DOCKETED				
Docket Number:	19-OIR-01			
Project Title:	Load Management Rulemaking			
TN #:	231540			
Document Title:	Presentation - Results from the Pacific Northwest CTA-2045 Water Heater DR Pilot			
Description:	Presentation by Tony Koch (BPA) on the water heater load control pilot using eRadio broadcast and CTA-2045 communications			
Filer:	Karen Herter			
Organization:	Bonneville Power Administration			
Submitter Role:	Public Agency			
Submission Date:	1/15/2020 12:05:59 PM			
Docketed Date:	1/15/2020			

Panel 3: Responding to hourly/sub-hourly grid signals

Results from PNW CTA-2045 Water Heater DR Pilot

Tony Koch

Bonneville Power Administration

January 14, 2020 2:15p CEC Load Management Scoping Workshop

Project Objectives

М

S

Enrolled:

0

175 heat pump water heaters90 resistance water heaters

DR Events: (daily load control events, one week alternating) 600 events in 220 days

Quantify:

Peak load mitigation (hourly kW) Energy shifting (daily kWh)

Gage customer acceptance / satisfaction

Promote regional education

Design a market transformation plan

Develop a business case to justify market transformation plan

N

0

DR Communications Standard: ANSI/CTA-2045

A modular, open source, demand response specific communications port and command language

Μ

Consumer Technology Association (CTA) published the standard in 2013, updated in 2018

The standard is now ANSI approved and used internationally

Intended for multiple appliances

Two form factors:

- DC (3V) and AC (240V)
- Considering adding USB as a form factor

S

0

N

MI

S

Electric Power Research Institute (EPRI) provided initial technology proving and demonstrations (2013 – 2016)

water heaters, thermostats, EV charging, pool pumps, PTACs

PNW regional CTA-2045 water heater DR project (2016 – 2018)

Project Report and additional materials can be found at:

www.bpa.gov/goto/smartwaterheaterreport

Duke Energy in the Southeast is also engaged in field studies

Examples of DC and AC forms

POWE

М

N

N N E V I L L

в о

0

N

COMMUNICATIONS & DATA PATH SCHEMATIC

Μ

S

POWER

0

0

Peak Demand Reduction Results (Hourly Average Watts)

Shed command results (asks appliance to reduce load)

0

W

Winter Peak Results	3-Hour Shed Watts Reduction	95% CI				
Heat Pump Water Heaters						
A.M. peak	223	±27				
P.M. peak	165	±31				
Resistive Water Heaters						
A.M. peak	374	±65				
P.M. peak	321	±74				

0

Summer Peak Results Heat Pump Water Heaters	4-Hour Shed Watt Reduction	95% CI			
P.M. peak	85	±10			
Resistive Water Heaters					
P.M. peak	347	±29			

S

М

Grid emergency results (turns appliance Off)

Time	Winter/Spring Grid Emergency Watt Reduction	95% CI	Summer Grid Emergency Watt Reduction	95% CI			
Heat Pump Water Heaters							
A.M. period	244	±32	122	±20			
P.M. period	167	±43	96	±11			
Resistive Water Heaters							
A.M. period	562	±69	393	±50			
P.M. period	563	±105	389	±39			

HPWP

2 x 0.75 kWh storage per day

0

Resistance

2 x 1.5 kWh storage

per day

Customer Satisfaction

Μ

S

190 of 265 Participants completed survey: 10 Resistance and 180 HPWH

Ran out of hot water last year?

40% never 50% couple times

How satisfied were you with the Pilot?

83% Very 15% Somewhat

Likely to participate in DR Program in the future?

72% very likely24% Somewhat likely

Primary Motivation to joining the study:

38% Amount of incentive

46% knowing that I'm helping to avoid a new power plant

43% knowing that I could influence more clean renewable energy on the grid

26% Getting an annual report that quantify my contribution to the CO2 reduction

0

N

Mitsubishi Heat Pump Space Conditioning via CTA-2045 New opportunity being explored by BPA in 2020

- Use the same communication module used for water heater on Mitsubishi unit
- Change temperature set point up or down 1-4 F
- Available in most models sold in the US
- Can control central thermostat set-point for whole house ducted forced air heat pump
 - Similar to water heater appliances, requires proprietary adapter (ideally, this adapter is eliminated in the future)

S

OpenADR and CTA-2045

These are not interchangeable standards

М

S

They can be complimentary

- **OpenADR** was designed for server to server communication via internet
 - Intended for utility / DR entity dispatch to DR aggregator and/or C&I customers
 - No physical port requirement, assumes robust and secure IT hardware and internet
- **CTA-2045** was designed for use on residential / small commercial appliances
 - Physical port and command set embedded in the appliance
 - Modular comm, back haul communications to the DR entity chosen by the utility

Two examples of OpenADR being misapplied

AHRI 1380 (2019) - Demand response through variable capacity HVAC systems in residential and small commercial application

ENERGY STAR Connected Water Heater Specification, Draft v3.3 (not yet finalized)

- Both of these specs allow CTA-2045 or OpenADR, or both
- That is not a cost effective or practical solution

NEVILLE POWER,

0

Thank You

M I

N

S

Tony Koch, PE, CEM

Mechanical Engineer BPA Energy Efficiency jakoch@bpa.gov 206.220.6777 O N