DOCKETED	
Docket Number:	19-SB-100
Project Title:	SB 100 Joint Agency Report: Charting a path to a 100% Clean Energy Future
TN #:	232224
Document Title:	Imperial Irrigation District Comments - IID Presentation
Description:	N/A
Filer:	Harinder Kaur
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	2/25/2020 11:44:24 AM
Docketed Date:	2/25/2020

SB 100 Joint Agency Report

Modeling Inputs and Assumptions Workshop Imperial Irrigation District Comments

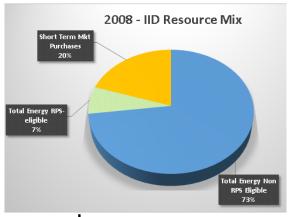
Marilyn D. Gilbert

Energy Manager February 24, 2020

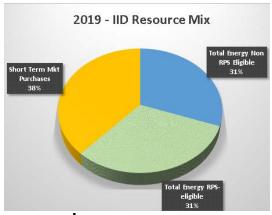
IID Electrical Service Area

About IID

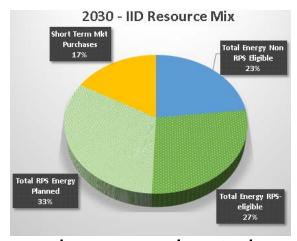
- Balancing Authority
- 156,000 electric accounts
- Adopted an Open Access Transmission Tariff in 2001
- 1,100 MW of renewable interconnected resources consisting of small hydro, geothermal, biomass and solar.
- Home to the Salton Sea Known Geothermal Resource Area


Demographics

- IID's customer classes:
 - Residential (86%)
 - Commercial (13.5%)
 - Industrial (.5%)
- Unemployment:
 - 20.7% as of September 2019
- Number of customers receiving rate assistance (monthly):
 - 10,868 or approximately 15%



IID Resource Mix


IID is RPS compliant and is committed to meeting future RPS requirements

where we were

where we are

where we plan to be

www.iid.com

SB100 Challenges for the Balancing Authority

- IID balances by matching internal generation and imports/exports to load
 - IID Summer Peak Load:

1067 MW

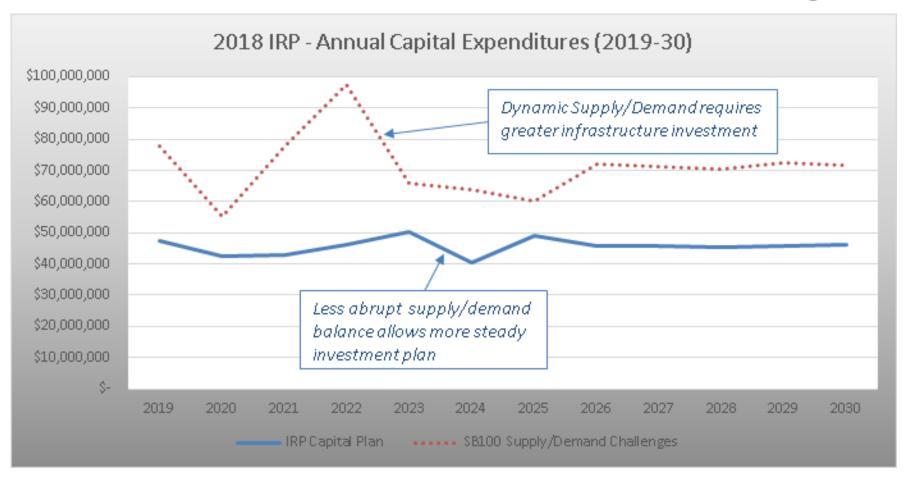

IID Winter Low Load:

209 MW

- 800 MW seasonal fluctuation results in idle generation
- Currently curtailing generation resources due to excess generation and not enough local demand

Load Profile Impact (last 12 years)

- Customer activities are noncontrollable on an hourly basis
- Less load control = greater volatility in net load
- Scheduling/Trading must dispatch around this new load profile every hour of every day of the year
- IID BA must balance system each second
- Existing resources must be flexible to ramp around new and evolving load profile
- Potential New resources must contain flexibility to shift quickly during daily extreme highs and lows



Resource Shift

- Transition from thermal fleet to variable and energy limited resource mix
- The shift to resources without inertia increases reliability risks to the system
- Current lack of cost-effective technological solutions to replace gas-fired generation is a challenge
 - Looking for areas where technology is improved and costs decreased; IID is risk averse to new, unproven technologies
- IID evaluating participation the Energy Imbalance Market (EIM) to help mitigate the impact of over production

SB100 Capital Investment Challenges

 Infrastructure investment depends on load growth and customer activities and the dynamic relationship between resource supply and demand.

SB100 Cost Challenges

- Retirement of generation units before end of useful life requires covering of existing debt service obligations (stranded cost)
 - IID's last gas unit achieved commercial operation in 2012
- Replacement of existing units with more reactive and flexible resources will result in additional cost
- Actual cost of IRP integration is artificially masked by lower gas prices
- During the transition to 100% all costs will be pushed back to IID's 156,000 customers, causing increased rates
 - IID's low income customers will suffer greatest negative impact
- During transition to 100%, the retirement of fast ramping units will drive increased costs for balancing and ancillary services

SB100 Long Term Challenges

- Additional cost burden of new resources and transmission will be borne by IID ratepayers
- Time required to build new resources and transmission is a factor
- Additional costs drive the need for rate increases on customer base least able to bear the burden
 - Imperial County is one of the poorest counties in the country
 - Imperial County has high unemployment rates
- Uncertainties in resource procurement and capital investments due to potential loss of load in the Coachella Valley portion of IID's system (approximately 60% of load) by 2033

Energy Storage and IID Future Plans

- IID has invested in storage with a 20MWhr/30MVA battery
- Energy Storage has seen a dramatic decrease in cost and significant improvement in technology
- Energy Storage appears to be a helpful addition to the IID system in meeting SB100 goals except when:
 - Extensive debt is required to acquire the technology
 - Other regulating units will require retirement, thus requiring heavier investment
 - The storage is added in an untimely manner (too soon)
 - Early adopter issues
 - The storage must be added with other intermittent resource creating additional need for more storage

Future IPP Interconnections

- Interconnection requests processed under IID's Open Access Transmission Tariff adopted by IID Board in 2001, as amended
- 2,325 MW in active interconnection queue projects
 - 250 MW Solar
 - 550 MW Geothermal
 - 1525 MW Solar and Storage
- Majority of queued projects intended for export from IID system.
- Serially assessed for impacts and infrastructure needs

Transmission Planning Challenges

- Aging infrastructure
- Challenges stemming from being in the Desert Southwest region
 - BESS 10MWH (cooling, losses) for a 20MW system
 - What future technologies can avoid these issues?
 - High ambient temperatures affecting efficiency of all resources, i.e., loss of solar efficiency at temperatures above 110°F
- Potential for large scale infrastructure additions within the IID BA due to renewable potential within footprint (geothermal, solar/storage)
- Uncertainty in fast-ramping gas units future pushes for embedded effective energy storage systems

Transmission Planning Challenges

- Energy storage used to defer reliability upgrades
- Composite load models vs lack of system inertia
- DSW load composition impacts on system stability
- Low load/High renewable export scenarios
- Geothermal, solar production, and exports to increase from the IID area
 - Substantial transmission system upgrades necessary to meet forecast
 - Assessed via multiplication of existing queue resources
 - Additional 1,500MW-2,500MW integration requires ~\$300M \$500M in infrastructure + Remedial Action Schemes
- Requesting additional scenario to assess increased geothermal out of IID's balancing authority's area

Questions?

