Date: Time: Received By:					PRESERVED IN LAB VOAS O&G METALS OTHER PRESERVATION pH<2																										

Logbook for Field pH Samples

Data/Times	Sample ID	Matrix	1 st Re	eading	2 nd Re	eading	Ave	Standard	Comments	Analyst
Date/Time	Sample ID	Manix	рН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)	Commons	1,211111, U. j.
01:11 P1/85/E	Cal. pH # 7.00	L	7.00	19.6	7. 00	19.8	7.00	bulk		
3/28/19/11:10	Cal pH # 4. ∞	L	4.00	19.8	4.00	19.8	4.00	bu)K		
3/28/19/11:10	Cal. pH # 10.00	L	10.00	19.8	10.00	8.91	10.00	bulk		
				,						
								,		
						Mete	M	ron L Con	n nan 1	
						LUH	VOL MAR E	er I	P	
						serial	H 60	er I 22066	18	
									1	
						PA	\$E	Lateury		,
							pH r	Lateway	COC 3/28/	19

PG&E Gateway Generating Station

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received 3/28/2019 14:15

Sample Receipt Checklist

Project:	pH Sampling (Marc	n 2019)			Date Logged: Received by:	3/28/2019 Kena Ponce
WorkOrder №: Carrier:	1903D90 Client Drop-In	Matrix: <u>Water</u>			Logged by:	Kena Ponce
		Chain of C	Custody	y (COC) Info	ormation	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌	
Sample IDs note	ed by Client on COC?		Yes	•	No 🗆	
Date and Time o	of collection noted by 0	Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
COC agrees with	n Quote?		Yes		No 🗆	NA 🗸
		Samp	le Rece	eipt Informa	<u>ition</u>	
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆	NA 🗹
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗌	
Samples in proper containers/bottles?			Yes	✓	No 🗆	
Sample containe	ers intact?		Yes	✓	No 🗆	
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌	
		Sample Preservati	ion and	Hold Time	(HT) Information	
All samples rece	eived within holding tim	ne?	Yes	✓	No 🗆	NA 🗌
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ice Typ	e: WE	TICE)		_
Sample/Temp Bl	lank temperature			Temp: 2	1.6°C	NA 🗌
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗌	NA 🗸
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2 .7: >8)?	; Nitrate 353.2/4500NO3:	Yes		No 🗆	NA 🗹
UCMR Samples:	<u>:</u>					
	acceptable upon rece <3; 544: <6.5 & 7.5)?	eipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗌	NA 🗹
Free Chlorine	tested and acceptable	e upon receipt (<0.1mg/L)?	Yes		No 🗌	NA 🗹
Comments: Sa	ample E-001 was not r		==:		======	:======:

Attachment 8b
Laboratory Results
Semi-annual Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1903D92

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Semi- Annual Sampling (March 2019)

Project Received: 03/28/2019

Analytical Report reviewed & approved for release on 04/04/2019 by:

Heidi Fruhlinger

Heid Tullyr

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

F3 The surrogate standard recovery and/or RPD is outside of acceptance limits.

1903D92

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Received: 3/28/19 13:55 **Extraction Method:** E608/SW3620B

Date Prepared:3/29/19Analytical Method:E608Project:Semi- Annual Sampling (March 2019)Unit:μg/L

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	I	Date Colle	ected	Instrument	Batch ID
E-001	1903D92-001D	Water	C	3/28/2019	11:45	GC22 03291914.D	175445
Analytes	Result		<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Aldrin	ND		0.00028	0.0010	1		03/29/2019 21:33
a-BHC	ND		0.00031	0.0010	1		03/29/2019 21:33
b-BHC	ND		0.00069	0.0010	1		03/29/2019 21:33
d-BHC	ND		0.00014	0.0010	1		03/29/2019 21:33
g-BHC	ND		0.00045	0.0010	1		03/29/2019 21:33
Chlordane (Technical)	ND		0.0023	0.020	1		03/29/2019 21:33
p,p-DDD	ND		0.00011	0.0010	1		03/29/2019 21:33
p,p-DDE	ND		0.00018	0.0010	1		03/29/2019 21:33
p,p-DDT	ND		0.00017	0.0010	1		03/29/2019 21:33
Dieldrin	ND		0.00014	0.0010	1		03/29/2019 21:33
Endosulfan I	ND		0.00011	0.0010	1		03/29/2019 21:33
Endosulfan II	ND		0.00046	0.0010	1		03/29/2019 21:33
Endosulfan sulfate	ND		0.00033	0.0020	1		03/29/2019 21:33
Endrin	ND		0.00018	0.0010	1		03/29/2019 21:33
Endrin aldehyde	ND		0.00053	0.0010	1		03/29/2019 21:33
Heptachlor	ND		0.00041	0.0010	1		03/29/2019 21:33
Heptachlor epoxide	ND		0.00025	0.0010	1		03/29/2019 21:33
Toxaphene	ND		0.0020	0.020	1		03/29/2019 21:33
Aroclor1016	ND		0.0019	0.020	1		03/29/2019 21:33
Aroclor1221	ND		0.0024	0.020	1		03/29/2019 21:33
Aroclor1232	ND		0.0038	0.020	1		03/29/2019 21:33
Aroclor1242	ND		0.0028	0.020	1		03/29/2019 21:33
Aroclor1248	ND		0.0018	0.020	1		03/29/2019 21:33
Aroclor1254	ND		0.0015	0.020	1		03/29/2019 21:33
Aroclor1260	ND		0.0028	0.020	1		03/29/2019 21:33
PCBs, total	ND		NA	0.020	1		03/29/2019 21:33
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
Decachlorobiphenyl	92			14-168			03/29/2019 21:33
Analyst(s): LT							

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/29/19

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Extraction Method: E624

Analytical Method: E624

Unit: $\mu g/L$

Acrolein, Acrylonitrile, & 2-Chloroethyl Vinyl Ether

	, ,	,	·			
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	1903D92-001B Water 03/28/2019 11:45		GC28 03291907.D	175446		
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acrolein (Propenal)	ND		5.0	1		03/29/2019 12:57
Acrylonitrile	ND		2.0	1		03/29/2019 12:57
2-Chloroethyl Vinyl Ether	ND		1.0	1		03/29/2019 12:57
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	90		65-165			03/29/2019 12:57
Analyst(s): TK						

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/30/19

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Extraction Method: E624

Analytical Method: E624

Unit: $\mu g/L$

T 7	4 • 1	\sim	•
V O	latile	Org	anics

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	1903D92-001A	Water	03/28/2019	11:45	GC38 03291960.D	175504
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	ND		0.50	1		03/30/2019 22:36
Bromodichloromethane	0.96		0.50	1		03/30/2019 22:36
Bromoform	ND		0.50	1		03/30/2019 22:36
Bromomethane	ND		0.50	1		03/30/2019 22:36
Carbon tetrachloride	ND		0.50	1		03/30/2019 22:36
Chlorobenzene	ND		0.50	1		03/30/2019 22:36
Chloroethane	ND		0.50	1		03/30/2019 22:36
Chloroform	1.1		0.50	1		03/30/2019 22:36
Chloromethane	ND		0.50	1		03/30/2019 22:36
Dibromochloromethane	0.51		0.50	1		03/30/2019 22:36
1,2-Dibromoethane (EDB)	ND		0.50	1		03/30/2019 22:36
1,2-Dichlorobenzene	ND		0.50	1		03/30/2019 22:36
1,3-Dichlorobenzene	ND		0.50	1		03/30/2019 22:36
1,4-Dichlorobenzene	ND		0.50	1		03/30/2019 22:36
1,1-Dichloroethane	ND		0.50	1		03/30/2019 22:36
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		03/30/2019 22:36
1,1-Dichloroethene	ND		0.50	1		03/30/2019 22:36
trans-1,2-Dichloroethene	ND		0.50	1		03/30/2019 22:36
1,2-Dichloropropane	ND		0.50	1		03/30/2019 22:36
cis-1,3-Dichloropropene	ND		0.50	1		03/30/2019 22:36
trans-1,3-Dichloropropene	ND		0.50	1		03/30/2019 22:36
Ethylbenzene	ND		0.50	1		03/30/2019 22:36
Methyl-t-butyl ether (MTBE)	ND		0.50	1		03/30/2019 22:36
Methylene chloride	ND		2.0	1		03/30/2019 22:36
1,1,2,2-Tetrachloroethane	ND		0.50	1		03/30/2019 22:36
Tetrachloroethene	ND		0.50	1		03/30/2019 22:36
Toluene	ND		0.50	1		03/30/2019 22:36
1,2,4-Trichlorobenzene	ND		0.50	1		03/30/2019 22:36
1,1,1-Trichloroethane	ND		0.50	1		03/30/2019 22:36
1,1,2-Trichloroethane	ND		0.50	1		03/30/2019 22:36
Trichloroethene	ND		0.50	1		03/30/2019 22:36
Trichlorofluoromethane	ND		0.50	1		03/30/2019 22:36
Vinyl chloride	ND		0.50	1		03/30/2019 22:36
m,p-Xylene	ND		0.50	1		03/30/2019 22:36
o-Xylene	ND		0.50	1		03/30/2019 22:36
Xylenes, Total	ND		0.50	1		03/30/2019 22:36

(Cont.)

Analytical Report

Client: PG&E Gateway Generating Station **Date Received:** 3/28/19 13:55

Date Prepared: 3/30/19

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Extraction Method: E624

Analytical Method: E624 **Unit:** μ g/L

Volatile Organics									
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID			
E-001	1903D92-001A	Water	03/28/2019	11:45	GC38 03291960.D	175504			
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed			
Surrogates	REC (%)		<u>Limits</u>						
Dibromofluoromethane	91		81-144			03/30/2019 22:36			
Toluene-d8	91		85-135			03/30/2019 22:36			
4-BFB	84		63-145			03/30/2019 22:36			
Analyst(s): TK									

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/29/19

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Extraction Method: E625 **Analytical Method:** E625

Unit: $\mu g/L$

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Colle	cted	Instrument	Batch ID
E-001	1903D92-001C	Water	03/28/2019 1	11:45	GC17 03291929.D	175353
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Acenaphthene	ND		0.0095	1		03/29/2019 22:30
Acenaphthylene	ND		0.0095	1		03/29/2019 22:30
Anthracene	ND		0.0095	1		03/29/2019 22:30
Benzidine	ND		4.8	1		03/29/2019 22:30
Benzo (a) anthracene	ND		0.019	1		03/29/2019 22:30
Benzo (a) pyrene	ND		0.0095	1		03/29/2019 22:30
Benzo (b) fluoranthene	ND		0.0048	1		03/29/2019 22:30
Benzo (g,h,i) perylene	ND		0.019	1		03/29/2019 22:30
Benzo (k) fluoranthene	ND		0.0095	1		03/29/2019 22:30
Benzyl Alcohol	ND		4.8	1		03/29/2019 22:30
Bis (2-chloroethoxy) Methane	ND		0.95	1		03/29/2019 22:30
Bis (2-chloroethyl) Ether	ND		0.0048	1		03/29/2019 22:30
Bis (2-chloroisopropyl) Ether	ND		0.0095	1		03/29/2019 22:30
Bis (2-ethylhexyl) Adipate	ND		2.9	1		03/29/2019 22:30
Bis (2-ethylhexyl) Phthalate	0.27		0.038	1		03/29/2019 22:30
4-Bromophenyl Phenyl Ether	ND		0.95	1		03/29/2019 22:30
Butylbenzyl Phthalate	ND		0.19	1		03/29/2019 22:30
4-Chloroaniline	ND		0.019	1		03/29/2019 22:30
4-Chloro-3-methylphenol	ND		0.95	1		03/29/2019 22:30
2-Chloronaphthalene	ND		0.95	1		03/29/2019 22:30
2-Chlorophenol	ND		0.019	1		03/29/2019 22:30
4-Chlorophenyl Phenyl Ether	ND		0.95	1		03/29/2019 22:30
Chrysene	ND		0.0095	1		03/29/2019 22:30
Dibenzo (a,h) anthracene	ND		0.0095	1		03/29/2019 22:30
Dibenzofuran	ND		0.95	1		03/29/2019 22:30
Di-n-butyl Phthalate	0.048		0.019	1		03/29/2019 22:30
1,2-Dichlorobenzene	ND		1.9	1		03/29/2019 22:30
1,3-Dichlorobenzene	ND		1.9	1		03/29/2019 22:30
1,4-Dichlorobenzene	ND		1.9	1		03/29/2019 22:30
3,3-Dichlorobenzidine	ND		0.019	1		03/29/2019 22:30
2,4-Dichlorophenol	0.11		0.0095	1		03/29/2019 22:30
Diethyl Phthalate	0.031		0.019	1		03/29/2019 22:30
2,4-Dimethylphenol	ND		0.95	1		03/29/2019 22:30
Dimethyl Phthalate	ND		0.019	1		03/29/2019 22:30
4,6-Dinitro-2-methylphenol	ND		4.8	1		03/29/2019 22:30
2,4-Dinitrophenol	ND		0.48	1		03/29/2019 22:30
2,4-Dinitrotoluene	ND		0.024	1		03/29/2019 22:30

(Cont.)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/29/19

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Extraction Method: E625

Analytical Method: E625

Unit: $\mu g/L$

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Colle	cted	Instrument	Batch ID
E-001	1903D92-001C	Water	03/28/2019	11:45	GC17 03291929.D	175353
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
2,6-Dinitrotoluene	ND		0.0095	1		03/29/2019 22:30
Di-n-octyl Phthalate	ND		0.12	1		03/29/2019 22:30
1,2-Diphenylhydrazine	ND		0.95	1		03/29/2019 22:30
Fluoranthene	ND		0.0095	1		03/29/2019 22:30
Fluorene	ND		0.0095	1		03/29/2019 22:30
Hexachlorobenzene	ND		0.0048	1		03/29/2019 22:30
Hexachlorobutadiene	ND		0.0095	1		03/29/2019 22:30
Hexachlorocyclopentadiene	ND		4.8	1		03/29/2019 22:30
Hexachloroethane	ND		0.0095	1		03/29/2019 22:30
Indeno (1,2,3-cd) pyrene	ND		0.019	1		03/29/2019 22:30
Isophorone	ND		0.95	1		03/29/2019 22:30
2-Methylnaphthalene	ND		0.0095	1		03/29/2019 22:30
2-Methylphenol (o-Cresol)	ND		0.95	1		03/29/2019 22:30
3 & 4-Methylphenol (m,p-Cresol)	2.4		0.95	1		03/29/2019 22:30
Naphthalene	0.013		0.0095	1		03/29/2019 22:30
2-Nitroaniline	ND		4.8	1		03/29/2019 22:30
3-Nitroaniline	ND		4.8	1		03/29/2019 22:30
4-Nitroaniline	ND		4.8	1		03/29/2019 22:30
Nitrobenzene	ND		0.95	1		03/29/2019 22:30
2-Nitrophenol	ND		4.8	1		03/29/2019 22:30
4-Nitrophenol	ND		4.8	1		03/29/2019 22:30
N-Nitrosodiphenylamine	ND		0.95	1		03/29/2019 22:30
N-Nitrosodi-n-propylamine	ND		0.95	1		03/29/2019 22:30
Pentachlorophenol	ND		0.24	1		03/29/2019 22:30
Phenanthrene	ND		0.019	1		03/29/2019 22:30
Phenol	22		0.019	1		03/29/2019 22:30
Pyrene	ND		0.019	1		03/29/2019 22:30
Pyridine	ND		0.95	1		03/29/2019 22:30
1,2,4-Trichlorobenzene	ND		0.95	1		03/29/2019 22:30
2,4,5-Trichlorophenol	ND		0.048	1		03/29/2019 22:30
2,4,6-Trichlorophenol	ND		0.048	1		03/29/2019 22:30
N-Nitrosodimethylamine	ND		4.8	1		03/29/2019 22:30

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/29/19

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

Extraction Method: E625

Analytical Method: E625

Unit: $\mu g/L$

C	· T	7.1.	4:1.	Ο.	
Sem	1- 1	/ กเร	atne	· ()r	ganics

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID	
E-001	01 1903D92-001C Water		03/28/2019	11:45	GC17 03291929.D	175353	
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
<u>Surrogates</u>	REC (%)		<u>Limits</u>				
2-Fluorophenol	53		1-92			03/29/2019 22:30	
Phenol-d5	43		5-104			03/29/2019 22:30	
Nitrobenzene-d5	63		4-143			03/29/2019 22:30	
2-Fluorobiphenyl	55		9-134			03/29/2019 22:30	
2,4,6-Tribromophenol	113		1-159			03/29/2019 22:30	
Terphenyl-d14	53		5-150			03/29/2019 22:30	

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/29/19

Date Analyzed: 3/29/19 - 3/30/19

Instrument: GC22 **Matrix:** Water

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

BatchID: 175445

Extraction Method: E608/SW3620B

Analytical Method: E608

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-175445

QC Summary Report for E608 w/ Florisil Clean-up									
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits			
Aldrin	ND	0.00028	0.0010	-	-	-			
a-BHC	ND	0.00031	0.0010	-	-	-			
b-BHC	ND	0.00069	0.0010	-	-	-			
d-BHC	ND	0.00014	0.0010	-	-	-			
g-BHC	ND	0.00045	0.0010	-	-	-			
Chlordane (Technical)	ND	0.0023	0.020	-	-	-			
a-Chlordane	ND	0.00085	0.0010	-	-	-			
g-Chlordane	ND	0.00015	0.0010	-	-	-			
p,p-DDD	ND	0.00011	0.0010	-	-	-			
p,p-DDE	ND	0.00018	0.0010	-	-	-			
p,p-DDT	ND	0.00017	0.0010	-	-	-			
Dieldrin	ND	0.00014	0.0010	-	-	-			
Endosulfan I	ND	0.00011	0.0010	-	-	-			
Endosulfan II	ND	0.00046	0.0010	-	-	-			
Endosulfan sulfate	ND	0.00033	0.0020	-	-	-			
Endrin	ND	0.00018	0.0010	-	-	-			
Endrin aldehyde	ND	0.00053	0.0010	-	-	-			
Endrin ketone	ND	0.00026	0.0010	-	-	-			
Heptachlor	ND	0.00041	0.0010	-	-	-			
Heptachlor epoxide	ND	0.00025	0.0010	-	-	-			
Methoxychlor	ND	0.00012	0.0010	-	-	-			
Toxaphene	ND	0.0020	0.020	-	-	-			
Aroclor1016	ND	0.0019	0.020	-	-	-			
Aroclor1221	ND	0.0024	0.020	-	-	-			
Aroclor1232	ND	0.0038	0.020	-	-	-			
Aroclor1242	ND	0.0028	0.020	-	-	-			
Aroclor1248	ND	0.0018	0.020	-	-	-			
Aroclor1254	ND	0.0015	0.020	-	-	-			
Aroclor1260	ND	0.0028	0.020	-	-	-			
PCBs, total	ND	N/A	0.020	-	-	-			
Surrogate Recovery									
Decachlorobiphenyl	0.050			0.050	100	35-113			

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/29/19

Date Analyzed: 3/29/19 - 3/30/19

Instrument: GC22 **Matrix:** Water

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

BatchID: 175445

Extraction Method: E608/SW3620B

Analytical Method: E608

Unit: μg/L

Sample ID: MB/LCS/LCSD-175445

Q	C Summary Re	port for	E608 w/ Fl	orisil Clean-u	ıp			
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.043	0.046	0.050	86	92	50-103	6.25	20
a-BHC	0.045	0.047	0.050	91	93	63-131	2.87	20
b-BHC	0.041	0.043	0.050	82	87	56-112	5.94	20
d-BHC	0.048	0.050	0.050	96	101	63-132	5.31	20
g-BHC	0.044	0.046	0.050	88	92	61-135	4.57	20
a-Chlordane	0.041	0.045	0.050	82	89	54-113	8.37	20
g-Chlordane	0.045	0.048	0.050	90	96	55-117	7.31	20
p,p-DDD	0.042	0.045	0.050	84	89	56-135	5.79	20
p,p-DDE	0.044	0.047	0.050	88	94	56-131	6.87	20
p,p-DDT	0.042	0.044	0.050	83	88	47-153	5.29	20
Dieldrin	0.050	0.054	0.050	100	109	67-152	8.05	20
Endosulfan I	0.046	0.051	0.050	92	102	56-137	10.9	20
Endosulfan II	0.044	0.047	0.050	88	93	50-113	6.16	20
Endosulfan sulfate	0.043	0.045	0.050	86	90	57-121	5.39	20
Endrin	0.050	0.053	0.050	99	106	60-150	6.79	20
Endrin aldehyde	0.038	0.047	0.050	75	94	47-121	21.9,F2	20
Endrin ketone	0.043	0.045	0.050	86	90	48-130	4.74	20
Heptachlor	0.045	0.047	0.050	90	94	46-133	4.78	20
Heptachlor epoxide	0.043	0.046	0.050	85	91	54-105	7.13	20
Methoxychlor	0.055	0.056	0.050	110	112	54-135	1.36	20
Aroclor1016	0.14	0.15	0.15	95	98	54-103	3.02	20
Aroclor1260	0.15	0.15	0.15	100	98	42-121	1.10	20
Surrogate Recovery								
Decachlorobiphenyl	0.048	0.052	0.050	97	104	35-113	4.59	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 3/29/19 - 3/30/19 **Date Analyzed:** 3/29/19 - 3/30/19

Instrument: GC28 **Matrix:** Water

Project: Semi- Annual Sampling (March 2019)

WorkOrder: 1903D92

BatchID: 175446

Extraction Method: E624 **Analytical Method:** E624

Unit: µg/L

Sample ID: MB/LCS/LCSD-175446

1903D92-001BMS

		QC Su	mmary F	Report fo	r E624					
Analyte		MB Result		MDL	RL		SPK Val	MB SS %REC		/IB SS .imits
Acrolein (Propenal)		ND		2.5	5.0		-	-	-	
Acrylonitrile		ND		1.0	2.0		-	-	-	
2-Chloroethyl Vinyl Ether		ND		0.50	1.0		-	-	-	
Surrogate Recovery										
Dibromofluoromethane		22					25	90	6	8-160
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acrolein (Propenal)		19	17	20		93	85	71-140	9.12	20
Acrylonitrile		22	22	20		111	111	67-145	0	20
2-Chloroethyl Vinyl Ether		21	21	20		107	106	70-124	0.942	20
Surrogate Recovery										
Dibromofluoromethane		23	22	25		91	90	68-160	1.17	20
Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acrolein (Propenal)	1	14	N/A	20	ND	70	N/A	24-149	N/A	
Acrylonitrile	1	19	N/A	20	ND	93	N/A	50-151	N/A	-
2-Chloroethyl Vinyl Ether	1	18	N/A	20	ND	90	N/A	66-140	N/A	-
Surrogate Recovery										
Dibromofluoromethane	1	21	N/A	25		84	N/A	65-165	N/A	-

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/30/19BatchID:175504Date Analyzed:3/30/19Extraction Method:E624

Instrument: GC38 Analytical Method: E624
Matrix: Water Unit: µg/L

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175504

Result Val %REC Lin		QC Summa					
Bromodichloromethane ND	Analyte		MDL	RL	_		MB SS Limits
Bromoform ND 0.066 0.50 - - -	3enzene	ND	0.051	0.20	-	-	-
Bromomethane ND 0.16 0.50 -	3romodichloromethane	ND	0.20	0.50	-	-	-
Carbon tetrachloride ND 0.069 0.50 -	3romoform	ND	0.066	0.50	-	-	-
Chlorobenzene ND 0.050 0.50 - - - Chloroethane ND 0.31 0.50 - - - Chloroform ND 0.064 0.50 - - - Chloromethane ND 0.13 0.50 - - - Dibromochloromethane ND 0.080 0.50 - - - 1,2-Dibromoethane (EDB) ND 0.12 0.50 - - - 1,2-Dichlorobenzene ND 0.080 0.50 - - - 1,3-Dichlorobenzene ND 0.071 0.50 - - - 1,4-Dichlorobenzene ND 0.072 0.50 - - - 1,1-Dichloroethane ND 0.060 0.50 - - - 1,2-Dichloroethene ND 0.086 0.50 - - - 1,2-Dichloropropane ND 0.060 0.50	3romomethane	ND	0.16	0.50	-	-	-
Chloroethane ND 0.31 0.50 - - - Chloroform ND 0.064 0.50 - - - Chloromethane ND 0.13 0.50 - - - Dibromochloromethane ND 0.080 0.50 - - - 1,2-Dibromoethane (EDB) ND 0.12 0.50 - - - - 1,2-Dichlorobenzene ND 0.080 0.50 -	Carbon tetrachloride	ND	0.069	0.50	-	-	-
Chloroform ND 0.064 0.50 - - - Chloromethane ND 0.13 0.50 - - - Dibromochloromethane ND 0.080 0.50 - - - 1,2-Dibromoethane (EDB) ND 0.12 0.50 - - - 1,2-Dichlorobenzene ND 0.080 0.50 - - - - 1,3-Dichlorobenzene ND 0.071 0.50 - - - - - 1,4-Dichlorobenzene ND 0.072 0.50 -	Chlorobenzene	ND	0.050	0.50	-	-	-
Chloromethane ND 0.13 0.50 - - - Dibromochloromethane ND 0.080 0.50 - - - 1,2-Dibromoethane (EDB) ND 0.12 0.50 - - - 1,2-Dichlorobenzene ND 0.080 0.50 - - - 1,3-Dichlorobenzene ND 0.071 0.50 - - - 1,4-Dichlorobenzene ND 0.072 0.50 - - - 1,1-Dichloroethane ND 0.060 0.50 - - - 1,2-Dichloroethane (1,2-DCA) ND 0.090 0.50 - - - 1,1-Dichloroethene ND 0.086 0.50 - - - 1,1-Dichloroethene ND 0.086 0.50 - - - 1,2-Dichloropropane ND 0.060 0.50 - - - 1,2-Dichloropropane ND 0.090	Chloroethane	ND	0.31	0.50	-	-	-
Dibromochloromethane ND 0.080 0.50 - - - 1,2-Dibromoethane (EDB) ND 0.12 0.50 - - - 1,2-Dichlorobenzene ND 0.080 0.50 - - - 1,3-Dichlorobenzene ND 0.071 0.50 - - - 1,4-Dichlorobenzene ND 0.072 0.50 - - - - 1,1-Dichlorobenzene ND 0.060 0.50 - - - - 1,1-Dichlorobenzene ND 0.060 0.50 - - - - 1,1-Dichloroethane ND 0.060 0.50 - - - - 1,1-Dichloroethane ND 0.086 0.50 - - - - 1,1-Dichloroethane ND 0.060 0.50 - - - - 1,2-Dichloroptopenee ND 0.060 0.50 - -	Chloroform	ND	0.064	0.50	-	-	-
1,2-Dibromoethane (EDB) ND 0.12 0.50 - - - 1,2-Dichlorobenzene ND 0.080 0.50 - - - 1,3-Dichlorobenzene ND 0.071 0.50 - - - 1,4-Dichlorobenzene ND 0.072 0.50 - - - 1,1-Dichloroethane ND 0.060 0.50 - - - 1,2-Dichloroethane (1,2-DCA) ND 0.090 0.50 - - - 1,1-Dichloroethane ND 0.086 0.50 - - - 1,1-Dichloroethane ND 0.086 0.50 - - - 1,1-Dichloroethane ND 0.086 0.50 - - - 1,2-Dichloropethane ND 0.060 0.50 - - - 1,2-Dichloropropene ND 0.055 0.50 - - - 1,2-Dichloropropene ND	Chloromethane	ND	0.13	0.50	-	-	-
1,2-Dichlorobenzene ND 0.080 0.50 -<	Dibromochloromethane	ND	0.080	0.50	-	-	-
1,3-Dichlorobenzene ND 0.071 0.50 - - - 1,4-Dichlorobenzene ND 0.072 0.50 - - - 1,1-Dichloroethane ND 0.060 0.50 - - - 1,2-Dichloroethane (1,2-DCA) ND 0.090 0.50 - - - 1,1-Dichloroethene ND 0.086 0.50 - - - 1,2-Dichloroethene ND 0.060 0.50 - - - 1,2-Dichloropropane ND 0.055 0.50 - - - cis-1,3-Dichloropropene ND 0.090 0.50 - - - trans-1,3-Dichloropropene ND 0.070 0.50 - - -	1,2-Dibromoethane (EDB)	ND	0.12	0.50	-	-	-
1,4-Dichlorobenzene ND 0.072 0.50 -<	1,2-Dichlorobenzene	ND	0.080	0.50	-	-	-
1,1-Dichloroethane ND 0.060 0.50 - - - 1,2-Dichloroethane (1,2-DCA) ND 0.090 0.50 - - - 1,1-Dichloroethene ND 0.086 0.50 - - - 1,2-Dichloroethene ND 0.060 0.50 - - - 1,2-Dichloropropane ND 0.055 0.50 - - - cis-1,3-Dichloropropene ND 0.090 0.50 - - - trans-1,3-Dichloropropene ND 0.070 0.50 - - -	1,3-Dichlorobenzene	ND	0.071	0.50	-	-	-
1,2-Dichloroethane (1,2-DCA) ND 0.090 0.50 - - - 1,1-Dichloroethene ND 0.086 0.50 - - - - trans-1,2-Dichloroethene ND 0.060 0.50 - - - - 1,2-Dichloropropane ND 0.055 0.50 - - - - cis-1,3-Dichloropropene ND 0.090 0.50 - - - - trans-1,3-Dichloropropene ND 0.070 0.50 - - - -	1,4-Dichlorobenzene	ND	0.072	0.50	-	-	-
1,1-Dichloroethene ND 0.086 0.50 - </td <td>1,1-Dichloroethane</td> <td>ND</td> <td>0.060</td> <td>0.50</td> <td>-</td> <td>-</td> <td>-</td>	1,1-Dichloroethane	ND	0.060	0.50	-	-	-
trans-1,2-Dichloroethene ND 0.060 0.50 - - - 1,2-Dichloropropane ND 0.055 0.50 - - - - cis-1,3-Dichloropropene ND 0.090 0.50 - - - - trans-1,3-Dichloropropene ND 0.070 0.50 - - - -	1,2-Dichloroethane (1,2-DCA)	ND	0.090	0.50	-	-	-
1,2-Dichloropropane ND 0.055 0.50 -<	1,1-Dichloroethene	ND	0.086	0.50	-	-	-
cis-1,3-Dichloropropene ND 0.090 0.50 - - - - trans-1,3-Dichloropropene ND 0.070 0.50 - - - -	rans-1,2-Dichloroethene	ND	0.060	0.50	-	-	-
trans-1,3-Dichloropropene ND 0.070 0.50	1,2-Dichloropropane	ND	0.055	0.50	-	-	-
	cis-1,3-Dichloropropene	ND	0.090	0.50	-	-	-
Ethylbenzene ND 0.050 0.50	rans-1,3-Dichloropropene	ND	0.070	0.50	-	-	-
	Ethylbenzene	ND	0.050	0.50	-	-	-
Methyl-t-butyl ether (MTBE) ND 0.10 0.50	Methyl-t-butyl ether (MTBE)	ND	0.10	0.50	-	-	-
Methylene chloride ND 1.2 2.0	Methylene chloride	ND	1.2	2.0	-	-	-
Styrene ND 0.59 2.0	Styrene	ND	0.59	2.0	-	-	-
1,1,2,2-Tetrachloroethane ND 0.11 0.50	1,1,2,2-Tetrachloroethane	ND	0.11	0.50	-	-	-
Tetrachloroethene ND 0.082 0.50	Tetrachloroethene	ND	0.082	0.50	-	-	-
Toluene ND 0.25 0.50	Foluene	ND	0.25	0.50	-	-	-
1,2,4-Trichlorobenzene ND 0.086 0.50	1,2,4-Trichlorobenzene	ND	0.086	0.50	-	-	-
1,1,1-Trichloroethane ND 0.050 0.50	1,1,1-Trichloroethane	ND	0.050	0.50	-	-	-
1,1,2-Trichloroethane ND 0.18 0.50					-	-	-
Trichloroethene ND 0.060 0.50	<u>, , </u>				-	-	-
Trichlorofluoromethane ND 0.047 0.50	Frichlorofluoromethane				-	-	-
Vinyl chloride ND 0.070 0.50					-	_	-
m,p-Xylene ND 0.11 0.50		ND	0.11		-	-	-
o-Xylene ND 0.060 0.50	· · · · · · · · · · · · · · · · · · ·				-	_	-
Xylenes, Total ND N/A 0.50		ND	N/A	0.50	-	-	-

Water

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/30/19BatchID:175504Date Analyzed:3/30/19Extraction Method:E624Instrument:GC38Analytical Method:E624

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175504

	QC Summary Report for E624								
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits			
Surrogate Recovery									
Dibromofluoromethane	22			25	89	82-142			
Toluene-d8	23			25	91	85-137			
4-BFB	2.2			2.5	87	66-144			

Matrix:

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/30/19BatchID:175504Date Analyzed:3/30/19Extraction Method:E624

Instrument: GC38 Analytical Method: E624
Matrix: Water Unit: µg/L

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175504

OC Summary Report for E624

	QC Summary Report for E024							
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Benzene	0.87	0.94	1	87	94	71-120	7.56	20
Bromodichloromethane	0.89	0.96	1	89	96	67-120	6.91	20
Bromoform	9.2	9.6	10	92	96	59-121	3.80	20
Bromomethane	9.3	9.9	10	93	99	44-175	6.66	20
Carbon tetrachloride	11	11	10	105	115	73-117	8.61	20
Chlorobenzene	9.2	9.8	10	92	98	73-119	6.00	20
Chloroethane	8.5	9.2	10	85	92	60-144	8.27	20
Chloroform	0.94	1.0	1	94	100	72-120	6.13	20
Chloromethane	8.9	9.8	10	89	98	28-145	9.62	20
Dibromochloromethane	0.72	0.77	1	72	77	66-122	6.96	20
1,2-Dibromoethane (EDB)	0.43	0.45	0.50	87	90	68-117	4.27	20
1,2-Dichlorobenzene	8.9	9.5	10	89	95	70-121	6.24	20
1,3-Dichlorobenzene	8.8	9.3	10	88	93	69-125	5.44	20
1,4-Dichlorobenzene	9.0	9.6	10	90	96	67-123	6.71	20
1,1-Dichloroethane	9.0	9.6	10	90	96	72-121	7.47	20
1,2-Dichloroethane (1,2-DCA)	0.90	0.94	1	90	94	64-120	4.57	20
1,1-Dichloroethene	0.88	0.96	1	88	96	76-123	8.91	20
trans-1,2-Dichloroethene	9.5	10	10	95	102	74-124	7.60	20
1,2-Dichloropropane	9.1	9.7	10	91	97	70-120	6.51	20
cis-1,3-Dichloropropene	10	11	10	101	107	69-121	6.07	20
trans-1,3-Dichloropropene	10	11	10	100	105	70-121	4.91	20
Ethylbenzene	8.7	9.4	10	87	94	75-116	7.63	20
Methyl-t-butyl ether (MTBE)	9.0	9.4	10	90	94	64-121	5.01	20
Methylene chloride	8.9	9.4	10	89	94	66-115	5.68	20
1,1,2,2-Tetrachloroethane	0.90	0.94	1	90	94	58-123	4.10	20
Tetrachloroethene	0.96	1.0	1	96	105	72-118	8.34	20
Toluene	8.7	9.3	10	87	93	73-111	6.89	20
1,2,4-Trichlorobenzene	9.5	10	10	95	100	66-128	4.74	20
1,1,1-Trichloroethane	9.9	11	10	99	107	72-118	8.09	20
1,1,2-Trichloroethane	9.3	9.8	10	93	98	66-118	5.11	20
Trichloroethene	9.7	10	10	97	104	71-121	7.64	20
Trichlorofluoromethane	9.8	11	10	98	106	59-125	8.16	20
Vinyl chloride	0.77	0.84	1	77	84	60-138	9.07	20
m,p-Xylene	20	20	20	98	98	74-118	0	20
o-Xylene	8.9	9.5	10	89	95	73-119	6.31	20
Xylenes, Total	29	29	30	95	97	74-118	1.58	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/30/19BatchID:175504Date Analyzed:3/30/19Extraction Method:E624Instrument:GC38Analytical Method:E624

Matrix: Water Unit: µg/l

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175504

	QC Su	mmary l	Report for E	624				
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Surrogate Recovery								
Dibromofluoromethane	24	24	25	97	98	82-142	1.34	20
Toluene-d8	23	23	25	91	91	85-137	0	20
4-BFB	2.2	2.1	2.5	86	86	66-144	0	20

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 1903D92 **Date Prepared:** 3/28/19 **BatchID:** 175353 Date Analyzed: 3/28/19 **Extraction Method:** E625 **Instrument:** GC21 **Analytical Method:** E625

Matrix: Water **Unit:**

Project: Semi- Annual Sampling (March 2019) **Sample ID:** MB/LCS/LCSD-175353

	QC Summa	ry Report for	E625			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Benzoic Acid	ND	2.7	5.0	-	-	-
Acenaphthene	ND	0.0051	0.010	-	-	-
Acenaphthylene	ND	0.0050	0.010	-	-	-
Acetochlor	ND	0.49	2.0	-	-	-
Anthracene	ND	0.0043	0.010	-	-	-
Benzidine	ND	0.55	5.0	-	-	-
Benzo (a) anthracene	ND	0.019	0.020	-	-	-
Benzo (a) pyrene	ND	0.0064	0.010	-	-	-
Benzo (b) fluoranthene	ND	0.0040	0.0050	-	-	-
Benzo (g,h,i) perylene	ND	0.0071	0.020	-	-	-
Benzo (k) fluoranthene	ND	0.0063	0.010	-	-	-
Benzyl Alcohol	ND	2.9	5.0	-	-	-
1,1-Biphenyl	ND	0.012	0.050	-	-	-
Bis (2-chloroethoxy) Methane	ND	0.84	1.0	-	-	-
Bis (2-chloroethyl) Ether	ND	0.0021	0.0050	-	-	-
Bis (2-chloroisopropyl) Ether	ND	0.0089	0.010	-	-	-
Bis (2-ethylhexyl) Adipate	ND	0.39	3.0	-	-	-
Bis (2-ethylhexyl) Phthalate	ND	0.034	0.040	-	-	-
4-Bromophenyl Phenyl Ether	ND	0.45	1.0	-	-	-
Butylbenzyl Phthalate	ND	0.097	0.20	-	-	-
4-Chloroaniline	ND	0.0051	0.020	-	-	-
4-Chloro-3-methylphenol	ND	0.55	1.0	-	-	-
2-Chloronaphthalene	ND	0.57	1.0	-	-	_
2-Chlorophenol	ND	0.0086	0.020	-	-	_
4-Chlorophenyl Phenyl Ether	ND	0.48	1.0	-	-	_
Chrysene	ND	0.0093	0.010	-	-	-
Dibenzo (a,h) anthracene	ND	0.0094	0.010	-	-	-
Dibenzofuran	ND	0.37	1.0	-	-	-
Di-n-butyl Phthalate	ND	0.0068	0.020	-	-	-
1,2-Dichlorobenzene	ND	1.1	2.0	-	_	_
1,3-Dichlorobenzene	ND	1.2	2.0	_	_	_
1,4-Dichlorobenzene	ND	1.0	2.0	-	-	-
3,3-Dichlorobenzidine	ND	0.0081	0.020	-	-	-
2,4-Dichlorophenol	ND	0.0061	0.010	-	-	-
Diethyl Phthalate	ND	0.015	0.020	-	_	-
2,4-Dimethylphenol	ND	0.81	1.0	-	-	_
Dimethyl Phthalate	ND	0.011	0.020	-	_	-
4,6-Dinitro-2-methylphenol	ND	1.8	5.0	_	-	_

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/28/19BatchID:175353Date Analyzed:3/28/19Extraction Method:E625Instrument:GC21Analytical Method:E625

Matrix: Water Unit: μg/l

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175353

QC Summary Report for E625

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
2,4-Dinitrophenol	ND	0.15	0.50	-	-	-
2,4-Dinitrotoluene	ND	0.0066	0.025	-	-	-
2,6-Dinitrotoluene	ND	0.0053	0.010	-	-	-
Di-n-octyl Phthalate	ND	0.020	0.12	-	-	-
1,2-Diphenylhydrazine	ND	0.40	1.0	-	-	-
Fluoranthene	ND	0.0068	0.010	-	-	-
Fluorene	ND	0.0064	0.010	-	-	-
Hexachlorobenzene	ND	0.0043	0.0050	-	-	-
Hexachlorobutadiene	ND	0.0035	0.010	-	-	-
Hexachlorocyclopentadiene	ND	0.48	5.0	-	-	-
Hexachloroethane	ND	0.0068	0.010	-	-	-
Indeno (1,2,3-cd) pyrene	ND	0.0065	0.020	-	-	-
Isophorone	ND	0.66	1.0	-	-	-
2-Methylnaphthalene	ND	0.0053	0.010	-	-	-
2-Methylphenol (o-Cresol)	ND	0.53	1.0	-	-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	0.41	1.0	-	-	-
Naphthalene	ND	0.0048	0.010	-	-	-
2-Nitroaniline	ND	1.8	5.0	-	-	-
3-Nitroaniline	ND	3.1	5.0	-	-	-
4-Nitroaniline	ND	2.7	5.0	-	-	-
Nitrobenzene	ND	0.95	1.0	-	-	-
2-Nitrophenol	ND	2.4	5.0	-	-	-
4-Nitrophenol	ND	1.1	5.0	-	-	-
N-Nitrosodiphenylamine	ND	0.41	1.0	-	-	-
N-Nitrosodi-n-propylamine	ND	0.65	1.0	-	-	-
Pentachlorophenol	ND	0.055	0.25	-	-	-
Phenanthrene	ND	0.0055	0.020	-	-	-
Phenol	ND	0.0088	0.020	-	-	-
Pyrene	ND	0.0057	0.020	-	-	-
Pyridine	ND	0.49	1.0	-	-	-
1,2,4-Trichlorobenzene	ND	0.089	1.0	-	-	-
2,4,5-Trichlorophenol	ND	0.0061	0.050	-	-	-
2,4,6-Trichlorophenol	ND	0.0049	0.050	-	-	-
1-Methylnaphthalene	ND	0.0052	0.010	-	-	-
N-Nitrosodimethylamine	ND	2.8	5.0	-	-	-

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/28/19BatchID:175353Date Analyzed:3/28/19Extraction Method:E625Instrument:GC21Analytical Method:E625

 $\textbf{Matrix:} \qquad \text{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175353

	QC Summary Report for E625								
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits			
Surrogate Recovery									
2-Fluorophenol	4.2			5	84	36-131			
Phenol-d5	4.5			5	90	43-149			
Nitrobenzene-d5	4.0			5	81	39-150			
2-Fluorobiphenyl	3.5			5	70	43-133			
2,4,6-Tribromophenol	4.9			5	98	42-147			
4-Terphenyl-d14	3.8			5	75	44-124			

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/28/19BatchID:175353Date Analyzed:3/28/19Extraction Method:E625Instrument:GC21Analytical Method:E625

Matrix: Water Unit: µg/L

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175353

QC Summary Report for E625

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acenaphthene	0.43	0.41	0.50	86	82	55-112	4.58	25
Acenaphthylene	0.46	0.43	0.50	92	87	53-109	5.80	25
Anthracene	0.44	0.42	0.50	88	85	57-112	3.84	25
Benzidine	28	26	50	55	53	33-87	5.01	25
Benzo (a) anthracene	0.40	0.39	0.50	81	78	54-103	3.95	25
Benzo (a) pyrene	0.49	0.48	0.50	97	95	50-116	2.21	25
Benzo (b) fluoranthene	0.48	0.47	0.50	95	93	49-111	2.03	25
Benzo (g,h,i) perylene	0.40	0.39	0.50	79	78	48-106	1.72	25
Benzo (k) fluoranthene	0.44	0.42	0.50	89	84	52-111	5.30	25
Benzyl Alcohol	41	40	50	81	80	38-130	1.88	25
Bis (2-chloroethoxy) Methane	8.0	8.1	10	80	81	52-120	0.193	25
Bis (2-chloroethyl) Ether	0.39	0.37	0.50	77	74	37-142	3.74	25
Bis (2-chloroisopropyl) Ether	0.41	0.40	0.50	82	79	40-140	2.88	25
Bis (2-ethylhexyl) Adipate	7.9	7.6	10	79	76	49-109	4.07	25
Bis (2-ethylhexyl) Phthalate	0.43	0.41	0.50	87	81	39-136	6.29	25
4-Bromophenyl Phenyl Ether	8.3	8.0	10	83	80	53-108	4.30	25
Butylbenzyl Phthalate	0.45	0.43	0.50	89	85	48-124	4.78	25
4-Chloroaniline	0.45	0.42	0.50	90	85	57-121	6.43	25
4-Chloro-3-methylphenol	9.9	9.4	10	99	94	60-126	5.66	25
2-Chloronaphthalene	9.1	8.8	10	91	88	54-109	3.60	25
2-Chlorophenol	0.39	0.37	0.50	78	75	51-117	4.53	25
4-Chlorophenyl Phenyl Ether	8.0	7.9	10	80	79	59-108	1.94	25
Chrysene	0.41	0.39	0.50	81	78	53-104	3.60	25
Dibenzo (a,h) anthracene	0.45	0.44	0.50	90	88	51-112	2.55	25
Dibenzofuran	8.5	8.1	10	85	81	57-108	4.85	25
Di-n-butyl Phthalate	0.44	0.42	0.50	88	84	52-121	5.04	25
1,2-Dichlorobenzene	7.7	7.5	10	77	75	43-125	2.31	25
1,3-Dichlorobenzene	7.3	7.1	10	73	71	55-108	3.58	25
1,4-Dichlorobenzene	6.8	6.7	10	68	67	52-108	1.86	25
3,3-Dichlorobenzidine	0.44	0.42	0.50	89	85	52-118	4.75	25
2,4-Dichlorophenol	9.0	8.5	10	90	85	56-121	6.21	25
Diethyl Phthalate	0.43	0.41	0.50	86	82	56-122	4.75	25
2,4-Dimethylphenol	8.7	8.1	10	87	81	47-112	6.51	25
Dimethyl Phthalate	0.41	0.38	0.50	81	77	49-121	5.54	25
4,6-Dinitro-2-methylphenol	40	38	50	81	76	33-117	5.17	25
2,4-Dinitrophenol	2.2	2.2	2.5	89	87	29-114	2.20	25
2,4-Dinitrotoluene	0.052	0.42	0.50	10, F2	84	59-128	156,F2	25
2,6-Dinitrotoluene	0.47	0.43	0.50	93	87	56-118	7.16	25

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/28/19BatchID:175353Date Analyzed:3/28/19Extraction Method:E625Instrument:GC21Analytical Method:E625

Matrix: Water Unit: µg/L

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175353

QC Summary Report for E625

	QC Du	QC Summary Report for E025									
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit			
Di-n-octyl Phthalate	0.59	0.55	0.50	117	111	36-152	5.52	25			
1,2-Diphenylhydrazine	8.0	7.6	10	80	76	53-110	4.30	25			
Fluoranthene	0.49	0.47	0.50	98	93	56-117	4.64	25			
Fluorene	0.46	0.44	0.50	92	87	58-119	4.95	25			
Hexachlorobenzene	0.39	0.38	0.50	78	76	51-107	3.55	25			
Hexachlorobutadiene	0.38	0.36	0.50	76	73	54-109	4.77	25			
Hexachlorocyclopentadiene	31	30	50	62	60	26-107	2.59	25			
Hexachloroethane	0.35	0.34	0.50	71	68	52-109	4.06	25			
Indeno (1,2,3-cd) pyrene	0.42	0.41	0.50	84	82	50-107	2.59	25			
Isophorone	8.8	8.3	10	88	83	58-120	6.85	25			
2-Methylnaphthalene	0.50	0.47	0.50	100	93	51-132	6.84	25			
2-Methylphenol (o-Cresol)	8.2	7.4	10	82	74	47-127	11.0	25			
3 & 4-Methylphenol (m,p-Cresol)	8.9	8.2	10	89	82	51-126	7.22	25			
Naphthalene	0.39	0.37	0.50	79	74	49-116	5.36	25			
2-Nitroaniline	45	43	50	89	86	56-126	3.35	25			
3-Nitroaniline	46	44	50	92	88	57-124	4.07	25			
4-Nitroaniline	47	44	50	93	88	58-130	5.15	25			
Nitrobenzene	7.1	6.7	10	71	67	52-119	5.68	25			
2-Nitrophenol	45	41	50	89	83	60-119	7.51	25			
4-Nitrophenol	46	44	50	92	89	34-143	3.46	25			
N-Nitrosodiphenylamine	7.8	7.6	10	78	76	56-106	2.03	25			
N-Nitrosodi-n-propylamine	8.5	8.1	10	85	81	55-122	4.09	25			
Pentachlorophenol	2.2	2.2	2.5	89	88	45-119	1.34	25			
Phenanthrene	0.42	0.41	0.50	83	81	56-108	0.00910	25			
Phenol	1.6	1.5	2	79	75	50-118	0.0720	25			
Pyrene	0.41	0.40	0.50	82	80	49-104	2.62	25			
Pyridine	6.2	5.9	10	62	59	36-96	5.53	25			
1,2,4-Trichlorobenzene	8.2	7.7	10	82	77	54-112	5.47	25			
2,4,5-Trichlorophenol	0.49	0.50	0.50	99	99	52-119	0	25			
2,4,6-Trichlorophenol	0.47	0.45	0.50	95	89	53-115	5.76	25			
N-Nitrosodimethylamine	36	34	50	72	68	42-121	4.52	25			

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D92Date Prepared:3/28/19BatchID:175353Date Analyzed:3/28/19Extraction Method:E625Instrument:GC21Analytical Method:E625

Matrix: Water Unit: μg/l

Project: Semi- Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175353

	QC Su	mmary l	Report for E625					
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Surrogate Recovery								
2-Fluorophenol	3.9	4.0	5	78	80	36-131	1.97	25
Phenol-d5	4.2	4.3	5	84	87	43-149	0.139	25
Nitrobenzene-d5	4.1	4.3	5	82	85	39-150	4.31	25
2-Fluorobiphenyl	4.2	4.3	5	83	86	43-133	2.70	25
2,4,6-Tribromophenol	4.5	4.6	5	90	92	42-147	2.08	25
4-Terphenyl-d14	3.8	3.8	5	76	76	44-124	0	25

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1903D92 □WaterTrax ☐ WriteOn □ EDF Excel

✓ Email **EQuIS**

☐ HardCopy

ClientCode: PGEA

☐ ThirdParty

□ J-flag

5 days;

Detection Summary

Bill to:

Dry-Weight

Report to:

Angel Espiritu PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: A1HE@pge.com; J5LD@pge.com; tlWy@p

PO:

Project: Semi- Annual Sampling (March 2019) Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Date Received:

Requested TAT:

03/28/2019

Date Logged: 03/28/2019

							Re	equested	d Tests ((See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
							•								<u> </u>
1903D92-001	E-001	Water	3/28/2019 11:45	D	Α	В	С								

Test Legend:

1 608_W [J]	2 624_W	3 624ACR+2CEVE_W	4 625_SCSM_W
5	6	7	8
9	10	11	12

Project Manager: Angela Rydelius Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi- Annual Sampling (March 2019) Work Ord	rder:	1	1	1	1	1	1	1	1	1	1					:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::	:	:	:	:	:	:	:	:	:	r	r:	r:	r	r	r	r	ìr	er	le	ď	cd	r	r) [C	. (١.	ζ.	K	k	k	k	ŀ	ŀ	ŀ	ŀ	ŀ	k	k	k	k	ſŀ	rl	rl	rl	ŀ	r	ŀ	rl	ſŀ	rl	ŀ	ŀ	c	ŀ	rl	ŀ	ſŀ	ſŀ	rl	rl	rl	rl	rl	ſŀ	rl	rl	rl	rl	ŀ	ŀ	ŀ	ŀ	ď	r	rl	ď	ď	r	r	r	r	r) ĵ	0	(V	V	٨	V	V	7																						
---	-------	---	---	---	---	---	---	---	---	---	---	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	----	----	---	---	---	---	----	----	----	---	----	---	---	------------	---	-----	----	----	---	---	---	---	---	---	---	---	---	---	---	---	---	----	----	----	----	---	---	---	----	----	----	---	---	---	---	----	---	----	----	----	----	----	----	----	----	----	----	----	----	---	---	---	---	---	---	----	---	---	---	---	---	---	---	-----	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments:

Date Logged: 3/28/2019

		☐ WaterTrax	WriteOn EDF	Excel	EQuIS ✓ Email	HardC	opyThirdPar	ty 🗀	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1903D92-001A	E-001	Water	E624 (VOCs)	2	VOA w/ HCl		3/28/2019 11:45	5 days	Present	
1903D92-001B	E-001	Water	E624 (ACRO, ACRY, & 2-CEVE)	2	VOA, Unpres		3/28/2019 11:45	5 days	Present	
1903D92-001C	E-001	Water	E625 (SVOCs)	1	1LA Narrow Mouth, Unpres		3/28/2019 11:45	5 days	Present	
1903D92-001D	E-001	Water	E608 (OC Pesticides+PCBs w/ Floris Clean-up)	sil 1	1LA, Unpres		3/28/2019 11:45	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	AWA.
/	

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com Fax: (925) 252 -9269

Telephone: (877) 252-9262

CHAIN OF CUSTODY RECORD

	CHAIRAIT		~ × ×
URN AROL	UND TIME	美] [

24 HR PDF□ Exce□

48 HR 72 HR

GeoTracker EDF□ Write On (DW)

	1010	piton	(6//) 2	02 7202			(>												į.	Ch	eck if	sample	e is e	fflu	ent	and	d ".	J" flag is requir	ed
Report To	: Angel Es	piritu	l		В	Bill To: 1	PG&I	E Ga	tewa	ıy					T		Analysi	s Reque										ırks	
Company	: PG&E G	atew	ay Genera	ting Sta	tion							-			7	anic	le	orine		T					T	T	T	_	
E-Mail: a	be4@pge.co	om, A	1HE@pg	e.com, J	5Ld@	pge.co	m, tlV	NY@	pge	.cor	n				7	0 rg	'olati	nochl		1				П		-	-		
	522-7838,				_	ax: ()]	latile	v im v)rgar	П				2	П		-	-		
	ame: Sem	THE RESIDENCE IN			larch	2019)									1	4-V ₀	5- Sc ands)	8-(CBs)	П					Н		1	1		
	ocation: Co										0	,		-	4	A 62	A 62	A 60	П	-				Н	- 1		1		
Sampler S	ignature:	Mu	Skan C	wind	مسمو	tal	Sam	apli	ng		14	-	_		4	JSEF	JSEI c Co	USEI les a		ı				П	- 1	-	1		
		mposit	SAMP	LING		S	Mat	rix	MI	ЕТН	OD I	PRES	SER	VED		TTO (USEPA 624-Volatile Organic Compounds)	TTO (USEPA 625- Semi Volatile Organic Compounds)	TTO (USEPA 608 – Organochlorine Pesticides and PCBs)											
SAMPLE ID	LOCATION / Field Point Name	Sample Type Composite	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	HOSV.	INAOR	HNO.	Other															
E-001		G	3/28/19	11:45	2	43 ml VOA	X		П	Х		3	<	T	1	X								П					
E-001		G	3/28/19		2	43 ml VOA	X		X	X	Γ	Τ	Τ	Π	T	X			П	T				П		T			
E-001			3/28/19		1	1L Amb	Х		Х	Х	T	十	T	T	T		X		П	\top				П	\neg	\top	7		
E-001		G	3/28/19		1	1L	Х		Х	X	t	十	t	\vdash	†	4		X	H	\dagger		\vdash		H	\dashv	\dagger	7		
ME.			7 28/19	11,33		Amb			H	\dagger	T	十	\dagger	十	\dagger				H	\dagger				Н	\forall	\dagger	1		
										T	T	T	T		\dagger					\top						\top			
										I	L	I	I		I				П	\perp				П			\Box		
										┸	L		L		\perp			7.7	Ш	\perp				Ц					
*			180	170			7				L								Ш					Ц					
0.00						The state of																		Ш					
									П	I		I	I		I				П	\perp				П					
	1									,							21.00				7								
Relinguish	By:		Date:	Time: 13:55	Rece	and	yf	al	ue	R	3					GOOD	CONDITION SPACE ABO)N						CO	MM			608), TTO (EPA 62	4),
Kelinquishee	d By:		Date:	Time:	Rece	eived By	/									DECHI	LORINATE OPRIATE C RVED IN L	D IN LAB ONTAINE		_	_				TTC App) (El	PA lix A	625) see ATTACHE A and analyze only l	ED
Relinquished	d By:		Date:	Time:	Rece	eived By:									٦	RESE	KYEDINL	D	-						Com	pou	ind		

VOAS O&G METALS OTHER PRESERVATION

pH<2

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein Acrylonitrile Benzene Bromodichloromethane (Dichlorobromomethane) Bromform Brommomethane (Methyl Bromide) Carbon tetrachloride (Tetrachloromethane) Chlorobenzene Chloroethane (Ethyl Chloride) 2-Chloroethyl vinyl ether Chloroform (trichloromethane) Chloromethane (Methyl Chloride) Dibromochloromethane (Chlorodibromomethane) 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 4-Dichlorobenzene 1, 1-Dichloroethane 2-Dichloroethane 1, 1-Dichloroethene (1, 1-dichloroethylene) trans-1, 2-Dichloroethene 1, 2-Dichloropropane cis-1, 3-Dichloropropene trans-1, 3-Dichloropropene Ethylbenzene Methylene Chloride (Dichloromethane) 1, 1, 2, 2,-Tetrachloroethane Tetrachloroethene (PCE) Toluene 1, 1, 1-Trichloreothane 1, 1, 2-Trichloroethane Trichloroethene (TCE) Trichlorofluoromethane

EPA Method 625 Compounds

Vinyl chloride (Chloroethylene)

Acenaphthene
Acenaphthylene
Anthracene
Benzidine
Benzo (a) anthracene
Benzo (b) fluoranthene
Benzo (c) fluoranthene
Benzyl butyl phthalate
bis (2-Chloroethoxy) methane
bis (2-Chloroethoxy) methane
bis (2-Chloroethyl) ether
bis (2-Chloroethyl) ether
bis (2-Chloroisopropyl) ether
bis (2-Chloroisopropyl) ether
bis (2-Chloroethyl) phthalate
4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol
2-Chloronaphthalene
2-Chlorophenyl
4-Chlorophenyl
4-Chlorophenyl phenyl ether
Chrysene
Dibenzo (a, h) anthracene
1, 2-Dichlorobenzene
1, 3-Dichlorobenzene
1, 4-Dichlorobenzene
3, 3'-Dichlorobenzidine

4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethylphthalate Di-butylphthalate 4-Dinitirophenol
 4-Dinitrotoluene 2, 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diphenylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nifrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4,4'DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Toxaphene

> Nanny Palacies 3.28.19 14:17

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Semi- Annual Sampling (March 2019)			Date and Time Received Date Logged:	3/28/2019 13:55 3/28/2019
WorkOrder №: Carrier:	1903D92 Matrix: Water Client Drop-In			Received by: Logged by:	Nancy Palacios Kena Ponce
	Chain of C	Custod	(COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time o	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
COC agrees with	Quote?	Yes		No 🗆	NA 🗸
	Samp	le Rece	eipt Informati	i <u>on</u>	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prop	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservati	on and	Hold Time (I	HT) Information	
All samples rece	ived within holding time?	Yes	✓	No 🗆	NA 🗆
Samples Receive	ed on Ice?	Yes	✓	No 🗌	
	(Ісе Тур	e: WE	TICE)		
Sample/Temp Bl	ank temperature		Temp: 2.6	S°C	NA 🗌
Water - VOA via	s have zero headspace / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes		No 🗆	NA 🗹
	acceptable upon receipt (200.8: ≤2; 525.3: ≤4; :3; 544: <6.5 & 7.5)?	Yes		No 🗌	na 🗹
Free Chlorine	tested and acceptable upon receipt (<0.1mg/L)?	Yes		No 🗌	NA 🗹
Comments:	=========	==:	====	=======	=======

Attachment 8c

Laboratory Results Annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1903D91

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Annual Sampling (March 2019)

Project Received: 03/28/2019

Analytical Report reviewed & approved for release on 04/04/2019 by:

Angela Rydelius

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Annual Sampling (March 2019)

WorkOrder: 1903D91

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Annual Sampling (March 2019)

WorkOrder: 1903D91

Analytical Qualifiers

S Spike recovery outside accepted recovery limits

b1 Aqueous sample that contains greater than ~1 vol. % sediment

c1 Surrogate recovery outside of the control limits due to the dilution of the sample.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 3/28/19 13:55

Date Prepared: 3/28/19

Project: Annual Sampling (March 2019)

WorkOrder: 1903D91

Extraction Method: E300.1 **Analytical Method:** E300.1

Unit: mg/L

	Ir	norganic Ani	ions by IC			
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	1903D91-001	B Water	03/28/2019	11:45	IC4 03291919.D	175385
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Sulfate	54		5.0	50		03/28/2019 22:17
<u>Surrogates</u>	REC (%)	<u>Qualifiers</u>	<u>Limits</u>			
Formate	0	S	90-115			03/28/2019 22:17
Analyst(s): AO			Analytical Con	nments: c	1,b1	

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 1903D91

 Date Received:
 3/28/19 13:55
 Extraction Method:
 SM4500-S⁻² D-2000

 Date Prepared:
 4/1/19
 Analytical Method:
 SM4500 S⁻² D

Project: Annual Sampling (March 2019) Unit: mg/L

Total Sulfide - S

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	1903D91-001A	Water	03/28/2019	11:45	SPECTROPHOTOMETER	175505
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Dat</u>	e Analyzed
Total Sulfide	ND		0.050	1	04/0	01/2019 08:32

Analyst(s): RB Analystical Comments: b1

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1903D91Date Prepared:3/28/19BatchID:175385Date Analyzed:3/28/19Extraction Method:E300.1Instrument:IC4Analytical Method:E300.1

Matrix: Water Unit: mg/L

Project: Annual Sampling (March 2019) Sample ID: MB/LCS/LCSD-175385

QC Summary Report for E300.1												
Analyte	MB Result	MDL		RL		SPK Val	MB SS %REC		MB SS Limits			
Sulfate	ND		0.086	0.10		-	-	-	-			
Surrogate Recovery												
Formate	0.10					0.10	103	8	85-115			
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit			
Sulfate	0.93	0.94	1		93	94	85-115	1.18	15			
Surrogate Recovery												
Formate	0.10	0.10	0.10		101	102	90-115	1.10	10			

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 4/1/19 **Date Analyzed:** 4/1/19

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Annual Sampling (March 2019)

WorkOrder: 1903D91

BatchID: 175505

Extraction Method: SM4500-S⁻² D-2000

Analytical Method: SM4500 S⁻² D

Unit: mg/L

Sample ID: MB/LCS/LCSD-175505

QC Summary Report For SM4500 S-2D)
-----------------------------------	---

Analyte	MB Result	MDL	RL			
Total Sulfide	ND	0.0073	0.050	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Sulfide	0.53	0.53	0.50	106	106	80-120	0	20

McCampbell Analytical, Inc.

FAX:

CHAIN-OF-CUSTODY RECORD

☐ HardCopy

Page	1	of	
- "5"	-	-	

□ J-flag

☐ ThirdParty

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(925) 459-7212

ClientCode: PGEA WorkOrder: 1903D91 □WaterTrax ☐ WriteOn □ EDF Excel **EQuIS** ✓ Email

> Detection Summary Dry-Weight

Report to: Bill to: Requested TAT: 5 days;

Angel Espiritu Angel Espiritu Email: abe4@pge.com

PG&E Gateway Generating Station cc/3rd Party: A1HE@pge.com; J5LD@pge.com; tlWy@p PG&E Gateway Generating Station PO:

Date Received: 03/28/2019 3225 Wilbur Avenue 3225 Wilbur Avenue Project: Date Logged: Antioch, CA 94509 Annual Sampling (March 2019) Antioch, CA 94509 03/28/2019

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				•												
1903D91-001	E-001	Water	3/28/2019 11:45		В	Α										

Test Legend:

1	300_1_W	2 SULFIDE_W	3	4
5		6	7	8
9		10	11	12

Project Manager: Angela Rydelius Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Client Name:

McCampbell Analytical, Inc.

"When Quality Counts"

PG&E GATEWAY GENERATING STATION

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Annual Sampling (March 2019)

Project:

			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Client Contact:	Angel Espiritu		QC Level: LEVEL 2
Contact's Email:	abe4@pge.com	Comments:	Date Logged: 3/28/2019

		WaterTrax	☐ WriteOn ☐ EDF [Excel	EQuIS Email	HardC	opyThirdParty	y 🗀 -	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1903D91-001A	E-001	Water	SM4500S2D (Total Sulfide)	1	250mL HDPE w/ NaOH+ZnAc		3/28/2019 11:45	5 days	1%+	
1903D91-001B	E-001	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.		3/28/2019 11:45	5 days	1%+	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Work Order: 1903D91

1903D91

																															-	
McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269												CHAIN OF CUSTODY REC FURN AROUND TIME 24 HR 48 HR GeoTracker EDF PDF Excel Writ								□ 8 HF rit	l □ r 52. IR 72 HR 5 DAY ite On (DW) □											
Report To: Angel	Espiri	itu		В	ill To:	PG&F	Ga	tews	ıv				\dashv						Ana	lvsi	s Re	45125						T			arks	
Company: PG&I			rating St						- J				十		T	T	T	\top	T	1	T		Т	П		Т	\neg	十				
Company. 1 Ger	Gate	way Gene	rating 5	atioi						-	-		\dashv															1				
E-Mail: abe4@pg	e.com,	A1HE@j	pge.com,	J5L0	l@pge.o	com, t	IWY	(@p	ge.co	om			\dashv															l				
Tel: (925) 522-7838, (510)-861-1597(Cell) Fax: ()											\neg															1						
Project Name: Annual Sampling (March 2019)											\neg											-				1						
Project Location: Combined Site Flow												\dashv															1					
Sampler Signatur					ment	.\ <	Sau	0):			01		\exists																			
Jampier Signatur		W2 KOT		7001	- Maria	100 -	<u> </u>	7	0	5			\neg															1				
	Composite	SAMP	LING		S	Mat	rix	ME	THOI	D PR	ESEI	RVE	ED																			
SAMPLELOCATION	ء ق ا			13	neı	L								(2.9)	0.1)													1				
ID / Field Poin	Type C			Containers	Type Containers	Waste Water	ter						Zinc Acetate	Sulfide (EPA 376.2)	Sulfate (EPA 300.1)													1				
Name	Ly.	Date	Time	ıta	ο̈	3	₩ _a		7	=			3	(EP	(EP													1				
	ple			Ö	be	aste	Sewer Water	ne	H,SO,	NaOH	HCL	HNO,	3	fide	fate													1				
	Sample			#	Ę	3	Se	None	¥ ±	ž	Ħ	囯	Zi	Sul	Sul													1				
E-001	G	3/28/19	11:45	1	250-ml poly	X			X	X			X	X					T	T	T							†				
E-001	G	3/28/19	11.46	1	5ml	X		X	X						X																	
	1	3/3/8/10	11. 1	-	poly			+	+			\dashv	\dashv				-	+	+	+	+-	-				-		+				
	1								-				4		_		-	_	+	-	+	-	-				-	+				
	-								_			_	\dashv				_	_	+	-	+-	-	-				-	+				
									-			_	_				_	_	_	_	+-	_	-			_	-	+				
	_												_				_	_	_	-	_		_					_				
													\perp																			
													\neg																			
307.1	1								T				\dashv																			
	\vdash							\vdash	+			1	\dashv					+		1	1							\top				
Relinquisher By:		Date:	Time:	Rece	ived By:								\dashv	ICE	Z/t°							_				CO	MMI	ENT	S:			
1/1/				1	ived By:	MF	21	4	10	1				GO	OD (**		
Relinquished By:		3/28/19	/3:55 Time:		ived By:		,00			-			\dashv		AD S																	
Reniquisited by:		Date:	Time:	Rece	ived by:										PROF																	
16/11/				_					-				PRESERVED IN LAB																			
Relinquished By:		Date:	Time:	Rece	ived By:							VOAS O&G METALS OTHER																				
														PRI	ESER	VAT		VOA		<i>-</i>		[<2_		Jin	EK							
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	TO SHADOW AND ADDRESS.	THE RESERVE AND POST OF PERSONS ASSESSMENT	The second second second	-	The second second second	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN		-	THE R. P. LEWIS CO., LANSING	-	-	_	-		-		THE RESERVE			_		_										

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received 3/28/2019 13:55

Sample Receipt Checklist

Client Name:	PG&E Gateway (Senerating Station			Date and Time Received	3/28/2019 13:55
Project:	Annual Sampling	(March 2019)			Date Logged: Received by:	3/28/2019
WorkOrder №:	1903D91	Matrix: Water			Logged by:	Nancy Palacios Kena Ponce
Carrier:	Client Drop-In					
		Chain of (Custod	y (COC) Info	ormation	
Chain of custody	y present?		Yes	✓	No 🗆	
Chain of custody	y signed when relind	uished and received?	Yes	✓	No 🗆	
Chain of custody	y agrees with sampl	e labels?	Yes	✓	No 🗌	
Sample IDs note	ed by Client on COC	?	Yes	✓	No 🗆	
Date and Time of	of collection noted b	y Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
COC agrees with	h Quote?		Yes		No 🗆	NA 🗹
		<u>Samp</u>	le Rece	eipt Informa	<u>ition</u>	
Custody seals in	ntact on shipping co	ntainer/cooler?	Yes		No 🗆	NA 🗹
Shipping contain	ner/cooler in good co	ondition?	Yes	•	No 🗆	
Samples in prop	er containers/bottle	s?	Yes	✓	No 🗆	
Sample containe	ers intact?		Yes	•	No 🗆	
Sufficient sample	e volume for indicat	ed test?	Yes	✓	No 🗆	
		Sample Preservati	ion and	I Hold Time	(HT) Information	
All samples rece	eived within holding	time?	Yes	✓	No 🗆	NA \square
Samples Receiv	red on Ice?		Yes	✓	No 🗌	
		(Ісе Тур	e: WE	ET ICE)		
Sample/Temp B	lank temperature			Temp: 2	6°C	NA 🗌
Water - VOA via	ıls have zero headsı	pace / no bubbles?	Yes		No 🗆	NA 🗹
Sample labels c	hecked for correct p	reservation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218		<2; Nitrate 353.2/4500NO3:	Yes		No 🗆	NA 🗹
	=	ceipt (200.8: ≤2; 525.3: ≤4; ?	Yes		No 🗆	NA 🗹
Free Chlorine	tested and acceptal	ole upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹
Comments:	=====	:======	==:		========	

RECEIVED BY DELTA DIABLO

JUL 12 2019

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 11, 2019

Michael Auer
Delta Diablo Sanitation District (DDD)
2500 Pittsburg-Antioch Hwy.
Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DDSD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2019)

Dear Mr. Auer,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2019, as required under DDD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Annual Flowmeter Calibration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 11, 2019

Michael Auer Delta Diablo Sanitation District (DDD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DDSD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2019)

Dear Mr. Auer,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2019, as required under DDD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Annual Flowmeter Calibration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in June 30, 2019

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DDSD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 9 Annual Flowmeter Calibration

Attachment 1 Certification Statement

Certification Statement

Name of Business: PG&E Gateway Generating Station

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: <u>925-522-7805</u>

Period Covered: Period ending June 30, 2019

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisslom Date: July 11, 2019

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Michael Auer

Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	
Company: Pacific Gas and Electric Cor Period Covered: Period ending June 30	· · · · · · · · · · · · · · · · · · ·
Industrial User Checklist for self –mon discharge permit issued by Delta Diable	itoring reports, as specified by the wastewater o Sanitation District:
Self-monitoring reports	
	arge Permit Section E.1.h.) (See Attachment 4) aired. (Section E.1.g.) (Submitted in this report - 9)
$\underline{}$ Monitoring results- All required t	ests completed, results reviewed, results dy (section F.7.) (See Attachment 8)
Violations (if applicable)	
Delta Diablo was contacted. (See A follow-up report on characteriz Corrective actions to resolve violations.)	ation re-sampling was submitted on
Additional Notes: None	
Significant changes	
Anticipated changes that may alter the	nature, quality, or volume of the wastewater

Pretreatment

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	6/12/2019	6/13/2019	6/13/2019			
TYPE	G	G	G			
STATION	E-001	E-001	E-001			
SMP.BY	Muskan	Muskan	Muskan			
PURPOSE	Compliance	Compliance	Compliance			
PURPUSE	Quarterly (Q2)	Quarterly (Q2)	Quarterly (Q2)			

Units: mg/L

<u>PARAMETERS</u>	<u>LIMITS</u>						
FLOW, DAILY (gal)	51,120						
FLOW, MONTH (gal)							
рН	6-10 s.u.		7.04				
BOD				ND(<4.0)			
COD				ND(<10.0)			
TDS				118.0			
TSS				1.6			
Arsenic	0.15			0.00053			
Cadmium	0.1			ND(<0.0005)			
Chromium	0.5			ND(<0.0005)			
Copper	0.5			0.0038			
Iron				0.18			
Lead	0.5			ND(<0.0005)			
Mercury	0.003			ND(<0.0002)			
Molybdenum				0.0048			
Nickel	0.5			ND(<0.001)			
Selenium	0.25			ND(<0.0005)			
Silver	0.2			ND(<0.0005)			
Zinc	1.00			0.120			
Cyanide	0.2		ND(<0.001)				
Phenol	1.00		0.0141				
Ammonia	200		0.8				
O&G Petro/Min (E1664A w/ Silica)	100	ND(<5.0)	ND(<5.0)				
O&G Animal/Vegetable Oil	300	ND(<5.0)	ND(<5.0)				
TTO EPA 608							
TTO EPA 624							
TTO EPA 625							
тто	2.00						
Sulfide							
Sulfate							

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

Discharge Flow Data

April 2019-June 2019

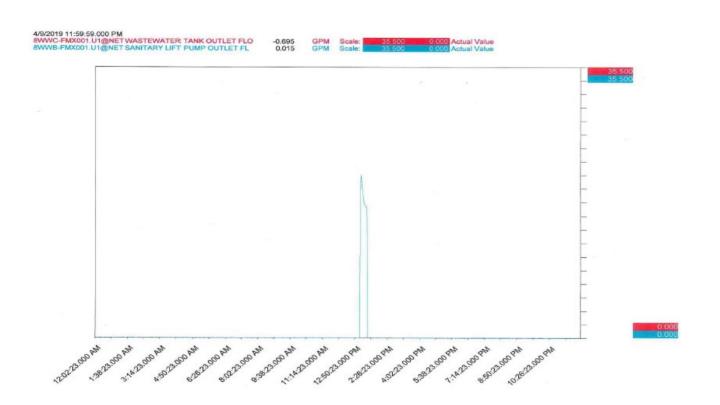
		Industria	l Flow			Sanitary	Flow		
			Did it ever			Time Mate	Did it ever		
		Time Over	go over	5 1 7		Time Meter	go over	5 "	c:. -
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(mins?			(minutes)	mins?		
4/1/2019	35.0	0.0	NO	48,636	20.7	0	NO	351	48,987
4/2/2019	35.1	0.0	NO	18,560	20.3	0	NO	382	18,942
4/3/2019	0.0	0.0	NO		20.3	0	NO	387	387
4/4/2019	34.9	0.0	NO	6,819	0.1	0	NO	1	6,820
4/5/2019	0.0	0.0	NO		20.5	0	NO	389	389
4/6/2019	-0.2	0.0	NO		0.1	0	NO	1	1
4/7/2019	-0.4	0.0	NO		0.0	0	NO		-
4/8/2019	-0.4	0.0	NO		20.9	0	NO	385	385
4/9/2019	1.8	26.0	NO		20.8	26	NO	399	399
4/10/2019	34.8	0.0	NO	4,040	19.2	0	NO	399	4,439
4/11/2019	34.1	1.0	NO	614	19.9	1	NO	391	1,005
4/12/2019	-0.3	0.0	NO		20.6	0	NO	392	392
4/13/2019	-0.3	0.0	NO		0.0	0	NO		
4/14/2019	-0.4	0.0	NO		0.0	0	NO		
4/15/2019	-0.5	0.0	NO		20.5	0	NO	388	388
4/16/2019	-0.5	0.0	NO		20.6	0	NO	364	364
4/17/2019	-0.5	0.0	NO		21.5	0	NO	375	375
4/18/2019	-0.4	0.0	NO		0.0	0	NO	1	1
4/19/2019	-0.5	0.0	NO		20.7	0	NO	381	381
4/20/2019	-0.5	0.0	NO		0.1	0	NO		-
4/21/2019	34.9	0.0	NO	7,222	21.0	0	NO	368	7,590
4/22/2019	0.1	0.0	NO		0.1	0	NO	8	8
4/23/2019	-0.4	0.0	NO		21.1	0	NO	381	381
4/24/2019	-0.3	0.0	NO		21.4	0	NO	386	386
4/25/2019	34.8	0.0	NO	3,564	0.0	0	NO		3,564
4/26/2019	34.5	0.0	NO	39,773	20.8	0	NO	378	40,150
4/27/2019	34.9	0.0	NO	30,609	0.0	0	NO		30,609
4/28/2019	34.6	0.0	NO	12,021	0.0	0	NO		12,021
4/29/2019	35.0	0.0	NO	29,908	20.6	0	NO	390	30,298
4/30/2019	34.9	0.0	NO	25,515	20.5	0	NO	389	25,904
						Max D	aily Flow (Lii	mit: 51,120):	48,987
								onthly Total:	234,569
5/1/2019	34.8	0.0	NO	21,993	0.1	0	NO	4	21,997
5/2/2019	35.9	2.0		25,009	20.9			375	25,385
5/3/2019	35.0	0.0	NO	16,184	0.0		NO		16,184
5/4/2019	34.8	0.0	NO	7,894	20.0		NO	374	8,268
5/5/2019	35.2	0.0	NO	19,112	0.1		NO	10	19,123
5/6/2019	35.1	0.0	NO	22,808	0.0	0	NO		22,808
5/7/2019	35.1	0.0	NO	21,938	21.0		NO	360	22,298
5/8/2019	35.2	0.0	NO	19,756	0.1	0	NO	5	19,760
5/9/2019	35.2	0.0	NO	24,195	21.2		NO	388	24,583
5/10/2019		0.0	NO	34,098	0.0		NO	388	34,486
5/11/2019	36.3	3.0	NO	38,373	19.9		NO	365	38,738
5/12/2019		0.0	NO	10,412	0.0		NO	8	10,420
5/13/2019	35.0	0.0	NO	27,537	0.1		NO		27,537
5/14/2019	34.8	0.0	NO	42,423	20.1	0	NO	400	42,823
5/15/2019	34.8	0.0	NO	39,879	20.0		NO	384	40,262
5/16/2019	34.7	0.0	NO	49,011	0.1	0	NO	7	49,018
5/17/2019	35.0	0.0	NO	11,485	0.1		NO		11,485
5/18/2019	34.8	0.0	NO	31,356	20.4		NO	376	31,732
5/19/2019		0.0	NO	18,155	0.1		NO	10	18,165
5/20/2019	34.3	0.0	NO	14,390	0.1	0	NO		14,390

Discharge Flow Data

April 2019-June 2019

		Industria	l Flow		Sanitary Flow				
			Did it ever			Time Meter	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	go over 35.5 GPM for 15	Daily Total (Gallons)	Site Total (Gallons)
			mins?			•	mins?		
5/21/2019	34.3	0.0	NO	7,266	20.6	0	NO	389	7,655
5/22/2019	34.5	0.0	NO	17,420	0.1	0	NO	7	17,427
5/23/2019	34.2	0.0	NO	1,779	20.6	0	NO	388	2,167
5/24/2019	34.6	0.0	NO	7,855	0.1	0	NO	5	7,860
5/25/2019	35.0	0.0	NO	7,308	0.1	0	NO		7,308
5/26/2019	34.8	0.0	NO	7,109	0.1	0	NO		7,109
5/27/2019	35.1	0.0	NO	8,733	20.6	0	NO	383	9,116
5/28/2019	0.1	0.0	NO		0.1	0	NO	3	3
5/29/2019	35.2	0.0	NO	7,483	20.6	0	NO	379	7,862
5/30/2019	35.0	0.0	NO	6,928	0.0	0	NO		6,928
5/31/2019	0.0	0.0	NO		20.9		NO	381	381
						Max D	aily Flow (Lii	mit: 51,120):	49,018
							M	onthly Total:	573,277
6/1/2019	-0.3	0.0	NO	(942)	0.0	0	NO	(10)	(952)
6/2/2019	-0.4	0.0	NO	(1,019)	0.0	0	NO	(14)	(1,033)
6/3/2019	35.0	0.0	NO	32,423	21.6	0	NO	371	32,794
6/4/2019	35.0	0.0	NO	34,352	0.1	0	NO	(6)	34,346
6/5/2019	41.5	1.0	NO	11,823	20.2	0	NO	367	12,190
6/6/2019	41.5	3.0	NO	16,354	0.1	0	NO	4	16,359
6/7/2019	35.0	0.0	NO	14,446	20.5	0	NO	381	14,828
6/8/2019	0.2	0.0	NO	(455)	0.0	0	NO	0	(454)
6/9/2019	-0.3	0.0	NO	(846)	0.0	0	NO	(1)	(846)
6/10/2019	0.2	0.0	NO	(714)	20.3	0	NO	(1)	(715)
6/11/2019	0.6	1.0	NO	259	0.0	1	NO	2	261
6/12/2019	30.9	0.0	NO	23,158	21.3	0	NO	457	23,615
6/13/2019	34.6	0.0	NO	35,678	19.9	0	NO	400	36,077
6/14/2019	35.1	0.0	NO	23,539	0.1	0	NO	18	23,557
6/15/2019	35.0	0.0	NO	6,613	0.1	0	NO	8	6,622
6/16/2019	34.9	0.0	NO	6,488	0.0	0	NO	(2)	6,486
6/17/2019	35.2	0.0	NO	43,058	21.2	0	NO	354	43,412
6/18/2019	34.9	0.0	NO	49,004	0.1	0	NO	(2)	49,002
6/19/2019	34.8	80.0	NO	45,127	20.1	80	NO	433	45,560
6/20/2019	35.0	0.0	NO	48,994	0.0	0	NO	4	48,998
6/21/2019				16,285	0.0		NO	(3)	16,282
6/22/2019	34.7	0.0	NO	32,281	21.4	0	NO	355	32,636
6/23/2019	34.8	0.0	NO	46,110	0.0	0	NO	(6)	46,104
6/24/2019	35.0	0.0	NO	48,634	19.7	0	NO	364	48,999
6/25/2019	34.6	0.0	NO	48,989	0.0		NO	4	48,993
6/26/2019	34.5	0.0	NO	27,571	20.2	0	NO	386	27,957
6/27/2019	35.0	0.0	NO	7,279	0.1	0	NO	4	7,282
6/28/2019	34.8	0.0	NO	6,750	20.6	0	NO	368	7,118
6/29/2019		0.0	NO	5,547	0.0		NO	(5)	5,542
6/30/2019	34.5	0.0	NO	2,017	0.0		NO	(9)	2,008
						Max D	aily Flow (Lii	mit: 51,120):	49,002

Monthly Total: 633,026


⁽¹⁾ The system did not record data on 4/9/2019 from 14:49 to 15:14. There was no exceedance of flow during that time. See printout of report below

⁽²⁾ The system had a loss of communication on 6/19/2019 between 12:15 and 13:34. The set of system flow data immediately proceeding and and immediately after the episode showed that equipment were behaving properly and flow data were below the permit limit.

Discharge Flow Data

April 2019-June 2019

		Industria	l Flow			Sanitary	Flow		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2019**

Month	Flow (gallons)	Due Date
January		
February		
March		
April	234,569	7/15/2019
May	573,277	7/15/2019
June	633,026	7/15/2019
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

WSAC Operating Hours Report April 2019 to June 2019

	WSAC Operation							
Month	Hours of Operation							
January-19								
February-19								
March-19								
April-19	30.42							
May-19	68.75							
June-19	260.99							
July-19								
August-19								
September-19								
October-19								
November-19								
December-19								

Attachment 7 Cycles of Concentration

WSAC Average Daily Blowdown Cycles Report April 2019 to June 2019

	WSAC Operation								
Month	Average Daily Blowdown Cycles								
January-19									
February-19									
March-19									
April-19	5.52								
May-19	7.09								
June-19	5.57								
July-19									
August-19									
September-19									
October-19									
November-19									
December-19									

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1906678

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (June 2019)

Project Received: 06/13/2019

Analytical Report reviewed & approved for release on 06/21/2019 by:

Susan Thompson

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

Analytical Qualifiers

j1 See attached narrative

Case Narrative

Client: PG&E Gateway Generating Station Work Order: 1906678

Project: Quarterly Sampling (June 2019) June 21, 2019

j1:

Our standard ICP-MS analytical procedure is to analyze selenium using the Reaction mode.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/17/19

Quarterly Sampling (June 2019) **Project:**

WorkOrder: 1906678

Extraction Method: E1664A_SG

mg/L

Analytical Method: E1664A Unit:

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 6/12/19 0905	1906678-001B	Water	06/12/201	19 09:05	O&G	179658
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		06/18/2019 09:20

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 6/13/19 0950	1906678-001D	Water	06/13/2019	9 09:50	O&G	179658
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		06/18/2019 09:25

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/14/19

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

Extraction Method: E1664A

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 6/12/19 0905	1906678-001A	Water	06/12/201	9 09:05	O&G	179656
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		06/14/2019 20:50

Analyst(s): PHU

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 6/13/19 0950	1906678-001C	Water	06/13/201	19 09:50	O&G	179656
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		06/14/2019 20:55

Analyst(s): PHU

1906678

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Received:6/13/19 11:42Extraction Method:SM4500-NH3 BGDate Prepared:6/17/19Analytical Method:SM4500-NH3 BG

Project: Quarterly Sampling (June 2019) Unit: mg/L

Ammonia as N

Client ID	Lab ID	Matrix	Date Collected 06/13/2019 09:50		Instrument	Batch ID
E-001 6/13/19 0950	1906678-001E	Water			WC_SKALAR 061719A1_31	179763
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	<u>Analyzed</u>
Ammonia, total as N	0.80		0.10	1	06/17	7/2019 13:19

Analyst(s): NM

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/13/19

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678 Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 6/13/19 0930	1906678-002A	Water	06/13/201	9 09:30	WetChem	179583
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
BOD	ND		4.0	1		06/18/2019 13:24

Analyst(s): AL

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/21/19

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: μg/L

Cyanide, Total

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID	
E-001 6/13/19 0950	1906678-001F	Water	06/13/2019 09:50		WC_SKALAR 062119A1_43	127 180127	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analy		
Total Cyanide	ND		1.0	1	06/2	1/2019 11:25	

Analyst(s): NM

1906678

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Received:6/13/19 11:42Extraction Method:SM5220 D-1997Date Prepared:6/17/19Analytical Method:SM5220 D-1997

Project: Quarterly Sampling (June 2019) Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 6/13/19 0930	1906678-002B	Water	06/13/201	9 09:30	SPECTROPHOTOMETER	179723
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date	e Analyzed
COD	ND		10	1	06/1	17/2019 12:59

Analyst(s): RB

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/13/19

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

				Ι			
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID	
E-001 6/13/19 0930	1906678-002E	Water	06/13/2019 09:30		AA1 _18	179540	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
Mercury	ND		0.20	1		06/17/2019 15:35	

Analyst(s): JC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/13/19

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

Metals									
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID			
E-001 6/13/19 0930	6/13/19 0930 1906678-002F Water 06/13/2019 09:30		ICP-MS1 103SMPL.D	179539					
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed			
Arsenic	0.53		0.50	1		06/19/2019 04:35			
Cadmium	ND		0.50	1		06/19/2019 04:35			
Chromium	ND		0.50	1		06/19/2019 04:35			
Copper	3.8		0.50	1		06/19/2019 04:35			
Iron	180		100	1		06/19/2019 04:35			
Lead	ND		0.50	1		06/19/2019 04:35			
Molybdenum	4.8		0.50	1		06/19/2019 04:35			
Nickel	ND		1.0	1		06/19/2019 04:35			
Selenium	ND		0.50	1		06/19/2019 04:35			
Silver	ND		0.50	1		06/19/2019 04:35			
Zinc	120		20	1		06/19/2019 04:35			
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>						
Terbium	90		70-130			06/19/2019 04:35			
Analyst(s): ND			Analytical Com	nments: j1					

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/19/19

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

Extraction Method: E420.4

Analytical Method: E420.4

Unit: $\mu g/L$

Phenolics

_		1 1101101				
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 6/13/19 0950	1906678-001E	Water	06/13/2019	9 09:50	WC_SKALAR 061919B1_28	179951
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed
Phenolics	14.1		2.0	1	06/19	9/2019 13:14

Analyst(s): NM

1906678

Analytical Report

WorkOrder:

Client: PG&E Gateway Generating Station

Date Received:6/13/19 11:42Extraction Method:SM2540 C-1997Date Prepared:6/18/19Analytical Method:SM2540 C-1997

Project: Quarterly Sampling (June 2019) Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Lab ID Matrix		lected	Instrument	Batch ID
E-001 6/13/19 0930	1906678-002C	Water	06/13/201	2019 09:30 WetChem		179842
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	118		10.0	1		06/19/2019 13:20

Analyst(s): AL

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 1906678

Date Received: 6/13/19 11:42 **Extraction Method:** SM2540 D-1997 **Date Prepared:** 6/14/19 **Analytical Method:** SM2540 D-1997

Project: Quarterly Sampling (June 2019) Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Lab ID Matrix		Date Collected		Batch ID
E-001 6/13/19 0930	1906678-002D	Water	06/13/2019 09:30		WetChem	179640
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Suspended Solids	1.60		1.00	1		06/14/2019 14:00

Analyst(s): AL

1906678

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Prepared: 6/14/19

RatchID:

Date Prepared:6/14/19BatchID:179658Date Analyzed:6/14/19Extraction Method:E1664A_SGInstrument:O&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (June 2019) Sample ID: MB/LCS/LCSD-179658

QC Summary Report for E1664A							
Analyte	MB Result	MDL	RL				
SGT-HEM	ND	0.72	5.0	_	_	_	

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	9.1	9.9	10.42	87	95	64-132	9.33	30

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1906678Date Prepared:6/14/19BatchID:179656Date Analyzed:6/14/19Extraction Method:E1664AInstrument:O&GAnalytical Method:E1664A

Matrix: Water Unit: mg/L

Project: Quarterly Sampling (June 2019) Sample ID: MB/LCS/LCSD-179656

QC Summary Report for E1664A							
Analyte	MB Result	MDL	RL				
HEM	ND	1.2	5.0	-	-	-	

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	18	18	20.83	87	85	78-114	2.49	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 6/17/19

Date Analyzed: 6/17/19 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

BatchID: 179763

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-179763

QC Summary Report for SM4500-NH3	

Analyte	MB Result	MDL	RL			
Ammonia, total as N	ND	0.084	0.10	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	4.0	4.1	4	101	103	88-113	1.88	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 6/13/19 **Date Analyzed:** 6/18/19 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

BatchID: 179583

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Sample ID: MB/LCS/LCSD-179583

QC Summary Report for BOD								
Analyte	MB Result	MDL	RL					
BOD	ND	4.0	4.0	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	220	200	198	113	102	80-120	10.8	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 6/21/19

Date Analyzed: 6/21/19

Instrument: WC_SKALAR

Matrix: Water

Total Cyanide

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

BatchID: 180127

Extraction Method: SM4500-CN⁻ E

Analytical Method: SM4500-CN⁻ CE

Unit: $\mu g/L$

1.0

Sample ID: MB/LCS/LCSD-180127

QC Summary Report for SM4500-CN ⁻ CE							
Analyte	MB Result	MDL	RL				

0.84

ND

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	42	42	40	105	104	80-120	0.0536	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 6/17/19

Date Analyzed: 6/17/19

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

BatchID: 179723

Extraction Method: SM5220 D-1997

Analytical Method: SM5220 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-179723

QC Summary Report for COD								
Analyte	MB Result	MDL	RL					
COD	ND	7.2	10	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	94	96	100	94	96	90-110	2.11	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1906678Date Prepared:6/13/19BatchID:179540Date Analyzed:6/14/19Extraction Method:E245.2Instrument:AA1Analytical Method:E245.2

Matrix: Water Unit: μg/L

Project: Quarterly Sampling (June 2019) Sample ID: MB/LCS/LCSD-179540

QC Summary Report for Mercury								
Analyte	MB Result	MDL	RL					
Mercury	ND	0.14	0.20	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	2.1	2.0	2	106	99	85-115	6.47	20

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 1906678

Date Prepared: 6/13/19 BatchID: 179539

Date Applyzed: 6/14/19 Extraction Method: E200.8

Date Analyzed:6/14/19Extraction Method:E200.8Instrument:ICP-MS1Analytical Method:E200.8Matrix:WaterUnit:µg/L

Project: Quarterly Sampling (June 2019) **Sample ID:** MB/LCS/LCSD-179539

QC Summary Report for Metals

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.12	0.50	-	-	-
Cadmium	ND	0.060	0.50	-	-	-
Chromium	ND	0.36	0.50	-	-	-
Copper	ND	0.43	0.50	-	-	-
Iron	ND	58	100	-	-	-
Lead	ND	0.32	0.50	-	-	-
Molybdenum	ND	0.21	0.50	-	-	-
Nickel	ND	0.58	1.0	-	-	-
Selenium	ND	0.18	0.50	-	-	-
Silver	ND	0.042	0.50	-	-	-
Zinc	ND	11	20	-	-	-

Surrogate Recovery

Terbium 490 500 98 70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53	54	50	106	107	85-115	1.52	20
Cadmium	53	53	50	105	106	85-115	0.322	20
Chromium	52	53	50	104	106	85-115	1.66	20
Copper	54	55	50	108	109	85-115	1.29	20
Iron	5100	5200	5000	102	104	85-115	1.34	20
Lead	53	53	50	106	107	85-115	1.06	20
Molybdenum	50	51	50	101	102	85-115	0.829	20
Nickel	53	54	50	106	109	85-115	2.89	20
Selenium	54	54	50	109	108	85-115	0.721	20
Silver	54	55	50	108	109	85-115	0.936	20
Zinc	550	550	500	109	110	85-115	0.547	20
Surrogate Recovery								
Terbium	500	500	500	100	100	70-130	0	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 6/19/19 **Date Analyzed:** 6/19/19 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

BatchID: 179951

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-179951

1906678-001EMS/MSD

QC Summary Report for E420.4									
Analyte	MB Result	MDL	RL						
Phenolics	ND	2.0	2.0	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	40	41	40	101	103	80-120	2.34	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Phenolics	1	55	54	40	14	101	100	70-130	1.13	30

1906678

179842

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 6/18/19

Date Analyzed: 6/19/19 **Instrument:** WetChem

Matrix: Water

Project:

Quarterly Sampling (June 2019)

Extraction Method: SM2540 C-1997

Analytical Method: SM2540 C-1997

Unit: mg/L

WorkOrder:

BatchID:

Sample ID: MB-179842

QC Summary Report for Total Dissolved Solids

Analyte	MB Result	MDL	RL			
Total Dissolved Solids	ND	10.0	10.0	-	-	-

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 6/14/19

Date Analyzed: 6/14/19 **Instrument:** WetChem

Matrix: Water

Project: Quarterly Sampling (June 2019)

WorkOrder: 1906678

BatchID: 179640

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Sample ID: MB-179640

QC Summary Report for Total Suspended Solids

Analyte	MB Result	MDL	RL			
Total Suspended Solids	ND	1.00	1.00	-	-	-

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 1906678

ClientCode: PGEA

☐ HardCopy

Chemicoue: FGI

☐ ThirdParty ☐ J-flag

Detection Summary

Excel

Dry-Weight

✓ Email

Report to:

Angel Espiritu
PG&E Gateway Generating Station

3225 Wilbur Avenue
Antioch, CA 94509
(925) 459-7212 FAX:

Email: abe4@pge.com

cc/3rd Party: A1HE@pge.com; J5Ld@pge.com;

□ EDF

☐ WriteOn

PO:

□WaterTrax

Project: Quarterly Sampling (June 2019)

Bill to:

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

EQuIS

Date Received:

Requested TATs:

06/13/2019

5 days; 7 days;

Date Logged: 06/13/2019

							Re	quested	l Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date H	old 1	2	3	4	5	6	7	8	9	10	11	12
1906678-001	E-001 6/12/19 0905	Water	6/12/2019 09:05	В	А										
1906678-001	E-001 6/13/19 0950	Water	6/13/2019 09:50	D	С	E		F				E			
1906678-002	E-001 6/13/19 0930	Water	6/13/2019 09:30				Α		В	Е	F		С	D	

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	TDS_W

3	AMMONIA-SM4500BG_W
7	HG_W
11	TSS_W

4	BOD_W
8	METALSMS_TTLC_W
12	

Project Manager: Angela Rydelius Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (June 2019) Wor	k Order: 1	1906678
--	------------	---------

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments:

Date Logged: 6/13/2019

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1906678-001A	E-001 6/12/19 0905	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl		6/12/2019 9:05	5 days	Present	
1906678-001B	E-001 6/12/19 0905	Water	E1664A (SGT- HEM; Non-polar Material)	1	1L w/ HCl		6/12/2019 9:05	5 days	Present	
1906678-001C	E-001 6/13/19 0950	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl		6/13/2019 9:50	5 days	Present	
1906678-001D	E-001 6/13/19 0950	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl		6/13/2019 9:50	5 days	Present	
1906678-001E	E-001 6/13/19 0950	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO4		6/13/2019 9:50	5 days	Present	
			SM4500-NH3 BG (Ammonia Nitrogen)					5 days	Present	
1906678-001F	E-001 6/13/19 0950	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH + Na2S2O3		6/13/2019 9:50	5 days	Present	
1906678-002A	E-001 6/13/19 0930	Water	SM5210B (BOD)	1	1L HDPE, unprsv.		6/13/2019 9:30	7 days	Present	
1906678-002B	E-001 6/13/19 0930	Water	SM5220D (COD)	2	aVOA w/ H2SO4		6/13/2019 9:30	5 days	Present	
1906678-002C	E-001 6/13/19 0930	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		6/13/2019 9:30	5 days	Present	
1906678-002D	E-001 6/13/19 0930	Water	SM2540D (TSS)	1	1L HDPE, unprsv.		6/13/2019 9:30	5 days	Present	
1906678-002E	E-001 6/13/19 0930	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3		6/13/2019 9:30	5 days	Present	
1906678-002F	E-001 6/13/19 0930	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3		6/13/2019 9:30	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

190101078

												-											1	X		
	₩ Websi	te: w	MPBE 1534 PITT ww.mccam 2: (877) 25	WILLOV SBURG, C pbell.com	V PAS	S ROAD 565-1701 ail: main		camp	bell.	com	ie I				CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY GeoTracker EDF PDF Excel Write On (DW) Check if sample is effluent and "J" flag is required									□ <u>/</u> 3 2 72 HR 5 DAY 2 On (DW) □		
Report To	· Angel Es	niriti	1		T	Rill To:	PG&	E Ga	tew	av				-								Remarks				
Report To: Angel Espiritu Bill To: PG&E Gateway												Amarysi	3 100	lucs	,,,							temarks				
Company	: PG&E G	atew	ay Genera	ting Stat	tion											<u> </u>					m,	П			П	
E-Mail: al	be4@pge.co	m. A	1HE@ng	e.com. J	51.da	a) nge.co	m. fl	wva	ng	e.cor	n			-	e th	niun	with	6.4	H3-C		romiu c)					
The same of the sa	522-7838,	SHAPE OF TAXABLE	the language of the party language or the pa	THE RESERVE OF THE PERSON NAMED IN	-	ax: ()		SP8		-	-			(Pretreated with niosulfate before g) by SM 4500	1 sele	64A)	A 42	S00-N		n, chı Iver, d zin					
The second liverage of	ame: Qua	_		The second second	_	-									reate fate l SM	e and actio	PA 16	USEF	SM 4		miun cel, si n, an		_			
_	ocation: Co						_		,				6	2	Preti osuli) by	seni	USE	lics (s N ((5.2)	8 cad , nick n, iro	210B	220D	100	40D)	
Sampler S	ignature:	W	vskan	Envi	COM	nes	d)	\geq	an	ilg	ng		XS.	2	de () n thi ving	8.(Ar um b	ease (heno	nia a	ry (24	(200. Fead	SM 5	SM 5	M 25	M 25	
		mposit	SAMP	LING		ی	Ma	trix	ME	тно	D PI	RESE	RV	ED	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (USEPA 1664A) with	Total Phenolics (USEPA 420.4)	Ammonia as N (SM 4500-NH3-G	Mercury (245.2)	Metals (200.8 cadmium, chromium, copper, lead, nickel, silver, Mołybdenum, iron, and zinc)	BOD (SM 5210B)	COD (SM 5220D)	TDS (SM 2540C)	TSS (SM 2540D)	_
SAMPLE ID	LOCATION / Field Point Name	Sample Type Composite	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	NoOu	HCI.	OMI	Other												
E-001		G	6/12/19	V8.VC	2	1L Amb	X		П	Х	T	X	1	\top			X	T		-		П		T	\forall	
E-001		G		04:20	2	1L Amb	X	\vdash	H	Х	T	X	t	\dagger			X	T	-			Н		H	H	
E-001		G	_	09:50	1	500ml Amb	X	\vdash	П	X 2	1	T	T	T				X	X			П	$\overline{}$	T	\forall	
E-001		G	1	09:50	1	250-ml	X	\vdash	H	Х	X	十	T	\dagger	X		\vdash	T	Т			П		T	\forall	
E-001		С	6/13/19		1	Poly 1L Poly	X	\vdash	X	Х	十	十	t	\dagger			\vdash	\dagger				Х	_	T	H	
E-001		С	6/13/19		2	43-ml VOA	X	\vdash	Н	X >	1	十	t	十			\vdash	T	\vdash			Н	X	H	\forall	
E-001		С	6/13/19	09:30	1	500-ml poly	X	\vdash	X	Х	十	\dagger	t	+			\vdash	t				Н		X		
E-001		С	6/13/19	09:30	1	1L poly	X	\vdash	X	Х	T	十	T	T			\vdash	T	Г			Н		T	X	
E-001		С	6/12/19		-	250-ml Poly	X		H	Х	T	†	2	X		- 400		T		X		Н		T	H	The state of the s
E-001		С	6/13/19			250-ml poly	X		П	Х	T	T	2	X		X		T			X	П		T	П	
				1.20							T	T	T	T				T				П		Г	T	
							/			T	Τ	T	Γ	T		1		Τ				П		Γ	\sqcap	
Relinquished Relinquished	d By:		Date: Date:	Time:	Rege	eived By:	Y	A	VT	7	\ \ -		ICE/t*COMMENTS: GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB							a .						
Kennquisnee	u ny:		Date:	Time:	Keco	eiveu By:									nn norm	vo	OAS	0&	G	METALS	OTHER					Page 29 of 30

PRESERVATION

pH<2_

PG&E Gateway Generating Station

was received unpreserved.

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received 6/13/2019 11:42

Sample Receipt Checklist

Project:	Quarterly Sampling	(June 2019)			Date Logged: Received by:	6/13/2019 Agustina Venegas
WorkOrder №: Carrier:	1906678 Client Drop-In	Matrix: <u>Water</u>			Logged by:	Agustina Venegas
		Chain of C	ustody	/ (COC) Info	rmation	
Chain of custody	present?		Yes	✓	No 🗆	
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample I	abels?	Yes	•	No 🗌	
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆	
Date and Time of	collection noted by 0	Client on COC?	Yes	✓	No 🗆	
Sampler's name r	noted on COC?		Yes	✓	No 🗆	
COC agrees with	Quote?		Yes		No 🗆	NA 🗸
		Samp	le Rece	eipt Informat	<u>iion</u>	
Custody seals into	act on shipping conta	ainer/cooler?	Yes		No 🗌	NA 🗸
Shipping containe	er/cooler in good con	dition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No 🗌	
Sample container	rs intact?		Yes	✓	No 🗌	
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗆	
		Sample Preservati	on and	Hold Time ((HT) Information	
All samples receiv	ved within holding tim	ne?	Yes	✓	No 🗆	NA 🗌
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ice Typ	e: WE	TICE)		
Sample/Temp Bla	ank temperature			Temp: 2.	8°C	NA 🗌
Water - VOA vials	s have zero headspa	ce / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels che	ecked for correct pre	servation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.7	on receipt (Metal: <2 7: >8)?	; Nitrate 353.2/4500NO3:	Yes	✓	No 🗌	NA 🗆
UCMR Samples:						
	acceptable upon rece 3; 544: <6.5 & 7.5)?	eipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗌	NA 🗹
Free Chlorine to	ested and acceptable	e upon receipt (<0.1mg/L)?	Yes		No 🗌	NA 🗹

Comments: Method E1664A (HEM; Oil & Grease w/o S.G. Clean-Up) was received unpreserved. Method E1664A (SGT- HEM; Non-polar Material)

Page 30 of 30

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1906679

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Sanjiv Gill

Project P.O.:

Project: pH Sampling (June 2019)

Project Received: 06/13/2019

Analytical Report reviewed & approved for release on 06/19/2019 by:

Susan Thompson

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

Project: pH Sampling (June 2019)

WorkOrder: 1906679

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 6/13/19 11:42

Date Prepared: 6/13/19

Project: pH Sampling (June 2019)

WorkOrder: 1906679

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

рH

Client ID	Lab ID	Matrix	Date Collec	cted	Instrument	Batch ID
E-001	1906679-001A	Water	06/13/2019 1	0:20	WetChem	179757
<u>Analytes</u>	Result		<u>Accuracy</u>	<u>DF</u>		Date Analyzed
рН	7.04		±0.05	1		06/13/2019 10:20

Analyst(s): PHU

1906679

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Prepared:6/13/19BatchID:179757Date Analyzed:6/13/19Extraction Method:SM4500H+B-2000

Instrument:WetChemAnalytical Method:SM4500H+BMatrix:WaterUnit:pH units @ 25°C

Project: pH Sampling (June 2019) **Sample ID:** CCV-179757

	QC Summary Report for	рН
Analyte	CCV Result	CCV Limits
рН	7.00	6.8-7.2

McCampbell Analytical, Inc.

□WaterTrax

Email:

Project:

PO:

cc/3rd Party:

WriteOn

sanjivgill@comcast.net

pH Sampling (June 2019)

□ EDF

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

PG&E Gateway Generating Station

FAX:

Report to:

Sanjiv Gill

3225 Wilbur Avenue

Antioch, CA 94509

(925) 459-7212

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WORKOrder: 19000/9 Chefficode: FGE	WorkOrder:	1906679	ClientCode:	PGEA
------------------------------------	------------	---------	-------------	-------------

Excel ■EQuIS ▼Email HardCopy ThirdParty J-flag

Detection Summary Dry-Weight

Bill to: Requested TAT: 5 days;

Sanjiv Gil

Muskan Environmental Services

								Re	quested	Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1906679-001	E-001	Water	6/13/2019 10:20		Α											

Test Legend:

1	pH_Field	2	3]	4
5		6	7]	8
9		10	11		12

Project Manager: Angela Rydelius Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

1906679-001A E-001

McCampbell Analytical, Inc.

"When Quality Counts"

Water

SM4500H+B (Field pH)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

chlorinated

& Time

6/13/2019 10:20

WORK ORDER SUMMARY

Lab ID	Client ID	Matrix	Test Name		C	ontainers	Bottle & Pr	reservative	De-	Collection Date	TAT	Sediment	Hold Sub	Ou
		WaterTrax	WriteOn	EDF	Exce	el 🔳	EQuIS	✓ Email	HardCop	oy ThirdPa	arty _]J-flag		
Contact's Em	nail: sanjivgill@	comcast.net			Comments	s:					Dat	te Logged:	6/13/2019	
Client Contac	ct: Sanjiv Gill											QC Level:	LEVEL 2	
Client Name:	PG&E GA	TEWAY GENERA	ΓING STATIO	N	Project:	pH Sampl	ling (June 2	019)			Wo	ork Order:	1906679	

/Composites

125mL HDPE, unprsv.

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Content

None

5 days

1906679

											-														1	V	W	W					
1	w Me	cCA	MPBE	LLA	NAI	LYTI	CAI	L, I	NC								VIII	(CF	IA	IN	0	F (CU	ST	O	DY	R	EC	CORI)		
				4 WILLO										- 1	T	URI	N A	RO						Г]	[J					D	8
	▲ Web	site: w	ww.mccan	TSBURG,				cam	bell.	com				- 1		22.22		_			_						HR		48 H			5 DA	Y
1	Tele	phon	e: (877) 25	52-9262		F	ax: (9	25) 2	52 -9	269				- 1	G	eoT	rac	ker	EL	F	Ц									ite On			
Danaut	To: Sanity	Cill				ill To:	Muck	on F	nuin		onto			\dashv						A 12	olve	-	A STREET, SQUARE, SQUA	-	amp	ole is	eff	uen	t an	d "J" fl	Remai	_	ed
	To: Sanjiv ny: PG&E		way Cana	rating S			VIUSK	an E	nvire	mm	enta	11		\dashv					_	An	arys	is R	eque	St		T	T-		\dashv		Remai	rks	
Compa	ly. I Gat	Gate	way Gene	rating 5	tatioi	<u> </u>								\dashv																			
					E	-Mail:	sanjiv	gill	n con	icas	t.net	t		┪				_															
	8) 666-449				F	ax: ()	0																						ĺ			
Project	Name: pl	H San	npling (Tuni	د ع	1019)								1																	
Project	Location: F	'G&E	E GGS An	tioch - I	E-001			1					_/																				
Sample	Signature	1	Musko	ntr	مذبع	Come	Ma	Д_,		On	Ph	-	1	_																			
		Composite tb	SAMP	LING			Mat	triv	MET	ног	PRI	ESEI	RVF	_{cn}																			
		dw	O'HINI	ZII.(G		r.s																											
	LOCATION	ype Co Grab			ers	Type Containers	er							e																			
ID	/ Field Point Name	Cyp (Gr			Containers	ont	Waste Water	Sewer Water						Zinc Acetato																			
		ole 7	Date	Time	ont	o C	ste	er V	ne u	g	НО	1	ő	3																			
		Sample Type /Gra) #	Tyl	Wa	Sew	None	H.SO.	NaOH	HCL	HNO	Zin	$^{\mathrm{pH}}$																		
E-001		G			NA	NA	Х	_	X	\forall	_		7	\dashv	X		7	+	+	+	+	+	+	+	_	+	1			Grab T	ime: /0	:19	
			6/12/19	10:20										- 1																Analysi	is Time:	0:1	0
														П																Temper pH: 7	ature: 2	3.2	·°C
										\forall		1	1	\dashv					+	+		+	1	+	+	-	1			pri. <i>j</i>	.4 -1		
					_				-	\vdash		+	-	+			_	-	-	-	-	+	+	-	-	-	-		\vdash				
										\vdash	_		-	\dashv			_	_	+	-	-	+	-	+	-	-	-		\vdash				
													_	4				_	+	-	_	4	_	-	-	-	-						
														_					_	1		_	_	1	_	_	_						
			9.1																														
																														-			
										\Box				\dashv					\top	\top		T	T	T									
										\Box			7	1					+		\top	1	\top	1		1							
Relinquis	hed By:		Date:	Time:	Rece	ived By;			/				_	\dashv	ICE													COM	ME	ENTS:			-
18			6/13/9	11:42	/	ZA	11	9	NI	1	/							DITIO E ABS		г	0												
Relinguis	hed By:		Date:	Time:		ived By:	9						-	\dashv	DE	CHL	DRIN	ATE	D IN	LA										,			
																		TEC			ERS		_										
Relinquis	hed By:		Date:	Time:	Rece	ived By:								\neg	1 10				-		_												
															PRI	ESER	VAT	'ION		S	0&0		IETA H<2	LS	OTI	HER							

	,		Logi	book for Fi	eld pH San	nples		WOHIO	106679	
. Date/Time	Sample ID	Matrix	1 st Re	eading	2 nd R	eading	Ave	Standard	Comments	Analyst
Date/Time	Sample 1D	Iviatilx	pН	Temp.°c	рН	Temp.°c	pН	(lot # / exp. Date)	Comments	Maryst
	Cal. pH # 7.60	L	7.00	19.9	7.00	20.0	7.00	bulk		
6/13/19/09:02	Cal pH # 4.00		400	19.7	4.00	19-7	4-00	bu K		
6/13/19/09:02	Cal. pH #10.00	L		19.7	10.00	19.7	i .	· // ·		
6/13/19/09:02										
						Mes	ex	Myron 1	L Compan	Y
							amet			y
						scri		22206h		
									10	
8						00	1 – α		15	
						The	It h	teway of se	cading on Co	1 6/73/1

Sample Receipt Checklist

Client Name:	PG&E Gateway Generating Station			Date and Time Received	6/13/2019 11:42
Project:	pH Sampling (June 2019)			Date Logged: Received by:	6/13/2019 Agustina Venegas
WorkOrder №:	1906679 Matrix: <u>Water</u>			Logged by:	Agustina Venegas
Carrier:	Client Drop-In				
	Chain of C	Custody	/ (COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs note	ed by Client on COC?	Yes	✓	No 🗌	
Date and Time of	f collection noted by Client on COC?	Yes	•	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
COC agrees with	n Quote?	Yes		No 🗆	NA 🗹
	Samp	le Rece	eipt Informati	<u>on</u>	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	•	No 🗌	
Samples in prop	er containers/bottles?	Yes	•	No 🗆	
Sample containe	ers intact?	Yes	✓	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	•	No 🗆	
	Sample Preservati	on and	Hold Time (I	HT) Information	
All samples rece	ived within holding time?	Yes	✓	No 🗌	NA 🗌
Samples Receiv	ed on Ice?	Yes	✓	No 🗆	
	(Ice Typ	e: WE	TICE)		
Sample/Temp B	lank temperature		Temp: 2.8	3°C	NA 🗌
Water - VOA via	ls have zero headspace / no bubbles?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	•	No 🗌	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🗆	NA 🗹
	acceptable upon receipt (200.8: ≤2; 525.3: ≤4; ≤3; 544: <6.5 & 7.5)?	Yes		No 🗆	NA 🗹
Free Chlorine	tested and acceptable upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹
Comments:	=========	:	====	=======	=======

Attachment 9 Annual Flowmeter Calibration

159000

Gateway Generating Station

Annual Flowmeter Accuracy Test

Name and Signature of Tester:

Date of Test:

Follow the testing procedure (per manufacturer's -YokogawaCorporation of America's recomemdation) below.

Flowmeter ID	Coil Resis	tance Check	Flow Tube Resistance Check								
	Reading (ohm/s)	Within +/- 10% (Y/N)?	Electrode A Reading (ohm/s)	Electrode A Reading (ohm/s)	Within 20% Difference (Y/N)?						
Industrial Wastewater Flowmeter Tag No. 8WWC-FM-X001 Model No. Yokogawa AXF-100C Coil Resistance Value: 113.4 ohms	110	vy)**	1.90000	195000	. Yo						
Sanitary Wastewater Flowmeter Tag No. 8WWB-FM-X001 Model No. Yokogawa AXF 650C Coil Resistance Value: 116.8 ohms	115	Jus .	150000	150000	· Y						

Procedure for testing AXF integral flowtubes

- 1. Remove power from the flow meter. Remove the display side cover from the meter electronics housing.
- 2. Remove three retaining screws with a Phillips head screwdriver used to hold the amplifier assembly in place.
- 3. Remove the white plastic connector (CN5) attached to the left side of the amplifier assembly. The connector has 3 wires (red, white & blue). Remove the white plastic connector (CN3) attached to the right side of the amplifier assembly. The connector has 2 wires (purple & yellow).
- 4. Remove the amplifier assembly and store it in a safe place.

Checking the coil circuits

- 5. Locate 2 wire connector (CN3). Measure the excitation coil resistance between the yellow wire and purple wire of connector CN3. The measured resistance should correspond to the resistance value shown above in table 2 within +/- 10%.
- 6. Confirm that there is more than 20 MOHMS resistance between each wire to the meter electronics housing. If leakage is detected consult Yokogawa at 800-524-SERV.

Checking the flow tube when filled with conductive liquid

- 7. Make certain that the meter flow tube is full of liquid with greater than one micro-siemen conductivity.
- 8. Locate connector CN5 (3 wire connector). Measure the resistance between the red wire (A) and the blue wire (C) of CN5. Record the value.
- 9. Measure the resistance between the white wire (B) and the blue wire (C) of CN5. Record the value.
- 10. Compare resistance readings obtained in steps 8 and 9 above. If the readings are less than 20% apart the meter flow tube is not suspect. Proceed to the reassembly instructions (step
- 13). If readings are greater than 20% apart proceed to step 11.

Checking the flow tube when empty and dry

- 11. Drain the meter flow tube of all conductive liquid. Measure the resistance between each electrode in the meter flow tube to CN5 red (A) or white (B). The resistance will be less than 3 Ohms for general purpose meters or 150 K ohms for FM approved meters.
- 12. Repeat steps 8 and 9 above. The resistance should be infinite. Any leakage measured maybe due to buildup of conductive material between the electrode and the meter tube. Clean
- 13. Replace the amplifier assembly and meter electronics housing cover.

RECEIVED BY DELTA DIABLO

OCT 07 2019

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

October 4, 2019

Jason Yun Delta Diablo Sanitation District (DDD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DDSD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending September 30, 2019)

Dear Mister Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending September 30, 2019, as required under DDD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in June 30, 2019

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DDSD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business:

PG&E Gateway Generating Station

Address:

3225 Wilbur Avenue, Antioch, CA. 94509

Phone:

925-522-7805

Period Covered:

Period ending September 30, 2019

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisolom Date: Oct. 4, 2019

Print Name:

Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Michael Auer Fax # (925)756-1961 From: Tim Wisdom Company: Pacific Gas and Electric Company – Gas Period Covered: Period ending September 30, 201	,						
Industrial User Checklist for self –monitoring repedischarge permit issued by Delta Diablo Sanitation							
Self-monitoring reports							
Flow discharge summary (Discharge Permit Calibration of flow meters, as required. (Sect SMR)	, · · · · · · · · · · · · · · · · · · ·						
 ✓ Monitoring results- <u>All</u> required tests complication included, QA/QC, chain of custody (section ✓ Certification statement included (See Attach 	n F.7.) (See Attachment 8)						
Violations (if applicable)							
All wastewater discharge exceedance are rep Delta Diablo was contacted. (See Additional A follow-up report on characterization re-sate Corrective actions to resolve violation: Other violations - i.e. Reporting, spills to see	ll Notes below) mpling was submitted on						
Additional Notes: None							
Significant changes							
Anticipated changes that may alter the nature, qua	lity, or volume of the wastewater						

discharged. Planned changes shall be submitted at least 90-days prior to implementation

and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

IU NAME: PG&E Gateway Generating Station ID #: 0208841-C

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	9/4/2019	9/5/2019	9/5/2019	9/5/2019		
TYPE	G	G	C 24	G		
STATION	E-001	E-001	E-001	E-001		
SMP.BY	Muskan	Muskan	Muskan	Muskan		
	Compliance	Compliance	Compliance	Compliance Semi-		
PURPOSE	Quarterly (Q3)	Quarterly (Q3)	Quarterly (Q3)	annually (SA2)		

SIC:

4911

Units: mg/L

	Units:	mg/L							
PARAMETERS	<u>LIMITS</u>		•	•	•		•	•	
FLOW, DAILY (gal)	51,120								
FLOW, MONTH (gal)									
рН	6-10 s.u.		7.82						
BOD				7.3					
COD				ND(<10.0)					
TDS				392.0					
TSS				ND(<1.0)					
Arsenic	0.15			0.00110					
Cadmium	0.1			ND(<0.0005)					
Chromium	0.5			ND(<0.0005)					
Copper	0.5			0.0045					
Iron				0.130					
Lead	0.5			ND(<0.0005)					
Mercury	0.003			ND(<0.0002)					
Molybdenum				0.036					
Nickel	0.5			0.0019					
Selenium	0.25			ND(<0.0005)					
Silver	0.2			ND(<0.0005)					
Zinc	1.00			0.260					
Cyanide	0.2		0.0098						
Phenol	1.00		0.100						
Ammonia	200		28						
O&G Petro/Min (E1664A w/ Silica)	100	ND(<5.0)	ND(<5.0)						
O&G Animal/Vegetable Oil	300	ND(<0.4)	ND(<5.0)						
TTO EPA 608					ND(<0.00002)				
TTO EPA 624					0.0022				
TTO EPA 625					0.028106	_			
тто	2.00				0.030306				
Sulfide						_			_
Sulfate									

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

July 2019-September 2019

		Industria	l Flow						
			Did it ever			Time Mater	Did it ever		
		Time Over	go over	Dath Takal	la stantana sa	Time Meter	go over	Dath Takal	Cit - T-t-l
Date	Instantaneous	39.05 GPM	39.05 GPM	Daily Total	Instantaneous	went Bad	39.05 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		,	mins?			(minutes)	mins?		
7/1/2019	35.0	0.0	NO	31,703	0.0	0	NO		31,703
7/2/2019	34.7	0.0	NO	43,275	21.5	0	NO	383	43,658
7/3/2019	34.8	0.0	NO	40,120	20.3	0	NO	374	40,493
7/4/2019	34.6	0.0	NO	42,335	0.1	0	NO		42,335
7/5/2019	35.3	0.0	NO	22,130	0.1	0	NO		22,130
7/6/2019	34.8	0.0	NO	49,006	0.0	0	NO		49,006
7/7/2019	35.0	0.0	NO	17,943	0.0	0	NO		17,943
7/8/2019	34.9	0.0	NO	36,279	20.4	0	_	389	36,668
7/9/2019	34.8	0.0	NO	48,584	20.3	0	NO	394	48,978
7/10/2019	34.9	0.0	NO	36,226	0.0	0	NO	394	36,621
7/11/2019	35.1	0.0	NO	16,695	21.1	1	NO	384	17,079
7/12/2019	35.1	0.0	NO	27,183	0.0	0	NO		27,183
7/13/2019	34.7	0.0	NO	29,953	0.0	0	NO		29,953
7/14/2019	35.0	0.0	NO	22,005	20.7	0	NO	394	22,399
7/15/2019	35.0	0.0	NO	22,516	0.0	0			22,516
7/16/2019	35.1	0.0	NO	24,628	20.3	0	NO	400	25,028
7/17/2019	35.0	0.0	NO	41,185	19.8	0	_	372	41,558
7/18/2019	35.0	0.0	NO	15,397	0.1	0	NO	2	15,399
7/19/2019	34.8	0.0	NO	19,316	20.1	0	NO	380	19,696
7/20/2019	35.0	0.0	NO	27,032	0.1	0	NO	3	27,035
7/21/2019	35.0	0.0	NO	24,591	0.0	0	NO		24,591
7/22/2019	34.4	0.0	NO	15,289	0.0	0	NO		15,289
7/23/2019	35.1	0.0	NO	20,829	21.0	0	NO	389	21,218
7/24/2019	34.8	0.0	NO	28,522	0.0	0	NO		28,522
7/25/2019	34.7	0.0	NO	48,432	20.8	0	NO	551	48,983
7/26/2019	34.9	0.0	NO	33,607	0.0	0	_	1	33,607
7/27/2019	35.0	0.0	NO	30,704	0.0	0	_		30,704
7/28/2019	34.6	0.0	NO	28,560	21.2	0		374	28,934
7/29/2019	35.0	0.0	NO	26,356	0.0	0			26,356
7/30/2019	35.2	0.0	NO	17,225	20.2	0	NO	372	17,597
7/31/2019	34.5	0.0	NO	36,948	0.0	0	NO		36,948
						Max E	aily Flow (Lii	mit: 51,120):	49,006
								onthly Total:	930,128
8/1/2019	34.7	0.0	NO	31,883	20.6			387	32,271
8/2/2019	34.8	0.0	NO	28,101	0.0	0			28,101
8/3/2019	35.3	0.0		24,992	20.8	0		368	25,360
8/4/2019	34.8			26,848	0.1	0			26,848
8/5/2019	35.1	0.0	NO	28,410	0.0	0			28,410
8/6/2019	35.1	0.0	NO	32,362	20.9	0		382	32,743
8/7/2019	34.8	0.0	NO	32,323	20.7	0		399	32,721
8/8/2019	34.8		NO	40,867	0.1	0		3	40,869
8/9/2019	34.5	0.0	NO	34,905	20.6	0		386	35,291
8/10/2019	35.1	0.0	NO	6,523	0.1	0		386	6,909
8/11/2019	34.9	0.0		20,134	0.0	0	NO		20,134
8/12/2019	35.0	0.0		33,017	20.8	0		388	33,405
8/13/2019	35.0	0.0	NO	22,963	0.0	0			22,963
8/14/2019	35.3	0.0	NO	14,108	20.4	0	_	381	14,489
8/15/2019	35.0	0.0	NO	38,542	20.7	0	NO	387	38,929
8/16/2019	35.1	0.0	NO	22,742	0.1	0	NO		22,742
8/17/2019		0.0	NO	22,293	21.3	0		399	22,692
8/18/2019	35.1	0.0	NO	24,461	0.1	0	NO	9	24,470
8/19/2019	35.1	0.0	NO	20,307	0.0	0	NO		20,307

PG&E Gateway Generating Station

Discharge Flow Data

July 2019-September 2019

		Industria	l Flow		Sanitary Flow				
			Did it ever			Time Meter	Did it ever		
	Instantancous	Time Over	go over	Doily Total	Instantancous		go over	Doily Total	Cito Total
Date	Instantaneous	39.05 GPM	39.05 GPM	Daily Total	Instantaneous	went Bad	39.05 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
			mins?			(minutes)	mins?		
8/20/2019	34.7	0.0	NO	26,966	20.7	0	NO	378	27,344
8/21/2019	35.5	0.0	NO	14,715	0.1	0	NO		14,715
8/22/2019	35.0	0.0	NO	27,965	21.1	0	NO	402	28,367
8/23/2019	34.8	0.0	NO	19,384	20.1	0		385	19,769
8/24/2019	34.9	0.0	NO	31,542	0.0	0	NO		31,542
8/25/2019	34.7	0.0	NO	34,045	21.3	0	NO	373	34,418
8/26/2019	34.8	0.0	NO	21,806	0.1	0			21,806
8/27/2019	34.8	0.0	NO	30,736	20.8	0	NO	382	31,118
8/28/2019	34.9	0.0	NO	29,006	0.0	0	NO	1	29,007
8/29/2019	34.9	0.0	NO	23,818	20.0	0	NO	383	24,202
8/30/2019	34.9	0.0	NO	11,881	0.0	0	NO		11,881
8/31/2019	34.7	0.0	NO	33,335	0.0	0	NO		33,335
-						Max E	aily Flow (Lir	mit: 51,120):	40,869
							Mo	onthly Total:	817,158
9/1/2019	34.7	0.0	NO	31,230	21.7	0	NO	389	31,619
9/2/2019	35.0	0.0	NO	28,390	0.0	0	NO		28,380
9/3/2019	34.8	0.0	NO	48,999	0.0	0	NO		48,989
9/4/2019	34.8	0.0	NO	38,093	21.1	0	NO	565	38,658
9/5/2019	34.9	0.0	NO	42,643	0.0	0	NO		42,636
9/6/2019	34.4	0.0	NO	22,705	20.0	0	NO	402	23,108
9/7/2019	34.9	0.0	NO	30,276	0.1	0	NO		30,272
9/8/2019	34.9	0.0	NO	39,191	0.0	0	NO		39,189
9/9/2019	34.7	0.0	NO	34,959	20.6	0	NO	397	35,357
9/10/2019	34.8	0.0	NO	22,292	0.1	0	NO	397	22,689
9/11/2019	35.0	0.0	NO	16,931	20.8	0	NO	398	17,328
9/12/2019	35.2	0.0	NO	20,832	20.7	0	NO	398	21,230
9/13/2019	34.9	0.0	NO	30,337	0.1	0	NO	3	30,341
9/14/2019	35.1	0.0	NO	25,949	0.1	0	NO		25,947
9/15/2019	35.0	0.0	NO	31,990	20.7	0	NO	415	32,405
9/16/2019	35.0	0.0	NO	24,313	0.0	0			24,309
9/17/2019	35.0	0.0	NO	14,926	20.4	0		405	15,331
9/18/2019	34.8	0.0	NO	29,515	19.9	0		395	29,909
9/19/2019	36.2	0.0	NO	27,410	0.0	0			27,409
9/20/2019	35.4	0.0	NO	32,477	21.0	0	NO	405	32,882
9/21/2019	34.8	0.0	NO	37,867	0.0		NO		37,865
9/22/2019		0.0	NO	22,338	0.0				22,333
9/23/2019	34.8	0.0	NO	14,835	21.0			412	15,247
9/24/2019		0.0	NO	22,907	21.2			386	23,293
9/25/2019	34.9	0.0	NO	21,905	0.1	0	NO	9	21,915
9/26/2019	34.9	0.0	NO	23,615	21.0	0	NO	394	24,009
9/27/2019		0.0	NO	21,959	0.0			4	21,963
9/28/2019		0.0		18,417	21.2			387	18,804
9/29/2019		0.0	NO	30,497	20.8			813	31,310
9/30/2019	35.0	0.0	NO	34,303	17.1	0	NO	369	34,672

Max Daily Flow (Limit: 51,120): 48,989

Monthly Total: 849,400

Notes:

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2019**

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July	930,128	10/15/2019
August	817,158	10/15/2019
September	849,400	10/15/2019
October		
November		
December		

Note:

 $\label{lem:File: N: Pretreatment/PT Forms/Industrial Reporting Form for DDSD.xls} \\$

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report July 2019 to September 2019

	WSAC Operation							
Month	Hours of Operation							
January-19								
February-19								
March-19								
April-19								
May-19								
June-19								
July-19	450.75							
August-19	469.67							
September-19	381.75							
October-19								
November-19								
December-19								

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report July 2019 to September 2019

	WSAC Operation							
Month	Average Daily Blowdown Cycles							
January-19								
February-19								
March-19								
April-19								
May-19								
June-19								
July-19	6.07							
August-19	4.08							
September-19	4.07							
October-19								
November-19								
December-19								

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1909181

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly sampling (September 2019)

Project Received: 09/05/2019

Analytical Report reviewed & approved for release on 09/18/2019 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station
Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Analytical Qualifiers

b1 Aqueous sample that contains greater than ~1 vol. % sediment

Case Narrative

Client:PG&E Gateway Generating StationWork Order:1909181Project:Quarterly sampling (September 2019)September 18, 2019

Our standard ICP-MS analytical procedure is to analyze selenium using the Reaction mode.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 9/5/19 13:05

Date Prepared: 9/12/19

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 9/4/19 10:40	1909181-001B	Water	09/04/201	9 10:40	O&G	185235
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		09/13/2019 11:30

Analyst(s): HN

Analytical Comments: b1

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
E-001 9/5/19 11:35	1909181-001D	Water	09/05/20	19 11:35	O&G	185235
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		09/13/2019 11:35

Analyst(s): HN Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 9/5/19 13:05 **Date Prepared:** 9/6/19

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 9/4/19 10:40	1909181-001A	Water	09/04/201	9 10:40	O&G	184895
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.4	1		09/09/2019 12:55

Analyst(s): HN

Analytical Comments: b1

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 9/5/19 11:35	1909181-001C	Water	09/05/2019	9 11:35	O&G	184895
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		09/09/2019 13:00

Analyst(s): HN Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 1909181

Date Received:9/5/19 13:05Extraction Method:SM4500-NH3 BGDate Prepared:9/18/19Analytical Method:SM4500-NH3 BG

Project: Quarterly sampling (September 2019) Unit: mg/L

Ammonia as N

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 9/5/19 11:35	1909181-001E	Water	09/05/201	9 11:35	WC_SKALAR 091819A1_80	185587
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	<u>Analyzed</u>
Ammonia, total as N	28		10	100	09/18	3/2019 16:29

Analyst(s): NM Analystical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 9/5/19 13:05

Date Prepared: 9/5/19

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Extraction Method: SM5210B **Analytical Method:** SM5210 B-2001

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID Matrix Date Collected		lected	Instrument	Batch ID	
E-001 9/5/19 11:00	1909181-002A	Water	09/05/2019	11:00	WetChem	184767
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
BOD	7.3		4.0	1		09/10/2019 09:39

Analyst(s): AL

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 1909181

Date Received:9/5/19 13:05Extraction Method:SM4500-CN^ EDate Prepared:9/12/19Analytical Method:SM4500-CN^ CE

Project: Quarterly sampling (September 2019) Unit: μg/L

Cyanide, Total

Client ID	Lab ID	Lab ID Matrix		lected	Instrument Batch I		
E-001 9/5/19 11:35	1909181-001F Water 09/05/2019 11:35		WC_SKALAR 091219A1_23	185196			
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	<u>Analyzed</u>	
Total Cyanide	9.8		1.0	1	09/12	2/2019 12:48	

Analyst(s): NM Analystical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 1909181

Date Received:9/5/19 13:05Extraction Method:SM5220 D-1997Date Prepared:9/11/19Analytical Method:SM5220 D-1997

Project: Quarterly sampling (September 2019) Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 9/5/19 11:00	1909181-002B	Water	09/05/201	9 11:00	SPECTROPHOTOMETER	185021
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	e Analyzed
COD	ND		10	1	09/	11/2019 09:08

Analyst(s): RB

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 9/5/19 13:05 **Date Prepared:** 9/5/19

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Extraction Method: E245.2 **Analytical Method:** E245.2

Unit: μg/L

Mercury by Cold Vapor Atomic Absorption

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001 9/5/19 11:00	1909181-002E	Water	09/05/2019	11:00	AA1 _13	184762
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Mercury	ND		0.20	1		09/06/2019 14:23

Analyst(s): JC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 9/5/19 13:05 **Date Prepared:** 9/5/19

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Metals									
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID			
E-001 9/5/19 11:00	01 9/5/19 11:00 1909181-002F Water 09/05/2019 11:00		11:00	ICP-MS3 134SMPL.D	184709				
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed			
Arsenic	1.1		0.50	1		09/07/2019 09:31			
Cadmium	ND		0.50	1		09/07/2019 09:31			
Chromium	ND		0.50	1		09/07/2019 09:31			
Copper	4.5		0.50	1		09/07/2019 09:31			
Iron	130		100	1		09/07/2019 09:31			
Lead	ND		0.50	1		09/07/2019 09:31			
Molybdenum	36		0.50	1		09/07/2019 09:31			
Nickel	1.9		1.0	1		09/07/2019 09:31			
Selenium	ND		0.50	1		09/07/2019 09:31			
Silver	ND		0.50	1		09/07/2019 09:31			
Zinc	260		20	1		09/07/2019 09:31			
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>						
Terbium	110		70-130			09/07/2019 09:31			
Analyst(s): JC									

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 9/5/19 13:05

Date Prepared: 9/9/19

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

Extraction Method: E420.4

Analytical Method: E420.4 **Unit:** µg/L

Phenolics

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 9/5/19 11:35	1909181-001E	Water	09/05/2019 11:35		WC_SKALAR 090919A1_52	184921
Analytes	Result		<u>RL</u>	<u>DF</u>	Date	<u>Analyzed</u>
Phenolics	100		10	5	09/09	9/2019 13:41

Analyst(s): NM Analystical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 1909181

Date Received:9/5/19 13:05Extraction Method:SM2540 C-1997Date Prepared:9/5/19Analytical Method:SM2540 C-1997

Project: Quarterly sampling (September 2019) Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	ID Matrix		lected	Instrument	Batch ID
E-001 9/5/19 11:00	1909181-002C	Water	09/05/2019	9 11:00	WetChem	184788
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Dissolved Solids	392		10.0	1		09/06/2019 11:55

Analyst(s): AL

1909181

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Received:9/5/19 13:05Extraction Method:SM2540 D-1997Date Prepared:9/5/19Analytical Method:SM2540 D-1997

Project: Quarterly sampling (September 2019) Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001 9/5/19 11:00	1909181-002D	Water	09/05/2019	11:00	WetChem	184719
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Total Suspended Solids	ND		1.00	1		09/05/2019 15:20

Analyst(s): HAD

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1909181Date Prepared:9/13/19BatchID:185235Date Analyzed:9/13/19Extraction Method:E1664A_SGInstrument:O&GAnalytical Method:E1664A

Matrix: Water Unit: mg/L

Project: Quarterly sampling (September 2019) Sample ID: MB/LCS/LCSD-185235

QC Summary Report for E1664A						
Analyte	MB Result	MDL	RL			
SGT-HEM	ND	0.72	5.0	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	9.0	8.7	10.42	86	83	64-132	3.11	30

Quarterly sampling (September 2019)

Project:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

MB/LCS/LCSD-184895

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:1909181Date Prepared:9/9/19BatchID:184895Date Analyzed:9/9/19Extraction Method:E1664AInstrument:O&GAnalytical Method:E1664A

Matrix: Water Unit: mg/L

QC Summary Report for E1664A								
Analyte	MB Result	MDL	RL					
HEM	ND	12	5.0	_	_	_		

Sample ID:

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	18	17	20.83	87	84	78-114	3.51	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 9/18/19

Date Analyzed: 9/18/19 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

BatchID: 185587

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-185587

QC Summary Report for SM4500-NH3									
Analyte	MB Result	MDL	RL						
Ammonia, total as N	ND	0.084	0.10	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	3.9	3.9	4	97	97	88-113	0	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 9/5/19Date Analyzed: 9/10/19Instrument: WetChem

Matrix: Water

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181 **BatchID:** 184767

Extraction Method: SM5210B

Analytical Method: SM5210 B-2001

Unit: mg/L

Sample ID: MB/LCS/LCSD-184767

1909181-002A

	QC Summary Report for BOD								
Analyte	MB Result	MDL	RL						
BOD	ND	4.0	4.0	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	180	180	198	92	91	80-120	1.11	16

Analyte	SAMP Result	DUP Result	RPD	RPD Limit
BOD	7.3	7.4	0.96	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 9/12/19

Date Analyzed: 9/12/19

Instrument: WC_SKALAR

Matrix: Water

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

BatchID: 185196

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: μg/L

Sample ID: MB/LCS/LCSD-185196

QC Summary Report for SM4500-CN ⁻ CE									
Analyte	MB Result	MDL	RL			_			
Total Cyanide	ND	0.84	1.0	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	39	39	40	99	98	80-120	0.521	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 9/11/19

Date Analyzed: 9/11/19

Instrument: SPECTROPHOTOMETER

Matrix: Water

Project: Quarterly sampling (September 2019)

WorkOrder: 1909181

BatchID: 185021

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Sample ID: MB/LCS-185021

1909181-002BMS/MSD

	QC Summary Report for COD								
Analyte	MB Result	MDL	RL						
COD	ND	7.2	10	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	110	-	100	106	-	90-110	-	-

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
COD	1	110	110	100	ND	106	102	80-120	3.57	20