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High-resolution gridded climate data products are crucial to research and practical

applications in climatology, hydrology, ecology, agriculture, and public health.

Previous works to produce multiple data sets were limited by the availability of

input data as well as computational techniques. With advances in machine learning

and the availability of several daily satellite data sets providing unprecedented

information at 1 km or higher spatial resolutions, it is now possible to improve

upon earlier data sets in terms of representing spatial variability. We developed the

NEX (NASA Earth Exchange) Gridded Daily Meteorology (NEX-GDM) model,

which can estimate the spatial pattern of regional surface climate variables by

aggregating several dozen two-dimensional data sets and ground weather station

data. NEX-GDM does not require physical assumptions and can easily extend spa-

tially and temporally. NEX-GDM employs the random forest algorithm for estima-

tion, which allows us to find the best estimate from the spatially continuous data

sets. We used the NEX-GDM model to produce historical 1-km daily spatial data

for the conterminous United States from 1979 to 2017, including precipitation,

minimum temperature, maximum temperature, dew point temperature, wind speed,

and solar radiation. In this study, NEX-GDM ingested a total of 30 spatial variables

from 13 different data sets, including satellite, reanalysis, radar, and topography

data. Generally, the spatial patterns of precipitation and temperature produced were

similar to previous data sets with the exception of mountain regions in the western

United States. The analyses for each spatially continuous data set show that satel-

lite and reanalysis led to better estimates and that the incorporation of satellite data

allowed NEX-GDM to capture the spatial patterns associated with urban heat

island effects. The NEX-GDM data is available to the community through the

NEX data portal.

KEYWORDS

daily surface climate, machine learning, NEX-GDM, precipitation, random

forest, solar radiation and wind speed, temperature

1 | INTRODUCTION

Long-term and high-resolution mapping of surface climate

variables has been crucial for many applications that aim to

analyse regional land ecosystem response to climate pat-

terns, including input for ecosystem modelling (Huntzinger

et al., 2012; Abatzoglou, 2013), validation for regional cli-

mate model output (Wang and Kotamarthi, 2014),
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downscaling future climate projections (Pierce et al., 2014),

forecasting natural hazards (Nemani et al., 2009), and

many others. There have been previously produced high-

resolution climate data sets that are publicly available and

ready to use for ecosystem modelling; however, each data

set has its own purpose, temporal and spatial resolution,

time frame, and climate variables. For example, Livneh

et al. (2013) produced a century-scale daily data set, but

with relatively low resolution (1/16�) for the purpose of

supporting hydrometeorological modelling. Other data sets

are limited to only precipitation and/or temperature (Vose

et al., 2014; Newman et al., 2015; Oyler et al., 2015a),

which are not sufficient to drive ecosystem models. Cur-

rently, PRISM (Parameter-elevation Regressions on Inde-

pendent Slopes Model) (Daly et al., 1994) and Daymet

(Thornton et al., 1997) are the most commonly used for

ecosystem modelling because those data sets include vari-

ables meeting the meteorological input requirements of the

ecosystem models. The availability of a small number of

data sets for forcing ecosystem models makes it difficult to

assess the uncertainty of the statistics derived from ecosys-

tem models (Wu et al., 2017). Therefore, development of a

new interpolation methodology that incorporates more

observational input data sets is necessary for further cli-

mate and ecosystem studies, as this is important for

improving the accuracy of these data sets. We developed

the NASA Earth Exchange (NEX) Gridded Daily Meteo-

rology (NEX-GDM) model to generate high-resolution cli-

mate variables by aggregating high volumes of spatial data

through a machine learning technique. By using several

high-volume data sets archived in the NEX facilities,

NEX-GDM was able to create 1-km daily climate data sets

for the conterminous United States that are continuous in

both time and space.

Historically, due to the difficulty of high-resolution

dynamic downscaling through regional climate models,

spatial interpolation of weather station data has been the

most reliable technique to account for spatial variability at

the regional scale. Various spatial interpolation methodol-

ogies were developed to spatially interpolate weather sta-

tion data; for example, Thiessen polygons (Thiessen,

1911), inverse-distance (Willmott et al., 1985), splines

(Hutchinson, 1995), and kriging (Jolly et al., 2005). These

methods are useful for small areas or regions with dense

observation networks, but they have several issues when

applied at the country or continental scale. For example,

even though the influences of topographic effects, such as

lapse rate, were well known, earlier interpolated gridded

methods could not capture these known features. As a

result, those methods cannot be applied to mountainous

regions with few observations from sparse networks of

weather stations. To account for the topographic effects,

methodologies incorporating digital elevation models

(DEM) were developed and applied at the continental

scale (Hutchinson, 1995; Thornton et al., 1997). PRISM

(Daly et al., 2008) not only added elevation information,

but also used topographic facet, coastal proximity, two-

layer atmosphere, topographic position, and effective ter-

rain height from DEM. Those methodologies primarily

used the time-invariant information (i.e., elevation, or its

derivatives). More recently, it has been recognized that

adding time-variant information is effective to account for

more spatial variability. Parmentier et al. (2015) have

improved upon the interpolation schemes of maximum

temperature by incorporating land surface temperature

(LST) and Oyler et al. (2015a) used LST to create mini-

mum and maximum temperature gridded data sets

(TopoWx). However, none of these data sets incorporates

time-variant spatial information for multiple climate vari-

ables other than temperature. Especially for running eco-

system models, it is imperative to have a several climate

variables with the same spatial and temporal resolution.

The difficulties in incorporating time-variant spatial infor-

mation come from constraints including data storage, fre-

quent missing-data, non-matching spatial resolution,

insufficient availability, and lack of screening techniques

that are universally applicable.

A machine learning technique was used in NEX-GDM

to overcome these shortcomings to incorporate various

time-variant data sets. Although machine learning tech-

niques have been extensively applied in land cover classi-

fication problems (Pal, 2005; Belgiu and Dr�aguţ, 2016),

their use is not well developed for the purpose of down-

scaling climate data sets. PERSIANN (Precipitation Esti-

mation from Remotely Sensed Information using Artificial

Neural Networks) is one application of a machine learning

technique, which employed an artificial neural network

(ANN) algorithm to estimate precipitation from satellite

data (Hsu et al., 1997). Several experimental studies have

applied the random forest algorithm (Breiman, 2001) to

develop a two-dimensional climate surface (Shi and Song,

2015; Higuchi et al., 2016; Jing et al., 2016). However, no

study has applied the random forest to dozens of input data

sets to create consistent climate data sets across many dif-

ferent climate variables. NEX-GDM uses several time-

variant spatially continuous data sets, including reanalysis,

satellite, and radar data sets. Therefore, our concept of this

study is to combine multiple large spatially continuous

data sets at high spatial and temporal resolutions through

machine learning techniques. This can be realized by

leveraging the super-computing power and mass storage

of NEX.

NEX-GDM provides long-term, daily 1-km gridded

data for precipitation, maximum temperature, minimum

temperature, dew point temperature, wind speed, and solar

radiation from 1979 to 2017 for the conterminous United

States. The objectives of this study are to (a) create gridded

data set using multiple time-variant spatially continuous
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data sets for ecosystem modelling, (b) propose a straight-

forward methodology to apply machine learning algorithms

to interpolate ground observation data into spatial maps at

the continental scale, and (c) test whether NEX-GDM accu-

rately captures the spatial variability of those climate

variables.

2 | METHODS

2.1 | Random forest algorithm

Random forest is a supervised machine learning technique

that uses decision trees. Breiman (2001) developed the ran-

dom forest algorithm by combining bagging and random

variable selection within a binary decision tree. The rationale

of random forest is that aggregation of a few hundred weak

predictor decision trees can make a strong predictor. Ran-

dom forest can be applied to both classification and regres-

sion problems.

The random forest regression algorithm makes a few

hundred decision trees from samples randomly selected from

the training data through a bootstrapping procedure. In the

process of node-splitting into decision trees, the random for-

est algorithm randomly selects a subset of variables for each

node; in this way, the random forest procedure avoids over-

fitting. The random forest regression algorithm produces an

average of the values in the end nodes of the decision trees.

When random forest is applied to classification, the final

estimation is the majority class of end nodes. Each tree clas-

sifier can be expressed as

Treek = f x,Θkð Þ, ð1Þ

where x is the input vector, Θk is a randomly selected vector

from training data sets, and n is the number of trees. The

estimation of random tree is

RF xð Þ=
1

n

Xn

k=1

Treek xð Þ: ð2Þ

As the derivative of the random forest classification, the

probability of a certain class can be calculated as the percent-

age of the decision trees that estimate the class to the total

number of decision trees.

An advantage of using the random forest algorithm is

the ability to calculate the contribution of each input vari-

able used in training process, which is defined as “variable

importance” (Breiman, 2001). Samples not selected in the

random selection process, an out-of-bag (OOB) sample, are

used to calculate the variable importance. The OOB error is

the error of the prediction of applying the OOB samples.

The variable importance is the difference of the OOB errors

with and without permuting the target variables in the OOB

samples. The variable importance of each variable is rela-

tive to that of the other variables, and so the values are

always subject to change after adding other variables.

Variable importance benefits the random forest for select-

ing input variables in NEX-GDM, and can be useful infor-

mation for the addition of new input data sets in the future.

Here, we present the variable importance as percentages to

make the sum of the importance of all the variables 100%.

Generation of the random forests was performed using the

OpenCV library (Bradski, 2000) for random forest

applications.

2.2 | Application of the random forest algorithm to

two-dimensional data

We developed the Aggregation and Interpolation of NEX

Archives (AINA) model to apply the machine learning

method to two-dimensional data. AINA estimated the spatial

climate variables in daily time steps. The ground observation

data were used as the response variables, while the spatial

data products were used as explanatory variables for the ran-

dom forest algorithm.

Even though random forest is computationally inexpen-

sive compared to other complex machine learning tech-

niques, such as deep learning, training random forest for all

the pixels still takes too much time for high-resolution appli-

cations. It is impractical to train the model for each individ-

ual pixel and so it is necessary to reduce the number of

trainings. However, setting the zone of each trained model

and applying it inside the zone inevitably creates artificial

patchy patterns on the boundaries where different trainings

have been applied. To avoid such artificial patterns, AINA

applied the random forest algorithms through the following

steps:

1. Using a 20-km grid, AINA searched for the two hun-

dred (for precipitation, maximum temperature, and

minimum temperature) and one hundred (for dew

point temperature, wind, and solar radiation) weather

stations that were contained within or closest to each

20-km grid cell (Figure 1a). The number of weather

stations was determined through visually checking

from the density of stations need for each variable to

provide adequate coverage at regional scales, and to

ensure that the stations selected could explain the spa-

tial variability.

2. We bilinearly interpolated each of the input data sets

(reanalysis, satellites, radar, and topography data) to the

location of each of the weather stations. After this step,

each weather station has one sample from each of the

input data sets for each date, providing multiple explana-

tory variables from the spatial data inputs and one

response variable or observed value for each date at each

weather station (Figure 1b).

3. AINA trained the random forest creating 100 decision

trees for each 20 × 20 km grid cell. The training data

consist of 100 or 200 samples (depending on the
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variable) from the weather stations nearest to each grid

cell (Figure 1c).

4. The values of the target pixel (1 km resolution pixels in

this study) were estimated from the 16 surrounding ran-

dom forests. Then, the final estimates were calculated by

weighing the 16 estimates (Figure 1d). The final esti-

mate is given by

Estimate =
X3

i=0

X3

j=0

wi, jRFi, j xð Þ, ð3Þ

where i and j denotes ith row and jth column of the 16 sur-

rounding random forests (RFi,j) and wi,j is the weight for

each random forest. We set the coefficients of bi-cubic

linear-interpolation as wi,j.

The random forest could have bias when using

skewed training data (Zhang and Lu, 2011). Therefore,

caution must be taken with applying random forest to

spatial applications when the training data for a target

pixel is skewed compared to the surrounding area. In

AINA, using the nearest 10 weather station samples, the

ratio-scale variables (i.e., precipitation, wind speed, and

solar radiation) are adjusted using reduced major axis

regression, while the interval scale variable (maximum

temperature, minimum temperature, and dew point tem-

perature) are adjusted from the difference of the mean.

The reduced major axis (RMA) regression is commonly

used especially when X-axis is measured with error

(Smith, 2009).

This new methodology allows us to create high resolu-

tion data without incurring an exponential cost for computa-

tion (i.e., O(n2)), and apply AINA separately for each day

and each variable. Some gridded climate data sets

(e.g., TopoWx) calculate the daily value as summation of a

well-described long-term mean value plus the interpolated

deviation from surrounding weather stations. Meanwhile,

other approaches (e.g., Daymet) directly interpolate the

values from surrounding weather stations directly. The

AINA approach is more closely related to daily-independent

interpolation approaches such as Daymet.

2.3 | Specific treatment for each variable

For precipitation estimates, AINA applied the random forest

algorithm twice. First, AINA estimated the probability of

rainfall or snowfall events for each pixel. If the percentage

of probability is greater than 50% (i.e., the majority of deci-

sion trees conclude that rainfall or snowfall occurred), we

assumed there was rainfall or snowfall and then precipitation

was estimated for the pixel again using random forest

regression.

For dew point temperature, the available dew point tem-

perature record is sparser than maximum temperature or

minimum temperature records. If dew point temperature was

FIGURE 1 Conceptual diagram of NEX-GDM application of random forest algorithm to two-dimensional data. (a) Each random forest found the 200 closest

weather stations. (b) The database was created by extracting single point data from the spatial data and observed data at the stations. (c) At each random forest

point, we grew the trees using the database. (d) We estimated the value at the target pixel by weighted average of the surrounding 16 random forests. The

numbers are notations of row and column of the x and y axis, respectively
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estimated independently from minimum temperature, unreal-

istic results can occur such as dew point temperatures that

are far greater than minimum temperatures. To avoid such

inconsistencies, AINA calculated the difference between

dew point temperature and minimum temperature, and then

interpolated the difference, following the same approach

used by Daly et al. (2015). The final results for dew point

temperature came from the summation of minimum tempera-

ture and the interpolated difference.

2.4 | Procedural incorporation of diverse spatial data

One of the objectives of this study is to incorporate multi-

ple spatially continuous data sets, and thus AINA must

be simple enough to allow for ingestion of diverse

spatial data. In this regard, AINA has the following

advantages compared to the other widely used interpola-

tion schemes:

1. Robust to erroneous data. The spatial data, especially

satellite data, tend to have erroneous data, which can

include extremely high or low values. Estimated

values in the random forest algorithm are limited in

the maximum and minimum values of the observed

data used for training the random forest. Also, the use

of multiple independent spatially continuous data sets

reduces the influence of an erroneous error in a single

data set.

2. Requires no physical assumptions. AINA does not

require any physical assumptions, while knowledge-

based statistical models need specific data set as input of

its physical assumption. This allows us AINA to incor-

porate many different kinds of data set without any

explicit formula.

3. AINA calculates the variable importance of each input

variable. The variable importance output can help

decide which spatially continuous data sets should be

included in the future. This feature differentiates

AINA from other machine learning models that treat

their input variables as a black box and do not have

ability to evaluate the contribution of each spatially

continuous data set input to the machine learning

algorithm.

2.5 | Application to the conterminous United States

By applying AINA to the conterminous United States, we

created NEX-GDM to provide daily precipitation, maximum

temperature, minimum temperature, dew point temperature,

wind speed, and solar radiation with a spatial resolution of

1-km from 1979 to 2017 using the Lambert azimuthal equal

area projection.

2.6 | Parameters in AINA

AINA requires only three parameters, while other statistical

methodologies require several parameters to be optimized.

The random forest algorithm needs (a) the number of sam-

ples, (b) the decision-tree depth, and (c) the number of deci-

sion trees. These parameters are in turn constrained by the

methodology. (a) The number of samples must be a few hun-

dred because a few hundred stations can cover a few hun-

dred kilometres around the random forest point, which

represents the regional climate pattern to be explained by the

random forest. Taking into account that available stations

are different for each climate variable (Figure 2), precipita-

tion, maximum temperature, and minimum temperature used

the data from the surrounding 200 stations, while dew point

temperature, wind speed, and solar radiation ingested the

data from the 100 surrounding stations. (b) Accordingly, to

get sufficient samples in the decision trees’ end-points, the

depth of the decision trees was set to 6 for precipitation,

maximum temperature, and minimum temperature, and to

5 for dew point temperature, wind speed, and solar radiation.

(c) Usually, the more trees the random forest has, the less

over-fitting occurs. Empirically, 100 decision trees have

been shown to be sufficient (Oshiro et al., 2012), and so we

set 100 decision trees for each random forest. Each pixel’s

value is estimated from the 16 surrounding random forests.

As a result, each pixel was calculated from more than 1,600

trees though the random forest, even though the random for-

ests are weighted. Thus, 100 decision trees are sufficient for

each random forest.

2.7 | Comparison with PRISM and Daymet

To show the improvement of our output from the existing

data sets, we compared the output with the existing interpo-

lated weather data from Daymet and PRISM. Both are pub-

licly available and are the most frequently used data sets for

the study of daily climate over the conterminous United

States (e.g., Mourtzinis et al., 2017). The spatial patterns of

annual and daily data for precipitation and minimum temper-

ature of NEX-GDM were compared with those of Daymet

and PRISM as described in section 4.1.

AmeriFlux is a network of sites measuring ecosystem

flux and meteorological data in North, Central, and South

America (Baldocchi et al., 2001), and hourly and half-hourly

data were used for the validation of the NEX-GDM data.

AmeriFlux data are independent from all the interpolated

data sets. Another reason AmeriFlux was used is that the

observation sites are well distributed to cover most of the

land cover types in the United States (Yang et al., 2008).

The RMSE, bias, and correlation coefficients between the

AmeriFlux data and the pixel values are calculated for each

year against all three data sets. Those statistics were aver-

aged from 2001 to 2015, when the data from at least 10 flux

towers are available.
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3 | DATA SETS

3.1 | Weather station data

We used the Global Historical Climatology Network-Daily

database (GHCN-D; Menne et al., 2012), Integrated Surface

Database (ISD; Smith et al., 2011), and National Solar Radi-

ation Database (NSRDB; National Renewable Energy Labo-

ratory, 1992; 2007) as the ground weather station data for

training purposes.

3.1.1 | Global Historical Climatology Network-Daily

database

GHCN-D is a collection of daily data sets of ground weather

observation worldwide. We used GHCN-D for precipitation,

maximum temperature, and minimum temperature in the

United States. The majority of GHCN-D precipitation data

in the United States originates with reports from the Cooper-

ative Observer Program (COOP) network (NCDC, 1981)

and the Community Collaborative Rain, Hail and Snow Net-

work (CoCoRaHS; Reges et al., 2016) (Figure 2a), while the

majority of temperature data is from COOP (Figure 2b). The

number of available stations has increased over time for all

of the variables.

COOP relies on weather station records measured pri-

marily by volunteers throughout the United States.

Although observation quality is an important issue for

interpolating weather station data, COOP records are well

known to have varying quality (Davey and Pielke, 2005).

The poor quality of the data set can directly influence the

surrounding pixels through spatial interpolation. To filter

or correct the erroneous record, various efforts have been

made for long-term climate analysis or spatial studies

(Menne and Williams, 2009). However, the stricter the fil-

tering algorithm, the greater the interpolation error caused

by the resultant scarcity of observations. For example,

only 6% of COOP stations passed the strict bias test for

precipitation (Daly et al., 2007), leaving little data with

which to work. AINA is inherently robust to erroneous

data as it is supported by the random forest algorithm,

which can smooth out anomalous data by decision tree

processes therefore we did not apply filtering process to

COOP data. However, this smoothing feature of AINA

also has the potential to affect the frequency and magni-

tude of extreme events in the final outputs.

The observation time in a day is also another important

issue for daily data, because our algorithm requires matching

the observation time for each weather station variable with

the observation times for the various spatially continuous

data sets. Unlike other governmental observation data,

COOP has no rules regarding observation time, and the

reporting time varies depending on stations, though the peak

tends to be 0700 or 1700 LST. COOP provides the reporting

time information in an hourly time step. To match the spa-

tially continuous data sets with the COOP and CoCoRaHS

observation times, NEX-GDM defined each day as 12Z–12Z

UTC, which is 0400 LST. Pacific standard time (PST) and

0700 LST eastern standard time (EST). This definition is the

FIGURE 2 Number of ground observation stations of each source data set for (a) precipitation, (b) temperature, (c) dew point temperature, (d) wind speed,

and (e) solar radiation. The thick line of “extended” in the plot (e) was derived from the National Solar Radiation Database (NSRDB) and ISD to increase the

input
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same definition used for PRISM (Daly et al., 1994). Data

with reporting times that were earlier than this range were

moved to the previous day.

GHCN-D includes the sub-data sets created by the

National Center for Environmental Information (NCEI) (for-

merly National Climatic Data Center, NCDC), but the daily

data are not summarized from 12Z to 12Z UTC. The hourly

data from the same NCEI stations are available as ISD.

Therefore, we created daily data from the ISD data after first

excluding all of the NCEI sub-data sets to avoid redundancy

with the ISD data. Those excluded data sets from the

GHCN-D data were the First-Order Summary of the Day,

Automated Surface Observing System (ASOS) data, Global

Surface Summary of the Day, and ISD sub-data set. For

regions close to the US–Canada border, a sub-data set from

Environment Canada was used even though the network is

outside of the United States.

Occurrence of rainfall is necessary to estimate the proba-

bility of rainfall, and trace precipitation that has no numeric

value assigned to the precipitation event must be set to be

greater than zero. For this study, we used 0.05 mm/day as

the value for trace precipitation, which is half of the mini-

mum reporting value for precipitation, instead of setting

trace precipitation to a null or zero value as in the original

observational data (Note that we did not follow the conven-

tional definition of the term, “wet day” or “rain day.” The

user should set the threshold (i.e., 0.1 mm/day) in the analy-

sis of the wet days to compare the NEX-GDM with other

data sets.

3.1.2 | ISD version 2

ISD is a collection of weather reports from the entire world

at an hourly time step (Smith et al., 2011). We extracted the

data only for the conterminous United States and converted

them into a daily summary for each variable. The same pro-

cedure used with the Global Surface Summary of the Day

(GSOD) data set was used to convert the ISD hourly data

into daily data. To match with the definition of a day used in

the GHCN-D, the daily data was summarized from hourly

data between 12Z UTC for each day to 12Z UTC of the next

calendar day.

The transition from manual observation to ASOS

obstructs the analysis of long-term trends by creating

inconsistency. Unlike other discontinuity issues that occur

randomly (such as relocation or shifting measurement

height), the ASOS transition happened mainly in a specific

period of time and caused the same artificial directional

trend. NEX-GDM is able to minimize random errors, given

its low dependency on any single station, but even NEX-

GDM cannot ignore such a change. Therefore, even for

NEX-GDM it is necessary to correct the artificial trend.

However, the day of transition is not described for all sta-

tions. Instead, only a partially completed record of ASOS

transition dates is available (NCDC, 2002). Thus, before

the ISD data was used for input to NEX-GDM, the data

discontinuity for maximum temperature, minimum temper-

ature, dew point temperature, and wind speed was cor-

rected as follows:

1. The transition from manual to ASOS was identified for

the target station using visibility, in which ASOS

reported the maximum of 10 miles (NOAA, 1998). The

available ASOS transition information (NCDC, 2002)

showed that the distribution of ASOS visibility has char-

acteristics of a mean greater than 8 miles with skewness

less than −1.5.

2. We calculated daily time series of the mean of the sur-

rounding stations having coordinates within ±3� of lati-

tude and longitude from the target station.

3. Two regressions were calculated between the target sta-

tion and the mean of the surrounding stations: for the

year before the transition and for the year after the

transition.

4. Using those two regressions, the time series of the target

station before the transition was adjusted to the time

series after the transition.

Figure 3 is an example of the correction, where the

abrupt drop of wind speed in 1995 was corrected, and

showed a similar trend with the mean of the surrounding

stations after the correction was applied.

3.1.3 | National Solar Radiation Database

ISD data does not cover solar radiation data prior to 2005.

We used the NSRDB as the source of solar radiation data

from 1979 to 2005 (Figure 2e). The database includes both

observed and modelled data, but we only used the observed

data in our analysis.

In the conterminous Unite States, far fewer stations collect

data for solar radiation compared to other climate variables.

Therefore, we interpolated the observed solar radiation data of

ISD or NSRDB to the other ISD stations that did not measure

solar radiation using the same AINA procedure. We added

the ISD-measured climate data as explanatory variables to

spatially continuous data set: mean temperature, dew point

temperature, sea level pressure, pressure, wind speed, maxi-

mum temperature, minimum temperature, precipitation, and

diurnal temperature range. The number of selected stations for

each grid cell was set to 50, and the depth of the random for-

est was 5. Once again, the outputs were used as training data

for creating the spatial maps of solar radiation. As a result, the

total number of available stations for the subsequent AINA

process was 500 to 1,800 (Figure 2e).

3.2 | Spatially continuous data sets

For creating NEX-GDM, we used a total of 30 spatial vari-

ables from 13 different data sets (Table 1 and Appendix S1,

Supporting Information). If the data set was hourly or sub-
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TABLE 1 Summary of spatially continuous data sets used as input

Data name Variables used for the input Spatial resolution Time step Start year End year Reference

Reanalysis

NCEP/NCAR reanalysis I Temperature T62 6 hourly 1979 Present Kalnay et al. (1996)

Precipitation

Humidity

u-Component wind speed

v-Component wind speed

Shortwave radiation

NCEP/DOE reanalysis II Same as NCEP1 T62 6 hourly 1979 Present Kanamitsu et al. (2002)

CFSR Same as NCEP1 T382 6 hourly 1979 2009 Saha et al. (2010)

MERRA-2 Same as NCEP1 1/2 × 2/3 degree Hourly 1980 Present Gelaro et al. (2017)

NARR Same as NCEP1 32.5 km 3 hourly 1979 Present Mesinger et al. (2006)

Satellite

GridSat-B1 v02r01 Infrared window

water vapor

0.07 degree 3 hourly 1980 2015 Knapp et al. (2011)

TRMM 3B42 v7 Precipitation 0.25 degree 3 hourly 1998 2014 Huffman et al. (2007)

TERRA MODIS collection 6 Reflectance 0.05 degree Daily 2000 Present Vermote and Vermeulen (2015a)

Wan (1999)

Huete et al. (1999)
Brightness temperature Daily

Land surface temperature 8-day

NDVI 16-day

AQUA MODIS collection 6 Same as TERRA MODIS 0.05 degree Daily 2002 Present

LTDR Reflectance 1 km Daily 1982 2013 Pedelty et al. (2007)

Brightness temperature Daily and 8-day

GIMMS 3G NDVI 5 min Half monthly 1982 2015 Pinzon and Tucker (2014)

Radar

NCEP National Stage II analyses Precipitation 4 km Hourly 1996 Present Lin and Mitchell (2005)

Static field

GTOPO 30 Elevation 30 second - - - Gesch and Larson (1996)

Slope

Aspect

GSHHG Distance from coast - - - - Wessel and Smith (1996)

FIGURE 3 Example of wind speed at Atlanta International Airport (33.65�N; 84.42�W). (a) Time series of daily mean wind speed. (b) Annual mean wind

speed after applying modification to the wind speed. The vertical line indicates the time of ASOS installation (August 1, 1995). The “regional mean” is the

time series of the mean of surrounding stations, and was used for the modification process
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daily, the daily value was calculated from averaged data from

12Z UTC of each day to 12Z UTC of the next calendar day.

3.3 | Data sets used for validation

3.3.1 | PRISM and Daymet

We used PRISM (version D1, except for precipitation for

which we used version D2) and Daymet (version 3) data

for comparison purposes. PRISM has several versions for

each climate variable. The version we used was the 4-km

daily PRISM AN81d data set from1981. Daymet provides

1-km data starting from 1980. After 2002, PRISM blended

their original interpolation method with Stage IV only for

precipitation data. PRISM defined the day as 12Z–12Z

UTC, the same as NEX-GDM, while Daymet used the local

calendar day as the reporting time from each station. How-

ever, the majority of the ground observation data is the

same among those three data sets, and so it can be assumed

that the day starts from the morning of the local time for all

the data sets.

3.3.2 | Weather data from AmeriFlux and EARTH

NETWORK

AmeriFlux is a US flux tower network whose main pur-

pose is measuring the half-hourly flux of net ecosystem

exchange and evapotranspiration for ecosystem research

(Baldocchi et al., 2001). Half-hourly weather data are

also collected at flux towers. The ecosystem flux and

weather data are measured over the canopy of the

plants; therefore, the weather data of AmeriFlux must be

biased relative to other weather station data, whose mea-

suring height above the surface is 10 m for wind and 2 m

for other weather variables. However, the data is still

valuable for use in evaluating if the interpolation method

can capture seasonal trends at flux tower sites. To make

daily data, times of half-hourly data were converted to

UTC, and then the half-hourly data were summarized into

daily data from 12Z to 12Z UTC. No gap filling was

applied.

EARTH NETWORK data (courtesy of Earth Net-

works, Inc.) is a collection of weather observation data

measured by private entities such as schools. The data set

is completely independent from other governmental data

sets. The density of weather observation points is much

higher than the other weather station data sets used. We

retrieved the maximum and minimum temperature data

around New York City for 2011 for the purpose of testing

whether NEX-GDM is able to capture spatial details on a

small scale.

4 | RESULTS

4.1 | Comparison with PRISM and Daymet

4.1.1 | Comparison with long-term means

We compared the spatial patterns in the climatology of

annual precipitation from NEX-GDM with PRISM and Day-

met over the period from 1981–2010 for the purpose of

describing the difference (Figure 4b,c for the western conter-

minous United States; Figure S1 for the entire conterminous

United States). The difference of each pixel in the eastern

conterminous United States overall was less than 10% for

the comparisons with both PRISM and Daymet. Meanwhile,

a difference of more than 30% occurred in the western

United States, where orographic effects were dominant. To

provide insights into the observed differences in the precipi-

tation data sets, we also compared NEX-GDM with the

USHCN version 2.5 data set, of which the GHCN-D were

well filtered for erroneous data and adjusted for systematic

FIGURE 4 Difference of NEX-GDM in climatology (1981–2010) of annual precipitation against (a) USHCN, (b) PRISM, and (c) Daymet [Colour figure

can be viewed at wileyonlinelibrary.com]
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bias (Menne et al., 2009) (Figure 4a). The dry region in Ari-

zona and Utah shows the overestimation of precipitation for

the NEX-GDM data relative to PRISM and Daymet, espe-

cially in the higher elevation regions. NEX-GDM also

underestimates over the Cascade Mountains in Washington,

and over-estimates over the valley between the Coastal

Range and the Cascade Mountains, relative to PRISM and

Daymet. Difficulties in accounting for topo-climatic effect

can be explained in part by the fact that AINA does not

include an explicit formula to adjust or regress the precipita-

tion data against the elevation.

The comparison of the minimum temperature climatology

over the same period from 1981 to 2010 also shows the biggest

differences in the southwestern United States (Figure 5 for the

western conterminous United States; Figure S2 for the entire

conterminous United States). Clearly, the NEX-GDM overesti-

mated minimum temperature for high elevation regions com-

pared to PRISM and Daymet. Again, this can be explained by

lack of an explicit formula for lapse rate correction in AINA. In

addition, the random forest algorithm cannot extrapolate

beyond the maximum or the minimum values from the training

samples, resulting in over-estimation of temperatures in regions

that are higher in elevation than the highest weather station.

4.1.2 | Day-to-day comparison

To see the differences in greater detail, we compared daily

precipitation from the three products on July 3, 1994, when

Tropical Storm Alberto hit the southeastern United States

(Figure 6). The magnitudes of precipitation are generally com-

parable among the three data sets. However, the spatial pat-

terns of precipitation are quite different. PRISM precipitation

reflects the heterogeneous spatial pattern from the station

values. Most of these observations are likely accurate, but in

the absence of an explanatory grid such as radar data (which

begins in 2002) that would place them into a more realistic

spatial context, they appear in a bullseye pattern. The spatial

pattern of Daymet precipitation is smoother and depicts dis-

tinct contour lines because Daymet incorporates only the dis-

tance from surrounding stations and elevation data with lapse

rate in its estimation of precipitation. NEX-GDM precipitation

does not show any clear dots or contour lines compared to the

other two data sets. Thus, the impact of a single station on

NEX-GDM is intermediate between PRISM and Daymet.

The same relationship can be found in the minimum tem-

perature data. Figure 7 is the example on July 22, 2006 when

a North American heat wave hit California. NEX-GDM and

PRISM show more spatial variability in California’s Central

Valley than Daymet. Also, the NEX-GDM product shows a

smaller lapse rate in the Sierra Nevada Mountains than

PRISM and Daymet.

One of the main purposes of NEX-GDM is to provide daily

surface climate data to run ecosystem models that require

gridded data over conterminous United States. In support of

this goal, we also calculated the error statistics for each month

for the AmeriFlux sites. The RMSE, bias, and R2 of NEX-

GDM and PRISM are almost always comparable, and better

than Daymet when compared to AmeriFlux data (Table 2).

Using machine-learning techniques without any extra knowl-

edge, NEX-GDM is able to capture spatial patterns comparable

to knowledge-based interpolation schemes. Those statistics do

not conclusively determine which data set is the best because

each data set has a different purpose of use and the accuracy

depends on the location (Behnke et al., 2016). It is noteworthy

that PRISM is a 4-km data set and we cannot directly compare

the statistics with other data sets, even though it shows the

highest accuracy. However, the statistics suggest that NEX-

GDM can be useful as an alternative data set using completely

different methods.

FIGURE 5 Difference of NEX-GDM in climatology (1981–2010) of annual mean of minimum temperature against (a) USHCN, (b) PRISM, and (c) Daymet

[Colour figure can be viewed at wileyonlinelibrary.com]
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4.2 | Variable importance of spatially continuous

data sets

The variable importance analysis shows the change in the rela-

tive contribution of spatially continuous data sets (Figures 8

and 9). When the number of spatially continuous data sets

increased after 2000 with the addition of the nine MODIS data

sets, the importance of each individual spatially continuous data

set decreased overall. This indicates that each data set does con-

tribute, and if missing data in a highly important variable exists,

other data can be used to compensate for the gap. Furthermore,

the substantial contribution from each variable facilitates a

smooth transition in terms of accuracy when there is a data gap

in one of the spatially continuous data sets. Since the variable

importance is relatively evenly balanced and no single variable

dominates in terms of overall importance, the addition or loss

of one or two data sets out of more than 20 data sets has a

small impact on the overall accuracy. Thus, NEX-GDM is less

affected by data gaps due to changes in the availability of indi-

vidual input data sets, so that production and update of the

long-term data set is easy compared to other data sets that rely

on a smaller or more limited number of input data sets.

FIGURE 7 Daily minimum temperature on July 22, 2006, when a North

American heat wave hit California, for (a) NEX-GDM, (b) PRISM, and

(c) Daymet [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 6 Daily precipitation on July 3, 1994, when tropical storm

Alberto hit the southeast United States, for (a) NEXGDM, (b) PRISM, and

(c) Daymet [Colour figure can be viewed at wileyonlinelibrary.com]
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In terms of the variable importance of precipitation input

data sets, MERRA data was ranked the most important,

while other reanalysis data, elevation data from GTOPO,

and GridSat also made important contributions (Figure 8a).

However, after 2001, the importance of ground radar data or

Stage II became significantly higher than other variables,

because it can capture precipitation directly from the ground

with much higher resolution compared to other data sets.

This variable-importance information allows us to conclude

that radar data are necessary to further improve the precipita-

tion estimates in NEX-GDM. The high importance of Grid-

Sat is due to its frequent measurement of cloud cover

compared to the other satellites capturing cloud cover. The

elevation data from GTOPO also was important in explain-

ing orographic precipitation.

The reanalysis data and elevation data from GTOPO

highly contributed to both maximum and minimum tempera-

ture (Figure 8b,c). In 2005–2009 MODIS LST contributed

to minimum temperature estimation, however, MODIS LST

was less important for maximum temperature. Similar phe-

nomena was observed by Oyler et al. (2016), along with the

reason that was explained by the land surface process which

strongly controlled the LST under clear sky condition (Oyler

et al., 2016). Elevation made an important contribution as a

substitute for the lapse rate, as PRISM and Daymet explicitly

incorporate the lapse rate.

In the calculation of dew point temperature (Figure 9a),

wind speed (Figure 9b), and solar radiation (Figure 9c), the

reanalysis data had higher importance than the other

FIGURE 8 Bar chart of annual mean importance of spatial data for (a) precipitation, (b) maximum temperature, and (c) minimum temperature. The black

bars are mean from 1983 to 1998. The white bars are mean from 2005 to 2009. The variable that has 0 value indicates missing for the period

TABLE 2 Summary of the statistics of NEX-GDM, PRISM, and Daymet

against Fluxnet data from 1997 to 2012

Variable Statistics

Data set

NEX-GDM PRISM Daymet

Precipitation R2 0.58 0.63 0.50

RMSE (mm/day) 3.03 2.72 3.81

Bias (mm/day) 0.25 0.30 0.64

Maximum temperature R
2 0.94 0.94 0.74

RMSE (�C) 1.44 1.35 2.51

Bias (�C) 0.60 0.60 0.57

Minimum temperature R2 0.88 0.88 0.77

RMSE (�C) 1.96 1.92 2.59

Bias (�C) −0.74 −0.68 −0.71

Dew point temperature R2 0.84 0.96 NA

RMSE (�C) 2.27 1.39 NA

Bias (�C) −0.07 −0.43 NA

Shortwave radiation R
2 0.76 NA 0.32

RMSE (MJ/day) 1.63 NA 2.59

Bias (MJ/day) −0.31 NA −0.21
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variables, because the satellites and radars cannot directly

measure those variables. Therefore, the importance of the

reanalysis data contributed more than the other data sets

(Figures 8 and 9). The spatial distribution of the variable

importance does provide additional insights into where each

input variable becomes important (Figures 10–12).

Stage II data was the most important input for precipita-

tion in 2009, but it contributed mainly in the eastern United

States, except for the Appalachian Mountains region

(Figure 10a). It is well known that radar does not work as

well in mountainous terrain as in flat areas because of over-

shooting, ground clutter, and less gauge measurement

(Fulton et al., 1998). As a result, the importance value of

Stage II in the Rocky Mountains was lower than in the east-

ern United States. In contrast, the elevation of GTOPO has

high importance values in the Rocky Mountains where it

explains orographic precipitation (Figure 10h). Thus, relying

only on Stage II will not suffice for the interpolation

schemes.

The reanalysis data contributed primarily to wet regions

due to the difficulty in predicting convective rain in dry

regions. Meanwhile, satellite data, such as Gridsat and

TRMM data, contributed more homogeneously and broadly

over conterminous US than the reanalysis data.

Both maximum and minimum temperature show that ele-

vation data (i.e., GTOPO) contributed well in the western

United States and Appalachian Mountains (Figures 11 and

12). However, the contribution of elevation to minimum

temperature was much smaller than that of maximum tem-

perature due to the MODIS LST contribution. MODIS

night-time LST was important in the southwest United States

for the minimum temperature calculation (Figures 12d,f).

Reanalysis data was the most important input for estimation

of both maximum and minimum temperature across the east-

ern United States.

4.3 | Contribution of satellite data to capture the

urban heat island

Satellite data, especially LST, is essential for capturing spa-

tial patterns at the continental scale (Figures 11 and 12).

Other than LST, we demonstrate that NDVI can contribute

to estimation of urban heat island effects in New York

(Figure 13) by comparing the temperature estimates with

satellite data and without satellite data. New York City

experienced the urban heat island on July 2011 (Meir et al.,

2013). As an independent source of data to validate the spa-

tial distribution of urban heat island effects, we used the

EARTH NETWORK data, which is a private network of

weather observations mainly located in urban areas (data

courtesy of Earth Networks, Inc.). The quality of the

EARTH NETWORK data was not homogeneous compared

FIGURE 9 Same as Figure 8 except for (a) dew point temperature, (b) wind speed, and (c) solar radiation
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to the governmental weather station data, and when we

plotted the maximum temperature, the spatial distribution

of temperature data was such that the urban heat island

effect was hardly apparent across New York City. To avoid

the issue of heterogeneous data quality, we calculated diur-

nal temperature range (DTR), which is the difference

between maximum temperature and minimum temperature,

to cancel the bias of maximum temperature and minimum

temperature for each station. After making this correction,

it is possible to recognize the urban heat island effects from

the DTR of the EARTH NETWORK data (Figure 13c).

The diurnal temperature range shows smaller values in the

urban area (Figure 13d). NEX-GDM, using satellite data,

clearly shows a similar spatial pattern with the EARTH

NETWORK stations (Figure 13a). Meanwhile, NEX-GDM

without satellite data shows smaller diurnal temperature

ranges only on the coastlines (Figure 13b). Staten Island

was surrounded by low values, and the centre of Brooklyn

also shows higher values than the coastlines. The impor-

tance of the spatially continuous data sets in this analysis

shows that the GIMMS NDVI and MODIS NDVI added

information about urban extent, and allowed NEX-GDM to

capture the urban heat island effects in New York City

(Figure 14).

5 | DISCUSSION

5.1 | Limitations in analyses using NEX-GDM

For long-term analyses using NEX-GDM, extensive care

to address inhomogeneity is required. Gridded data sets

rely heavily on a sparse network of observational input

data sets leading to spurious results if time series correc-

tions are not applied (McGuire et al., 2012; Oyler et al.,

2015b). The causes of artificial long-term trends can

include changes of observation time, sensor degradation,

shift in measurement locations, and innovations or changes

to the measurement instrument itself. To avoid those artifi-

cial long-term trends, some previous data sets applied

inhomogeneity techniques (Vose et al., 2014; Oyler et al.,

FIGURE 10 Spatial patterns of annual mean importance of input data for precipitation in 2009. The nine input data sets of highest average importance are

shown in descending order from (a) to (i) [Colour figure can be viewed at wileyonlinelibrary.com]
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2015a), while others added anomalies from climate models

to long-term means created from interpolated data

(Abatzoglou, 2013; Livneh et al., 2013). NEX-GDM

applied only simple bias correction to GHCN-D. Also, dis-

continuities in spatially continuous data set can create arti-

ficial long-term trends. Although the smoothing process of

gridding can mitigate the artificial long-term trends to

some extent, the users must be cautious in analysing the

long-term trend by comparing it with adjusted weather sta-

tion data. Further data set comparison analyses are in

Appendix S2.

The AINA algorithm is still vulnerable to scarcity of sta-

tion data, especially for solar radiation data. As with other

gridded data, the error in spatial variability of the NEX-

GDM data set is larger in earlier decades than in recent

decades. It also can create artificial long-term trends. There-

fore, long-term analysis of NEX-GDM of variables of sparse

observation such as solar radiation and wind speed requires

caution.

Another drawback of NEX-GDM is additional uncer-

tainty in estimated values at high elevations and around the

top of the mountains due to the use of the random forest

approach. Theoretically, the random forest algorithm cannot

extrapolate its estimates beyond the maximum and minimum

values from the input data. Thus, estimates for elevations

that are higher than the elevation of the highest weather sta-

tion in the training data set are likely to have higher uncer-

tainty and lower reliability. For the same reason, isolated

stations at high elevations can have a large effect on the sur-

rounding mountainous regions. There are few high-elevation

stations in eastern conterminous United States, and the iso-

lated observation data at these stations (such as Mount

Washington, NH) can have too much influence on the sur-

rounding area, which can generate anomalous values relative

to lower elevation regions.

For the same reasons with difficulty in analysing high

elevation region, NEX-GDM may not be suitable for analy-

sis of climate extremes. When only a single weather station

in a region captures the extreme phenomena, the extreme

value can be smoothed or even omitted because the random

selection of samples for algorithm training could leave out

the weather station that observed any particular extreme

FIGURE 11 Same as Figure 10 except for maximum temperature [Colour figure can be viewed at wileyonlinelibrary.com]
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event or events. As a general rule, NEX-GDM is not recom-

mended for the studies that seek to analyse regions that are

smaller in total than mean distance between weather

stations.

5.2 | Scalability of AINA

Availability of ground observation data sets is critical to

the ability of the AINA approach to produce accurate spa-

tial data sets, because the ground observation is the

response variable used by the random forest algorithm. As

long as a sufficient number of ground observations are

available, AINA can produce a spatial map of any type of

climate variable. Here, we produced precipitation, mini-

mum, maximum and dew point temperatures, wind speed,

and radiation data sets for NEX-GDM. In future work, we

plan to produce snow cover data sets from ISD. Applica-

tion of AINA to other regions is also straightforward, espe-

cially for Europe and Far East Asia, where the density of

climate observation stations is comparable to the United

States. Theoretically, AINA can be applied to regions

where the network of ground observation stations is sparse.

However, if the density of the observation stations is too

sparse, the decision trees of the random forest cannot ade-

quately explain the spatial variability within the climate

data, and it is not recommended that the AINA be applied

for such a region.

When applying AINA before 1979, the paucity of spatial

data directly impacts the confidence of the gridded estimates.

Neither radar nor satellite data are available before 1979,

and thus NEX-GDM must rely on only reanalysis data sets.

Unfortunately, the available reanalysis data, such as NCEP1,

have a coarse resolution (>100 km), which is not sufficient

for capturing spatial heterogeneity within the climate vari-

ables included in the NEX-GDM data set. To avoid issues

caused by the coarse resolution, we plan to run regional cli-

mate models to create high-resolution spatial data sets to be

used as climate inputs to ecosystem and hydrological models

in future research.

FIGURE 12 Same as Figure 10 except for minimum temperature [Colour figure can be viewed at wileyonlinelibrary.com]
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One additional caveat is that the solar radiation data used

assumes that there is no local horizontal obstruction, such as

surrounding mountains or building at the scale of each indi-

vidual pixel. Therefore, when applying AINA to spatial

scales that are finer than the input data of geographic data

sets, collection of data on local obstructions may be needed.

5.3 | Near real-time data set

In addition to the long-term historical data sets included in

NEX-GDM and produced using the full suite of available

data sets, we will also produce near a real-time data set for

applications that require continuous updates and recent

information for the analysis, for instance, natural disaster

preparedness and nature resource management. Near real-

time processing using NEX-GDM requires several data sets

for input, though some data sets used for the full data set are

not produced in real-time. This inherently presents a com-

promise between the timeliness of near-real time updates

and data accuracy. The variable-importance measure pro-

vided by the AINA approach will guide the selection of the

minimum required input data sets to produce data products

with a satisfactory level of accuracy for public usage. For

example, Figure 10 reveals that Stage II data is important in

estimating the spatial distribution of precipitation in the east-

ern conterminous United States, and so we will produce the

near real-time data set following the availability of radar

data. Although the near real-time data set could be less accu-

rate than the data set using all the available data with a lon-

ger delay, the near real-time data sets can help users who

need to analyse spatial patterns of surface climate variables

in real time, for example to analyse a current natural disaster,

schedule irrigation, or forecast floods.

6 | CONCLUSION

We created the NEX-GDM data set by applying the AINA

framework to the conterminous United States to produce

high-resolution climate fields from 1979 to 2017. Our inter-

polation methodology is novel compared to the commonly

used existing data sets because the machine-learning algo-

rithm incorporated a wide range of different types of spa-

tially continuous data sets. Statistics from comparisons with

FIGURE 13 Monthly average of diurnal temperature range in the New York City on July 2011 of (a) NEX-GDM with satellites, (b) NEX-GDM without

satellites, and (c) station observation of the EARTH NETWORK. Panel (d) is the NDVI of Landsat 5 on July 7, 2011. Panel (e) shows topography from

GTOPO 30. The blue texts in panel (c) show the location of Brooklyn and Staten Island [Colour figure can be viewed at wileyonlinelibrary.com]
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existing data sets produced with completely different algo-

rithms shows that the accuracy of NEX-GDM is comparable

with those data, and useful for ecosystem modelling. Also,

we quantified, through the variable importance analysis, the

importance of the contribution of satellite data, which are

not used by other gridded climate data products, to the

NEX-GDM. In the future, we will produce other climate var-

iables taking advantage of the scalability of the AINA frame-

work. The NEX-GDM data set is publicly available on the

NEX facility.
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