DOCKETED			
Docket Number:	19-OIR-01		
Project Title:	Load Management Rulemaking		
TN #:	231539		
Document Title:	Presentation - Shifting of California State Water Project Pumping Using Aquifer Storage		
Description:	Presentation by Chie Hong Yee Yang on the results of an EPIC-funded study (EPC-16-029) to shift seasonal electricity loads using the California State Water Project's Aquifer Storage		
Filer:	Karen Herter		
Organization:	California Energy Commission		
Submitter Role:	Commission Staff		
Submission Date:	1/15/2020 12:05:59 PM		
Docketed Date:	1/15/2020		

EPC-16-029: Water/Energy Bank

Shifting of California State Water Project Pumping Using Aquifer Storage

Ę

Chie Hong Yee January 14, 2020 California Energy Commission

Can Department of Water Resources (DWR) State Water Project (SWP) pumping be:

- increased during spring over-generation periods?
- decreased during summer peak demand periods?

1. Shift SWP pumping from high to low demand periods

- Seasonal shift storage
 - Increasing pumping in spring
 - San Luis Reservoir to Willow Springs Water Bank (WSWB) aquifer storage
- Summer peak-demand shift
 - Dos Amigos, Buena Vista, Teerink, Chrisman, and Edmonston pumping facilities
 - Use excess solar power to pump water out of aquifer storage
- 2. Preserve all aspects of SWP water delivery
 - Timing, quantity, reliability

SWP facilities Central Valley

• Approach

- Evaluate DWR historical operations at Edmonston
- Characterize existing DWR practice of load shifting
- Determine potential additional load shifting
- Data
 - 10 years of hourly summer data: July-September, 2008-2017
- Conclusions
 - Confirmed that DWR historically managed SWP operations to reduce energy use during peak hours.
 - Historical mean average summer use of power 596 MW, reduced to 321 MW during peak-power demand periods.
 - Summer peak power demand could be further reduced to 113 MW from 321 MW, assuming hourly ramping rate was increased to 4 pumps on/off.

Objective

- Reduce pumping during peak hours in summer
- Target: 6 hours per day load-free

Methods

- Determined the amount of water shift from reducing SWP valley-string pumping (up to 6 hours/day) during peak demand periods.
- Determined whether this amount of water can be placed into WSWB storage during the spring.
- Ability to seasonally-shift limited by WSWB recharge and extraction capacity and SWP aqueduct and facility capacity.
- Total energy costs for water-movement (SWP and WSWB) were computed.

Pumping Volume Shift

F

	WSWB Monthly Operations		SWP Pumping Volume	WSWB and SWP
Month	Baseline	Water-Energy Bank	Shift (TAF)	Net Energy Shift (<u>GWh</u>)
January	NEUTRAL	NEUTRAL	0.0	0.0
February	NEUTRAL	RECHARGE	16.9	56.3
March	NEUTRAL	RECHARGE	23.8	77.9
April	NEUTRAL	RECHARGE	23.0	81.7
May	NEUTRAL	RECHARGE	23.8	84.5
June	NEUTRAL	EXTRACTION	-0.5	-1.3
July	RECHARGE	EXTRACTION	-33.4	-101.8
August	RECHARGE	EXTRACTION	-38.9	-116.8
September	NEUTRAL	EXTRACTION	-14.7	-33.5
October	NEUTRAL	NEUTRAL	0.0	0.0
November	NEUTRAL	NEUTRAL	0.0	0.0
December	NEUTRAL	NEUTRAL	0.0	0.0

Table 1: Summary of Baseline and Water-Energy Bank Operations for Year 1940

Extraction: WSWB is extracting water out of storage. Recharge: WSWB is recharging water into storage. Neutral: WSWB is idle and is not recharging or extracting water. Spring pre-delivery months are green shading; summer shift months are blue.

- Economic value calculated in the following fields
 - Avoided Wholesale Energy Costs
 - Avoided Losses
 - Generation Capacity Value
 - Transmission Deferral Value
- Results are the difference from Spill Capture and Water-Energy Bank Scenarios
- The analysis assumed an Edmonston ramping rate of no more then 4 pumps on/off per hour

F

Figure 23: Total Avoided Cost Value for Each Water Year Type in Each Curtailment Scenario, Annualized During 2020-2040

Flexible load value is driven by reduced procurement of renewables and storage, as well as operational cost savings

- Peak power reductions
 - 300 MW on average summer days
 - 1.5 GW potential instantaneous load shed
- Willow Springs Water Bank
 - TOU cost savings
- DWR
 - energy cost reductions
 - Demand response program benefits
 - Operational flexibility in capacity planning
- Load serving entity and system benefits
 - Deferred transmission costs
- GHG reduction benefits
 - Demand flexibility offsets enable increased penetration of renewable resources
 - 16,000 metric tons of CO2 annually, based on the mid-curtailment scenario

Analucia Eremourark	Average Total Avoided Cost Value (\$ million/yr)			
Analysis Framework	Low-Curtailment	Mid-Curtailment	High-Curtailment	
Avoided Cost Analysis Framework	\$13	\$23	\$38	
RESOLVE Framework	\$5	\$7	\$21	

- WSWB is proposing to operate the aquifer storage using renewable energy
 - 40 MW on-site solar, 5 MW on-site hydropower
 - 98,000 MWh/yr generated (53,400 MWh/yr used)
- Shifting SWP valley-string pumping out of high-cost periods by storing water in aquifer storage and extracting it during low-cost periods appears feasible.
- Generation capacity, transmission deferral and demand response benefits are the most significant potential benefits.