DOCKETED						
Docket Number:	19-BSTD-06					
Project Title:	Local Ordinances Exceeding the 2019 Energy Code					
TN #:	231288-2					
Document Title: City of Santa Rosa 2019 - Att. 2 Frontier Energy Cost Effectivene Study for Residential Reach Codes						
Description:	ription: N/A					
Filer: Danuta Drozdowicz						
Organization:	California Energy Commission					
Submitter Role:	Commission Staff					
Submission Date:	: 12/18/2019 5:33:36 PM					
Docketed Date:	12/19/2019					

Title 24, Parts 6 and 11 Local Energy Efficiency Ordinances

2019 Cost-effectiveness Study: Low-Rise Residential New Construction

Prepared for:

Kelly Cunningham Codes and Standards Program Pacific Gas and Electric Company

Prepared by:

Frontier Energy, Inc. Misti Bruceri & Associates, LLC

Last Modified: July 17, 2019

LEGAL NOTICE

This report was prepared by Pacific Gas and Electric Company and funded by the California utility customers under the auspices of the California Public Utilities Commission.

Copyright 2019, Pacific Gas and Electric Company. All rights reserved, except that this document may be used, copied, and distributed without modification.

Neither PG&E nor any of its employees makes any warranty, express or implied; or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product, policy or process disclosed in this document; or represents that its use will not infringe any privately-owned rights including, but not limited to, patents, trademarks or copyrights.

Table of Contents

A٥	cronym	S	5
1	•	oduction	
2	Met	hodology and Assumptions	1
	2.1	Building Prototypes	1
	2.2	Measure Analysis	3
	2.2.2	1 Federal Preemption	4
	2.2.2	2 Energy Design Rating	4
	2.2.3	3 Energy Efficiency Measures	5
	2.3	Package Development	8
	2.3.3	1 Solar Photovoltaics (PV)	8
	2.3.2	2 Energy Storage (Batteries)	8
	2.4	Incremental Costs	9
	2.5	Cost-effectiveness	13
	2.5.2	1 On-Bill Customer Lifecycle Cost	13
	2.5.2	2 TDV Lifecycle Cost	15
	2.6	Electrification Evaluation	15
	2.7	Greenhouse Gas Emissions	18
3	Resu	ults	18
	3.1	PV and Battery System Sizing	19
	3.2	Single Family Results	21
	3.2.2	1 GHG Emission Reductions	26
	3.3	Multifamily Results	26
	3.3.2	1 GHG Emission Reductions	32
	3.4	Electrification Results	32
	3.4.2	1 Single Family	33
	3.4.2	2 Multifamily	33
4	Con	clusions & Summary	41
5		erences	
•	•	A – California Climate Zone Map	
	•	⟨B – Utility Tariff Details	
	•	C – Single Family Measure Summary	
	•	c E – Multifamily Detailed Results	
	-	c F – Multifamily Measure Summary	
Αp	pendix	c G – Results by Climate Zone	79

List of Tables

Table 1: Prototype Characteristics	
Table 2: Characteristics of the Mixed Fuel vs All-Electric Prototype	3
Table 3: Lifetime of Water Heating & Space Conditioning Equipment Measures	9
Table 4: Incremental Cost Assumptions	
Table 5: IOU Utility Tariffs Applied Based on Climate Zone	
Table 6: Incremental Costs – All-Electric Compared to a Mixed Fuel Home	
Table 7: PV & Battery Sizing Details by Package Type	
Table 8: Single Family Package Lifetime Incremental Costs	
Table 9: Single Family Package Cost-Effectiveness Results for the Mixed Fuel Case 1,2	
Table 10: Single Family Package Cost-Effectiveness Results for the All-Electric Case ^{1,2}	
Table 11: Multifamily Package Incremental Costs per Apartment	
Table 12: Multifamily Package Cost-Effectiveness Results for the Mixed Fuel Case ^{1,2}	
Table 13: Multifamily Package Cost-effectiveness Results for the All-Electric Case ^{1,2}	
Table 14: Single Family Electrification Results	
Table 15: Comparison of Single Family On-Bill Cost Effectiveness Results with Additional PV	
Table 16: Multifamily Electrification Results	
Table 17: Comparison of Multifamily On-Bill Cost Effectiveness Results with Additional PV	
Table 18: Summary of Single Family Target EDR Margins	
Table 19: Summary of Multifamily Target EDR Margins	
Table 20: PG&E Baseline Territory by Climate Zone	
Table 21: SCE Baseline Territory by Climate Zone	
Table 22: SoCalGas Baseline Territory by Climate Zone	
Table 23: SDG&E Baseline Territory by Climate Zone	
Table 24: Real Utility Rate Escalation Rate Assumptions	
Table 25: Single Family Mixed Fuel Efficiency Package Cost-Effectiveness Results	
Table 26: Single Family Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results	
Table 27: Single Family All-Electric Efficiency Package Cost-Effectiveness Results	
Table 28: Single Family All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results	
Table 29: Single Family Mixed Fuel Efficiency – Non-Preempted Package Measure Summary	
Table 30: Single Family Mixed Fuel Efficiency – Equipment, Preempted Package Measure Summary	
Table 31: Single Family Mixed Fuel Efficiency & PV/Battery Package Measure Summary	
Table 32: Single Family All-Electric Efficiency – Non-Preempted Package Measure Summary	
Table 33: Single Family All-Electric Efficiency – Equipment, Preempted Package Measure Summary	
Table 34: Single Family All-Electric Efficiency & PV Package Measure Summary	
Table 35: Single Family All-Electric Efficiency & PV/Battery Package Measure Summary	
Table 36: Multifamily Mixed Fuel Efficiency Package Cost-Effectiveness Results	
Table 37: Multifamily Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results	
Table 38: Multifamily All-Electric Efficiency Package Cost-Effectiveness Results	
Table 39: Multifamily All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results	
Table 40: Multifamily Mixed Fuel Efficiency – Non-Preempted Package Measure Summary	
Table 41: Multifamily Mixed Fuel Efficiency – Equipment, Preempted Package Measure Summary	
Table 42: Multifamily Mixed Fuel Efficiency & PV/Battery Package Measure Summary	
Table 43: Multifamily All-Electric Efficiency – Non-Preempted Package Measure Summary	
Table 44: Multifamily All-Electric Efficiency – Equipment, Preempted Package Measure Summary	
Table 45: Multifamily All-Electric Efficiency & PV Package Measure Summary	
Table 46: Multifamily All-Electric Efficiency & PV/Battery Package Measure Summary	
Table 47: Single Family Climate Zone 1 Results Summary	
Table 48: Multifamily Climate Zone 1 Results Summary	
,	

Table 49: Single Family Climate Zone 2 Results Summary	82
Table 50: Multifamily Climate Zone 2 Results Summary	
Table 51: Single Family Climate Zone 3 Results Summary	
Table 52: Multifamily Climate Zone 3 Results Summary	
Table 53: Single Family Climate Zone 4 Results Summary	86
Table 54: Multifamily Climate Zone 4 Results Summary	
Table 55: Single Family Climate Zone 5 PG&E Results Summary	88
Table 56: Multifamily Climate Zone 5 PG&E Results Summary	
Table 57: Single Family Climate Zone 5 PG&E/SoCalGas Results Summary	90
Table 58: Multifamily Climate Zone 5 PG&E/SoCalGas Results Summary	91
Table 59: Single Family Climate Zone 6 Results Summary	92
Table 60: Multifamily Climate Zone 6 Results Summary	
Table 61: Single Family Climate Zone 7 Results Summary	
Table 62: Multifamily Climate Zone 7 Results Summary	95
Table 63: Single Family Climate Zone 8 Results Summary	
Table 64: Multifamily Climate Zone 8 Results Summary	
Table 65: Single Family Climate Zone 9 Results Summary	
Table 66: Multifamily Climate Zone 9 Results Summary	
Table 67: Single Family Climate Zone 10 SCE/SoCalGas Results Summary	
Table 68: Multifamily Climate Zone 10 SCE/SoCalGas Results Summary	
Table 69: Single Family Climate Zone 10 SDGE Results Summary	
Table 70: Multifamily Climate Zone 10 SDGE Results Summary	
Table 71: Single Family Climate Zone 11 Results Summary	
Table 72: Multifamily Climate Zone 11 Results Summary	
Table 73: Single Family Climate Zone 12 Results Summary	
Table 74: Multifamily Climate Zone 12 Results Summary	
Table 75: Single Family Climate Zone 13 Results Summary	
Table 76: Multifamily Climate Zone 13 Results Summary	
Table 77: Single Family Climate Zone 14 SCE/SoCalGas Results Summary	
Table 78: Multifamily Climate Zone 14 SCE/SoCalGas Results Summary	
Table 79: Single Family Climate Zone 14 SDGE Results Summary	
Table 80: Multifamily Climate Zone 14 SDGE Results Summary	
Table 81: Single Family Climate Zone 15 Results Summary	
Table 82: Multifamily Climate Zone 15 Results Summary	
Table 83: Single Family Climate Zone 16 Results Summary	
Table 84: Multifamily Climate Zone 16 Results Summary	11/
List of Figures	
Figure 1: Graphical description of EDR scores (courtesy of Energy Code Ace)	5
Figure 2: B/C ratio comparison for PV and battery sizing	20
Figure 3: Single family Total EDR comparison	
Figure 4: Single family EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency pa	-
the Total EDR Margin for the Efficiency & PV and Efficiency & PV+Battery packages)	
Figure 5: Single family greenhouse gas emissions comparison	
Figure 6: Multifamily Total EDR comparison	
Figure 7: Multifamily EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency page	_
the Total EDR Margin for the Efficiency & PV and Efficiency & PV+Battery packages)	
Figure 8: Multifamily greenhouse gas emissions comparison	32

2019 Energy Efficiency Ordinance Cost-effectiveness Study

Figure 9: B/C ratio results for a single family all-electric code compliant home versus a mixed fuel code complia	ant
home	36
Figure 10: B/C ratio results for the single family Efficiency & PV all-electric home versus a mixed fuel code	
compliant home	37
Figure 11: B/C ratio results for the single family neutral cost package all-electric home versus a mixed fuel code	
compliant home	37
Figure 12: B/C ratio results for a multifamily all-electric code compliant home versus a mixed fuel code	
compliant home	40
Figure 13: B/C ratio results for the multifamily Efficiency & PV all-electric home versus a mixed fuel code	
compliant home	40
Figure 14: B/C ratio results for the multifamily neutral cost package all-electric home versus a mixed fuel code	
compliant home	41
Figure 15: Map of California Climate Zones (courtesy of the California Energy Commission)	

Acronyms

2020 PV\$ Present value costs in 2020

ACH50 Air Changes per Hour at 50 pascals pressure differential

ACM Alternative Calculation Method

AFUE Annual Fuel Utilization Efficiency

B/C Lifecycle Benefit-to-Cost Ratio

BEopt Building Energy Optimization Tool

BSC Building Standards Commission

CAHP California Advanced Homes Program

CBECC-Res Computer program developed by the California Energy Commission for use in demonstrating

compliance with the California Residential Building Energy Efficiency Standards

CFI California Flexible Installation

CFM Cubic Feet per Minute

CMFNH California Multifamily New Homes

CO₂ Carbon Dioxide

CPC California Plumbing Code

CZ California Climate Zone

DHW Domestic Hot Water

DOE Department of Energy

DWHR Drain Water Heat Recovery

EDR Energy Design Rating

EER Energy Efficiency Ratio

EF Energy Factor

GHG Greenhouse Gas

HERS Rater Home Energy Rating System Rater

HPA High Performance Attic

HPWH Heat Pump Water Heater

HSPF Heating Seasonal Performance Factor

HVAC Heating, Ventilation, and Air Conditioning

IECC International Energy Conservation Code

IOU Investor Owned Utility

kBtu kilo-British thermal unit

kWh Kilowatt Hour

LBNL Lawrence Berkeley National Laboratory

LCC Lifecycle Cost

LLAHU Low Leakage Air Handler Unit

VLLDCS Verified Low Leakage Ducts in Conditioned Space

MF Multifamily

NAECA National Appliance Energy Conservation Act

NEEA Northwest Energy Efficiency Alliance

NEM Net Energy Metering

NPV Net Present Value

NREL National Renewable Energy Laboratory

PG&E Pacific Gas and Electric Company

PV Photovoltaic

SCE Southern California Edison

SDG&E San Diego Gas and Electric

SEER Seasonal Energy Efficiency Ratio

SF Single Family

CASE Codes and Standards Enhancement

TDV Time Dependent Valuation

Therm Unit for quantity of heat that equals 100,000 British thermal units

Title 24 Title 24, Part 6
TOU Time-Of-Use

UEF Uniform Energy Factor

ZNE Zero-net Energy

1 Introduction

The California Building Energy Efficiency Standards Title 24, Part 6 (Title 24) (Energy Commission, 2018b) is maintained and updated every three years by two state agencies, the California Energy Commission (Energy Commission) and the Building Standards Commission (BSC). In addition to enforcing the code, local jurisdictions have the authority to adopt local energy efficiency ordinances, or reach codes, that exceed the minimum standards defined by Title 24 (as established by Public Resources Code Section 25402.1(h)2 and Section 10-106 of the Building Energy Efficiency Standards). Local jurisdictions must demonstrate that the requirements of the proposed ordinance are cost-effective and do not result in buildings consuming more energy than is permitted by Title 24. In addition, the jurisdiction must obtain approval from the Energy Commission and file the ordinance with the BSC for the ordinance to be legally enforceable.

This report documents cost-effective combinations of measures that exceed the minimum state requirements, the 2019 Building Energy Efficiency Standards, effective January 1, 2020, for new single family and low-rise (one-to three-story) multifamily residential construction. The analysis includes evaluation of both mixed fuel and all-electric homes, documenting that the performance requirements can be met by either type of building design. Compliance package options and cost-effectiveness analysis in all sixteen California climate zones (CZs) are presented (see Appendix A – California Climate Zone Map for a graphical depiction of Climate Zone locations). All proposed package options include a combination of efficiency measures and on-site renewable energy.

2 Methodology and Assumptions

This analysis uses two different metrics to assess cost-effectiveness. Both methodologies require estimating and quantifying the incremental costs and energy savings associated with energy efficiency measures. The main difference between the methodologies is the manner in which they value energy and thus the cost savings of reduced or avoided energy use.

- <u>Utility Bill Impacts (On-Bill)</u>: Customer-based Lifecycle Cost (LCC) approach that values energy based upon estimated site energy usage and customer on-bill savings using electricity and natural gas utility rate schedules over a 30-year duration accounting for discount rate and energy cost inflation.
- <u>Time Dependent Valuation (TDV)</u>: Energy Commission LCC methodology, which is intended to capture the "societal value or cost" of energy use including long-term projected costs such as the cost of providing energy during peak periods of demand and other societal costs such as projected costs for carbon emissions, as well as grid transmission and distribution impacts. This metric values energy use differently depending on the fuel source (gas, electricity, and propane), time of day, and season. Electricity used (or saved) during peak periods has a much higher value than electricity used (or saved) during off-peak periods (Horii et al., 2014). This is the methodology used by the Energy Commission in evaluating cost-effectiveness for efficiency measures in Title 24, Part 6.

2.1 Building Prototypes

The Energy Commission defines building prototypes which it uses to evaluate the cost-effectiveness of proposed changes to Title 24 requirements. At the time that this report was written, there are two single family prototypes and one low-rise multifamily prototype. All three are used in this analysis in development of the above-code packages. Table 1 describes the basic characteristics of each prototype. Additional details on the prototypes can be found in the Alternative Calculation Method (ACM) Approval Manual (Energy Commission, 2018a). The prototypes have equal geometry on all walls, windows and roof to be orientation neutral.

Table 1: Prototype Characteristics

Characteristic	Single Family One-Story	Single Family Two-Story	Multifamily
Conditioned Floor Area	2,100 ft ²	2,700 ft ²	6,960 ft²: (4) 780 ft² & (4) 960 ft² units
Num. of Stories	1	2	2
Num. of Bedrooms	3	3	(4) 1-bed & (4) 2-bed units
Window-to-Floor Area Ratio	20%	20%	15%

Source: 2019 Alternative Calculation Method Approval Manual (California Energy Commission, 2018a).

The Energy Commission's protocol for single family prototypes is to weight the simulated energy impacts by a factor that represents the distribution of single-story and two-story homes being built statewide, assuming 45 percent single-story and 55 percent two-story. Simulation results in this study are characterized according to this ratio, which is approximately equivalent to a 2,430-square foot (ft²) house.¹

The methodology used in the analyses for each of the prototypical building types begins with a design that precisely meets the minimum 2019 prescriptive requirements (zero compliance margin). Table 150.1-A in the 2019 Standards (Energy Commission, 2018b) lists the prescriptive measures that determine the baseline design in each climate zone. Other features are consistent with the Standard Design in the ACM Reference Manual (Energy Commission, 2019), and are designed to meet, but not exceed, the minimum requirements. Each prototype building has the following features:

- Slab-on-grade foundation.
- Vented attic.
- High performance attic in climate zones where prescriptively required (CZ 4, 8-16) with insulation installed at the ceiling and below the roof deck per Option B. (Refer to Table 150.1-A in the 2019 Standards.)
- Ductwork located in the attic for single family and within conditioned space for multifamily.

Both mixed fuel and all-electric prototypes are evaluated in this study. While in past code cycles an all-electric home was compared to a home with gas for certain end-uses, the 2019 code includes separate prescriptive and performance paths for mixed-fuel and all-electric homes. The fuel specific characteristics of the mixed fuel and all-electric prototypes are defined according to the 2019 ACM Reference Manual and described in Table 2.²

 $^{^{1}}$ 2,430 ft 2 = (45% x 2,100 ft 2) + (55% x 2,700 ft 2)

² Standards Section 150.1(c)8.A.iv.a specifies that compact hot water distribution design and a drain water heat recovery system or extra PV capacity are required when a heat pump water heater is installed prescriptively. The efficiency of the distribution and the drain water heat recovery systems as well as the location of the water heater applied in this analysis are based on the Standard Design assumptions in CBECC-Res which result in a zero-compliance margin for the 2019 basecase model.

Table 2: Characteristics of the Mixed Fuel vs All-Electric Prototype

Characteristic	Mixed Fuel	All-Electric
Space Heating/Cooling ¹	Gas furnace 80 AFUE Split A/C 14 SEER, 11.7 EER	Split heat pump 8.2 HSPF, 14 SEER, 11.7 EER
Water Heater ^{1,2, 3, 4}	Gas tankless UEF = 0.81	50gal HPWH UEF = 2.0 SF: located in the garage MF CZ 2,4,6-16: located in living space MF CZ 1,3,5: located in exterior closet
Hot Water Distribution	Code minimum. All hot water lines insulated	Basic compact distribution credit, (CZ 6-8,15) Expanded compact distribution credit, compactness factor = 0.6 (CZ 1-5,9-14,16)
Drain Water Heat Recovery Efficiency	None	CZ 1: unequal flow to shower = 42% CZ 16: equal flow to shower & water heater = 65% None in other CZs
Cooking	Gas	Electric
Clothes Drying	Gas	Electric

¹Equipment efficiencies are equal to minimum federal appliance efficiency standards.

2.2 Measure Analysis

The California Building Energy Code Compliance simulation tool, CBECC-RES 2019.1.0, was used to evaluate energy impacts using the 2019 Title 24 prescriptive standards as the benchmark, and the 2019 TDV values. TDV is the energy metric used by the Energy Commission since the 2005 Title 24 energy code to evaluate compliance with the Title 24 standards.

Using the 2019 baseline as the starting point, prospective energy efficiency measures were identified and modeled in each of the prototypes to determine the projected energy (Therm and kWh) and compliance impacts. A large set of parametric runs were conducted to evaluate various options and develop packages of measures that exceed minimum code performance. The analysis utilizes a parametric tool based on Micropas³ to automate and manage the generation of CBECC-Res input files. This allows for quick evaluation of various efficiency measures across multiple climate zones and prototypes and improves quality control. The batch process functionality of CBECC-Res is utilized to simulate large groups of input files at once. Annual utility costs were calculated using hourly data output from CBECC-Res and electricity and natural gas tariffs for each of the investor owned utilities (IOUs).

²The multifamily prototype is evaluated with individual water heaters. HPWHs located in the living space do not have ducting for either inlet or exhaust air; CBECC-Res does not have the capability to model ducted HPWHs.

³UEF = uniform energy factor. HPWH = heat pump water heater. SF = single family. MF = multifamily.

⁴CBECC-Res applies a 50gal water heater when specifying a storage water heater. Hot water draws differ between the prototypes based on number of bedrooms.

³ Developed by Ken Nittler of Enercomp, Inc.

The Reach Codes Team selected packages and measures based on cost-effectiveness as well as decades of experience with residential architects, builders, and engineers along with general knowledge of the relative acceptance of many measures.

2.2.1 Federal Preemption

The Department of Energy (DOE) sets minimum efficiency standards for equipment and appliances that are federally regulated under the National Appliance Energy Conservation Act (NAECA), including heating, cooling, and water heating equipment. Since state and local governments are prohibited from adopting policies that mandate higher minimum efficiencies than the federal standards require, the focus of this study is to identify and evaluate cost-effective packages that do not include high efficiency equipment. While this study is limited by federal preemption, in practice builders may use any package of compliant measures to achieve the performance goals, including high efficiency appliances. Often, these measures are the simplest and most affordable measures to increase energy performance.

2.2.2 <u>Energy Design Rating</u>

The 2019 Title 24 code introduces California's Energy Design Rating (EDR) as the primary metric to demonstrate compliance with the energy code. EDR is still based on TDV but it uses a building that is compliant with the 2006 International Energy Conservation Code (IECC) as the reference building. The reference building has an EDR score of 100 while a zero-net energy (ZNE) home has an EDR score of zero (Energy Commission, 2018d). See Figure 1 for a graphical representation of this. While the Reference Building is used to determine the rating, the Proposed Design is still compared to the Standard Design based on the prescriptive baseline assumptions to determine compliance.

The EDR is calculated by CBECC-Res and has two components:

- 1. An "Efficiency EDR" which represents the building's energy use without solar generation.⁴
- 2. A "Total EDR" that represents the final energy use of the building based on the combined impact of efficiency measures, PV generation and demand flexibility.

For a building to comply, two criteria are required:

- (1) the proposed Efficiency EDR must be equal to or less than the Efficiency EDR of the Standard Design, and
- (2) the proposed Total EDR must be equal to or less than the Total EDR of the Standard Design.

Single family prototypes used in this analysis that are minimally compliant with the 2019 Title 24 code achieve a Total EDR between 20 and 35 in most climates.

This concept, consistent with California's "loading order" which prioritizes energy efficiency ahead of renewable generation, requires projects meet a minimum Efficiency EDR before PV is credited but allows for PV to be traded off with additional efficiency when meeting the Total EDR. A project may improve on building efficiency beyond the minimum required and subsequently reduce the PV generation capacity required to achieve the required Total EDR but may not increase the size of the PV system and trade this off with a reduction of efficiency measures. Figure 1 graphically summarizes how both Efficiency EDR and PV / demand flexibility EDR are used to calculate the Total EDR used in the 2019 code and in this analysis.

⁴ While there is no compliance credit for solar PV as there is under the 2016 Standards, the credit for installing electric storage battery systems that meet minimum qualifications can be applied to the Efficiency EDR.

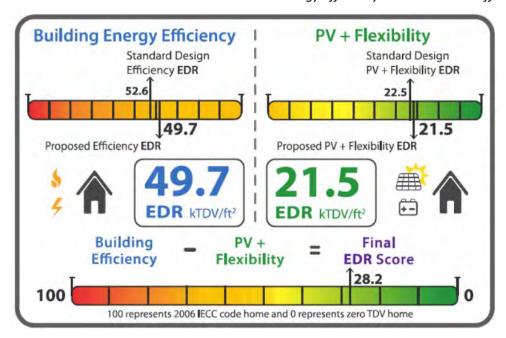


Figure 1: Graphical description of EDR scores (courtesy of Energy Code Ace⁵)

Results from this analysis are presented as EDR Margin, a reduction in the EDR score relative to the Standard Design. EDR Margin is a better metric to use than absolute EDR in the context of a reach code because absolute values vary, based on the home design and characteristics such as size and orientation. This approach aligns with how compliance is determined for the 2019 Title 24 code, as well as utility incentive programs, such as the California Advanced Homes Program (CAHP) & California Multifamily New Homes (CMFNH), which require minimum performance criteria based on an EDR Margin for low-rise residential projects. The EDR Margin is calculated according to Equation 1 for the two efficiency packages and Equation 2 for the Efficiency & PV and Efficiency & PV/Battery packages (see Section 2.3).

Equation 1

 $EDR Margin_{efficiency} = Standard Design Efficiency EDR - Proposed Design Efficiency EDR$

Equation 2

 $EDR\ Margin_{efficiency\ \&\ PV} = Standard\ Design\ Total\ EDR - Proposed\ Design\ Total\ EDR$

2.2.3 Energy Efficiency Measures

Following are descriptions of each of the efficiency measures evaluated under this analysis. Because not all of the measures described below were found to be cost-effective and cost-effectiveness varied by climate zone, not all measures are included in all packages and some of the measures listed are not included in any final package. For a list of measures included in each efficiency package by climate zone, see Appendix D – Single Family Measure Summary and Appendix F – Multifamily Measure Summary.

<u>Reduced Infiltration (ACH50)</u>: Reduce infiltration in single family homes from the default infiltration assumption of five (5) air changes per hour at 50 Pascals (ACH50)⁶ by 40 to 60 percent to either 3 ACH50 or 2 ACH50. HERS

⁵ https://energycodeace.com/

⁶ Whole house leakage tested at a pressure difference of 50 Pascals between indoors and outdoors.

rater field verification and diagnostic testing of building air leakage according to the procedures outlined in the 2019 Reference Appendices RA3.8 (Energy Commission, 2018c). This measure was not applied to multifamily homes because CBECC-Res does not allow reduced infiltration credit for multifamily buildings.

<u>Improved Fenestration</u>: Reduce window U-factor to 0.24. The prescriptive U-factor is 0.30 in all climates. In climate zones 1, 3, 5, and 16 where heating loads dominate, an increase in solar heat gain coefficient (SHGC) from the default assumption of 0.35 to 0.50 was evaluated in addition to the reduction in U-factor.

<u>Cool Roof</u>: Install a roofing product that's rated by the Cool Roof Rating Council to have an aged solar reflectance (ASR) equal to or greater than 0.25. Steep-sloped roofs were assumed in all cases. Title 24 specifies a prescriptive ASR of 0.20 for Climate Zones 10 through 15 and assumes 0.10 in other climate zones.

Exterior Wall Insulation: Decrease wall U-factor in 2x6 walls to 0.043 from the prescriptive requirement of 0.048 by increasing exterior insulation from one-inch R-5 to 1-1/2 inch R-7.5. This was evaluated for single family buildings only in all climate zones except 6 and 7 where the prescriptive requirement is higher (U-factor of 0.065) and improving beyond the prescriptive value has little impact.

<u>High Performance Attics (HPA):</u> HPA with R-38 ceiling insulation and R-30 insulation under the roof deck. In climates where HPA is already required prescriptively this measure requires an incremental increase in roof insulation from R-19 or R-13 to R-30. In climates where HPA is not currently required (Climate Zones 1 through 3, and 5 through 7), this measure adds roof insulation to an uninsulated roof as well as increasing ceiling insulation from R-30 to R-38 in Climate Zones 3, 5, 6 and 7.

<u>Slab Insulation:</u> Install R-10 perimeter slab insulation at a depth of 16-inches. For climate zone 16, where slab insulation is required, prescriptively this measure increases that insulation from R-7 to R-10.

<u>Duct Location (Ducts in Conditioned Space)</u>: Move the ductwork and equipment from the attic to inside the conditioned space in one of the three following ways.

- 1. Locate ductwork in conditioned space. The air handler may remain in the attic provided that 12 linear feet or less of duct is located outside the conditioned space including the air handler and plenum. Meet the requirements of 2019 Reference Appendices RA3.1.4.1.2. (Energy Commission, 2018c)
- 2. All ductwork and equipment located entirely in conditioned space meeting the requirements of 2019 Reference Appendices RA3.1.4.1.3. (Energy Commission, 2018c)
- 3. All ductwork and equipment located entirely in conditioned space with ducts tested to have less than or equal to 25 cfm leakage to outside. Meet the requirements of Verified Low Leakage Ducts in Conditioned Space (VLLDCS) in the 2019 Reference Appendices RA3.1.4.3.8. (Energy Commission, 2018c)

Option 1 and 2 above apply to single family only since the basecase for multifamily assumes ducts are within conditioned space. Option 3 applies to both single family and multifamily cases.

Reduced Distribution System (Duct) Leakage: Reduce duct leakage from 5% to 2% and install a low leakage air handler unit (LLAHU). This is only applicable to single family homes since the basecase for multifamily assumes ducts are within conditioned space and additional duct leakage credit is not available.

Low Pressure Drop Ducts: Upgrade the duct distribution system to reduce external static pressure and meet a maximum fan efficacy of 0.35 Watts per cfm for gas furnaces and 0.45 Watts per cfm for heat pumps operating at full speed. This may involve upsizing ductwork, reducing the total effective length of ducts, and/or selecting low pressure drop components such as filters. Fan watt draw must be verified by a HERS rater according to the procedures outlined in the 2019 Reference Appendices RA3.3 (Energy Commission, 2018c). New federal regulations that went into effect July 3, 2019 require higher fan efficiency for gas furnaces than for heat pumps and air handlers, which is why the recommended specification is different for mixed fuel and all-electric homes.

<u>HERS Verification of Hot Water Pipe Insulation</u>: The California Plumbing Code (CPC) requires pipe insulation on all hot water lines. This measure provides credit for HERS rater verification of pipe insulation requirements according to the procedures outlined in the 2019 Reference Appendices RA3.6.3. (Energy Commission, 2018c)

Compact Hot Water Distribution: Two credits for compact hot water distribution were evaluated.

- Basic Credit: Design the hot water distribution system to meet minimum requirements for the basic compact hot water distribution credit according to the procedures outlined in the 2019 Reference Appendices RA4.4.6 (Energy Commission, 2018c). In many single family homes this may require moving the water heater from an exterior to an interior garage wall. Multifamily homes with individual water heaters are expected to easily meet this credit with little or no alteration to plumbing design. CBECC-Res software assumes a 30% reduction in distribution losses for the basic credit.
- Expanded Credit: Design the hot water distribution system to meet minimum requirements for the
 expanded compact hot water distribution credit according to the procedures outlined in the 2019
 Reference Appendices RA3.6.5 (Energy Commission, 2018c). In addition to requiring HERS verification
 that the minimum requirements for the basic compact distribution credit are met, this credit also
 imposes limitations on pipe location, maximum pipe diameter, and recirculation system controls
 allowed.

<u>Drain Water Heat Recovery (DWHR)</u>: For multifamily buildings add DWHR that serves the showers in an unequal flow configuration (pre-heated water is piped directly to the shower) with 50% efficiency. This upgrade assumes all apartments are served by a DWHR with one unit serving each apartment individually. For a slab-on-grade building this requires a horizontal unit for the first-floor apartments.

Federally Preempted Measures:

The following additional measures were evaluated. Because these measures require upgrading appliances that are federally regulated to high efficiency models, they cannot be used to show cost-effectiveness in a local ordinance. The measures and packages are presented here to show that there are several options for builders to meet the performance targets. Heating and cooling capacities are autosized by CBECC-Res in all cases.

<u>High Efficiency Furnace</u>: For the mixed-fuel prototypes, upgrade natural gas furnace to one of two condensing furnace options with an efficiency of 92% or 96% AFUE.

<u>High Efficiency Air Conditioner</u>: For the mixed-fuel prototypes, upgrade the air conditioner to either single-stage SEER 16 / EER 13 or two-stage SEER 18 / EER 14 equipment.

<u>High Efficiency Heat Pump:</u> For the all-electric prototypes, upgrade the heat pump to either single-stage SEER 16 / EER 13 / HSPF 9 or two-stage SEER 18 / EER 14 / HSPF 10 equipment.

<u>High Efficiency Tankless Water Heater</u>: For the mixed-fuel prototype, upgrade tankless water heater to a condensing unit with a rated Uniform Energy Factor (UEF) of 0.96.

<u>High Efficiency Heat Pump Water Heater (HPWH)</u>: For the all-electric prototypes, upgrade the federal minimum heat pump water heater to a HPWH that meets the Northwest Energy Efficiency Alliance (NEEA)⁷ Tier 3 rating. The evaluated NEEA water heater is an 80gal unit and is applied to all three building prototypes. Using the same

_

⁷ Based on operational challenges experienced in the past, NEEA established rating test criteria to ensure newly installed HPWHs perform adequately, especially in colder climates. The NEEA rating requires an Energy Factor equal to the ENERGY STAR performance level and includes requirements regarding noise and prioritizing heat pump use over supplemental electric resistance heating.

water heater provides consistency in performance across all the equipment upgrade cases, even though hot water draws differ across the prototypes.

2.3 Package Development

Three to four packages were evaluated for each prototype and climate zone, as described below.

- 1) <u>Efficiency Non-Preempted</u>: This package uses only efficiency measures that don't trigger federal preemption issues including envelope, and water heating and duct distribution efficiency measures.
- 2) <u>Efficiency Equipment, Preempted</u>: This package shows an alternative design that applies HVAC and water heating equipment that are more efficient than federal standards. The Reach Code Team considers this more reflective of how builders meet above code requirements in practice.
- 3) Efficiency & PV: Using the Efficiency Non-Preempted Package as a starting point⁸, PV capacity is added to offset most of the estimated electricity use. This only applies to the all-electric case, since for the mixed fuel cases, 100% of the projected electricity use is already being offset as required by 2019 Title 24, Part 6.
- 4) <u>Efficiency & PV/Battery</u>: Using the Efficiency & PV Package as a starting point, PV capacity is added as well as a battery system.

2.3.1 Solar Photovoltaics (PV)

Installation of on-site PV is required in the 2019 residential code. The PV sizing methodology in each package was developed to offset annual building electricity use and avoid oversizing which would violate net energy metering (NEM) rules. In all cases, PV is evaluated in CBECC-Res according to the California Flexible Installation (CFI) assumptions.

The Reach Code Team used two options within the CBECC-Res software for sizing the PV system, described below. Analysis was conducted to determine the most appropriate sizing method for each package which is described in the results.

- Standard Design PV the same PV capacity as is required for the Standard Design case¹⁰
- Specify PV System Scaling a PV system sized to offset a specified percentage of the estimated electricity use of the Proposed Design case

2.3.2 Energy Storage (Batteries)

A battery system was evaluated in CBECC-Res with control type set to "Time of Use" and with default efficiencies of 95% for both charging and discharging. The "Time of Use" option assumes batteries are charged anytime PV generation is greater than the house load but controls when the battery storage system discharges. During the summer months (July – September) the battery begins to discharge at the beginning of the peak period at a maximum rate until fully discharged. During discharge the battery first serves the house load but will

oking.

⁸ In cases where there was no cost-effective Efficiency – Non-Preempted Package, the most cost-effective efficiency measures for that climate zone were also included in the Efficiency & PV Package in order to provide a combination of both efficiency and PV beyond code minimum.

⁹ NEM rules apply to the IOU territories only.

¹⁰ The Standard Design PV system is sized to offset the electricity use of the building loads which are typically electric in a mixed fuel home, which includes all loads except space heating, water heating, clothes drying, and cooking.

discharge to the electric grid if there is excess energy available. During other months the battery discharges whenever the PV system does not cover the entire house load and does not discharge to the electric grid. This control option is considered to be most reflective of the current products on the market. This control option requires an input for the "First Hour of the Summer Peak" and the Statewide CASE Team applied the default hour in CBECC-Res which differs by climate zone (either a 6pm or 7pm start). The Self Utilization Credit was taken when the battery system was modeled.

2.4 Incremental Costs

Table 4 below summarizes the incremental cost assumptions for measures evaluated in this study. Incremental costs represent the equipment, installation, replacement, and maintenance costs of the proposed measures relative to the base case. Replacement costs are applied to HVAC and DHW equipment, PV inverters, and battery systems over the 30-year evaluation period. There is no assumed maintenance on the envelope, HVAC, or DHW measures since there should not be any additional maintenance cost for a more efficient version of the same system type as the baseline. Costs were estimated to reflect costs to the building owner. When costs were obtained from a source that didn't already include builder overhead and profit, a markup of ten percent was added. All costs are provided as present value in 2020 (2020 PV\$). Costs due to variations in furnace, air conditioner, and heat pump capacity by climate zone were not accounted for in the analysis.

Equipment lifetimes applied in this analysis for the water heating and space conditioning measures are summarized in Table 3.

Table 3: Lifetime of Water Heating & Space Conditioning Equipment Measures

Measure	Lifetime
Gas Furnace	20
Air Conditioner	20
Heat Pump	15
Gas Tankless Water Heater	20
Heat Pump Water Heater	15

Source: City of Palo Alto 2019 Title 24 Energy Reach Code Costeffectiveness Analysis Draft (TRC, 2018) which is based on the Database of Energy Efficiency Resources (DEER).¹²

¹¹ Interest costs due to financing are not included in the incremental costs presented in the Table 4 but are accounted for in the lifetime cost analysis. All first costs are assumed to be financed in a mortgage, see Section 2.5 for details.

¹² http://www.deeresources.com

Table 4: Incremental Cost Assumptions

		<u>Incremental C</u>	ost (2020 PV\$)	
	Performance		Multifamily (Per Dwelling	
Measure	Level	Single Family	Unit)	Source & Notes
Non-Preempt	ted Measures			
Reduced	3.0 vs 5.0 ACH50	\$391	n/a	NREL's BEopt cost database (\$0.115/ft² for 3 ACH50 & \$0.207/ft² for 2 ACH50) + \$100 HERS
Infiltration	2.0 vs 5.0 ACH50	\$613	n/a	rater verification.
Window U- factor	0.24 vs 0.30	\$2,261	\$607	\$4.23/ft² window area based on analysis conducted for the 2019 and 2022 Title 24 cycles (Statewide CASE Team, 2018).
Window SHGC	0.50 vs 0.35	\$0	\$0	Data from CASE Report along with direct feedback from Statewide CASE Team that higher SHGC does not necessarily have any incremental cost (Statewide CASE Team, 2017d). Applies to CZ 1,3,5,16.
Cool Roof -	0.25 vs 0.20	\$237	\$58	Costs based on 2016 Cost-effectiveness Study for Cool Roofs reach code analysis for 0.28 solar
Aged Solar Reflectance	0.20 vs 0.10	\$0	\$0	reflectance product. (Statewide Reach Codes Team, 2017b).
Exterior Wall Insulation	R-7.5 vs R-5	\$818	n/a	Based on increasing exterior insulation from 1" R-5 to 1.5" R-7.5 in a 2x6 wall (Statewide CASE Team, 2017c). Applies to single family only in all climates except CZ 6, 7.
Under-Deck	R-13 vs R-0	\$1,338	\$334	Costs for R-13 (\$0.64/ft²), R-19 (\$0.78/ft²) and R-30 (\$1.61/ft²) based on data presented in the
Roof	R-19 vs R-13	\$282	\$70	2019 HPA CASE Report (Statewide CASE Team, 2017b) along with data collected directly from
Insulation	R-30 vs R-19	\$1,831	\$457	builders during the 2019 CASE process. The R-30 costs include additional labor costs for
(HPA)	R-38 vs R-30	\$585	\$146	cabling. Costs for R-38 from NREL's BEopt cost database.
Attic Floor Insulation	R-38 vs R-30	\$584	\$146	NREL's BEopt cost database: \$0.34/ft² ceiling area
Slab Edge	R-10 vs R-0	\$553	\$121	\$4/linear foot of slab perimeter based on internet research. Assumes 16in depth.
Insulation	R-10 vs R-7	\$157	\$21	\$1.58/linear foot of slab perimeter based on NREL's BEopt cost database. This applies to CZ 16 only where R-7 slab edge insulation is required prescriptively. Assumes 16in depth.
	<12 feet in attic	\$358	n/a	
Donat La catio	Ducts in Conditioned Space	\$658	n/a	Costs based on a 2015 report on the Evaluation of Ducts in Conditioned Space for New
Duct Location	Verified Low Leakage Ducts in Conditioned Space	\$768	\$110	California Homes (Davis Energy Group, 2015). HERS verification cost of \$100 for the Verified Low Leakage Ducts in Conditioned Space credit.

Table 4: Incremental Cost Assumptions

		Incremental C	ost (2020 PV\$)	
	Performance	6. 1.5 11	Multifamily (Per Dwelling	
Measure	Level	Single Family	Unit)	Source & Notes
Distribution	2% vs 5%	\$96	n/a	1-hour labor. Labor rate of \$96 per hour is from 2019 RSMeans for sheet metal workers and includes an average City Cost Index for labor for California cities & 10% for overhead and profit. Applies to single family only since ducts are assumed to be in conditioned space for multifamily
System Leakage	Low Leakage Air Handler	\$0	n/a	Negligible cost based on review of available products. There are more than 6,000 Energy Commission certified units and the list includes many furnace and heat pump air handler product lines from the major manufacturers, including minimum efficiency, low cost product lines.
Low Pressure Drop Ducts	0.35 vs 0.45	\$96	\$48	Costs assume one-hour labor for single family and half-hour per multifamily apartment. Labor rate of \$96 per hour is from 2019 RSMeans for sheet metal workers and includes an average
(Fan W/cfm)	0.45 vs 0.58	\$96	\$48	City Cost Index for labor for California cities.
Hot Water Pipe Insulation	HERS verified	\$110	\$83	Cost for HERS verification only, based on feedback from HERS raters. \$100 per single family home and \$75 per multifamily unit before markup.
Compact Hot Water	Basic credit	\$150	\$0	For single family add 20-feet venting at \$12/ft to locate water heater on interior garage wall, less 20-feet savings for less PEX and pipe insulation at \$4.88/ft. Costs from online retailers. Many multifamily buildings are expected to meet this credit without any changes to distribution design.
Distribution	Expanded credit	n/a	\$83	Cost for HERS verification only. \$75 per multifamily unit before markup. This was only evaluated for multifamily buildings.
Drain Water Heat Recovery	50% efficiency	n/a	\$690	Cost from the 2019 DWHR CASE Report assuming a 2-inch DWHR unit. The CASE Report multifamily costs were based on one unit serving 4 dwelling units with a central water heater. Since individual water heaters serve each dwelling unit in this analysis, the Reach Code Team used single family costs from the CASE Report. Costs in the CASE Report were based on a 46.1% efficient unit, a DWHR device that meets the 50% efficiency assumed in this analysis may cost a little more. (Statewide CASE Team, 2017a).
Federally Pre-	-empted Measur	es		
Furnace AFUE	92% vs 80%	\$139	\$139	Equipment costs from online retailers for 40-kBtu/h unit. Cost saving for 6-feet of venting at \$26/foot due to lower cost venting requirements for condensing (PVC) vs non-condensing
Turriace AFUE	96% vs 80%	\$244	\$244	(stainless) furnaces. Replacement at year 20 assumes a 50% reduction in first cost. Value at year 30 based on remaining useful life is included.
Air	16/13 vs 14/11.7	\$111	\$111	Costs from online retailers for 2-ton unit. Replacement at year 20 assumes a 50% reduction in
Conditioner SEER/EER	18/14 vs 14/11.7	\$1,148	\$1,148	first cost. Value at year 30 based on remaining useful life is included.

2019-07-17

Table 4: Incremental Cost Assumptions

Incremental Cost (2020 PV\$)		ost (2020 PV\$)		
Measure	Performance Level	Single Family	Multifamily (Per Dwelling Unit)	Source & Notes
Heat Pump	16/13/9 vs 14/11.7/8.2	\$411	\$411	Costs from online retailers for 2-ton unit. Replacement at year 15 assumes a 50% reduction in
SEER/EER /HSPF	18/14/10 vs 14/11.7/8.2	\$1,511	\$1,511	first cost.
Tankless Water Heater Energy Factor	0.96 vs 0.81	\$203	\$203	Equipment costs from online retailers for 40-kBtu/h unit. Cost saving for 6-feet of venting at \$26/foot due to lower cost venting requirements for condensing (PVC) vs non-condensing (stainless) furnaces. Replacement at year 15 assumes a 50% reduction in first cost.
HPWH	NEEA Tier 3 vs 2.0 EF	\$294	\$294	Equipment costs from online retailers. Replacement at year 15 assumes a 50% reduction in first cost.
PV + Battery				
PV System	System size varies	\$3.72/W-DC	\$3.17/W-DC	First costs are from LBNL's Tracking the Sun 2018 costs (Barbose et al., 2018) and represent costs for the first half of 2018 of \$3.50/W-DC for residential system and \$2.90/W-DC for non-residential system ≤500 kW-DC. These costs were reduced by 16% for the solar investment tax credit, which is the average credit over years 2020-2022. Inverter replacement cost of \$0.14/W-DC present value includes replacements at year 11 at \$0.15/W-DC (nominal) and at year 21 at \$0.12/W-DC (nominal) per the 2019 PV CASE Report (California Energy Commission, 2017). System maintenance costs of \$0.31/W-DC present value assume \$0.02/W-DC (nominal) annually per the 2019 PV CASE Report (California Energy Commission, 2017). 10% overhead and profit added to all costs
Battery	System size varies by building type	\$656/kWh	\$656/kWh	\$633/kWh first cost based on the PV Plus Battery Study report (Statewide Reach Codes Team, 2018) as the average cost of the three systems that were analyzed. This cost was reduced by 16% for the solar investment tax credit, which is the average credit over years 2020-2022. Replacement cost at year 15 of \$100/kWh based on target price reductions (Penn, 2018).

12

2.5 Cost-effectiveness

Cost-effectiveness was evaluated for all sixteen climate zones and is presented based on both TDV energy, using the Energy Commission's LCC methodology, and an On-Bill approach using residential customer utility rates. Both methodologies require estimating and quantifying the value of the energy impact associated with energy efficiency measures over the life of the measures (30 years) as compared to the prescriptive Title 24 requirements.

Results are presented as a lifecycle benefit-to-cost (B/C) ratio, a net present value (NPV) metric which represents the cost-effectiveness of a measure over a 30-year lifetime taking into account discounting of future savings and costs and financing of incremental first costs. A value of one indicates the NPV of the savings over the life of the measure is equivalent to the NPV of the lifetime incremental cost of that measure. A value greater than one represents a positive return on investment. The B/C ratio is calculated according to Equation 3.

$$\begin{aligned} & \textbf{Equation 3} \\ & \textit{Benefit} - \textit{to} - \textit{Cost Ratio} = \frac{\textit{NPV of lifetime benefit}}{\textit{NPV of lifetime cost}} \end{aligned}$$

In most cases the benefit is represented by annual utility savings or TDV savings and the cost by incremental first cost and replacement costs. However, in some cases a measure may have incremental cost savings but with increased energy related costs. In this case, the benefit is the lower first cost and the cost is the increase in utility bills. The lifetime costs or benefits are calculated according to Equation 4.

Equation 4

NPV of lifetime cost/benefit = $\sum_{t=1}^{n} Annual \cos t/benefit_t * (1+r)^t$

Where:

- n = analysis term
- r = discount rate

The following summarizes the assumptions applied in this analysis to both methodologies.

- Analysis term of 30-years
- Real discount rate of 3 percent
- Inflation rate of 2 percent
- First incremental costs are financed into a 30-year mortgage
- Mortgage interest rate of 4.5 percent
- Average tax rate of 20 percent (to account for tax savings due to loan interest deductions)

2.5.1 <u>On-Bill Customer Lifecycle Cost</u>

Residential utility rates were used to calculate utility costs for all cases and determine On-Bill customer costeffectiveness for the proposed packages. The Reach Codes Team obtained the recommended utility rates from each IOU based on the assumption that the reach codes go into effect January of 2020. Annual utility costs were calculated using hourly electricity and gas output from CBECC-Res and applying the utility tariffs summarized in Table 5. Appendix B – Utility Tariff Details includes the utility rate schedules used for this study. The applicable residential time-of-use (TOU) rate was applied to all cases. Annual electricity production in excess of annual electricity consumption is credited to the utility account at the applicable wholesale rate based on the approved

¹³ Under NEM rulings by the CPUC (D-16-01-144, 1/28/16), all new PV customers shall be in an approved TOU rate structure. https://www.cpuc.ca.gov/General.aspx?id=3800

NEM2 tariffs for that utility. Minimum daily use billing and mandatory non-bypassable charges have been applied. Future change to the NEM tariffs are likely; however, there is a lot of uncertainty about what those changes will be and if they will become effective during the 2019 code cycle (2020-2022).

The net surplus compensation rates for each utility are as follows:¹⁴

PG&E: \$0.0287 / kWh
 SCE: \$0.0301 / kWh
 SDG&E: \$0.0355 / kWh

Utility rates were applied to each climate zone based on the predominant IOU serving the population of each zone according to Two SCE tariff options were evaluated: TOU-D-4-9 and TOU-D-PRIME. The TOU-D-PRIME rate is only available to customers with heat pumps for either space or water heating, a battery storage system, or an electric vehicle and therefore was only evaluated for the all-electric cases and the Efficiency & PV/Battery packages. The rate which resulted in the lowest annual cost to the customer was used for this analysis, which was TOU-D-4-9 in all cases with the exception of the single family all-electric cases in Climate Zone 14.

Table 5. Climate Zones 10 and 14 are evaluated with both SCE/SoCalGas and SDG&E tariffs since each utility has customers within these climate zones. Climate Zone 5 is evaluated under both PG&E and SoCalGas natural gas rates.

Two SCE tariff options were evaluated: TOU-D-4-9 and TOU-D-PRIME. The TOU-D-PRIME rate is only available to customers with heat pumps for either space or water heating, a battery storage system, or an electric vehicle and therefore was only evaluated for the all-electric cases and the Efficiency & PV/Battery packages. The rate which resulted in the lowest annual cost to the customer was used for this analysis, which was TOU-D-4-9 in all cases with the exception of the single family all-electric cases in Climate Zone 14.

Table 5: IOU Utility Tariffs Applied Based on Climate Zone

Climate Zones	Electric / Gas	Electricity	Natural
Cililate Zones	Utility	(Time-of-use)	Gas
1-5, 11-13, 16	PG&E	E-TOU, Option B	G1
5	PG&E / SoCalGas	E-TOU, Option B	GR
6, 8-10, 14, 15	SCE / SoCal Gas	TOU-D-4-9 or	GR
0, 6-10, 14, 15	SCE / SOCAI GAS	TOU-D-PRIME	GK
7, 10, 14	SDG&E	TOU-DR1	GR

Source: Utility websites, See Appendix B – Utility Tariff Details for details on the tariffs applied.

Utility rates are assumed to escalate over time, using assumptions from research conducted by Energy and Environmental Economics (E3) in the 2019 study Residential Building Electrification in California study (Energy & Environmental Economics, 2019). Escalation of natural gas rates between 2019 and 2022 is based on the currently filed General Rate Cases (GRCs) for PG&E, SoCalGas and SDG&E. From 2023 through 2025, gas rates are assumed to escalate at 4% per year above inflation, which reflects historical rate increases between 2013 and 2018. Escalation of electricity rates from 2019 through 2025 is assumed to be 2% per year above inflation, based on electric utility estimates. After 2025, escalation rates for both natural gas and electric rates are assumed to drop to a more conservative 1% escalation per year above inflation for long-term rate trajectories beginning in 2026 through 2050. See Appendix B – Utility Tariff Details for additional details.

¹⁴ Net surplus compensation rates based on 1-year average February 2018 – January 2019.

2.5.2 TDV Lifecycle Cost

Cost-effectiveness was also assessed using the Energy Commission's TDV LCC methodology. TDV is a normalized monetary format developed and used by the Energy Commission for comparing electricity and natural gas savings, and it considers the cost of electricity and natural gas consumed during different times of the day and year. The 2019 TDV values are based on long term discounted costs of 30 years for all residential measures. The CBECC-Res simulation software outputs are in terms of TDV kBTUs. The present value of the energy cost savings in dollars is calculated by multiplying the TDV kBTU savings by a net present value (NPV) factor, also developed by the Energy Commission. The NPV factor is \$0.173/TDV kBtu for residential buildings.

Like the customer B/C ratio, a TDV B/C ratio value of one indicates the savings over the life of the measure are equivalent to the incremental cost of that measure. A value greater than one represents a positive return on investment. The ratio is calculated according to Equation 5.

TDV Benefit – to – Cost Ratio =
$$\frac{TDV \text{ energy savings } * NPV \text{ factor}}{NPV \text{ of lifetime incremental cost}}$$

2.6 Electrification Evaluation

In addition to evaluating upgrades to mixed fuel and all-electric buildings independently that do not result in fuel switching, the Reach Code Team also analyzed the impact on construction costs, utility costs, and TDV when a builder specifies and installs electric appliances instead of the gas appliances typically found in a mixed fuel building. This analysis compared the code compliant mixed fuel prototype, which uses gas for space heating, water heating, cooking, and clothes drying, with the code compliant all-electric prototype. It also compared the all-electric Efficiency & PV Package with the code compliance mixed fuel prototype. In these cases, the relative costs between natural gas and electric appliances, differences between in-house electricity and gas infrastructure and the associated infrastructure costs for providing gas to the building were also included.

A variety of sources were reviewed when determining incremental costs. The sources are listed below.

- SMUD All-Electric Homes Electrification Case Study (EPRI, 2016)
- City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis (TRC, 2018)
- Building Electrification Market Assessment (E3, 2019)
- Decarbonization of Heating Energy Use in California Buildings (Hopkins et al., 2018)
- Analysis of the Role of Gas for a Low-Carbon California Future (Navigant, 2008)
- Rulemaking No. 15-03-010 An Order Instituting Rulemaking to Identify Disadvantaged Communities in the San Joaquin Valley and Analyze Economically Feasible Options to Increase Access to Affordable Energy in Those Disadvantages Communities (California Public Utilities Commission, 2016)
- 2010-2012 WO017 Ex Ante Measure Cost Study: Final Report (Itron, 2014)
- Natural gas infrastructure costs provided by utility staff through the Reach Code subprogram
- Costs obtained from builders, contractors and developers

Incremental costs are presented in Table 6. Values in parentheses represent a lower cost or cost reduction in the electric option relative to mixed fuel. The costs from the available sources varied widely, making it difficult to develop narrow cost estimates for each component. For certain components data is provided with a low to high range as well as what were determined to be typical costs and ultimately applied in this analysis. Two sets of typical costs are presented, one which is applied in the On-Bill cost effectiveness methodology and another applied in the TDV methodology. Details of these differences are explained in the discussion of site gas infrastructure costs in the following pages.

Table 6: Incremental Costs - All-Electric Code Compliant Home Compared to a Mixed Fuel Code Compliant Home

code comphant nome												
Mossure	Incr	emental C	ost (2020	Incremental Cost (2020 PV\$) Multifamily¹ (Per Dwelling Unit)								
Measure		Single	Family ¹									
	Low	High	Typical Typical (On-Bill) (TDV)		Low	High	Typical (On-Bill)	Typical (TDV)				
Heat Pump vs Gas Furnace/Split AC	(\$2,770)	\$620 (\$221)										
Heat Pump Water Heater vs Gas Tankless	(\$1,120)	\$1,120		\$0	Campa on Cingle Family							
Electric vs Gas Clothes Dryer ²	(\$428)	\$820	\$0		Same as Single Family							
Electric vs Gas Cooking ²	\$0	\$1,800	,	\$0								
Electric Service Upgrade	\$200	\$800	\$	600	\$150	\$600	\$6	00				
In-House Gas Infrastructure	(\$1,670)	(\$550)	(\$	800)	(\$600)	(\$150)	(\$6	00)				
Site Gas Infrastructure	(\$25,000)	(\$900)	(\$5,750)	(\$11,836)	(\$16,250)	(\$310)	(\$3,140)	(\$6,463)				
Total First Cost	(\$30,788)	\$3,710	(\$6,171)	(\$12,257)	(\$20,918)	\$4,500	(\$3,361)	(\$6,684)				
Present Value of Equipment Replace	\$1	,266		•	\$1,.	266						
Lifetime Cost Including Replacemen Cost	(\$5,349)	(\$11,872)			(\$2,337)	(\$5,899)						

¹Low and high costs represent the potential range of costs and typical represents the costs used in this analysis and determined to be most representative of the conditions described in this report. Two sets of typical costs are presented, one which is applied in the On-Bill cost effectiveness methodology and another applied in the TDV methodology.
²Typical costs assume electric resistance technology. The high range represents higher end induction cooktops and heat pump clothes dryers. Lower cost induction cooktops are available.

Typical incremental costs for switching from a mixed fuel design to an all-electric design are based on the following assumptions:

<u>Appliances</u>: The Reach Code Team determined that the typical first installed cost for electric appliances is very similar to that for natural gas appliances. This was based on information provided by HVAC contractors, plumbers and builders as well as a review of other studies. After review of various sources, the Reach Code Team concluded that the cost difference between gas and electric resistance options for clothes dryers and stoves is negligible and that the lifetimes of the two technologies are also similar.

HVAC: Typical HVAC incremental costs were based on the City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis (TRC, 2018) which assumes approximately \$200 first cost savings for the heat pump relative to the gas furnace and air conditioner. Table 6 also includes the present value of the incremental replacement costs for the heat pump based on a 15-year lifetime and a 20-year lifetime for the gas furnace in the mixed fuel home.

DHW: Typical costs for the water heating system were based on equivalent installed first costs for the HPWH and tankless gas water heater. This accounts for slightly higher equipment cost but lower installation labor due to the elimination of the gas flue. Incremental replacement costs for the HPWH are based on a 15-year lifetime and a 20-year lifetime for the tankless water heater.

For multifamily, less data was available and therefore a range of low and high costs is not provided. The typical first cost for multifamily similarly is expected to be close to the same for the mixed fuel and all-electric designs. However, there are additional considerations with multifamily such as greater complexity for venting of natural gas appliances as well as for locating the HPWH within the conditioned space (all climates except Climate Zones 1, 3, and 5, see Table 2) that may impact the total costs.

<u>Electric service upgrade</u>: The study assumes an incremental cost to run 220V service to each appliance of \$200 per appliance for single family homes and \$150 per appliance per multifamily apartment based on cost estimates from builders and contractors. The Reach Code Team reviewed production builder utility plans for

mixed-fuel homes and consulted with contractors to estimate which electricity and/or natural gas services are usually provided to the dryer and oven. Typical practice varied, with some builders providing both gas and electric service to both appliances, others providing both services to only one of the appliances, and some only providing gas. For this study, the Reach Code Team determined that for single family homes the typical cost is best qualified by the practice of providing 220V service and gas to either the dryer and the oven and only gas service to the other. For multifamily buildings it's assumed that only gas is provided to the dryer and oven in the mixed fuel home.

It is assumed that no upgrades to the electrical panel are required and that a 200 Amp panel is typically installed for both mixed fuel and all-electric new construction homes. There are no incremental electrical site infrastructure requirements.

<u>In-house gas infrastructure (from meter to appliances)</u>: Installation cost to run a gas line from the meter to the appliance location is \$200 per appliance for single family and \$150 per appliance per multifamily apartment based on cost estimates from builders and contractors. The cost estimate includes providing gas to the water heater, furnace, dryer and cooktop.

Site gas infrastructure: The cost-effective analysis components with the highest degree of variability are the costs for on-site gas infrastructure. These costs can be project dependent and may be significantly impacted by such factors as utility territory, site characteristics, distance to the nearest gas main and main location, joint trenching, whether work is conducted by the utility or a private contractor, and number of dwelling units per development. All gas utilities participating in this study were solicited for cost information. The typical infrastructure costs for single family homes presented in Table 6 are based on cost data provided by PG&E and reflect those for a new subdivision in an undeveloped area requiring the installation of natural gas infrastructure, including a main line. Infrastructure costs for infill development can also be highly variable and may be higher than in an undeveloped area. The additional costs associated with disruption of existing roads, sidewalks, and other structures can be significant. Total typical costs in Table 6 assume \$10,000 for extension of a gas main, \$1,686 for a service lateral, and \$150 for the meter.

Utility Gas Main Extensions rules¹⁵ specify that the developer has the option to only pay 50% of the total cost for a main extension after subtraction of allowances for installation of gas appliances. This 50% refund and the appliance allowance deductions are accounted for in the site gas infrastructure costs under the On-Bill cost-effectiveness methodology. The net costs to the utility after partial reimbursement from the developer are included in utility ratebase and recovered via rates to all customers. The total cost of \$5,750 presented in Table 6 reflects a 50% refund on the \$10,000 extension and appliance deductions of \$1,086 for a furnace, water heater, cooktop, and dryer. Under the On-Bill methodology this analysis assumes this developer option will remain available through 2022 and that the cost savings are passed along to the customer.

The 50% refund and appliance deductions were not applied to the site gas infrastructure costs under the TDV cost-effectiveness methodology based on input received from the Energy Commission and agreement from the Reach Code technical advisory team that the approach is appropriate. TDV cost savings impacts extend beyond the customer and account for societal impacts of energy use. Accounting for the full cost of the infrastructure upgrades was determined to be justified when evaluating under the TDV methodology.

SoCalGas Rule 20: https://www.socalgas.com/regulatory/tariffs/tm2/pdf/20.pdf

SDG&E Rule 15: http://regarchive.sdge.com/tm2/pdf/GAS GAS-RULES GRULE15.pdf

17 2019-07-17

¹⁵ PG&E Rule 15: https://www.pge.com/tariffs/tm2/pdf/GAS_RULES_15.pdf

Less information was available for the costs associated with gas infrastructure for low-rise multifamily development. The typical cost in Table 6 for the On-Bill methodology is based on TRC's City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis (TRC, 2018). These costs, provided by the City of Palo Alto, are approximately \$25,100 for an 8-unit new construction building and reflect connection to an existing main for infill development. Specific costs include plan review, connection charges, meter and manifold, plumbing distribution, and street cut fees. While these costs are specifically based on infill development and from one municipal utility, the estimates are less than those provided by PG&E reflecting the average cost differences charged to the developer between single family and multifamily in an undeveloped area (after accounting for deductions per the Gas Main Extensions rule). To convert costs charged to the developer to account for the full infrastructure upgrade cost (costs applied in the TDV methodology analysis), a factor of 2.06¹⁶ was calculated based on the single family analysis. This same factor was applied to the multifamily cost of \$3,140 to arrive at \$6,463 (see Table 6).

2.7 Greenhouse Gas Emissions

Equivalent CO_2 emission savings were calculated based on outputs from the CBECC-Res simulation software. Electricity emissions vary by region and by hour of the year. CBECC-Res applies two distinct hourly profiles, one for Climate Zones 1 through 5 and 11 through 13 and another for Climate Zones 6 through 10 and 14 through 16. For natural gas a fixed factor of 0.005307 metric tons/therm is used. To compare the mixed fuel and all-electric cases side-by-side, greenhouse gas (GHG) emissions are presented as CO_2 -equivalent emissions per square foot of conditioned floor area.

3 Results

The primary objective of the evaluation is to identify cost-effective, non-preempted performance targets for both single family and low-rise multifamily prototypes, under both mixed fuel and all-electric cases, to support the design of local ordinances requiring new low-rise residential buildings to exceed the minimum state requirements. The packages presented are representative examples of designs and measures that can be used to meet the requirements. In practice, a builder can use any combination of non-preempted or preempted compliant measures to meet the requirements.

This analysis covered all sixteen climate zones and evaluated two efficiency packages, including a non-preempted package and a preempted package that includes upgrades to federally regulated equipment, an Efficiency & PV Package for the all-electric scenario only, and an Efficiency & PV/Battery Package. For the efficiency-only packages, measures were refined to ensure that the non-preempted package was cost-effective based on one of the two metrics applied in this study, TDV or On-Bill. The preempted equipment package, which the Reach Code Team considers to be a package of upgrades most reflective of what builders commonly apply to exceed code requirements, was designed to be cost-effective based on the On-Bill cost-effectiveness approach.

Results are presented as EDR Margin instead of compliance margin. EDR is the metric used to determine code compliance in the 2019 cycle. Target EDR Margin is based on taking the calculated EDR Margin for the case and rounding down to the next half of a whole number. Target EDR Margin for the Efficiency Package are defined based on the lower of the EDR Margin of the non-preempted package and the equipment, preempted package. For example, if for a particular case the cost-effective non-preempted package has an EDR Margin of 3 and the preempted package an EDR Margin of 4, the Target EDR Margin is set at 3.

¹⁶ This factor includes the elimination of the 50% refund for the main extension and adding back in the appliance allowance deductions.

For a package to qualify, a minimum EDR Margin of 0.5 was required. This is to say that a package that only achieved an EDR Margin of 0.4, for example, was not considered. An EDR Margin less than 0.5 generally corresponds to a compliance margin lower than 5% and was considered too small to ensure repeatable results. In certain cases, the Reach Code Team did not identify a cost-effective package that achieved the minimum EDR Margin of 0.5.

Although some of the efficiency measures evaluated were not cost-effective and were eliminated, the following measures are included in at least one package:

- Reduced infiltration
- Improved fenestration
- Improved cool roofs
- High performance attics
- Slab insulation
- Reduced duct leakage
- Verified low leakage ducts in conditioned space
- Low pressure-drop distribution system
- Compact hot water distribution system, basic and expanded
- High efficiency furnace, air conditioner & heat pump (preempted)
- High efficiency tankless water heater & heat pump water heater (preempted)

3.1 PV and Battery System Sizing

The approach to determining the size of the PV and battery systems varied based on each package and the source fuel. Table 7 describes the PV and battery sizing approaches applied to each of the four packages. For the **Efficiency Non-preempted and Efficiency – Equipment, Preempted packages** a different method was applied to each the two fuel scenarios. In all **mixed fuel cases**, the PV was sized to offset 100% of the estimated electrical load and any electricity savings from efficiency measures were traded off with a smaller PV system. Not downsizing the PV system after adding efficiency measures runs the risk of producing more electricity than is consumed, reducing cost-effectiveness and violating NEM rules. While the impact of this in most cases is minor, analysis confirmed that cost-effectiveness improved when reducing the system size to offset 100% of the electricity usage as opposed to keeping the PV system the same size as the Standard Design.

In the **all-electric Efficiency cases**, the PV system size was left to match the Standard Design (Std Design PV), and the inclusion of energy efficiency measures was not traded off with a reduced capacity PV system. Because the PV system is sized to meet the electricity load of a mixed fuel home, it is cost-effective to keep the PV system the same size and offset a greater percentage of the electrical load.

For the **Efficiency & PV** case on the all-electric home, the Reach Code Team evaluated PV system sizing to offset 100%, 90% and 80% of the total calculated electricity use. Of these three, sizing to 90% proved to be the most cost-effective based on customer utility bills. This is a result of the impact of the annual minimum bill which is around \$120 across all the utilities. The "sweet spot" is a PV system that reduces electricity bills just enough to match the annual minimum bill; increasing the PV size beyond this adds first cost but does not result in utility bill savings.

Table 7: PV & Battery Sizing Details by Package Type

<u>Package</u>	Mixed Fuel	All-Electric
Efficiency (Envelope & Equipment)	PV Scaled @ 100% electricity	Std Design PV
Efficiency & PV	n/a	PV Scaled @ 90%
Efficiency & PV/Battery	PV Scaled @ 100% electricity 5kWh / SF home	PV Scaled @ 100% 5kWh / SF home
	2.75kWh/ MF apt	2.75kWh/ MF apt

A sensitivity analysis was conducted to determine the appropriate battery and PV capacity for the Efficiency & PV/Battery Packages using the 1-story 2,100 square foot prototype in Climate Zone 12. Results are shown in Figure 2. The current version of CBECC-Res requires a minimum battery size of 5 kWh to qualify for the self-utilization credit. CBECC-Res allows for PV oversizing up to 160% of the building's estimated electricity load when battery storage systems are installed; however, the Reach Code Team considered this high, potentially problematic from a grid perspective, and likely not acceptable to the utilities or customers. The Reach Code Team compared cost-effectiveness of 5kWh and 7.5kWh battery systems as well as of PV systems sized to offset 90%, 100%, or 120% of the estimated electrical load.

Results show that from an on-bill perspective a smaller battery size is more cost-effective. The sensitivity analysis also showed that increasing the PV capacity from 90% to 120% of the electricity use reduced cost-effectiveness. From the TDV perspective there was little difference in results across all the scenarios, with the larger battery size being marginally more cost-effective. Based on these results, the Reach Code Team applied to the Efficiency & PV/Battery Package a 5kWh battery system for single family homes with PV sized to offset 100% of the electricity load. Even though PV scaled to 90% was the most cost-effective, sizing was increased to 100% to evaluate greater generation beyond the Efficiency & PV Package and to achieve zero net electricity. These results also show that in isolation, the inclusion of a battery system reduces cost-effectiveness compared to the same size PV system without batteries.

For multifamily buildings the battery capacity was scaled to reflect the average ratio of battery size to PV system capacity (kWh/kW) for the single family Efficiency & PV Package. This resulted in a 22kWh battery for the multifamily building, or 2.75kWh per apartment.

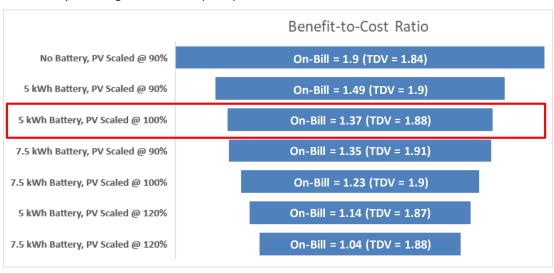


Figure 2: B/C ratio comparison for PV and battery sizing

3.2 Single Family Results

Table 8 through Table 10 contain cost effectiveness findings for the single family packages. Table 8 summarizes the package costs for all of the mixed fuel and all-electric efficiency, PV and battery packages. The mixed fuel results are evaluated and presented relative to a mixed fuel code compliant basecase while the all-electric results are relative to an all-electric code compliant basecase.

Table 9 and Table 10 present the B/C ratios for all the single family packages according to both the On-Bill and TDV methodologies for the mixed fuel and the all-electric cases, respectively. Results are cost-effective based on TDV for all cases except for Climate Zone 7 where no cost-effective combination of non-preempted efficiency measures was found that met the minimum 0.5 EDR Margin threshold. Cases where the B/C ratio is indicated as ">1" refer to instances where there are incremental cost savings in addition to annual utility bill savings. In these cases, there is no cost associated with the upgrade and benefits are realized immediately.

Figure 3 presents a comparison of Total EDRs for single family buildings and Figure 4 presents the EDR Margin results. Each graph compares the mixed fuel and all-electric cases as well as the various packages. The EDR Margin for the **Efficiency Package** for most climates is between 1.0 and 5.5 for mixed fuel cases and slightly higher, between 1.5 and 6.5, for the all-electric design. No cost-effective **mixed fuel or all-electric non-preempted Efficiency package** was found Climate Zone 7.

For the **mixed fuel case, the Efficiency & PV/Battery** Package increased the EDR Margin to values between 7.0 and 10.5. Because of the limitations on oversizing PV systems to offset natural gas use it is not feasible to achieve higher EDR Margins by increasing PV system capacity.

For the **all-electric case, the Efficiency & PV** Package resulted in EDR Margins of 11.0 to 19.0 for most climates; adding a battery system increased the EDR Margin by an additional 7 to 13 points. Climate zones 1 and 16, which have high heating loads, have much higher EDR Margins for the Efficiency & PV package (26.5-31.0). The Standard Design PV, which is what is applied in the all-electric Efficiency Package, is not sized to offset any of the heating load. When the PV system is sized to offset 90% of the total electricity use, the increase is substantial as a result. In contrast, in Climate Zone 15 the Standard Design PV system is already sized to cover the cooling electricity load, which represents 40% of whole building electricity use. Therefore, increasing the PV size to offset 90% of the electric load in this climate only results in adding approximately 120 Watts of PV capacity and subsequently a negligible impact on the EDR.

Additional results details can be found in Appendix C – Single Family Detailed Results with summaries of measures included in each of the packages in Appendix D – Single Family Measure Summary. A summary of results by climate zone is presented in Appendix G – Results by Climate Zone.

2019-07-17

Table 8: Single Family Package Lifetime Incremental Costs

		Mixed Fuel	J	All-Electric								
Climate Zone	Non-Preempted	Equipment - Preempted	Efficiency & PV/Battery	Non-Preempted	Equipment - Preempted	Efficiency & PV	Efficiency & PV/Battery					
CZ01	+\$1,355	+\$1,280	+\$5,311	+\$7,642	+\$2,108	+\$18,192	+\$24,770					
CZ02	+\$1,504	+\$724	+\$5,393	+\$3,943	+\$2,108	+\$12,106	+\$18,132					
CZ03	+\$1,552	+\$1,448	+\$5,438	+\$1,519	+\$2,108	+\$8,517	+\$14,380					
CZ04	+\$1,556	+\$758	+\$5,434	+\$1,519	+\$2,108	+\$8,786	+\$14,664					
CZ05	+\$1,571	+\$772	+\$5,433	+\$1,519	+\$2,108	+\$8,307	+\$14,047					
CZ06	+\$1,003	+\$581	+\$4,889	+\$926	+\$846	+\$6,341	+\$12,036					
CZ07	n/a	+\$606	+\$4,028	n/a	+\$846	+\$4,436	+\$9,936					
CZ08	+\$581	+\$586	+\$4,466	+\$926	+\$412	+\$5,373	+\$11,016					
CZ09	+\$912	+\$574	+\$4,785	+\$1,180	+\$846	+\$5,778	+\$11,454					
CZ10	+\$1,648	+\$593	+\$5,522	+\$1,773	+\$949	+\$6,405	+\$12,129					
CZ11	+\$3,143	+\$1,222	+\$7,026	+\$3,735	+\$2,108	+\$10,827	+\$17,077					
CZ12	+\$1,679	+\$654	+\$5,568	+\$3,735	+\$2,108	+\$11,520	+\$17,586					
CZ13	+\$3,060	+\$611	+\$6,954	+\$4,154	+\$2,108	+\$10,532	+\$16,806					
CZ14	+\$1,662	+\$799	+\$5,526	+\$4,154	+\$2,108	+\$10,459	+\$16,394					
CZ15	+\$2,179	-(\$936)	+\$6,043	+\$4,612	+\$2,108	+\$5,085	+\$11,382					
CZ16	+\$3,542	+\$2,441	+\$7,399	+\$5,731	+\$2,108	+\$16,582	+\$22,838					

Table 9: Single Family Package Cost-Effectiveness Results for the Mixed Fuel Case 1,2

Table 9: Single Family Package Cost-Effectiveness Results for the Mixed Fuel Case 1/2											
				Efficiency & PV/Battery							
	Non-P	reempted	t t	Equipme	nt - Preer	npted	Target				Target
	Efficiency	On-Bill	TDV	Efficiency	On-Bill	TDV	Efficiency	Total	On-Bill	TDV	Total
	EDR	B/C	B/C	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR
Utility	Margin	Ratio	Ratio	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin
PG&E	5.3	3.4	2.8	6.9	4.9	4.1	5.0	10.6	0.9	1.6	10.5
PG&E	3.3	1.6	1.7	3.3	3.8	3.6	3.0	10.1	0.5	1.6	10.0
PG&E	3.0	1.3	1.3	4.1	1.9	2.0	2.5	10.0	0.4	1.4	10.0
PG&E	2.5	0.9	1.2	2.7	2.4	2.7	2.5	10.1	0.3	1.5	10.0
PG&E	2.7	1.1	1.2	2.6	2.3	2.5	2.5	9.4	0.4	1.3	9.0
PG&E/SoCalGas	2.7	0.9	1.2	2.6	2.0	2.5	2.5	9.4	0.3	1.3	9.0
SCE/SoCalGas	2.0	0.7	1.2	2.0	1.6	2.0	1.5	9.8	0.8	1.3	9.5
SDG&E	0.0	-	-	1.5	1.5	1.4	0.0	9.2	0.1	1.3	9.0
SCE/SoCalGas	1.3	0.6	1.4	1.6	1.3	1.8	1.0	8.4	0.9	1.3	8.0
SCE/SoCalGas	2.6	0.7	2.0	2.9	1.8	3.7	2.5	8.8	1.0	1.5	8.5
SCE/SoCalGas	3.2	0.6	1.3	3.2	2.0	3.8	3.0	9.6	1.0	1.5	9.5
SDG&E	3.2	0.8	1.3	3.2	2.6	3.8	3.0	9.6	0.6	1.5	9.5
PG&E	4.3	0.8	1.2	5.1	2.5	3.7	4.0	9.2	0.4	1.5	9.0
PG&E	3.5	1.2	1.8	3.4	3.3	4.6	3.0	9.6	0.4	1.7	9.5
PG&E	4.6	0.8	1.3	5.8	5.3	8.4	4.5	9.7	0.4	1.6	9.5
SCE/SoCalGas	5.0	1.6	2.5	5.8	4.0	6.1	4.5	9.0	1.3	1.7	9.0
SDG&E	5.0	1.9	2.5	5.8	4.9	6.1	4.5	9.0	1.2	1.7	9.0
SCE/SoCalGas	4.8	1.0	1.6	5.0	>1	>1	4.5	7.1	1.1	1.5	7.0
PG&E	5.4	1.6	1.5	6.2	2.2	2.2	5.0	10.5	0.9	1.4	10.5
	Utility PG&E PG&E PG&E PG&E PG&E PG&E PG&E PG&E	Non-P Efficiency EDR Margin	Non-Preempted Efficiency On-Bill EDR B/C Margin Ratio	Non-Preempted Efficiency On-Bill TDV EDR B/C B/C B/C Margin Ratio Ratio	Non-Preempted Equipme Efficiency EDR B/C B/C EDR Margin Ratio Ratio Margin Margin Ratio Ratio Margin Ratio Ratio Margin Ratio Ratio Ratio Margin Ratio Ratio	Non-Prempted Efficiency Equipment - Preent	Non-Prempted Efficiency Prempted Prempted Efficiency Prempted Prempted Prempted Efficiency Prempted Prempted Prempted Efficiency Prempted Prempted Prempted Prempted Efficiency Prempted Prempted Prempted Efficiency Prempted Prempted Prempted Prempted Prempted Prempted Prempted Efficiency Prempted Pre	Non-Per Fefficiency Non-Bill TDV Efficiency Non-Bill Non-Bi	Non-Prempted Equipment - Prempted Equipment - Processed Efficiency On-Bill TDV EDR EDR EDR EDR EDR Margin On-Bill TDV Efficiency On-Bill TDV EDR EDR EDR On-Bill TDV EDR On-Bill TDV EDR EDR On-Bill TDV EDR On-Bill TDV EDR EDR On-Bill TDV EDR EDR On-Bill TDV EDR On-Bill TDV EDR EDR EDR On-Bill TDV EDR EDR EDR On-Bill TDV EDR EDR EDR On-Bill TDV EDR EDR EDR EDR EDR EDR On-Bill TDV EDR E	Non-Percent Fefficiency Con-Bill TDV Equipment - Precent Female Femal	Non-Prempted Efficiency Sequence Efficiency Sequence S

^{1&}quot;>1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix D – Single Family Measure Summary.

Table 10: Single Family Package Cost-Effectiveness Results for the All-Electric Case^{1,2}

		Efficiency								Efficienc			Efficiency & PV/Battery			
		Non-Preempted			Equipment - Preempted Tar			Target		•	•	Target		-		Target
		Efficiency	•		Efficiency			Efficiency	Total	On-Bill	TDV	Total	Total	On-Bill	TDV	Total
		EDR	B/C	B/C	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR
CZ	Utility	Margin	Ratio	Ratio	Margin	Ratio	Ratio	Margin	Margin		Ratio	Margin	Margin	Ratio	_	Margin
01	PG&E	15.2	1.8	1.7	6.9	2.9	2.7	6.5	31.4	1.8	1.5	31.0	41.2	1.4	1.4	41.0
02	PG&E	4.9	1.2	1.1	5.1	2.3	2.1	4.5	19.4	1.8	1.4	19.0	30.1	1.4	1.4	30.0
03	PG&E	4.7	2.6	2.4	4.4	1.8	1.6	4.0	18.5	2.2	1.7	18.0	29.3	1.5	1.6	29.0
04	PG&E	3.4	1.9	1.8	3.9	1.5	1.5	3.0	17.2	2.1	1.6	17.0	28.6	1.5	1.6	28.5
05	PG&E	4.4	2.6	2.3	4.4	1.9	1.7	4.0	18.2	2.3	1.8	18.0	28.7	1.6	1.6	28.5
05	PG&E/SoCalGas	4.4	2.6	2.3	4.4	1.9	1.7	4.0	18.2	2.3	1.8	18.0	28.7	1.6	1.6	28.5
06	SCE/SoCalGas	2.0	1.3	1.4	2.9	2.2	2.3	2.0	14.3	1.2	1.5	14.0	26.1	1.2	1.4	26.0
07	SDG&E	0.0	-	-	2.2	1.6	1.7	0.0	11.3	1.9	1.5	11.0	24.2	1.3	1.5	24.0
08	SCE/SoCalGas	1.6	0.6	1.2	1.8	2.8	3.0	1.5	10.9	1.0	1.5	10.5	21.6	1.1	1.4	21.5
09	SCE/SoCalGas	2.78	0.8	2.0	3.3	2.1	3.2	2.5	11.5	1.1	1.6	11.5	21.3	1.1	1.5	21.0
10	SCE/SoCalGas	3.1	0.9	1.5	3.4	2.3	3.2	3.0	11.1	1.1	1.5	11.0	21.2	1.1	1.5	21.0
10	SDG&E	3.1	1.1	1.5	3.4	2.6	3.2	3.0	11.1	1.7	1.5	11.0	21.2	1.4	1.5	21.0
11	PG&E	4.6	1.2	1.5	5.9	3.0	3.3	4.5	14.2	1.8	1.6	14.0	23.2	1.5	1.6	23.0
12	PG&E	3.8	0.8	1.1	5.1	2.0	2.5	3.5	15.7	1.7	1.4	15.5	25.4	1.3	1.5	25.0
13	PG&E	5.1	1.1	1.4	6.0	2.9	3.3	5.0	13.4	1.7	1.5	13.0	22.5	1.4	1.5	22.0
14	SCE/SoCalGas	5.6	1.0	1.5	6.0	2.3	3.1	5.5	15.5	1.2	1.6	15.5	23.9	1.3	1.6	23.5
14	SDG&E	5.6	1.3	1.5	6.0	2.9	3.1	5.5	15.5	1.8	1.6	15.5	23.9	1.7	1.6	23.5
15	SCE/SoCalGas	5.6	1.1	1.6	7.3	3.3	4.5	5.5	6.2	1.1	1.6	6.0	13.5	1.2	1.5	13.0
16	PG&E	9.7	1.7	1.7	4.9	2.4	2.3	4.5		2.1	1.6	26.5	35.4	1.7	1.5	35.0

^{1&}quot;>1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix D – Single Family Measure Summary

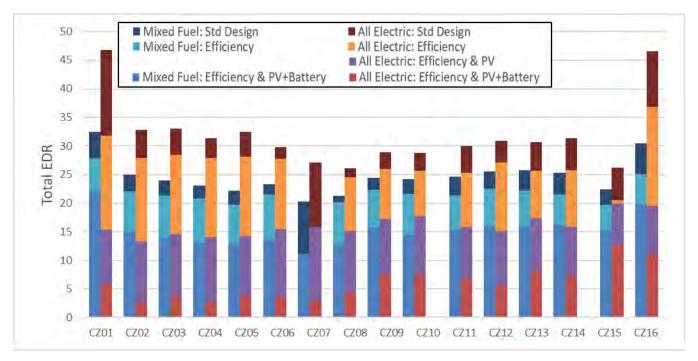


Figure 3: Single family Total EDR comparison

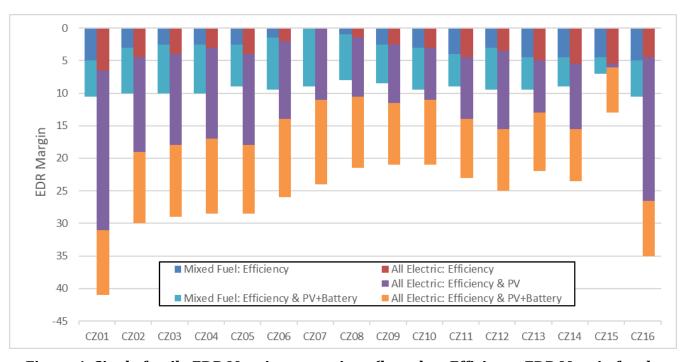


Figure 4: Single family EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency packages and the Total EDR Margin for the Efficiency & PV and Efficiency & PV+Battery packages)

3.2.1 GHG Emission Reductions

Figure 5 compares annual GHG emissions for both mixed fuel and all-electric single family 2019 code compliant cases with Efficiency, Efficiency & PV and Efficiency & PV/Battery packages. GHG emissions vary by climate but are consistently higher in mixed fuel cases than all-electric. Standard Design mixed fuel emissions range from 1.3 (CZ 7) to 3.3 (CZ 16) lbs CO2e/square foot of floor area, where all-electric Standard Design emissions range from 0.7 to 1.7 lbs CO2e/ ft². Adding efficiency, PV and batteries to the mixed fuel code compliant prototype reduces GHG emissions by 20% on average to between 1.0 and 1.8 lbs CO2e/ft², with the exception of Climate Zones 1 and 16. Adding efficiency, PV and batteries to the all-electric code compliant prototype reduces annual GHG emissions by 65% on average to 0.8 lbs CO2e/ft² or less. None of the cases completely eliminate GHG emissions. Because of the time value of emissions calculation for electricity in CBECC-Res, there is always some amount of GHG impacts with using electricity from the grid.

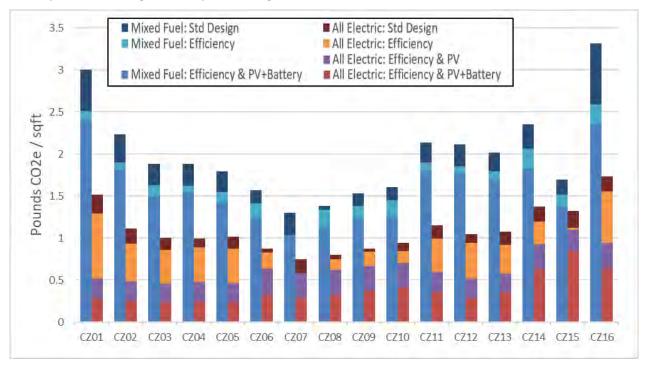


Figure 5: Single family greenhouse gas emissions comparison

3.3 Multifamily Results

Table 11 through Table 13 contain cost effectiveness findings for the multifamily packages. Table 11 summarizes the package costs for all the mixed fuel and all-electric efficiency, PV and battery packages.

Table 12 and Table 13 present the B/C ratios for all the packages according to both the On-Bill and TDV methodologies for the mixed fuel and the all-electric cases, respectively. All the packages are cost-effective based on TDV except Climate Zone 3 for the all-electric cases where no cost-effective combination of non-preempted efficiency measures was found that met the minimum 0.5 EDR Margin threshold. Cases where the B/C ratio is indicated as ">1" refer to instances where there are incremental cost savings in addition to annual utility bill savings. In these cases, there is no cost associated with this upgrade and benefits are realized immediately.

It is generally more challenging to achieve equivalent savings targets cost-effectively for the multifamily cases than for the single family cases. With less exterior surface area per floor area the impact of envelope measures

is diminished in multifamily buildings. Ducts are already assumed to be within conditioned space and therefore only one of the duct measures found to be cost-effective in single family homes can be applied.

Figure 6 presents a comparison of Total EDRs for the multifamily cases and Figure 7 presents the EDR Margin results. Each graph compares the mixed fuel and all-electric cases as well as the various packages. Cost-effective efficiency packages were found for all **mixed fuel cases**. The Target EDR Margins for the **mixed fuel Efficiency Package** are 0.5 for Climate Zones 3, 5 and 7, between 1.0 and 2.5 for Climate Zones 1, 2, 4, 6, 8 through 12 and 16, and between 3.0 and 4.0 in Climate Zones 13 through 15. For the **all-electric case, no cost-effective non-preempted efficiency packages** were found in Climate Zone 3. The Target EDR Margins are between 0.5 and 2.5 for Climate Zones 2, 4 through 10 and 12, and between 3.0 and 4.0 in Climate Zones 1, 11, and 13 through 16.

For the **mixed fuel case, the Efficiency & PV/Battery Package** results in an EDR Margin of between 8.5 and 11.5 across all climate zones. Most of these packages were not found to be cost-effective based on utility bill savings alone, but they all are cost-effective based on TDV energy savings. For the **all-electric case, the Efficiency & PV Package** resulted in EDR Margins of 10.5 to 17.5 for most climates; adding a battery system increased the EDR Margin by an additional 10 to 15 points. Climate zones 1 and 16, which have high heating loads, have much higher EDR Margins for the **Efficiency & PV package** (19.5-22.5). The Standard Design PV, which is what is applied in the **Efficiency Package**, is not sized to offset any of the heating load. When the PV system is sized to offset 90% of the total electricity use, the increase is substantial as a result. In Climate Zone 15 the Standard Design PV system is already sized to cover the cooling electricity load, which represents 30% of whole building electricity use. Therefore, increasing the PV size to offset 90% of the electric load in this climate only results in adding approximately 240 Watts of PV capacity per apartment and subsequently a much smaller impact on the EDR than in other climate zones. Because of the limitations on oversizing PV systems to offset natural gas use it is not feasible to achieve comparable EDR Margins for the mixed fuel case as in the all-electric case.

Additional results details can be found in Appendix E – Multifamily Detailed Results with summaries of measures included in each of the packages in Appendix F – Multifamily Measure Summary. A summary of results by climate zone is presented in Appendix G – Results by Climate Zone.

Table 11: Multifamily Package Incremental Costs per Dwelling Unit

	Tubic II.	Multifallily	i ackage mei	emental dos			
		Mixed Fuel			All-Ele	ectric	
Climate	Non-	Equipment -	Efficiency &	Non-	Equipment -	Efficiency	Efficiency &
Zone	Preempted	Preempted	PV/Battery	Preempted	Preempted	& PV	PV/Battery
CZ01	+\$960	+\$507	+\$3,094	+\$949	+\$795	+\$5,538	+\$8,919
CZ02	+\$309	+\$497	+\$2,413	+\$361	+\$795	+\$3,711	+\$6,833
CZ03	+\$175	+\$403	+\$2,279	n/a	+\$795	+\$3,272	+\$6,344
CZ04	+\$329	+\$351	+\$2,429	+\$361	+\$795	+\$3,158	+\$6,201
CZ05	+\$180	+\$358	+\$2,273	+\$247	+\$795	+\$3,293	+\$6,314
CZ06	+\$190	+\$213	+\$2,294	+\$231	+\$361	+\$2,580	+\$5,590
CZ07	+\$90	+\$366	+\$2,188	+\$202	+\$361	+\$2,261	+\$5,203
CZ08	+\$250	+\$213	+\$2,353	+\$231	+\$361	+\$2,240	+\$5,249
CZ09	+\$136	+\$274	+\$2,234	+\$231	+\$361	+\$2,232	+\$5,236
CZ10	+\$278	+\$250	+\$2,376	+\$361	+\$361	+\$2,371	+\$5,395
CZ11	+\$850	+\$317	+\$2,950	+\$1,011	+\$795	+\$3,601	+\$6,759
CZ12	+\$291	+\$434	+\$2,394	+\$1,011	+\$795	+\$3,835	+\$6,943
CZ13	+\$831	+\$290	+\$2,936	+\$1,011	+\$795	+\$3,462	+\$6,650
CZ14	+\$874	+\$347	+\$2,957	+\$1,011	+\$795	+\$3,356	+\$6,380
CZ15	+\$510	-(\$157)	+\$2,604	+\$1,011	+\$1,954	+\$1,826	+\$5,020
CZ16	+\$937	+\$453	+\$3,028	+\$843	+\$795	+\$4,423	+\$7,533

2019-07-17

Table 12: Multifamily Package Cost-Effectiveness Results for the Mixed Fuel Case^{1,2}

	Table 12: Multifamily Package Cost-Effectiveness Results for the Mixeu ruei Case ^{4,2}											
					Efficiency				Eff	iciency &	PV/Batt	ery
		Non-P	reempted	t t	Equipme	nt - Preer	npted	Target				Target
		Efficiency	On-Bill	TDV	Efficiency	On-Bill	TDV	Efficiency	Total	On-Bill	TDV	Total
		EDR	B/C	B/C	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR
CZ	Utility	Margin	Ratio	Ratio	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin
01	PG&E	3.4	1.1	1.2	2.3	1.3	1.4	2.0	11.5	0.4	1.2	11.5
02	PG&E	1.8	1.0	1.7	2.3	1.1	1.5	1.5	10.9	0.2	1.6	10.5
03	PG&E	0.6	1.0	1.1	1.6	1.1	1.2	0.5	10.3	0.1	1.4	10.0
04	PG&E	1.3	0.8	1.2	1.9	1.1	1.7	1.0	11.2	0.2	1.6	11.0
05	PG&E	0.5	1.0	1.0	1.5	1.2	1.3	0.5	9.9	0.2	1.4	9.5
05	PG&E/SoCalGas	0.5	8.0	1.0	1.5	1.1	1.3	0.5	9.9	0.1	1.4	9.5
06	SCE/SoCalGas	1.3	0.6	1.5	1.3	1.4	1.7	1.0	10.7	0.6	1.4	10.5
07	SDG&E	0.9	0.7	2.2	2.0	1.1	1.4	0.5	11.0	0.0	1.4	11.0
08	SCE/SoCalGas	1.5	0.7	1.4	1.1	1.4	1.7	1.0	9.9	0.7	1.3	9.5
09	SCE/SoCalGas	1.8	1.5	3.3	2.8	1.7	2.9	1.5	9.7	0.9	1.5	9.5
10	SCE/SoCalGas	1.7	8.0	1.7	2.9	2.0	3.3	1.5	10.4	1.0	1.6	10.0
10	SDG&E	1.7	1.1	1.7	2.9	2.6	3.3	1.5	10.4	0.2	1.6	10.0
11	PG&E	2.9	0.7	1.2	3.2	1.8	3.3	2.5	10.5	0.4	1.6	10.5
12	PG&E	1.9	1.1	2.2	2.8	1.2	2.2	1.5	10.3	0.3	1.7	10.0
13	PG&E	3.1	0.6	1.3	3.4	2.0	3.8	3.0	10.7	0.4	1.6	10.5
14	SCE/SoCalGas	3.1	0.7	1.2	3.3	2.0	3.0	3.0	9.6	1.1	1.4	9.5
14	SDG&E	3.1	0.9	1.2	3.3	2.5	3.0	3.0	9.6	0.5	1.4	9.5
15	SCE/SoCalGas	4.2	1.4	2.3	4.4	>1	>1	4.0	8.8	1.3	1.7	8.5
16	PG&E	2.4	1.1	1.2	2.9	1.8	2.1	2.0	9.9	0.5	1.3	9.5

^{1&}quot;>1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix F – Multifamily Measure Summary.

Table 13: Multifamily Package Cost-effectiveness Results for the All-Electric Case^{1,2}

			Efficiency					uveness		Efficienc			Efficiency & PV/Battery			
		Non-I	Preempt	ed		ent - Preem	nnted				•			<u> </u>		,
		110.11	i cemp		Equipin		.ptcu	Target				Target				Target
		Efficiency	On-Bill	TDV	Efficiency		TDV	Efficiency	Total	On-Bill	TDV	Total	Total	On-Bill	TDV	Total
		EDR	B/C	B/C	EDR	On-Bill	B/C	EDR	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR
CZ	Utility	Margin	Ratio	Ratio	Margin	B/C Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin
01	PG&E	3.6	1.6	1.4	3.3	2.4	2.3	3.0	22.5	2.0	1.5	22.5	34.5	1.3	1.4	34.5
02	PG&E	1.9	1.7	2.1	3.2	1.6	1.6	1.5	17.5	2.4	1.8	17.5	30.9	1.4	1.7	30.5
03	PG&E	0.0	-	-	2.7	1.7	1.6	0.0	16.1	2.4	1.7	16.0	29.5	1.3	1.6	29.5
04	PG&E	1.4	1.4	1.5	2.2	1.2	1.1	1.0	15.0	2.4	1.8	15.0	28.9	1.3	1.8	28.5
05	PG&E	0.6	1.1	0.9	3.6	2.1	2.0	0.5	17.1	2.5	1.8	17.0	30.3	1.4	1.7	30.0
05	PG&E/SoCalGas	0.6	1.1	0.9	3.6	2.1	2.0	0.5	17.1	2.5	1.8	17.0	30.3	1.4	1.7	30.0
06	SCE/SoCalGas	1.0	0.7	1.3	2.2	1.6	1.9	1.0	13.8	1.2	1.7	13.5	27.5	1.2	1.6	27.5
07	SDG&E	0.6	0.6	1.0	1.9	1.6	1.7	0.5	12.8	2.1	1.8	12.5	27.1	1.2	1.6	27.0
08	SCE/SoCalGas	1.2	0.9	1.7	1.9	1.6	1.8	1.0	11.6	1.3	1.8	11.5	24.2	1.2	1.6	24.0
09	SCE/SoCalGas	1.6	1.3	2.7	1.5	1.6	1.6	1.5	11.3	1.3	1.9	11.0	23.3	1.3	1.7	23.0
10	SCE/SoCalGas	1.8	1.2	2.0	1.8	1.7	2.0	1.5	10.8	1.3	1.8	10.5	23.3	1.3	1.7	23.0
10	SDG&E	1.8	1.5	2.0	1.8	2.0	2.0	1.5	10.8	2.1	1.8	10.5	23.3	1.4	1.7	23.0
11	PG&E	3.5	1.4	1.6	3.9	2.0	2.3	3.5	13.4	2.2	1.8	13.0	25.3	1.4	1.8	25.0
12	PG&E	2.6	0.9	1.1	2.9	1.6	1.6	2.5	14.4	2.1	1.6	14.0	26.6	1.3	1.7	26.5
13	PG&E	3.3	1.3	1.6	3.8	2.0	2.3	3.0	12.2	2.1	1.7	12.0	23.9	1.4	1.7	23.5
14	SCE/SoCalGas	3.7	1.2	1.6	3.8	1.6	2.2	3.5	14.0	1.4	1.9	14.0	24.8	1.4	1.8	24.5
14	SDG&E	3.7	1.5	1.6	3.8	2.0	2.2	3.5	14.0	2.2	1.9	14.0	24.8	1.7	1.8	24.5
15	SCE/SoCalGas	4.4	1.5	2.3	6.4	1.2	1.7	4.0	7.1	1.4	2.1	7.0	16.9	1.3	1.8	16.5
16	PG&E	4.1	2.1	2.1	3.2	1.6	1.7	3.0	19.6	2.6	1.9	19.5	29.9	1.6	1.7	29.5

^{1&}quot;>1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix F – Multifamily Measure Summary.

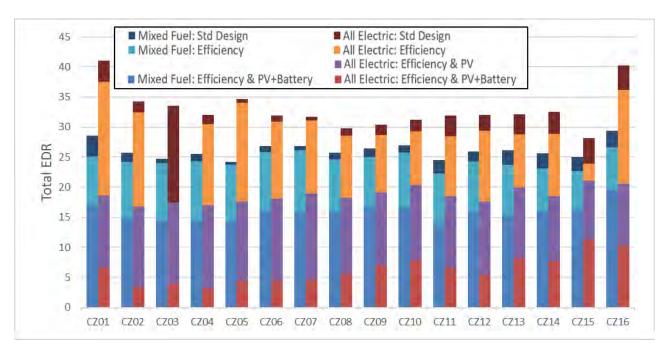


Figure 6: Multifamily Total EDR comparison

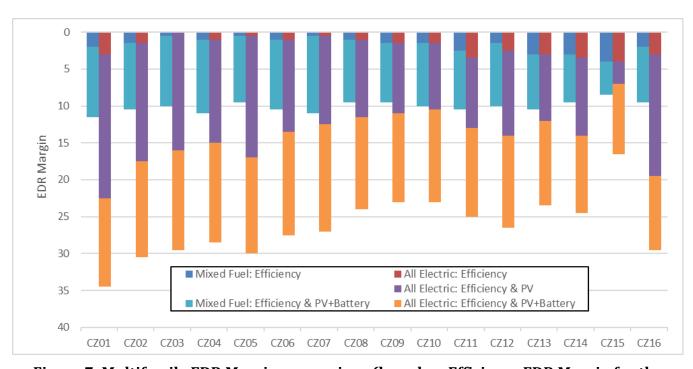


Figure 7: Multifamily EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency packages and the Total EDR Margin for the Efficiency & PV and Efficiency & PV+Battery packages)

3.3.1 GHG Emission Reductions

Figure 8 compares annual GHG emissions for both mixed fuel and all-electric multifamily 2019 code compliant cases with Efficiency, Efficiency & PV and Efficiency & PV/Battery packages. GHG emissions vary by climate but are consistently higher in mixed fuel cases than all-electric. Standard design mixed fuel emissions range from 2.0 to 3.0 lbs CO2e/square foot of floor area, where all-electric standard design emissions range from 1.2 to 1.7 lbs CO2e/ft². Adding PV, batteries and efficiency to the mixed fuel code compliant prototype reduces annual GHG emissions by 17% on average to between 1.7 and 2.2 lbs CO2e/ft², except Climate Zone 16. Adding PV, batteries and efficiency to the all-electric code compliant prototype reduces annual GHG emissions by 64% on average to 0.6 lbs CO2e/ft² or less with the exception of Climate Zones 14, 15 and 16. As in the single family case, none of the cases completely eliminate GHG emissions because of the time value of emissions calculation for electricity in CBECC-Res.

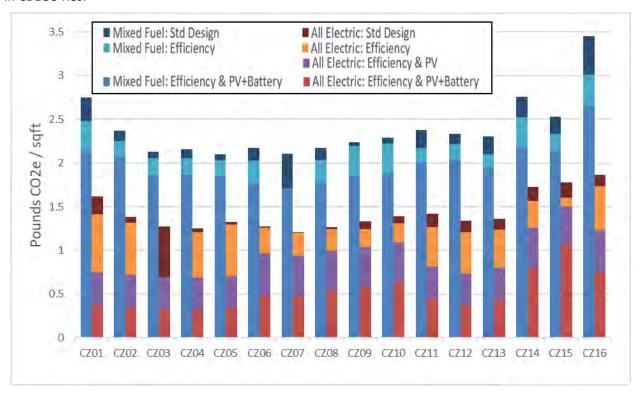


Figure 8: Multifamily greenhouse gas emissions comparison

3.4 Electrification Results

Cost-effectiveness results comparing mixed fuel and all-electric cases are summarized below. The tables show average annual utility bill impacts and lifetime utility bill impacts, which account for fuel escalation for electricity and natural gas (see Section 2.5), lifetime equipment cost savings, and both On-Bill and TDV cost-effectiveness (B/C ratio). Positive utility bill values indicate lower utility costs for the all-electric home relative to the mixed fuel case while negative values in red and parenthesis indicate higher utility costs for the all-electric case. Lifetime equipment cost savings include savings due to eliminating natural gas infrastructure and replacement costs for appliances based on equipment life. Positive values for the lifetime equipment cost savings indicate lower installed costs for the all-electric and negative values indicate higher costs. B/C ratios 1.0 or greater indicate positive cost-effectiveness. Cases where the B/C ratio is indicated as ">1" refer to instances where there was incremental cost savings in addition to annual utility bill savings. In these cases, there is no cost associated with this upgrade and benefits are realized immediately.

Three scenarios were evaluated:

- 1. <u>2019 Code Compliant</u>: Compares a 2019 code compliant all-electric home with a 2019 code compliant mixed fuel home.
- Efficiency & PV Package: Compares an all-electric home with efficiency and PV sized to 90% of the
 annual electricity use to a 2019 code compliant mixed fuel home. The first cost savings in the code
 compliant all-electric house is invested in above code efficiency and PV reflective of the Efficiency & PV
 packages described above.
- 3. <u>Neutral Cost Package</u>: Compares an all-electric home with PV beyond code minimum with a 2019 code compliant mixed fuel home. The PV system for the all-electric case is sized to result in a zero lifetime incremental cost relative to a mixed fuel home.

3.4.1 Single Family

Table 14, Table 15, Figure 9, Figure 10, and Figure 11 present results of cost-effectiveness analysis for electrification of single family buildings, according to both the On-Bill and TDV methodologies. Based on typical cost assumptions arrived at for this analysis, the lifetime equipment costs for the single family code compliant all-electric option are approximately \$5,350 less than the mixed fuel code compliant option. Cost savings are entirely due to the elimination of gas infrastructure, which was assumed to be a savings of \$5,750. When evaluating cost-effectiveness based on TDV, the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction are not applied and therefore the cost savings are twice as much.

Under the Efficiency & PV Package and the On-Bill analysis, the incremental cost of the efficiency and PV is typically more than the cost savings seen in the code compliant case, which results in a net cost increase in most climate zones for the all-electric case. In climates with small heating loads (7 and 15) there continues to be an incremental cost savings for the all-electric home. With the TDV analysis, there is still an incremental cost savings in all climates except 1 and 16 for single family.

Utility impacts differ by climate zone and utility, but utility costs for the code compliant all-electric option are typically higher than for the compliant mixed fuel design. There are utility cost savings across all climates zones and building types for the all-electric Efficiency & PV Package, resulting in a more cost-effective option.

The all-electric code compliant option is cost-effective based on the On-Bill approach for single family homes in Climate Zones 6 through 9, 10 (SCE/SoCalGas territory only), and 15. The code compliant option is cost-effective based on the TDV methodology in all climate zones except 1 and 16. If the same costs used for the On-Bill approach are also used for the TDV approach (incorporating the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction), the all-electric code compliant option is cost-effective in Climate Zones 6 through 10. The Efficiency & PV all-electric option is cost-effective in all climate zones based on both the On-Bill and TDV methodologies. In many cases it is cost-effective immediately with lower equipment and utility costs.

The last set of results in Table 14 shows the neutral cost case where the cost savings for the all-electric code compliant home is invested in a larger PV system, resulting in a lifetime incremental cost of zero based on the On-Bill approach. This package results in utility cost savings in all cases except Climate Zones 1, 14 (SCE/SoCalGas territory only), and 16. For these three cases the Reach Code Team evaluated how much additional PV would be required to result in a cost-effective package. These results are presented in Table 15 and show that an additional 1.6kW in Climate Zone 1 results in a B/C ratio of 1.1. For Climate Zone 14 and 16 adding 0.25kW and 1.2kW, respectively, results in a B/C ratio of 1.2. Neutral cost cases are cost-effective based on the TDV methodology in all climate zones except 16.

3.4.2 Multifamily

Multifamily results are found in Table 16, Table 17, Figure 12, Figure 13, and Figure 14. Lifetime costs for the multifamily code compliant all-electric option are approximately \$2,300 less than the mixed fuel code compliant option, entirely due to the elimination of gas infrastructure. When evaluating cost-effectiveness based on TDV,

the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction are not applied and therefore the cost savings are approximately 2.5 times higher.

With the Efficiency & PV Package and the On-Bill analysis, due to the added cost of the efficiency and PV there is a net cost increase for the all-electric case in all climate zones for except 7, 8, 9, and 15. With the TDV analysis, there is still an incremental cost savings in all climates. Like the single family results, utility costs are typically higher for the code compliant all-electric option but lower than the code compliant mixed fuel option with the Efficiency & PV Package.

The all-electric code compliant option is cost-effective based on the On-Bill approach for multifamily in Climate Zones 6 through 9, 10 and 14 (SCE/SoCalGas territory only), and 15. Based on the TDV methodology, the code compliant option for multifamily is cost-effective for all climate zones. If the same costs used for the On-Bill approach are also used for the TDV approach (incorporating the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction), the all-electric code compliant option is cost-effective in Climate Zones 8 and 9. Like the single family cases, the Efficiency & PV all-electric option is cost-effective in all climate zones based on both the On-Bill and TDV methodologies.

The last set of results in Table 16 show the neutral cost case where the cost savings for the all-electric code compliant home is invested in a larger PV system, resulting in a lifetime incremental cost of zero based on the On-Bill approach. This package results in utility cost savings in all cases except Climate Zone 1. For this case the Reach Code Team evaluated how much additional PV would be required to result in a cost-effective package. These results are presented in Table 17 and show that an additional 0.3kW per apartment results in a B/C ratio of 1.1. Neutral cost cases are cost-effective based on the TDV methodology in all climate zones except 16.

Table 14: Single Family Electrification Results

					-effectivene	ss ¹			st-effectiver	ess
		Average A	Annual U	tility Bill	Lif	fetime NPV		<u>Life</u>	etime NPV	
			<u>Savings</u>							
				Net		Equipment	On-Bill		Equipment	TDV
			Natural	Utility	Utility Bill	Cost	B/C	TDV Cost	Cost	B/C
CZ	Utility	Electricity	Gas	Savings	Savings	Savings	Ratio ²	Savings	Savings	Ratio
				2019 C	ode Complia	nt Home				
01	PG&E	-(\$1,194)	+\$712	-(\$482)	-(\$14,464)	+\$5,349	0.4	-(\$13,081)	+\$11,872	0.9
02	PG&E	-(\$825)	+\$486	-(\$340)	-(\$10,194)	+\$5,349	0.5	-(\$7,456)	+\$11,872	1.6
03	PG&E	-(\$717)	+\$391	-(\$326)	-(\$9,779)	+\$5,349	0.5	-(\$7,766)	+\$11,872	1.5
04	PG&E	-(\$710)	+\$387	-(\$322)	-(\$9,671)	+\$5,349	0.6	-(\$7,447)	+\$11,872	1.6
05	PG&E	-(\$738)	+\$367	-(\$371)	-(\$11,128)	+\$5,349	0.5	-(\$8,969)	+\$11,872	1.3
05	PG&E/SoCalGas	-(\$738)	+\$370	-(\$368)	-(\$11,034)	+\$5,349	0.5	-(\$8,969)	+\$11,872	1.3
06	SCE/SoCalGas	-(\$439)	+\$289	-(\$149)	-(\$4,476)	+\$5,349	1.2	-(\$4,826)	+\$11,872	2.5
07	SDG&E	-(\$414)	+\$243	-(\$171)	-(\$5,134)	+\$5,349	1.0	-(\$4,678)	+\$11,872	2.5
08	SCE/SoCalGas	-(\$347)	+\$249	-(\$97)	-(\$2,921)	+\$5,349	1.8	-(\$3,971)	+\$11,872	3.0
09	SCE/SoCalGas	-(\$377)	+\$271	-(\$107)	-(\$3,199)	+\$5,349	1.7	-(\$4,089)	+\$11,872	2.9
10	SCE/SoCalGas	-(\$403)	+\$280	-(\$123)	-(\$3,684)	+\$5,349	1.5	-(\$4,458)	+\$11,872	2.7
10	SDG&E	-(\$496)	+\$297	-(\$198)	-(\$5,950)	+\$5,349	0.9	-(\$4,458)	+\$11,872	2.7
11	PG&E	-(\$810)	+\$447	-(\$364)	-(\$10,917)	+\$5,349	0.5	-(\$7,024)	+\$11,872	1.7
12	PG&E	-(\$740)	+\$456	-(\$284)	-(\$8,533)	+\$5,349	0.6	-(\$6,281)	+\$11,872	1.9
13	PG&E	-(\$742)	+\$413	-(\$329)	-(\$9,870)	+\$5,349	0.5	-(\$6,480)	+\$11,872	1.8
14	SCE/SoCalGas	-(\$661)	+\$413	-(\$248)	-(\$7,454)	+\$5,349	0.7	-(\$7,126)	+\$11,872	1.7
14	SDG&E	-(\$765)	+\$469	-(\$296)	-(\$8,868)	+\$5,349	0.6	-(\$7,126)	+\$11,872	1.7
15	SCE/SoCalGas	-(\$297)	+\$194	-(\$103)	-(\$3,090)	+\$5,349	1.7	-(\$5,364)	+\$11,872	2.2
16	PG&E	-(\$1,287)	+\$712	-(\$575)	-(\$17,250)	+\$5,349	0.3	-(\$17,391)	+\$11,872	0.7

		On-Bill Cost-effectiveness ¹						TDV Cost-effectiveness			
		Average	verage Annual Utility Bill Lifetime NPV				Lifetime NPV				
			Savings	cincy Dill	<u>L1</u>	CUITE NEV		LII	CEITIC INF V		
			-arings				0 5			T	
				Net		Equipment		TD\/ 0	Equipment		
67		Flanksisis.	Natural	Utility	Utility Bill	Cost	B/C	TDV Cost	Cost	B/C	
CZ	Utility	Electricity	Gas	Savings	Savings	Savings	Ratio ²	Savings	Savings	Ratio	
01	DC0.F	(600)	. 6742		ency & PV P		1.4	. 612.264	(¢¢, 224)	2.1	
01	PG&E	-(\$99) (\$90)	+\$712	+\$613	+\$18,398	-(\$12,844)	1.4	+\$13,364	-(\$6,321)	2.1	
02	PG&E	-(\$89) (\$87)	+\$486	+\$397	+\$11,910	-(\$6,758)	1.8	+\$9,307	-(\$234)	39.7	
03	PG&E	-(\$87)	+\$391	+\$304	+\$9,119	-(\$3,169)	2.9	+\$6,516	+\$3,355	>1	
04	PG&E	-(\$85)	+\$387	+\$302	+\$9,074	-(\$3,438)	2.6	+\$6,804	+\$3,086	>1	
05	PG&E	-(\$98) (\$98)	+\$367	+\$268	+\$8,054	-(\$2,959)	2.7	+\$5,625	+\$3,564	>1	
05	PG&E/SoCalGas	-(\$98) (\$4.00)	+\$370	+\$272	+\$8,148	-(\$2,959)	2.8	+\$5,625	+\$3,564	>1	
06	SCE/SoCalGas	-(\$188)	+\$289	+\$102	+\$3,049	-(\$992)	3.1	+\$4,585	+\$5,531	>1	
07	SDG&E	-(\$137)	+\$243	+\$106	+\$3,174	+\$912	>1	+\$2,176	+\$7,436	>1	
08	SCE/SoCalGas	-(\$160)	+\$249	+\$89	+\$2,664	-(\$25)	107.9	+\$3,965	+\$6,499	>1	
09	SCE/SoCalGas	-(\$169)	+\$271	+\$102	+\$3,067	-(\$429)	7.1	+\$5,368	+\$6,094	>1	
10	SCE/SoCalGas	-(\$173)	+\$280	+\$107	+\$3,216	-(\$1,057)	3.0	+\$5,165	+\$5,466	>1	
10	SDG&E	-(\$137)	+\$297	+\$160	+\$4,805	-(\$1,057)	4.5	+\$5,165	+\$5,466	>1	
11	PG&E	-(\$147)	+\$447	+\$300	+\$8,988	-(\$5,478)	1.6	+\$9,776	+\$1,045	>1	
12	PG&E	-(\$92)	+\$456	+\$364	+\$10,918	-(\$6,172)	1.8	+\$9,913	+\$352	>1	
13	PG&E	-(\$144)	+\$413	+\$269	+\$8,077	-(\$5,184)	1.6	+\$8,960	+\$1,339	>1	
14	SCE/SoCalGas	-(\$241)	+\$413	+\$172	+\$5,164	-(\$5,111)	1.0	+\$9,850	+\$1,412	>1	
14	SDG&E	-(\$139)	+\$469	+\$330	+\$9,910	-(\$5,111)	1.9	+\$9,850	+\$1,412	>1	
15	SCE/SoCalGas	-(\$107)	+\$194	+\$87	+\$2,603	+\$264	>1	+\$2,598	+\$6,787	>1	
16	PG&E	-(\$130)	+\$712	+\$582	+\$17,457	-(\$11,234)	1.6	+\$9,536	-(\$4,710)	2.0	
					tral Cost Pa						
01	PG&E	-(\$869)	+\$712	-(\$157)	-(\$4,704)	+\$0	0	-(\$6,033)	+\$6,549	1.1	
02	PG&E	-(\$445)	+\$486	+\$40	+\$1,213	+\$0	>1	+\$868	+\$6,505	>1	
03	PG&E	-(\$335)	+\$391	+\$56	+\$1,671	+\$0	>1	+\$483	+\$6,520	>1	
04	PG&E	-(\$321)	+\$387	+\$66	+\$1,984	+\$0	>1	+\$1,062	+\$6,521	>1	
05	PG&E	-(\$335)	+\$367	+\$31	+\$938	+\$0	>1	-(\$163)	+\$6,519	40.1	
05	PG&E/SoCalGas	-(\$335)	+\$370	+\$34	+\$1,031	+\$0	>1	-(\$163)	+\$6,519	40.1	
06	SCE/SoCalGas	-(\$227)	+\$289	+\$63	+\$1,886	+\$0	>1	+\$3,258	+\$6,499	>1	
07	SDG&E	-(\$72)	+\$243	+\$171	+\$5,132	+\$0	>1	+\$3,741	+\$6,519	>1	
08	SCE/SoCalGas	-(\$144)	+\$249	+\$105	+\$3,162	+\$0	>1	+\$4,252	+\$6,515	>1	
09	SCE/SoCalGas	-(\$170)	+\$271	+\$100	+\$3,014	+\$0	>1	+\$4,271	+\$6,513	>1	
10	SCE/SoCalGas	-(\$199)	+\$280	+\$81	+\$2,440	+\$0	>1	+\$3,629	+\$6,494	>1	
10	SDG&E	-(\$155)	+\$297	+\$143	+\$4,287	+\$0	>1	+\$3,629	+\$6,494	>1	
11	PG&E	-(\$426)	+\$447	+\$21	+\$630	+\$0	>1	+\$1,623	+\$6,504	>1	
12	PG&E	-(\$362)	+\$456	+\$94	+\$2,828	+\$0	>1	+\$2,196	+\$6,525	>1	
13	PG&E	-(\$370)	+\$413	+\$43	+\$1,280	+\$0	>1	+\$1,677	+\$6,509	>1	
14	SCE/SoCalGas	-(\$416)	+\$413	-(\$4)	-(\$107)	+\$0	0	+\$2,198	+\$6,520	>1	
14	SDG&E	-(\$391)	+\$469	+\$79	+\$2,356	+\$0	>1	+\$2,198	+\$6,520	>1	
15	SCE/SoCalGas	-(\$98)	+\$194	+\$97	+\$2,900	+\$0	>1	+\$2,456	+\$6,483	>1	
16	, PG&E	-(\$878)	+\$712	-(\$166)	-(\$4,969)	+\$0	0	-(\$8,805)	+\$6,529	0.7	

¹Red values in parentheses indicate an increase in utility bill costs or an incremental first cost for the all-electric home.

²">1" indicates cases where there are both first cost savings and annual utility bill savings.

Table 15: Comparison of Single Family On-Bill Cost Effectiveness Results with Additional PV

			Neutra	l Cost		M	in. Cost Effe	ctiveness	
		PV		Equipment	On-Bill			Equipment	On-Bill
		Capacity	Utility Bill	Cost	B/C	PV Capacity	Utility Bill	Cost	B/C
CZ	Utility	(kW)	Savings	Savings	Ratio	(kW)	Savings	Savings	Ratio
01	PG&E	4.7	-(\$4,704)	+\$0	0	6.3	+\$6,898	-(\$6,372)	1.1
14	SCE/SoCalGas	4.5	-(\$107)	+\$0	0	4.8	+\$1,238	-(\$1,000)	1.2
16	PG&E	4.1	-(\$4,969)	+\$0	0	5.3	+\$5,883	-(\$4,753)	1.2

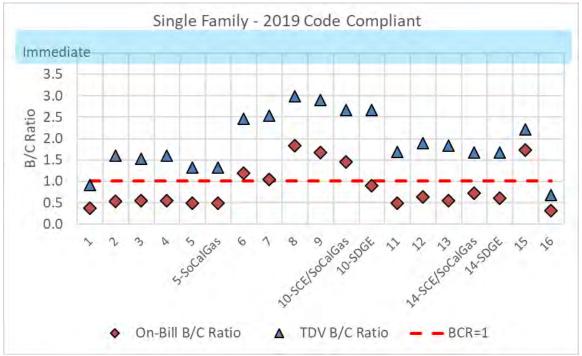


Figure 9: B/C ratio results for a single family all-electric code compliant home versus a mixed fuel code compliant home

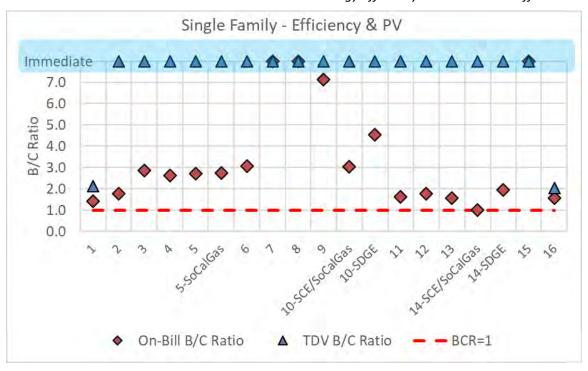


Figure 10: B/C ratio results for the single family Efficiency & PV all-electric home versus a mixed fuel code compliant home

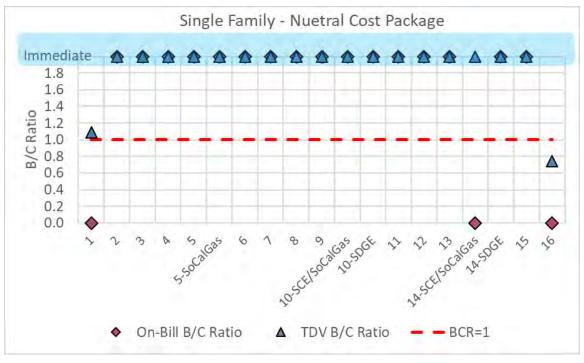


Figure 11: B/C ratio results for the single family neutral cost package all-electric home versus a mixed fuel code compliant home

37 2019-07-17

Table 16: Multifamily Electrification Results (Per Dwelling Unit)

	Tab	ole 16: Mi		-		Results (Pe	r Dwel				
			Oı	n-Bill Cost	-effectivene	ess ¹		TDV Cost-effectiveness			
		Average A	Annual U	tility Bill	<u>Li</u> 1	fetime NPV		<u>Lif</u>	etime NPV		
			<u>Savings</u>								
				Net		Equipment	On-Bill		Equipment	TDV	
			Natural	Utility	Utility Bill	Cost	B/C	TDV Cost	Cost	B/C	
CZ	Utility	Electricity	Gas	Savings	Savings	Savings	Ratio ²	Savings	Savings	Ratio	
					ode Complia			0.180			
01	PG&E	-(\$396)	+\$193	-(\$203)	-(\$6,079)	+\$2,337	0.4	-(\$5,838)	+\$5,899	1.0	
02	PG&E	-(\$310)	+\$162	-(\$148)	-(\$4,450)	+\$2,337	0.5	-(\$4,144)	+\$5,899	1.4	
03	PG&E	-(\$277)	+\$142	-(\$135)	-(\$4,041)	+\$2,337	0.6	-(\$4,035)	+\$5,899	1.5	
04	PG&E	-(\$264)	+\$144	-(\$120)	-(\$3,595)	+\$2,337	0.6	-(\$3,329)	+\$5,899	1.8	
05	PG&E	-(\$297)	+\$140	-(\$157)	-(\$4,703)	+\$2,337	0.5	-(\$4,604)	+\$5,899	1.3	
05	PG&E/SoCalGas	-(\$297)	+\$178	-(\$119)	-(\$3,573)	+\$2,337	0.7	-(\$4,604)	+\$5,899	1.3	
06	SCE/SoCalGas	-(\$191)	+\$161	-(\$30)	-(\$902)	+\$2,337	2.6	-(\$2,477)	+\$5,899	2.4	
07	SDG&E	-(\$206)	+\$136	-(\$70)	-(\$2,094)	+\$2,337	1.1	-(\$2,390)	+\$5,899	2.5	
08	SCE/SoCalGas	-(\$169)	+\$157	-(\$12)	-(\$349)	+\$2,337	6.7	-(\$2,211)	+\$5,899	2.7	
09	SCE/SoCalGas	-(\$177)	+\$159	-(\$18)	-(\$533)	+\$2,337	4.4	-(\$2,315)	+\$5,899	2.5	
10	SCE/SoCalGas	-(\$183)	+\$159	-(\$23)	-(\$697)	+\$2,337	3.4	-(\$2,495)	+\$5,899	2.4	
10	SDG&E	-(\$245)	+\$139	-(\$106)	-(\$3,192)	+\$2,337	0.7	-(\$2,495)	+\$5,899	2.4	
11	PG&E	-(\$291)	+\$153	-(\$138)	-(\$4,149)	+\$2,337	0.6	-(\$4,420)	+\$5,899	1.3	
12	PG&E	-(\$277)	+\$155	-(\$122)	-(\$3,665)	+\$2,337	0.6	-(\$3,557)	+\$5,899	1.7	
13	PG&E	-(\$270)	+\$146	-(\$124)	-(\$3,707)	+\$2,337	0.6	-(\$3,821)	+\$5,899	1.5	
14	SCE/SoCalGas	-(\$255)	+\$187	-(\$69)	-(\$2,062)	+\$2,337	1.1	-(\$3,976)	+\$5,899	1.5	
14	SDG&E	-(\$328)	+\$175	-(\$154)	-(\$4,607)	+\$2,337	0.5	-(\$3,976)	+\$5,899	1.5	
15	SCE/SoCalGas	-(\$154)	+\$142	-(\$12)	-(\$367)	+\$2,337	6.4	-(\$2,509)	+\$5,899	2.4	
16	PG&E	-(\$404)	+\$224	-(\$180)	-(\$5,411)	+\$2,337	0.4	-(\$5,719)	+\$5,899	1.0	
		ı			ency & PV P						
01	PG&E	-(\$19)	+\$193	+\$174	+\$5,230	-(\$3,202)	1.6	+\$2,467	+\$361	>1	
02	PG&E	-(\$10)	+\$162	+\$152	+\$4,549	-(\$1,375)	3.3	+\$2,605	+\$2,187	>1	
03	PG&E	-(\$12)	+\$142	+\$130	+\$3,910	-(\$936)	4.2	+\$1,632	+\$2,626	>1	
04	PG&E	-(\$8)	+\$144	+\$136	+\$4,080	-(\$822)	5.0	+\$2,381	+\$2,740	>1	
05	PG&E	-(\$19)	+\$140	+\$121	+\$3,635	-(\$956)	3.8	+\$1,403	+\$2,606	>1	
05	PG&E/SoCalGas	-(\$19)	+\$178	+\$159	+\$4,765	-(\$956)	5.0	+\$1,403	+\$2,606	>1	
06	SCE/SoCalGas	-(\$84)	+\$161	+\$77	+\$2,309	-(\$243)	9.5	+\$1,940	+\$3,319	>1	
07	SDG&E	-(\$49)	+\$136	+\$87	+\$2,611	+\$75	>1	+\$1,583	+\$3,638	>1	
08	SCE/SoCalGas	-(\$74)	+\$157	+\$83	+\$2,480	+\$96	>1	+\$1,772	+\$3,658	>1	
09	SCE/SoCalGas	-(\$76)	+\$159	+\$82	+\$2,469	+\$104	>1	+\$1,939	+\$3,667	>1	
10	SCE/SoCalGas	-(\$79)	+\$159	+\$80	+\$2,411	-(\$34) (\$34)	70.9	+\$1,737	+\$3,528	>1	
10	SDG&E	-(\$77)	+\$139	+\$61	+\$1,842	-(\$34)	54.2	+\$1,737	+\$3,528	>1	
11	PG&E	-(\$25)	+\$153	+\$128	+\$3,834	-(\$1,264)	3.0	+\$2,080	+\$2,298	>1	
12	PG&E	-(\$11) (\$26)	+\$155	+\$144	+\$4,316	-(\$1,498) (\$1,425)	2.9	+\$2,759	+\$2,064	>1	
13	PG&E	-(\$26)	+\$146	+\$121	+\$3,625	-(\$1,125)	3.2	+\$2,083	+\$2,437	>1	
14	SCE/SoCalGas	-(\$99)	+\$187	+\$87	+\$2,616	-(\$1,019) (\$1,010)	2.6	+\$2,422	+\$2,543	>1	
14	SDG&E	-(\$86)	+\$175	+\$88	+\$2,647	-(\$1,019)	2.6	+\$2,422	+\$2,543	>1	
15	SCE/SoCalGas	-(\$67)	+\$142	+\$75	+\$2,247	+\$511 (\$2.097)	>1	+\$1,276	+\$4,073	>1	
16	PG&E	-(\$24)	+\$224	+\$200	+\$5,992	-(\$2,087)	2.9	+\$2,629	+\$1,476	>1	

			On-Bill Cost-effectiveness ¹					TDV Cos	st-effectiven	ess
		Average A	Annual U	tility Bill	<u>Li</u> 1	fetime NPV		<u>Lif</u>	etime NPV	
			<u>Savings</u>							
				Net		Equipment	On-Bill		Equipment	TDV
			Natural	Utility	Utility Bill	Cost	B/C	TDV Cost	Cost	B/C
CZ	Utility	Electricity	Gas	Savings	Savings	Savings	Ratio ²	Savings	Savings	Ratio
				Neu	itral Cost Pa	ckage				
01	PG&E	-(\$228)	+\$193	-(\$35)	-(\$1,057)	+\$0	0	-(\$2,267)	+\$3,564	1.6
02	PG&E	-(\$115)	+\$162	+\$47	+\$1,399	+\$0	>1	+\$59	+\$3,563	>1
03	PG&E	-(\$81)	+\$142	+\$61	+\$1,843	+\$0	>1	+\$138	+\$3,562	>1
04	PG&E	-(\$64)	+\$144	+\$80	+\$2,402	+\$0	>1	+\$983	+\$3,563	>1
05	PG&E	-(\$90)	+\$140	+\$50	+\$1,490	+\$0	>1	-(\$152)	+\$3,564	23.4
05	PG&E/SoCalGas	-(\$90)	+\$178	+\$87	+\$2,620	+\$0	>1	-(\$152)	+\$3,564	23.4
06	SCE/SoCalGas	-(\$90)	+\$161	+\$71	+\$2,144	+\$0	>1	+\$1,612	+\$3,562	>1
07	SDG&E	-(\$32)	+\$136	+\$105	+\$3,135	+\$0	>1	+\$1,886	+\$3,560	>1
08	SCE/SoCalGas	-(\$67)	+\$157	+\$90	+\$2,705	+\$0	>1	+\$1,955	+\$3,564	>1
09	SCE/SoCalGas	-(\$71)	+\$159	+\$87	+\$2,623	+\$0	>1	+\$1,924	+\$3,561	>1
10	SCE/SoCalGas	-(\$78)	+\$159	+\$81	+\$2,431	+\$0	>1	+\$1,588	+\$3,561	>1
10	SDG&E	-(\$71)	+\$139	+\$68	+\$2,033	+\$0	>1	+\$1,588	+\$3,561	>1
11	PG&E	-(\$93)	+\$153	+\$59	+\$1,783	+\$0	>1	-(\$48)	+\$3,562	74.0
12	PG&E	-(\$82)	+\$155	+\$73	+\$2,184	+\$0	>1	+\$739	+\$3,564	>1
13	PG&E	-(\$79)	+\$146	+\$68	+\$2,034	+\$0	>1	+\$310	+\$3,560	>1
14	SCE/SoCalGas	-(\$141)	+\$187	+\$45	+\$1,359	+\$0	>1	+\$747	+\$3,562	>1
14	SDG&E	-(\$137)	+\$175	+\$38	+\$1,131	+\$0	>1	+\$747	+\$3,562	>1
15	SCE/SoCalGas	-(\$50)	+\$142	+\$92	+\$2,771	+\$0	>1	+\$1,738	+\$3,560	>1
16	PG&E	-(\$194)	+\$224	+\$30	+\$900	+\$0	>1	-(\$1,382)	+\$3,564	2.6

¹Red values in parentheses indicate an increase in utility bill costs or an incremental first cost for the all-electric home.

Table 17: Comparison of Multifamily On-Bill Cost Effectiveness Results with Additional PV (Per Dwelling Unit)

				(• • • • • • • • • • • • • • • • • • •	٠,			
			Neutra	l Cost			Min. Cost Ef	fectiveness	
		PV		Equipment		PV		Equipment	
		Capacity	Utility Bill	Cost	On-Bill	Capacity	Utility Bill	Cost	On-Bill
CZ	Utility	(kW)	Savings	Savings	B/C Ratio	(kW)	Savings	Savings	B/C Ratio
01	PG&E	2.7	-(\$1,057)	+\$0	0	3.0	+\$1,198	-(\$1,052)	1.1

²">1" indicates cases where there are both first cost savings and annual utility bill savings.

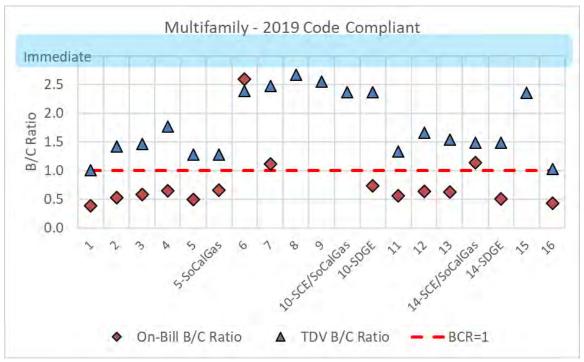


Figure 12: B/C ratio results for a multifamily all-electric code compliant home versus a mixed fuel code compliant home

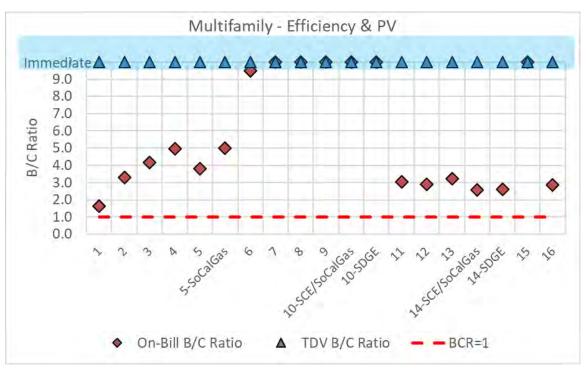


Figure 13: B/C ratio results for the multifamily Efficiency & PV all-electric home versus a mixed fuel code compliant home

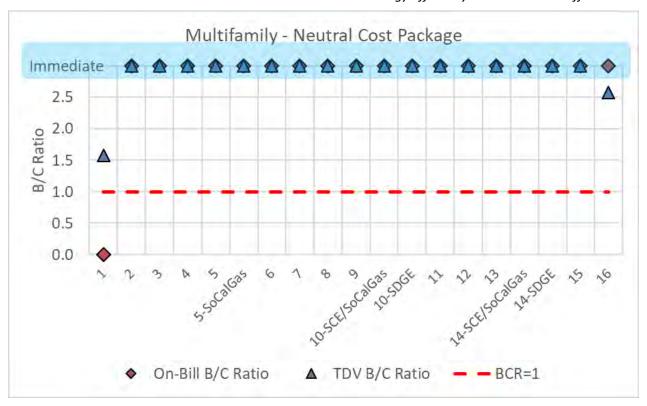


Figure 14: B/C ratio results for the multifamily neutral cost package all-electric home versus a mixed fuel code compliant home

4 Conclusions & Summary

This report evaluated the feasibility and cost-effectiveness of "above code" performance specifications through the application of efficiency measures, PV, and electric battery storage in all 16 California climate zones. The analysis found cost-effective packages across the state for both single family and low-rise multifamily buildings. For the building types and climate zones where cost-effective packages were identified, the results of this analysis can be used by local jurisdictions to support the adoption of reach codes. Cost-effectiveness was evaluated according to two metrics: On-Bill customer lifecycle benefit-to-cost and TDV lifecycle benefit-to-cost. While all the above code targets presented are based on packages that are cost-effective under at least one of these metrics, they are not all cost-effective under both metrics. Generally, the test for being cost-effective under the TDV methodology is less challenging than under the On-Bill methodology. Therefore, all packages presented are cost-effective based on TDV, and may or may not be cost-effective based on the On-Bill method. It is up to each jurisdiction to determine what metric is most appropriate for their application. A summary of results by climate zone are presented in Appendix G – Results by Climate Zone.

Above code targets are presented as Target EDR Margin, which have been defined for each scenario where a cost-effective package was identified. Target EDR Margins represent the maximum "reach" values that meet the requirements. Jurisdictions may adopt less stringent requirements. For the Efficiency Package the Target EDR Margin was defined based on the lower EDR Margin of the Efficiency – Non-Preempted Package and the Efficiency – Equipment, Preempted Package. For example, if the cost-effective Non-Preempted package has an EDR Margin of 3 and the Preempted package an EDR Margin of 4, the Target EDR Margin is set at 3.

The average incremental cost for the single family Efficiency packages is ~\$1,750. The Efficiency & PV Package average incremental cost is \$9,180 and for the Efficiency & PV/Battery Package it is approximately \$5,600 for the

mixed fuel cases and \$15,100 for the all-electric cases. The incremental costs for each multifamily apartment are approximately 30-40% lower. See Table 8 and Table 11 for a summary of package costs by case.

Table 18 and Table 19 summarize the maximum Target EDR Margins determined to be cost effective for each package for single family and multifamily, respectively. Cases labeled as "n/a" in the tables indicate where no cost-effective package was identified under either On-Bill or TDV methodology.

This analysis also looked at the GHG emissions impacts of the various packages. An all-electric design reduces GHG emissions 40-50% in most cases relative to a comparable mixed fuel design.

There is significant interest throughout California on electrification of new buildings. The Reach Code Team assembled data on the cost differences between a code compliant mixed fuel building and a code compliant all-electric building. Based on lifetime equipment cost savings (the difference in first cost for equipment and infrastructure combined with incremental replacement costs) of \$5,349 for an all-electric single family home this analysis found that from a customer on-bill perspective, the all-electric code compliant option is cost-effective in Climates Zones 6 through 9, 10 (SCE/SoCalGas territory only), and 15, and cost-effective in all climate zones except 1 and 16 based on TDV. For multifamily buildings, based on a cost savings of \$2,337 per apartment, the code compliant option is cost-effective in Climates Zones 6 through 9, 10 & 14 (SCE/SoCalGas territory only), and 15, and cost-effective based on TDV.

Adding efficiency and PV to the code compliant all-electric buildings increases the cost-effectiveness in all climate zones. The Efficiency & PV Package is cost-effective when compared to a mixed fuel code compliant building in all climate zones for both single family and multifamily buildings based on both the On-Bill and TDV methodologies. The Efficiency & PV package adds PV to offset 90% of the electricity use of the home. While this results in higher installed costs, the reduced lifetime utility costs are larger (\$0 to \$6,000 lifetime incremental equipment costs in many climates for single family homes and an associated \$4,500 to \$13,500 lifetime utility cost savings across the same cases), resulting in positive B/C ratios for all cases.

The Reach Code Team also evaluated a neutral cost electrification scenario where the cost savings for the allelectric code compliant home is invested in a larger PV system, resulting in a lifetime incremental cost of zero based on the On-Bill approach. This package results in utility cost savings and positive on-bill B/C ratio in all cases except Climate Zones 1 and 16 for single family, and Climate Zone 1 for low-rise multifamily. Increasing the PV sizes in those climates by approximately 30% resulted in positive on-bill B/C ratios, while still not resulting in oversizing of PV systems.

Other studies have shown that cost-effectiveness of electrification increases with high efficiency space conditioning and water heating equipment in the all-electric home. This was not directly evaluated in this analysis but based on the favorable cost-effectiveness results of the Equipment, Preempted package for the individual mixed fuel and all-electric upgrades it's expected that applying similar packages to the electrification analysis would result in increased cost-effectiveness.

The Reach Code Team found there can be substantial variability in first costs, particularly related to natural gas infrastructure. Costs are project-dependent and will be impacted by such factors as site characteristics, distance to the nearest gas main, joint trenching, whether work is conducted by the utility or a private contractor, and number of homes per development among other things. While the best cost data available to the Reach Code Team was applied in this analysis, individual projects may experience different costs, either higher or lower than the estimates presented here.

Table 18: Summary of Single Family Target EDR Margins

		od Eugl	All-Electric				
Climate Zone	IVIIXE	ed Fuel		All-Electric			
ma		Efficiency &			Efficiency &		
Clima Zone	Efficiency	PV/Battery	Efficiency	Efficiency & PV	PV/Battery		
01	5.0	10.5	6.5	31.0	41.0		
02	3.0	10.0	4.5	19.0	30.0		
03	2.5	10.0	4.0	18.0	29.0		
04	2.5	10.0	3.0	17.0	28.5		
05	2.5	9.0	4.0	18.0	28.5		
06	1.5	9.5	2.0	14.0	26.0		
07	n/a	9.0	n/a	11.0	24.0		
80	1.0	8.0	1.5	10.5	21.5		
09	2.5	8.5	2.5	11.5	21.0		
10	3.0	9.5	3.0	11.0	21.0		
11	4.0	9.0	4.5	14.0	23.0		
12	3.0	9.5	3.5	15.5	25.0		
13	4.5	9.5	5.0	13.0	22.0		
14	4.5	9.0	5.5	15.5	23.5		
15	4.5	7.0	5.5	6.0	13.0		
16	5.0	10.5	4.5	26.5	35.0		

Table 19: Summary of Multifamily Target EDR Margins

ē.	Mixe	ed Fuel	J	All-Electric	
Climate Zone		Efficiency &			Efficiency &
Clima Zone	Efficiency	PV/Battery	Efficiency	Efficiency & PV	PV/Battery
01	2.0	11.5	3.0	22.5	34.5
02	1.5	10.5	1.5	17.5	30.5
03	0.5	10.0	n/a	16.0	29.5
04	1.0	11.0	1.0	15.0	28.5
05	0.5	9.5	0.5	17.0	30.0
06	1.0	10.5	1.0	13.5	27.5
07	0.5	11.0	0.5	12.5	27.0
08	1.0	9.5	1.0	11.5	24.0
09	1.5	9.5	1.5	11.0	23.0
10	1.5	10.0	1.5	10.5	23.0
11	2.5	10.5	3.5	13.0	25.0
12	1.5	10.0	2.5	14.0	26.5
13	3.0	10.5	3.0	12.0	23.5
14	3.0	9.5	3.5	14.0	24.5
15	4.0	8.5	4.0	7.0	16.5
16	2.0	9.5	3.0	19.5	29.5

5 References

California Energy Commission. 2017. Rooftop Solar PV System. Measure number: 2019-Res-PV-D Prepared by Energy and Environmental Economics, Inc. https://efiling.energy.ca.gov/getdocument.aspx?tn=221366

California Energy Commission. 2018a. 2019 Alternative Calculation Method Approval Manual. CEC-400-2018-023-CMF. December 2018. California Energy Commission. https://www.energy.ca.gov/2018publications/CEC-400-2018-023-CMF.pdf

California Energy Commission. 2018b. 2019 Building Energy Efficiency Standards for Residential and Nonresidential Buildings. CEC-400-2018-020-CMF. December 2018. California Energy Commission. https://www.energy.ca.gov/2018publications/CEC-400-2018-020/CEC-400-2018-020-CMF.pdf

California Energy Commission. 2018c. 2019 Reference Appendices. CEC-400-2018-021-CMF. December 2018. California Energy Commission. https://www.energy.ca.gov/2018publications/CEC-400-2018-021/CEC-400-2

California Energy Commission. 2018d. 2019 Residential Compliance Manual. CEC-400-2018-017-CMF. December 2018. California Energy Commission. https://www.energy.ca.gov/2018publications/CEC-400-2018-017/CEC-400-2018-017/CEC-400-2018-017/CEC-400-2018-017-CMF.

California Energy Commission. 2019. 2019 Residential Alternative Calculation Method Reference Manual. CEC-400-2019-005-CMF. May 2019. California Energy Commission.

https://www.energy.ca.gov/2019publications/CEC-400-2019-005/CEC-400-2019-005-CMF.pdf

California Public Utilities Commission. 2016. Rulemaking No. 15-03-010 An Order Instituting Rulemaking to Identify Disadvantaged Communities in the San Joaquin Valley and Analyze Economically Feasible Options to Increase Access to Affordable Energy in Those Disadvantages Communities. Proposed Decision of Commissioner Guzman Aceves. April 07, 2017. http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M183/K389/183389022.PDF

Davis Energy Group. 2015. Evaluation of Ducts in Conditioned Space for New California Homes. Prepared for Pacific Gas and Electric Company. March 2015. https://www.etcc-ca.com/reports/evaluation-ducts-conditioned-space-new-california-homes

Energy & Environmental Economics. 2019. Residential Building Electrification in California. April 2019. https://www.ethree.com/wp-

content/uploads/2019/04/E3 Residential Building Electrification in California April 2019.pdf

EPRI. 2016. SMUD All-Electric Homes Electrification Case Study: Summary for the Three-Prong Test Discussion. Electric Power Research Institute, Inc. September. 2016. Presentation to Sacramento Municipal Utility District.

Horii, B., E. Cutter, N. Kapur, J. Arent, and D. Conotyannis. 2014. "Time Dependent Valuation of Energy for Developing Building Energy Efficiency Standards."

http://www.energy.ca.gov/title24/2016standards/prerulemaking/documents/2014-07-09 workshop/2017 TDV Documents/

Itron. 2014. 2010-2012 WO017 Ex Ante Measure Cost Study: Final Report. Itron. May 2014. Presented to California Public Utilities Commission.

Barbose, Galen and Darghouth, Naim. 2018. Tracking the Sun. Installed Price Trends for Distributed Photovoltaic Systems in the United States – 2018 Edition. Lawrence Berkeley National Laboratory. September 2018. https://emp.lbl.gov/sites/default/files/tracking the sun 2018 edition final 0.pdf

Navigant. 2018. Analysis of the Role of Gas for a Low-Carbon California Future. July 24, 2018. Prepared for Southern California Gas Company.

https://www.socalgas.com/1443741887279/SoCalGas Renewable Gas Final-Report.pdf

44

Penn, Ivan. 2018. Cheaper Battery Is Unveiled as a Step to a Carbon-Free Grid. The New York Times. September 2018. https://www.nytimes.com/2018/09/26/business/energy-environment/zinc-battery-solar-power.html. Accessed January 29, 2019.

Statewide CASE Team. 2017a. Codes and Standards Enhancement (CASE) Initiative Drain Water Heat Recovery – Final Report. July 2017. http://title24stakeholders.com/wp-content/uploads/2017/09/2019-T24-CASE-Report DWHR Final September-2017.pdf

Statewide CASE Team. 2017b. Codes and Standards Enhancement (CASE) Initiative High Performance Attics – Final Report. September 2017. http://title24stakeholders.com/wp-content/uploads/2017/09/2019-T24-CASE-Report HPA Final September-2017.pdf

Statewide CASE Team. 2017c. Codes and Standards Enhancement (CASE) Initiative High Performance Walls – Final Report. September 2017. http://title24stakeholders.com/wp-content/uploads/2017/09/2019-T24-CASE-Report HPW Final September-2017.pdf

Statewide CASE Team. 2017d. Codes and Standards Enhancement (CASE) Initiative Residential High Performance Windows & Doors – Final Report. August 2017. http://title24stakeholders.com/wp-content/uploads/2017/09/2019-T24-CASE-Report Res-Windows-and-Doors Final September-2017.pdf

Statewide CASE Team. 2018. Energy Savings Potential and Cost-Effectiveness Analysis of High Efficiency Windows in California. Prepared by Frontier Energy. May 2018. https://www.etcc-ca.com/reports/energy-savings-potential-and-cost-effectiveness-analysis-high-efficiency-windows-california

Statewide Reach Codes Team. 2016. CALGreen Cost-Effectiveness Study. Prepared for Pacific Gas and Electric Company. Prepared by Davis Energy Group. November 2016.

http://localenergycodes.com/download/50/file_path/fieldList/2016%20RNC%20Tiers%201-2%20Cost-Eff%20Report

Statewide Reach Codes Team. 2017a. CALGreen All-Electric Cost-Effectiveness Study. Prepared for Pacific Gas and Electric Company. Prepared by Davis Energy Group. October 2017.

http://localenergycodes.com/download/276/file_path/fieldList/2016%20RNC%20All-Electric%20Cost-Eff%20Report

Statewide Reach Codes Team. 2017b. 2016 Title 24 Residential Reach Code Recommendations: Cost-effectiveness Analysis for All California Climate Zones. Prepared for Southern California Edison. Prepared by TRC Energy Services. August 2017.

http://localenergycodes.com/download/283/file_path/fieldList/2016%20RNC%20Reach%20Code%20Tier%203%20Cost-Eff%20Report

Statewide Reach Codes Team. 2018. PV + Battery Storage Study. Prepared for Pacific Gas and Electric Company. Prepared by EnergySoft. July, 2018.

http://localenergycodes.com/download/430/file_path/fieldList/PV%20Plus%20Battery%20Storage%20Report

Hopkins, Asa, Takahashi, Kenji, Glick, Devi, Whited, Melissa. 2018. Decarbonization of Heating Energy Use in California Buildings. Synapse Energy Economics, Inc. October 2018. http://www.synapse-energy.com/sites/default/files/Decarbonization-Heating-CA-Buildings-17-092-1.pdf

TRC. 2018. City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis Draft. September 2018. https://cityofpaloalto.org/civicax/filebank/documents/66742

Appendix A - California Climate Zone Map

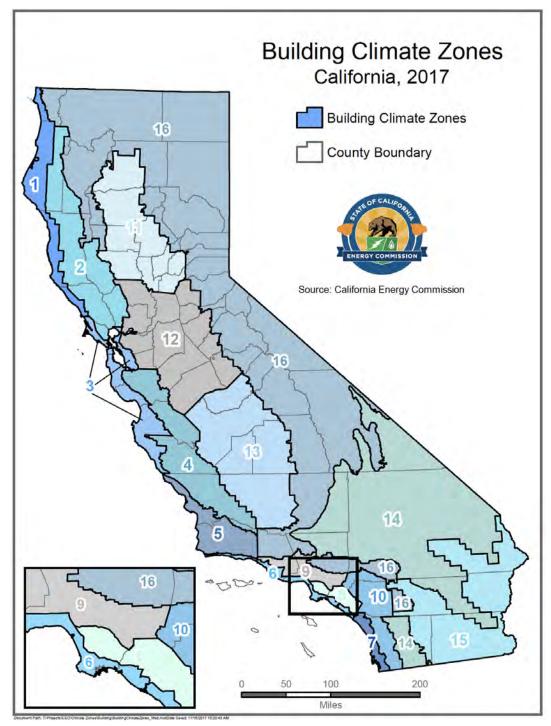


Figure 15: Map of California Climate Zones (courtesy of the California Energy Commission¹⁷)

¹⁷ https://ww2.energy.ca.gov/maps/renewable/building climate zones.html

46

Appendix B - Utility Tariff Details

PG&E	48
SCE	
SoCalGas	
SDG&E	
Escalation Assumptions	

PG&E

The following pages provide details on the PG&E electricity and natural gas tariffs applied in this study. Table 20 describes the baseline territories that were assumed for each climate zone.

Table 20: PG&E Baseline Territory by Climate Zone

	Baseline Territory
CZ01	٧
CZ02	Χ
CZ03	T
CZ04	Χ
CZ05	T
CZ11	R
CZ12	S
CZ13	R
CZ16	Υ

The PG&E monthly gas rate in \$/therm was applied on a monthly basis for the 12-month period ending January 2019 according to the rates shown below.

Pacific Gas and Electric Company

Residential Non-CARE and CARE Gas Tariff Rates

January 1, 2018, to Present

January 1, 2018, to Present (\$/therm)^{1/}

Effective Date	Advice Letter Number	Minimum Transportation Charge ^{2/} (per day)	Procurement Charge		ortation rge ^{2/}		esidential CARE s Charge ^{3/}
						(Non-	CARE)
				Baseline	Excess	Baseline	Excess
01/01/18	3918-G	\$0.09863	\$0.37310	\$0.91828	\$1.46925	\$1.29138	\$1.84235
02/01/18	3931-G	\$0.09863	\$0.40635	\$0.91828	\$1.46925	\$1.32463	\$1.87560
03/01/18	3941-G	\$0.09863	\$0.32103	\$0.91828	\$1.46925	\$1.23931	\$1.79028
04/01/18	3959-G	\$0.09863	\$0.34783	\$0.91828	\$1.46925	\$1.26611	\$1.81708
05/01/18	3969-G	\$0.09863	\$0.26995	\$0.91828	\$1.46925	\$1.18823	\$1.73920
06/01/18	3980-G	\$0.09863	\$0.21571	\$0.91828	\$1.46925	\$1.13399	\$1.68496
07/01/18	3984-G	\$0.09863	\$0.22488	\$0.93438	\$1.49502	\$1.15926	\$1.71990
08/01/18	3995-G	\$0.09863	\$0.28814	\$0.93438	\$1.49502	\$1.22252	\$1.78316
09/01/18	4008-G	\$0.09863	\$0.25597	\$0.93438	\$1.49502	\$1.19035	\$1.75099
10/01/18	4018-G	\$0.09863	\$0.27383	\$0.93438	\$1.49502	\$1.20821	\$1.76885
11/01/18	4034-G	\$0.09863	\$0.35368	\$0.93438	\$1.49502	\$1.28806	\$1.84870
12/01/18	4046-G	\$0.09863	\$0.42932	\$0.93438	\$1.49502	\$1.36370	\$1.92434
01/01/19	4052-G	\$0.09863	\$0.43394 ^{7/}	\$0.99414	\$1.59063	\$1.42808	\$2.02457

^{1/} Unless otherwise noted

Seasons: Winter = Nov-Mar Summer = April-Oct

Ffective July 1, 2005, the Transportation Charge will be no less than the Minimum Transportation Charge of \$0.09863 (per day). Applicable to Rate Schedule G-1 only

and does not apply to submetered tenants of master-metered customers served under gas Rate Schedule GS and GT.

Schedule G-PPPS (Public Purpose Program Surcharge) needs to be added to the TOTAL Non-CARE Charge and TOTAL CARE Charge for bill calculation. See Schedule G-PPPS for details and exempt customers.

⁴ CARE Schedules include California Solar Initiative (CSI) Exemption in accordance with Advice Letter 3257-G-A.

^{5/} Per dwelling unit per day (Multifamily Service)

^{6/} Per installed space per day (Mobilehome Park Service)

⁷⁷This procurement rate includes a charge of \$0.03686 per therm to reflect account balance amortizations in accordance with Advice Letter 3157-G.

st Residential bill credit of (\$29.85) per household, <u>annual bill credit occurring in the October 2018 bill cycle</u>, thereafter in the April bill cycle.

Revised Cal. P.U.C. Sheet No. 43533-E Cancelling Revised Cal. P.U.C. Sheet No. 42728-E

ELECTRIC SCHEDULE E-TOU

Sheet 4

RATES: (Cont'd.)

OPTION B TOTAL RATES

RESIDENTIAL TIME-OF-USE SERVICE

Total Energy Rates (\$ per kWh) PEAK OFF-PEAK
Summer (all usage) \$0.37188 (R) \$0.26882 (R)
Winter (all usage) \$0.23441 (R) \$0.21561 (R)

Delivery Minimum Bill Amount (\$ per meter per day) \$0.32854

California Climate Credit (per household, per semi-annual payment occurring in the April and October bill cycles) (\$39.42)

Total bundled service charges shown on customer's bills are unbundled according to the component rates shown below. Where the delivery minimum bill amount applies, the customer's bill will equal the sum of (1) the delivery minimum bill amount plus (2) for bundled service, the generation rate times the number of kWh used. For revenue accounting purposes, the revenues from the delivery minimum bill amount will be assigned to the Transmission, Transmission Rate Adjustments, Reliability Services, Public Purpose Programs, Nuclear Decommissioning, Competition Transition Charges, Energy Cost Recovery Amount, DWR Bond, and New System Generation Charges based on kWh usage times the corresponding unbundled rate component per kWh, with any residual revenue assigned to Distribution.***

UNBUNDLING OF OPTION B TOTAL RATES

Generation Summer (all usage) Winter (all usage)	PEAK \$0.21238 \$0.10554	OFF-PEAP \$0.10932 \$0.08674	(
Distribution** Summer (all usage)	\$0.10716 (R)	\$0.10716	(R)
Winter (all usage)	\$0.07653 (R)	\$0.07653	(R)
Transmission* (all usage)	\$0.024	69 (R)	
Transmission Rate Adjustments* (all usage) Reliability Services* (all usage)	\$0.002 \$0.002		
Public Purpose Programs (all usage) Nuclear Decommissioning (all usage)	\$0.014 \$0.000		
Competition Transition Charges (all usage)	\$0.001	32	
Energy Cost Recovery Amount (all usage) DWR Bond (all usage)	(\$0.000 \$0.005		
New System Generation Charge (all usage)**	\$0.002	28	

^{*} Transmission, Transmission Rate Adjustments and Reliability Service charges are combined for presentation on customer bills.

(Continued)

Advice	5444-E	Issued by	Submitted	December 18, 2018
Decision	18-08-013	Robert S. Kenney	Effective	January 1, 2019
		Vice President, Regulatory Affairs	Resolution	

^{**} Distribution and New System Generation Charges are combined for presentation on customer bills.

^{***} This same assignment of revenues applies to direct access and community choice aggregation customers.

Revised Cancelling Revised Cal. P.U.C. Sheet No. Cal. P.U.C. Sheet No.

34735-G 34691-G

GAS SCHEDULE G-1 RESIDENTIAL SERVICE Sheet 1

APPLICABILITY:

This rate schedule¹ applies to natural gas service to Core End-Use Customers on PG&E's Transmission and/or Distribution Systems. To qualify, service must be to individually-metered single family premises for residential use, including those in a multifamily complex, and to separately-metered common areas in a multifamily complex where Schedules GM, GS, or GT are not applicable. Common area accounts that are separately metered by PG&E have an option of switching to a core commercial rate schedule. Common area accounts are those accounts that provide gas service to common use areas as defined in Rule 1.

Per D.15-10-032 and D.18-03-017, transportation rates include GHG Compliance Cost for non-covered entities. Customers who are directly billed by the Air Resources Board (ARB), i.e., covered entities, are exempt from paying AB 32 GHG Compliance Costs through PG&E's rates. A "Cap-and-Trade Cost Exemption" credit for these costs will be shown as a line item on exempt customers' bills. 3.4

TERRITORY:

Schedule G-1 applies everywhere within PG&E's natural gas Service Territory.

RATES:

Customers on this schedule pay a Procurement Charge and a Transportation Charge, per meter, as shown below. The Transportation Charge will be no less than the Minimum Transportation Charge, as follows:

Minimum Transportation Charge: 5		Per Day			
		\$0.09863			
		Per	Therm		
	Baselin	e	Exce	55	
Procurement:	\$0.43394	(0)	\$0.43394	(0)	
Transportation Charge:	\$0.99414	(1)	\$1.59063	(1)	
Total:	\$1.42808	(1)	\$2.02457	(1)	
California Natural Gas Climate Credit (per Household, annual payment	(\$25.45)	(1)			

Public Purpose Program Surcharge:

thereafter in the April bill cycle)

Customers served under this schedule are subject to a gas Public Purpose Program (PPP) Surcharge under Schedule G-PPPS,

See Preliminary Statement, Part B for the Default Tariff Rate Components.

The Procurement Charge on this schedule is equivalent to the rate shown on informational Schedule G-CP—Gas Procurement Service to Core End-Use Customers.

The Minimum Transportation charge does not apply to submetered tenants of master-metered customers served under gas rate Schedules GS and GT. (Continued)

Advice	4052-G	Issued by	Submitted	December 21, 2018
Decision	97-10-065 & 98-	Robert S. Kenney	Effective	January 1, 2019
	07-025	Vice President, Regulatory Affairs	Resolution	

50 2019-07-17

PG&E's gas tariffs are available online at www.pge.com.

Covered entities are not exempt from paying costs associated with LUAF Gas and Gas used by Company Explicities.

The exemption credit will be equal to the effective non-exempt AB 32 GHG Compliance Cost Rate (\$ per therm) included in Preliminary Statement – Part B, multiplied by the customer's billed volumes (therms) for each billing period.

PG&E will update its billing system annually to reflect newly exempt or newly excluded customers to conform with lists of Directly Billed Customers provided annually by the ARB.

SCE

The following pages provide details on are the SCE electricity tariffs applied in this study. Table 21 describes the baseline territories that were assumed for each climate zone.

Table 21: SCE Baseline Territory by Climate Zone

	Baseline
	Territory
CZ06	6
CZ08	8
CZ09	9
CZ10	10
CZ14	14
CZ15	15

	Delivery	Generation	Total Rate
	202.00		101211111
OII Default Date 1 (On Book 4:00 nm 0:00 nm)			
OU-Default-Rate-1 (On-Peak 4:00 pm - 9:00 pm)			
Energy Charge - \$/kWh			
Summer Season - On-Peak	0.19880	0.20072	0.3995
Mid-Peak	0.19880	0.05948	0.2582
Off-Peak	0.15574	0.06023	0.2159
Winter Season - Mid-Peak	0.19880	0.08308	0.2818
Off-Peak	0.15574	0.11309	0.2688
Super-Off-Peak	0.15062	0.01344	0.1640
Basic Charge - \$/day			
Single-Family Residence	0.031	0.000	0.0
Multi-Family Residence	0.024	0.000	0.0
Minimum Charge - \$/day			
Single Family Residence	0.338	0.000	0.3
Multi-Family Residence	0.338	0.000	0.3
Baseline Credit - \$/kWh	(0.06512)	0.00000	(0.0651

	1 **		
	Delivery	Generation	Total Rate
TOU-D-Rate PRIME			
Energy Charge - \$/kWh			
Summer Season - On-Peak	0.15926	0.19811	0.35737
Mid-Peak	0.15926	0.10092	0.26018
Off-Peak	0.08308	0.04687	0.12995
Winter Season - Mid-Peak	0.16268	0.16761	0.33029
Off-Peak	0.08081	0.04331	0.12412
Super-Off-Peak	0.08081	0.04331	0.12412
Customer Charge - \$/day	0.395	0.000	0.39

TOU Period	Weel	kdays	Weekends and Holidays		
TOO Fellou	Summer	Winter	Summer	Winter	
On-Peak	4 p.m 9 p.m.				
Mid-Peak		4 p.m 9 p.m.	4 p.m 9 p.m.	4 p.m 9 p.m.	
Off-Peak	All other hours	9 p.m 8 a.m.	All other hours	9 p.m 8 a.m.	
Super-Off-Peak		8 a.m 4 p.m.		8 a.m 4 p.m.	

PROPOSED (7 Year Average 2010-2016)

Summer kWh per Day			Winte	r kWh pe	er Day
Baseline Region	Basic	All Electric	Baseline Region	Basic	All Electric
05	17.2	17.9	05	18.7	29.1
06	11.4	8.8	06	11.3	13.0
08	12.6	9.8	08	10.6	12.7
09	16.5	12.4	09	12.3	14.3
10	18.9	15.8	10	12.5	17.0
13	22.0	24.6	13	12.6	24.3
14	18.7	18.3	14	12.0	21.3
15	46.4	24.1	15	9.9	18.2
16	14.4	13.5	16	12.6	23.1

SoCalGas

Following are the SoCalGas natural gas tariffs applied in this study. Table 22 describes the baseline territories that were assumed for each climate zone.

Table 22: SoCalGas Baseline Territory by Climate Zone

	Baseline Territory
CZ05	2
CZ06	1
CZ08	1
CZ09	1
CZ10	1
CZ14	2
CZ15	1

SOUTHERN CALIFORNIA GAS COMPANY Revised CAL P.U.C. SHEET NO. 55854-G
LOS ANGELES, CALIFORNIA CANCELING Revised CAL. P.U.C. SHEET NO. 55828-G

RESIDI	nedule No. GR ENTIAL SERVICE , GR-C and GT-R I		Sh	eet 1
<u>APPLICABILITY</u>				
The GR rate is applicable to natural gas procu	rement service to in	ndividually meter	ed residential custo	omers.
The GR-C, cross-over rate, is a core procurem transportation customers with annual consump				ion 10.
The GT-R rate is applicable to Core Aggregat residential customers, as set forth in Special C		(CAT) service to	individually meter	red
The California Alternate Rates for Energy (C/ the bill, is applicable to income-qualified hous as set forth in Schedule No. G-CARE.				
TERRITORY				
Applicable throughout the service territory.				
RATES Customer Charge, per meter per day:	<u>GR</u> 16.438¢	<u>GR-C</u> 16.438¢	<u>GT-R</u> 16.438¢	
For "Space Heating Only" customers, a daily Customer Charge applies during the winter pe from November 1 through April 30%		33.149¢	33.149¢	
Baseline Rate, per therm (baseline usage defin				
Procurement Charge: 2/		42.676¢	N/A	R
<u>Transmission Charge</u> : Total Baseline Charge:		63.566¢ 106.242¢	63.566¢ 63.566¢	R
Non-Baseline Rate, per therm (usage in excess	of becaling weens			
Procurement Charge: 2/	s or oaseille usage) Δ1 580¢	42.676¢	N/A	R
Transmission Charge:		96.806¢	96.806¢	1
Total Non-Baseline Charge:		139.482¢	96.806¢	R
For the summer period beginning May 1 th accumulated to at least 20 Ccf (100 cubic f		with some excep	tions, usage will be	
(Footnotes continue next page.)				
	(Continued)			
			E INCEDTED BY CAL	

ISSUED BY

Dan Skopec

Vice President Regulatory Affairs

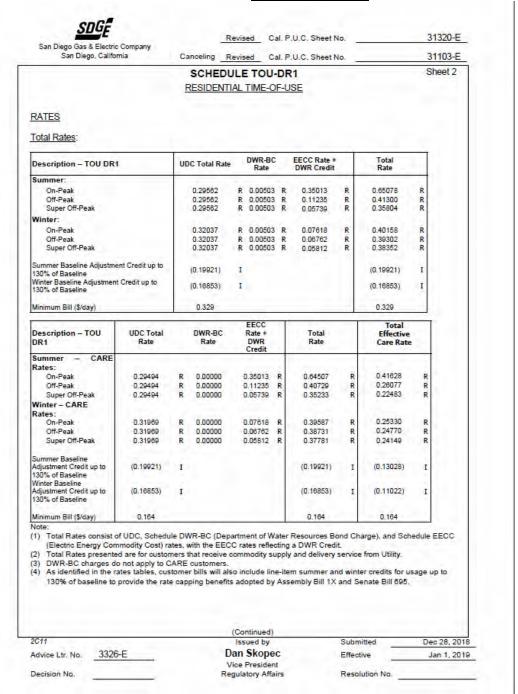
(TO BE INSERTED BY UTILITY)

ADVICE LETTER NO. 5410

DECISION NO.

(TO BE INSERTED BY CAL. PUC)

| SUBMITTED | Jan 7, 2019 | EFFECTIVE | Jan 10, 2019 | RESOLUTION NO. | G-3351 |


53 2019-07-17

SDG&E

Following are the SDG&E electricity and natural gas tariffs applied in this study. Table 23 describes the baseline territories that were assumed for each climate zone.

Table 23: SDG&E Baseline Territory by Climate Zone

	Baseline Territory
CZ07	Coastal
CZ10	Inland
CZ14	Mountain

Revised Cal. P.U.C. Sheet No.

23614-G

San Diego, California Co

Canceling Revised Cal. P.U.C. Sheet No.

23601-G Sheet 1

SCHEDULE GR

RESIDENTIAL NATURAL GAS SERVICE (Includes Rates for GR, GR-C, GTC/GTCA)

APPLICABILITY

The GR rate is applicable to natural gas procurement service for individually metered residential customers.

The GR-C, cross-over rate, is a core procurement option for individually metered residential core transportation customers with annual consumption over 50,000 therms, as set forth in Special Condition 10.

The GTC/GTCA rate is applicable to intrastate gas transportation-only services to individually metered residential customers, as set forth in Special Condition 11.

Customers taking service under this schedule may be eligible for a 20% California Alternate Rate for Energy (CARE) program discount, reflected as a separate line item on the bill, if they qualify to receive service under the terms and conditions of Schedule G-CARE.

TERRITORY

Within the entire territory served natural gas by the utility.

RATES

55

	<u>GR</u>	GR-C	GTC/GTCA ^{1/}
Baseline Rate, per therm (baseline usage defined in Speci	al Conditions 3 an	d 4):	
Procurement Charge:2/	\$0.41614	\$0.41614 R	N/A
Transmission Charge:	\$1.01230	\$1.01230	\$1.01230
Total Baseline Charge:	\$1.42844	\$1.42844 R	\$1.01230
Non-Baseline Rate, per therm (usage in excess of baseline Procurement Charge: 21 Transmission Charge: Total Non-Baseline Charge:	e usage): \$0.41614 \$1.19980 \$1.61594	\$0.41614 R \$1.19980 \$1.61594 R	N/A \$1.19980 \$1.19980
Minimum Bill, per day: ^{3/} Non-CARE customers: CARE customers:	\$0.09863 \$0.07890	\$0.09863 \$0.07890	\$0.09863 \$0.07890

^{1/} The rates for core transportation-only customers, with the exception of customers taking service under Schedule GT-NGV, include any FERC Settlement Proceeds Memorandum Account (FSPMA) credit adjustments.

This charge is applicable to Utility Procurement Customers and includes the GPC and GPC-A Procurement Charges shown in Schedule GPC which are subject to change monthly as set forth in Special Condition 7.

^{3/} Effective starting May 1, 2017, the minimum bill is calculated as the minimum bill charge of \$0.09883 per day times the number of days in the billing cycle (approximately \$3 per month) with a 20% discount applied for CARE customer resulting in a minimum bill charge of \$0.07890 per day (approximately \$2.40 per month).

Escalation Assumptions

The average annual escalation rates in the following table were used in this study and are from E3's 2019 study Residential Building Electrification in California (Energy & Environmental Economics, 2019). These rates are applied to the 2019 rate schedules over a thirty-year period beginning in 2020. SDG&E was not covered in the E3 study. The Reach Code Team reviewed SDG&E's GRC filing and applied the same approach that E3 applied for PG&E and SoCalGas to arrive at average escalation rates between 2020 and 2022.

Table 24: Real Utility Rate Escalation Rate Assumptions

	Statewide Electric Residential Average Rate		al Gas Residential Core (%/yr escalation, real)	
	(%/year, real)	<u>PG&E</u>	<u>SoCalGas</u>	SDG&E
2020	2.0%	1.48%	6.37%	5.00%
2021	2.0%	5.69%	4.12%	3.14%
2022	2.0%	1.11%	4.12%	2.94%
2023	2.0%	4.0%	4.0%	4.0%
2024	2.0%	4.0%	4.0%	4.0%
2025	2.0%	4.0%	4.0%	4.0%
2026	1.0%	1.0%	1.0%	1.0%
2027	1.0%	1.0%	1.0%	1.0%
2028	1.0%	1.0%	1.0%	1.0%
2029	1.0%	1.0%	1.0%	1.0%
2030	1.0%	1.0%	1.0%	1.0%
2031	1.0%	1.0%	1.0%	1.0%
2032	1.0%	1.0%	1.0%	1.0%
2033	1.0%	1.0%	1.0%	1.0%
2034	1.0%	1.0%	1.0%	1.0%
2035	1.0%	1.0%	1.0%	1.0%
2036	1.0%	1.0%	1.0%	1.0%
2037	1.0%	1.0%	1.0%	1.0%
2038	1.0%	1.0%	1.0%	1.0%
2039	1.0%	1.0%	1.0%	1.0%
2040	1.0%	1.0%	1.0%	1.0%
2041	1.0%	1.0%	1.0%	1.0%
2042	1.0%	1.0%	1.0%	1.0%
2043	1.0%	1.0%	1.0%	1.0%
2044	1.0%	1.0%	1.0%	1.0%
2045	1.0%	1.0%	1.0%	1.0%
2046	1.0%	1.0%	1.0%	1.0%
2047	1.0%	1.0%	1.0%	1.0%
2048	1.0%	1.0%	1.0%	1.0%
2049	1.0%	1.0%	1.0%	1.0%

Appendix C - Single Family Detailed Results

Table 25: Single Family Mixed Fuel Efficiency Package Cost-Effectiveness Results

	_	Table 25: Single Family Mixed Fuel Efficiency Package Cost-Effectiveness Results																				
			1	<u>BASECASE</u>					1	Non-Pree	mpted						<u>Equ</u>	<u>ipment -</u>	Preemp	<u>ted</u>		
CZ	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per saft	PV kW	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per saft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio
1	PG&E	32.5	54.2	23	3.0	3.3	27.9	49.0	5.3	18.8%	2.5	3.2	3.4	2.8	26.0	47.3	6.9	25.1%	2.3	3.2	4.9	4.1
2	PG&E	25.0	46.0	12	2.2	2.8	22.0	42.7	3.3	16.3%	1.9	2.8	1.6	1.7	21.8	42.6	3.3	16.4%	1.9	2.8	3.8	3.6
3	PG&E	23.9	46.9	10	1.9	2.7	21.3	43.9	3.0	16.7%	1.6	2.7	1.3	1.3	20.1	42.8	4.1	22.8%	1.5	2.7	1.9	2.0
4	PG&E	23.1	44.9	8	1.9	2.7	20.8	42.4	2.5	13.9%	1.7	2.7	0.9	1.2	20.5	42.2	2.7	14.9%	1.6	2.7	2.4	2.7
5	PG&E	22.2	44.4	10	1.8	2.6	19.7	41.7	2.7	16.7%	1.6	2.5	1.1	1.2	19.7	41.7	2.6	16.2%	1.5	2.5	2.3	2.5
5	PG&E/SoCalGas	22.2	44.4	10	1.8	2.6	19.7	41.7	2.7	16.7%	1.6	2.5	0.9	1.2	19.7	41.7	2.6	16.2%	1.5	2.5	2.0	2.5
6	SCE/SoCalGas	23.3	49.9	10	1.6	2.7	21.5	47.8	2.0	12.1%	1.5	2.7	0.7	1.2	21.5	47.9	2.0	11.8%	1.4	2.7	1.6	2.0
7	SDG&E	20.3	49.1	5	1.3	2.6	20.3	49.1	0.0	0.0%	1.3	2.6	-	-	18.8	47.6	1.5	12.4%	1.2	2.6	1.5	1.4
8	SCE/SoCalGas	21.3	46.9	10	1.4	2.9	20.1	45.6	1.3	7.7%	1.3	2.9	0.6	1.4	19.7	45.3	1.6	9.4%	1.3	2.9	1.3	1.8
9	SCE/SoCalGas	24.5	47.7	13	1.5	2.9	22.3	45.1	2.6	11.7%	1.5	2.9	0.7	2.0	21.9	44.8	2.9	13.4%	1.4	2.9	1.8	3.7
10	SCE/SoCalGas	24.2	46.3	10	1.6	3.0	21.7	43.1	3.2	14.3%	1.5	3.0	0.6	1.3	21.5	43.1	3.2	14.6%	1.4	3.0	2.0	3.8
10	SDG&E	24.2	46.3	11	1.6	3.0	21.7	43.1	3.2	14.3%	1.5	3.0	0.8	1.3	21.5	43.1	3.2	14.6%	1.4	3.0	2.6	3.8
11	PG&E	24.6	44.9	12	2.1	3.6	21.3	40.6	4.3	16.4%	1.9	3.4	0.8	1.2	20.7	39.9	5.1	19.2%	1.8	3.4	2.5	3.7
12	PG&E	25.5	44.8	11	2.1	3.0	22.5	41.3	3.5	14.9%	1.9	2.9	1.2	1.8	22.5	41.4	3.4	14.4%	1.9	3.0	3.3	4.6
13	PG&E	25.7	46.5	15	2.0	3.8	22.2	41.9	4.6	16.9%	1.8	3.6	0.8	1.3	21.2	40.7	5.8	21.4%	1.7	3.6	5.3	8.4
14	SCE/SoCalGas	25.3	46.3	11	2.3	3.2	21.5	41.3	5.0	18.5%	2.1	3.0	1.6	2.5	20.8	40.4	5.8	21.7%	2.0	3.0	4.0	6.1
14	SDG&E	25.3	46.3	22	2.3	3.2	21.5	41.3	5.0	18.5%	2.1	3.0	1.9	2.5	20.8	40.4	5.8	21.7%	2.0	3.0	4.9	6.1
15	SCE/SoCalGas	22.4	49.1	11	1.7	5.4	19.7	44.3	4.8	14.8%	1.6	5.0	1.0	1.6	19.5	44.1	5.0	15.4%	1.5	5.0	>1	>1
16	PG&E	30.4	48.9	22	3.3	2.7	25.0	43.5	5.4	20.6%	2.6	2.7	1.6	1.5	24.8	42.7	6.2	23.5%	2.7	2.6	2.2	2.2

[&]quot;>1" = indicates cases where there is both first cost savings and annual utility bill savings.

Table 26: Single Family Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results

	T avi	C 20. 311	ngie ramily Mix		21110101	ICy & I	/ Battery								
			BASECASE			Efficiency & PV/Battery									
							Total								
		Total	CALGreen Tier 1	lbs CO2	PV	Total	EDR	% Comp	lbs CO2	PV	On-Bill B/C	TDV B/C			
CZ	Utility	EDR	EDR Target	per sqft	kW	EDR	Margin	Margin	per sqft	kW	Ratio	Ratio			
1	PG&E	32.5	23	3.0	3.3	21.9	10.6	31.8%	2.4	3.3	1.0	1.8			
2	PG&E	25.0	12	2.2	2.8	14.9	10.1	27.3%	1.8	2.9	0.5	1.7			
3	PG&E	23.9	10	1.9	2.7	13.9	10.0	27.7%	1.5	2.8	0.4	1.5			
4	PG&E	23.1	8	1.9	2.7	13.0	10.1	24.9%	1.5	2.8	0.3	1.6			
5	PG&E	22.2	10	1.8	2.6	12.8	9.4	29.7%	1.4	2.6	0.4	1.5			
5	PG&E/SoCalGas	22.2	10	1.8	2.6	12.8	9.4	29.7%	1.4	2.6	0.3	1.5			
6	SCE/SoCalGas	23.3	10	1.6	2.7	13.6	9.8	20.1%	1.2	2.8	0.9	1.4			
7	SDG&E	20.3	5	1.3	2.6	11.1	9.2	9.0%	1.0	2.7	0.1	1.5			
8	SCE/SoCalGas	21.3	10	1.4	2.9	12.9	8.4	23.7%	1.1	3.0	1.1	1.5			
9	SCE/SoCalGas	24.5	13	1.5	2.9	15.7	8.8	24.7%	1.2	3.0	1.1	1.7			
10	SCE/SoCalGas	24.2	10	1.6	3.0	14.6	9.6	27.3%	1.3	3.1	1.1	1.6			
10	SDG&E	24.2	11	1.6	3.0	14.6	9.6	27.3%	1.3	3.1	0.6	1.6			
11	PG&E	24.6	12	2.1	3.6	15.4	9.2	29.4%	1.8	3.5	0.4	1.6			
12	PG&E	25.5	11	2.1	3.0	15.9	9.6	28.9%	1.8	3.0	0.5	1.9			
13	PG&E	25.7	15	2.0	3.8	16.1	9.7	28.9%	1.7	3.7	0.4	1.7			
14	SCE/SoCalGas	25.3	11	2.3	3.2	16.3	9.0	30.1%	1.8	3.1	1.5	1.9			
14	SDG&E	25.3	22	2.3	3.2	16.3	9.0	30.1%	1.8	3.1	1.4	1.9			
15	SCE/SoCalGas	22.4	11	1.7	5.4	15.3	7.1	25.1%	1.4	5.1	1.3	1.7			
16	PG&E	30.4	22	3.3	2.7	19.9	10.5	32.6%	2.4	2.8	0.9	1.5			

[&]quot;>1" = indicates cases where there is both first cost savings and annual utility bill savings.

Table 27: Single Family All-Electric Efficiency Package Cost-Effectiveness Results

													- 8		USC-Effectiveness Results							
			<u> </u>	<u>ASECAS</u>	<u>E</u>					Non-Pree	mpted						Equipm	ent - Preer	npted			
CZ	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio
1	PG&E	46.8	68.2	36	1.5	3.3	31.8	53.0	15.2	40.2%	1.0	3.3	1.8	1.7	39.9	61.3	6.9	18.3%	1.3	3.3	2.9	2.7
2	PG&E	32.8	53.7	16	1.1	2.8	27.9	48.7	4.9	20.5%	0.9	2.8	1.2	1.1	27.7	48.5	5.1	21.2%	0.9	2.8	2.3	2.1
3	PG&E	33.1	55.6	14	1.0	2.7	28.5	50.9	4.7	20.6%	0.8	2.7	2.6	2.4	28.7	51.2	4.4	19.6%	0.9	2.7	1.8	1.6
4	PG&E	31.3	52.8	12	1.0	2.7	27.9	49.4	3.4	15.5%	0.9	2.7	1.9	1.8	27.4	48.9	3.9	17.6%	0.9	2.7	1.5	1.5
5	PG&E	32.5	54.2	16	1.0	2.6	28.1	49.9	4.4	19.7%	0.9	2.6	2.6	2.3	28.0	49.8	4.4	20.3%	0.9	2.6	1.9	1.7
5	PG&E/SoCalGas	32.5	54.2	12	1.0	2.6	28.1	49.9	4.4	19.7%	0.9	2.6	2.6	2.3	28.0	49.8	4.4	20.3%	0.9	2.6	1.9	1.7
6	SCE/SoCalGas	29.7	55.8	12	0.9	2.7	27.7	53.8	2.0	10.9%	0.8	2.7	1.3	1.4	26.8	53.0	2.9	16.0%	0.8	2.7	2.2	2.3
7	SDG&E	27.1	55.3	7	0.7	2.6	27.1	55.3	0.0	0.0%	0.7	2.6	-	-	24.8	53.0	2.2	16.9%	0.7	2.6	1.6	1.7
8	SCE/SoCalGas	26.1	51.5	10	0.8	2.9	24.5	49.9	1.6	8.9%	0.8	2.9	0.6	1.2	24.4	49.7	1.8	9.7%	0.8	2.9	2.8	3.0
9	SCE/SoCalGas	28.8	51.9	13	0.9	2.9	26.0	49.1	2.8	12.5%	0.8	2.9	0.8	2.0	25.5	48.6	3.3	14.7%	0.8	2.9	2.1	3.2
10	SCE/SoCalGas	28.8	50.7	11	0.9	3.0	25.7	47.6	3.1	14.0%	0.9	3.0	0.9	1.5	25.3	47.2	3.4	15.5%	0.8	3.0	2.3	3.2
10	SDG&E	28.8	50.7	12	0.9	3.0	25.7	47.6	3.1	14.0%	0.9	3.0	1.1	1.5	25.3	47.2	3.4	15.5%	0.8	3.0	2.6	3.2
11	PG&E	30.0	50.2	13	1.1	3.6	25.4	45.6	4.6	16.2%	1.0	3.6	1.2	1.5	24.1	44.3	5.9	20.8%	0.9	3.6	3.0	3.3
12	PG&E	30.9	50.1	13	1.0	3.0	27.1	46.3	3.8	15.3%	0.9	3.0	0.8	1.1	25.8	45.0	5.1	20.4%	0.9	3.0	2.0	2.5
13	PG&E	30.7	51.5	16	1.1	3.8	25.7	46.4	5.1	17.4%	0.9	3.8	1.1	1.4	24.7	45.4	6.0	20.9%	0.9	3.8	2.9	3.3
14	SCE/SoCalGas	31.3	52.2	8	1.4	3.2	25.7	46.6	5.6	18.9%	1.2	3.2	1.0	1.5	25.3	46.2	6.0	20.5%	1.2	3.2	2.3	3.1
14	SDG&E	31.3	52.2	39	1.4	3.2	25.7	46.6	5.6	18.9%	1.2	3.2	1.3	1.5	25.3	46.2	6.0	20.5%	1.2	3.2	2.9	3.1
15	SCE/SoCalGas	26.2	52.8	8	1.3	5.4	20.6	47.2	5.6	16.8%	1.1	5.4	1.1	1.6	18.9	45.5	7.3	21.8%	1.0	5.4	3.3	4.5
16	PG&E	46.5	64.6	39	1.7	2.7	36.8	54.9	9.7	25.2%	1.4	2.7	1.7	1.7	41.6	59.7	4.9	12.7%	1.6	2.7	2.4	2.3

Table 28: Single Family All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results

			BASECA						ncy & P						Efficiency				
cz	Utility	Total EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio
1	PG&E	46.8	36	1.5	3.3	15.4	31.4	40.2%	0.5	6.0	1.8	1.5	5.6	41.2	51.9%	0.3	6.76	1.5	1.4
2	PG&E	32.8	16	1.1	2.8	13.4	19.4	20.5%	0.5	4.9	1.8	1.4	2.7	30.1	31.5%	0.3	5.51	1.4	1.5
3	PG&E	33.1	14	1.0	2.7	14.6	18.5	20.6%	0.5	4.5	2.2	1.7	3.7	29.3	31.6%	0.2	5.10	1.6	1.6
4	PG&E	31.3	12	1.0	2.7	14.1	17.2	15.5%	0.5	4.5	2.1	1.6	2.8	28.6	26.5%	0.2	5.15	1.5	1.7
5	PG&E	32.5	16	1.0	2.6	14.3	18.2	19.7%	0.5	4.3	2.3	1.8	3.8	28.7	32.7%	0.2	4.84	1.7	1.7
5	PG&E/SoCalGas	32.5	12	1.0	2.6	14.3	18.2	19.7%	0.5	4.3	2.3	1.8	3.8	28.7	32.7%	0.2	4.84	1.7	1.7
6	SCE/SoCalGas	29.7	12	0.9	2.7	15.5	14.3	10.9%	0.6	4.1	1.2	1.5	3.6	26.1	18.9%	0.3	4.68	1.2	1.5
7	SDG&E	27.1	7	0.7	2.6	15.8	11.3	0.7%	0.6	3.7	1.9	1.5	2.9	24.2	6.7%	0.3	4.21	1.3	1.6
8	SCE/SoCalGas	26.1	10	0.8	2.9	15.1	10.9	8.9%	0.6	4.0	1.0	1.5	4.5	21.6	24.9%	0.3	4.54	1.1	1.5
9	SCE/SoCalGas	28.8	13	0.9	2.9	17.3	11.5	12.5%	0.7	4.1	1.1	1.6	7.6	21.3	25.5%	0.4	4.66	1.2	1.6
10	SCE/SoCalGas	28.8	11	0.9	3.0	17.7	11.1	14.0%	0.7	4.2	1.1	1.5	7.6	21.2	27.0%	0.4	4.78	1.2	1.6
10	SDG&E	28.8	12	0.9	3.0	17.7	11.1	14.0%	0.7	4.2	1.7	1.5	7.6	21.2	27.0%	0.4	4.78	1.5	1.6
11	PG&E	30.0	13	1.1	3.6	15.8	14.2	16.2%	0.6	5.4	1.8	1.6	6.8	23.2	29.2%	0.4	6.11	1.5	1.7
12	PG&E	30.9	13	1.0	3.0	15.2	15.7	15.3%	0.5	5.0	1.7	1.4	5.6	25.4	29.3%	0.3	5.62	1.3	1.5
13	PG&E	30.7	16	1.1	3.8	17.3	13.4	17.4%	0.6	5.4	1.7	1.5	8.2	22.5	29.4%	0.4	6.14	1.4	1.6
14	SCE/SoCalGas	31.3	8	1.4	3.2	15.8	15.5	18.9%	0.9	4.8	1.2	1.6	7.4	23.9	30.9%	0.6	5.39	1.4	1.6
14	SDG&E	31.3	39	1.4	3.2	15.8	15.5	18.9%	0.9	4.8	1.8	1.6	7.4	23.9	30.9%	0.6	5.39	1.7	1.6
15	SCE/SoCalGas	26.2	8	1.3	5.4	20.0	6.2	16.8%	1.1	5.5	1.1	1.6	12.7	13.5	27.0%	0.8	6.25	1.2	1.6
16	PG&E	46.5	39	1.7	2.7	19.6	27.0	25.2%	0.9	5.5	2.1	1.6	11.1	35.4	34.3%	0.6	6.17	1.7	1.6

[&]quot;>1" = indicates cases where there is both first cost savings and annual utility bill savings.

Appendix D - Single Family Measure Summary

Table 29: Single Family Mixed Fuel Efficiency - Non-Preempted Package Measure Summary

<u>CZ</u>	<u>Duct</u>	<u>Infiltratio</u>	<u>Wall</u>	Attic	Roof	Glazing	Slab	DHW	HVAC	PV
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	1.0 PV scaling
8	< 12 ft ducts in attic	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
9	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
13	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
14	VLLDCS	3 ACH50	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
15	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling

VVLDCS – Verified Low Leakage Ducts in Conditioned Space

Table 30: Single Family Mixed Fuel Efficiency - Equipment, Preempted Package Measure Summary

<u>CZ</u>	Duct	<u>Infiltratio</u>			1		<u>Slab</u>	DHW	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
2	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
4	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
5	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
6	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling
8	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling
9	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
10	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
11	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	18 SEER, 96 AFUE, 0.35W/cfm	1.0 PV scaling
12	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
13	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
14	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
15	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	18 SEER, 96 AFUE, 0.35W/cfm	1.0 PV scaling

LLAHU - Low Leakage Air Handling Unit

VVLDCS – Verified Low Leakage Ducts in Conditioned Space

Table 31: Single Family Mixed Fuel Efficiency & PV/Battery Package Measure Summary

					Timed I del di			-6		
<u>CZ</u>	<u>Duct</u>	<u>Infiltratio</u>	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	<u>Slab</u>	DHW	<u>HVAC</u>	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	Code Min	1.0 PV scaling + 5 batt
8	< 12 ft ducts in attic	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
9	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
13	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
14	VLLDCS	3 ACH50	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
15	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5 batt

VVLDCS – Verified Low Leakage Ducts in Conditioned Space

Table 32: Single Family All-Electric Efficiency - Non-Preempted Package Measure Summary

<u>CZ</u>	<u>Duct</u>	<u>Infiltratio</u>		1	Roof	Glazing	1	ı	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Std Design PV
8	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
12	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
13	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
14	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
15	VLLDCS	Code Min	0.043 wall	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
16	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	Code Min	Code Min	0.45 W/cfm	Std Design PV

Table 33: Single Family All-Electric Efficiency - Equipment, Preempted Package Measure Summary

<u>CZ</u>	Duct	Infiltratio	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	<u>Slab</u>	DHW	HVAC	<u>PV</u>
1	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
2	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
3	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
4	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
5	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
6	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
8	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV
9	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
10	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
11	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
12	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
13	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
14	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
15	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
16	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV

LLAHU - Low Leakage Air Handling Unit

Table 34: Single Family All-Electric Efficiency & PV Package Measure Summary

<u>CZ</u>	<u>Duct</u>	<u>Infiltratio</u>		ı .	Roof	Glazing	l	1	HVAC	PV
1	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
8	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
12	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
13	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
14	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
15	VLLDCS	Code Min	0.043 wall	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
16	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling

Table 35: Single Family All-Electric Efficiency & PV/Battery Package Measure Summary

<u>CZ</u>	<u>Duct</u>	Infiltratio		1 -	Roof	1 '	1	ĺ	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
8	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
12	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
13	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
14	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
15	VLLDCS	Code Min	0.043 wall	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt
16	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5 batt

Appendix E - Multifamily Detailed Results

Table 36: Multifamily Mixed Fuel Efficiency Package Cost-Effectiveness Results

			BA	SECASE						-Preemp								ent - Pr	eemp	ted		
Climate Zone	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
01	PG&E	28.6	60.7	23	2.7	15.9	25.1	57.3	3.4	19.3%	2.3	16.0	1.1	1.2	26.4	58.4	2.3	12.2%	2.5	15.9	1.3	1.4
02	PG&E	25.7	56.5	12	2.4	13.9	24.2	54.7	1.8	9.9%	2.3	13.8	1.0	1.7	23.6	54.2	2.3	12.5%	2.2	13.9	1.1	1.5
03	PG&E	24.7	57.8	10	2.1	13.5	24.0	57.2	0.6	4.7%	2.1	13.5	1.0	1.1	23.1	56.2	1.6	11.2%	1.9	13.4	1.1	1.2
04	PG&E	25.5	56.8	8	2.2	13.6	24.3	55.5	1.3	7.7%	2.1	13.5	0.8	1.2	23.8	54.9	1.9	10.9%	2.0	13.5	1.1	1.7
05	PG&E	24.2	57.4	10	2.1	12.6	23.7	56.9	0.5	4.4%	2.0	12.6	1.0	1.0	22.7	55.9	1.5	10.9%	1.9	12.6	1.2	1.3
05	PG&E/SoCalGas	24.2	57.4	10	2.1	12.6	23.7	56.9	0.5	4.4%	2.0	12.6	8.0	1.0	22.7	55.9	1.5	10.9%	1.9	12.6	1.1	1.3
06	SCE/SoCalGas	26.8	63.2	10	2.2	13.9	25.8	61.9	1.3	7.0%	2.1	13.8	0.6	1.5	25.5	61.9	1.3	7.4%	2.0	13.9	1.4	1.7
07	SDG&E	26.8	64.5	5	2.1	13.2	26.1	63.6	0.9	5.3%	2.1	13.1	0.7	2.2	25.0	62.5	2.0	12.2%	2.0	13.2	1.1	1.4
08	SCE/SoCalGas	25.7	61.8	10	2.2	14.6	24.6	60.3	1.5	7.4%	2.1	14.5	0.7	1.4	24.6	60.7	1.1	5.7%	2.0	14.6	1.4	1.7
09	SCE/SoCalGas	26.4	59.7	13	2.2	14.7	25.0	57.9	1.8	8.2%	2.2	14.4	1.5	3.3	24.1	56.9	2.8	12.9%	2.1	14.4	1.7	2.9
10	SCE/SoCalGas	27.0	58.7	10	2.3	15.1	25.7	57.0	1.7	7.7%	2.2	14.9	8.0	1.7	24.7	55.8	2.9	13.0%	2.1	14.8	2.0	3.3
10	SDG&E	27.0	58.7	11	2.3	15.1	25.7	57.0	1.7	7.7%	2.2	14.9	1.1	1.7	24.7	55.8	2.9	13.0%	2.1	14.8	2.6	3.3
11	PG&E	24.5	54.5	12	2.4	16.6	22.3	51.6	2.9	11.9%	2.2	16.3	0.7	1.2	22.2	51.3	3.2	13.2%	2.2	16.1	1.8	3.3
12	PG&E	25.9	55.3	11	2.3	14.9	24.3	53.4	1.9	8.8%	2.2	14.8	1.1	2.2	23.5	52.5	2.8	12.8%	2.1	14.7	1.2	2.2
13	PG&E	26.1	55.9	15	2.3	17.5	23.7	52.8	3.1	12.1%	2.1	17.1	0.6	1.3	23.7	52.5	3.4	13.2%	2.1	16.9	2.0	3.8
14	SCE/SoCalGas	25.6	55.9	11	2.8	14.6	23.1	52.8	3.1	12.8%	2.5	14.3	0.7	1.2	23.2	52.6	3.3	13.3%	2.5	14.2	2.0	3.0
14	SDG&E	25.6	55.9	22	2.8	14.6	23.1	52.8	3.1	12.8%	2.5	14.3	0.9	1.2	23.2	52.6	3.3	13.3%	2.5	14.2	2.5	3.0
15	SCE/SoCalGas	25.0	59.2	11	2.5	21.6	22.7	55.0	4.2	12.9%	2.4	20.4	1.4	2.3	22.6	54.8	4.4	13.5%	2.3	20.4	>1	>1
16	PG&E	29.4	57.3	22	3.5	13.4	26.6	54.9	2.4	11.3%	3.0	13.7	1.1	1.2	26.9	54.4	2.9	13.1%	3.1	13.2	1.8	2.1

[&]quot;>1" = indicates cases where there is both first cost savings and annual utility bill savings.

Table 37: Multifamily Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results

			BASEC		J		y		ncy & PV/E			
CZ	Utility	Total EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
01	PG&E	28.6	23	2.7	15.9	17.1	11.5	29.3%	2.1	16.5	0.4	1.3
02	PG&E	25.7	12	2.4	13.9	14.8	10.9	16.9%	2.1	14.2	0.2	1.8
03	PG&E	24.7	10	2.1	13.5	14.4	10.3	10.7%	1.9	13.9	0.1	1.6
04	PG&E	25.5	8	2.2	13.6	14.3	11.2	15.7%	1.9	13.9	0.2	1.8
05	PG&E	24.2	10	2.1	12.6	14.3	9.9	9.4%	1.8	13.1	0.2	1.6
05	PG&E/SoCalGas	24.2	10	2.1	12.6	14.3	9.9	9.4%	1.8	13.1	0.2	1.6
06	SCE/SoCalGas	26.8	10	2.2	13.9	16.1	10.7	10.0%	1.8	14.2	0.6	1.5
07	SDG&E	26.8	5	2.1	13.2	15.8	11.0	7.3%	1.7	13.6	0.0	1.6
08	SCE/SoCalGas	25.7	10	2.2	14.6	15.8	9.9	13.4%	1.8	14.9	0.8	1.5
09	SCE/SoCalGas	26.4	13	2.2	14.7	16.7	9.7	15.2%	1.8	14.9	1.0	1.7
10	SCE/SoCalGas	27.0	10	2.3	15.1	16.6	10.4	13.7%	1.9	15.3	1.1	1.8
10	SDG&E	27.0	11	2.3	15.1	16.6	10.4	13.7%	1.9	15.3	0.3	1.8
11	PG&E	24.5	12	2.4	16.6	14.0	10.5	19.9%	2.0	16.7	0.4	1.8
12	PG&E	25.9	11	2.3	14.9	15.6	10.3	17.8%	2.0	15.2	0.3	2.0
13	PG&E	26.1	15	2.3	17.5	15.4	10.7	20.1%	2.0	17.5	0.4	1.8
14	SCE/SoCalGas	25.6	11	2.8	14.6	16.0	9.6	20.8%	2.2	14.7	1.2	1.5
14	SDG&E	25.6	22	2.8	14.6	16.0	9.6	20.8%	2.2	14.7	0.6	1.5
15	SCE/SoCalGas	25.0	11	2.5	21.6	16.2	8.8	18.9%	2.1	20.9	1.4	1.9
16	PG&E	29.4	22	3.5	13.4	19.5	9.9	19.3%	2.7	14.1	0.5	1.4

[&]quot;inf" = indicates cases where there is both first cost savings and annual utility bill savings.

Table 38: Multifamily All-Electric Efficiency Package Cost-Effectiveness Results

			BASECASE							on-Pree						10001		ment - P	reemr	nted		
				13LCA31	-				- 14	011 1100	inpice						Lquip	ment 1	recin	, icu		
CZ	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per saft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
01	PG&E	41.1	70.6	36	1.6	15.9	37.5	67.0	3.6	14.6%	1.5	15.9	1.6	1.4	37.1	67.3	3.3	18.4%	1.4	15.9	2.4	2.3
02	PG&E	34.3	63.4	16	1.4	13.9	32.4	61.5	1.9	9.1%	1.3	13.9	1.7	2.1	31.1	60.2	3.2	15.1%	1.3	13.9	1.6	1.6
03	PG&E	33.5	64.2	14	1.3	13.5	33.5	64.2	0.0	0.0%	1.3	13.5	-	-	30.4	61.5	2.7	19.5%	1.1	13.5	1.7	1.6
04	PG&E	32.0	61.4	12	1.3	13.6	30.5	60.0	1.4	8.0%	1.2	13.6	1.4	1.5	29.7	59.2	2.2	12.2%	1.2	13.6	1.2	1.1
05	PG&E	34.7	65.4	16	1.3	12.6	34.1	64.8	0.6	3.4%	1.3	12.6	1.1	0.9	30.6	61.8	3.6	23.5%	1.2	12.6	2.1	2.0
05	PG&E/SoCalGas	34.7	65.4	12	1.3	12.6	34.1	64.8	0.6	3.4%	1.3	12.6	1.1	0.9	30.6	61.8	3.6	23.5%	1.2	12.6	2.1	2.0
06	SCE/SoCalGas	31.9	65.9	12	1.3	13.9	30.9	64.9	1.0	5.9%	1.3	13.9	0.7	1.3	29.8	63.7	2.2	13.0%	1.2	13.9	1.6	1.9
07	SDG&E	31.7	66.6	7	1.2	13.2	31.1	66.0	0.6	4.6%	1.2	13.2	0.6	1.0	29.7	64.7	1.9	13.6%	1.1	13.2	1.6	1.7
08	SCE/SoCalGas	29.8	63.6	10	1.3	14.6	28.6	62.4	1.2	6.5%	1.2	14.6	0.9	1.7	27.9	61.7	1.9	10.3%	1.2	14.6	1.6	1.8
09	SCE/SoCalGas	30.4	61.9	13	1.3	14.7	28.7	60.3	1.6	8.1%	1.3	14.7	1.3	2.7	28.8	60.4	1.5	7.4%	1.2	14.7	1.6	1.6
10	SCE/SoCalGas	31.2	61.3	11	1.4	15.1	29.3	59.5	1.8	8.7%	1.3	15.1	1.2	2.0	29.3	59.5	1.8	8.6%	1.3	15.1	1.7	2.0
10	SDG&E	31.2	61.3	12	1.4	15.1	29.3	59.5	1.8	8.7%	1.3	15.1	1.5	2.0	29.3	59.5	1.8	8.6%	1.3	15.1	2.0	2.0
11	PG&E	31.9	60.6	13	1.4	16.6	28.5	57.1	3.5	13.1%	1.3	16.6	1.4	1.6	28.1	56.7	3.9	14.4%	1.3	16.6	2.0	2.3
12	PG&E	32.0	59.9	13	1.3	14.9	29.4	57.3	2.6	11.4%	1.2	14.9	0.9	1.1	29.0	57.0	2.9	13.0%	1.2	14.9	1.6	1.6
13	PG&E	32.1	60.5	16	1.4	17.5	28.8	57.2	3.3	12.6%	1.2	17.5	1.3	1.6	28.3	56.7	3.8	14.3%	1.2	17.5	2.0	2.3
14	SCE/SoCalGas	32.5	61.6	8	1.7	14.6	28.9	57.9	3.7	13.8%	1.6	14.6	1.2	1.6	28.7	57.8	3.8	14.3%	1.6	14.6	1.6	2.2
14	SDG&E	32.5	61.6	39	1.7	14.6	28.9	57.9	3.7	13.8%	1.6	14.6	1.5	1.6	28.7	57.8	3.8	14.3%	1.6	14.6	2.0	2.2
15	SCE/SoCalGas	28.2	61.0	8	1.8	21.6	23.9	56.6	4.4	14.2%	1.6	21.6	1.5	2.3	21.9	54.6	6.4	20.6%	1.5	21.6	1.2	1.7
16	PG&E	40.2	66.6	39	1.9	13.4	36.2	62.5	4.1	15.0%	1.7	13.4	2.1	2.1	37.1	63.4	3.2	11.4%	1.7	13.4	1.6	1.7

[&]quot;>1" = indicates cases where there is both first cost savings and annual utility bill savings.

Table 39: Multifamily All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results

		Tubi		PASEC							•	,		3030					2.4	
		-		BASEC	ASE				ETTIC	iency &	(PV					fficiency	y & PV	Batter	У	
Climate Zone	Cilmate 20ne	Utility	Total EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
0	1	PG&E	41.1	36	1.6	15.9	18.6	22.5	14.6%	0.8	26.9	2.0	1.5	6.6	34.5	24.6%	0.4	30.3	1.4	1.5
0	2	PG&E	34.3	16	1.4	13.9	16.8	17.5	9.1%	0.7	21.9	2.4	1.8	3.4	30.9	16.1%	0.3	24.8	1.4	1.8
0	3	PG&E	33.5	14	1.3	13.5	17.4	16.1	2.6%	0.7	20.8	2.4	1.7	4.0	29.5	8.6%	0.3	23.6	1.4	1.7
0	4	PG&E	32.0	12	1.3	13.6	17.0	15.0	8.0%	0.7	20.2	2.4	1.8	3.1	28.9	16.0%	0.3	22.9	1.4	1.9
0	5	PG&E	34.7	16	1.3	12.6	17.6	17.1	3.4%	0.7	19.9	2.5	1.8	4.4	30.3	8.4%	0.3	22.5	1.5	1.8
0	5	PG&E/SoCalGas	34.7	12	1.3	12.6	17.6	17.1	3.4%	0.7	19.9	2.5	1.8	4.4	30.3	8.4%	0.3	22.5	1.5	1.8
0	6	SCE/SoCalGas		12	1.3	13.9	18.1	13.8	5.9%	1.0	19.5	1.2	1.7	4.4	27.5	8.9%	0.5	22.1	1.3	1.7
0	7	SDG&E		7	1.2	13.2	18.9	12.8	4.6%	0.9	18.1	2.1	1.8	4.6	27.1	6.6%	0.5	20.5	1.3	1.7
0	8	SCE/SoCalGas	29.8	10	1.3	14.6	18.2	11.6	6.5%	1.0	19.4	1.3	1.8	5.6	24.2	12.5%	0.5	22.0	1.3	1.7
0	9	SCE/SoCalGas	30.4	13	1.3	14.7	19.1	11.3	8.1%	1.0	19.4	1.3	1.9	7.1	23.3	15.1%	0.6	22.0	1.4	1.8
1		SCE/SoCalGas		11	1.4	15.1	20.4	10.8	8.7%	1.1	19.9	1.3	1.8	7.9	23.3	14.7%	0.6	22.5	1.3	1.8
1	.0	SDG&E		12	1.4	15.1	20.4	10.8	8.7%	1.1	19.9	2.1	1.8	7.9	23.3	14.7%	0.6	22.5	1.5	1.8
1		PG&E		13	1.4	16.6	18.5	13.4	13.1%	8.0	22.8	2.2	1.8	6.6	25.3	21.1%	0.4	25.8	1.5	1.9
1	2	PG&E		13	1.3	14.9	17.6	14.4	11.4%	0.7	21.7	2.1	1.6	5.4	26.6	20.4%	0.4	24.5	1.3	1.8
1	3	PG&E		16	1.4	17.5	19.9	12.2	12.6%	8.0	23.3	2.1	1.7	8.2	23.9	20.6%	0.4	26.4	1.4	1.8
1	4	SCE/SoCalGas	32.5	8	1.7	14.6	18.5	14.0	13.8%	1.3	20.2	1.4	1.9	7.7	24.8	21.8%	0.8	22.8	1.4	1.9
1	4	SDG&E		39	1.7	14.6	18.5	14.0	13.8%	1.3	20.2	2.2	1.9	7.7	24.8	21.8%	0.8	22.8	1.8	1.9
1.	5	SCE/SoCalGas	28.2	8	1.8	21.6	21.1	7.1	14.2%	1.5	23.6	1.4	2.1	11.3	16.9	20.2%	1.1	26.6	1.4	1.9
1		PG&E	40.2	39	1.9	13.4	20.6	19.6	15.0%	1.2	22.0	2.6	1.9	10.3	29.9	23.0%	0.8	24.8	1.7	1.8

[&]quot;>1" = indicates cases where there is both first cost savings and annual utility bill savings.

Appendix F - Multifamily Measure Summary

Table 40: Multifamily Mixed Fuel Efficiency - Non-Preempted Package Measure Summary

<u>CZ</u>	<u>Duct</u>	Infiltration	<u>Wall</u>	Attic	Roof		Slab	DHW	1	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
5	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Enh CHW credit (0.6)	0.35 W/cfm	1.0 PV scaling
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling

Table 41: Multifamily Mixed Fuel Efficiency - Equipment, Preempted Package Measure Summary

CZ	Duct	Infiltratio	Wall	Attic	Roof		1 -	DHW	HVAC	PV
1	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.		1.0 PV scaling
2	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling
4	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling
5	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.45W/cfm	1.0 PV scaling
6	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	Code Min	1.0 PV scaling
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling
8	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	Code Min	1.0 PV scaling
9	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling
10	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling
11	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
12	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
13	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
14	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
15	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling
16	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling

Table 42: Multifamily Mixed Fuel Efficiency & PV/Battery Package Measure Summary

<u>CZ</u>	<u>Duct</u>	Infiltration	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	Slab	DHW	<u>HVAC</u>	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
5	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Enh CHW credit (0.6)	0.35 W/cfm	1.0 PV scaling + 22 batt
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22 batt

Table 43: Multifamily All-Electric Efficiency - Non-Preempted Package Measure Summary

<u>CZ</u>	<u>Duct</u>	Infiltration	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	Slab	DHW	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Std Design PV
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	Code Min	Std Design PV
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV

Table 44: Multifamily All-Electric Efficiency - Equipment, Preempted Package Measure Summary

<u>CZ</u>	<u>Duct</u>	<u>Infiltratio</u>	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	ÎÎ	DHW	HVAC	<u>PV</u>
1	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
2	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
4	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
5	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
6	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV
8	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV
9	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV
10	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV
11	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
12	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
13	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
14	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
15	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
16	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV

Table 45: Multifamily All-Electric Efficiency & PV Package Measure Summary

<u>CZ</u>	<u>Duct</u>	Infiltration	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	Slab	DHW	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	Code Min	0.9 PV scaling
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling

Table 46: Multifamily All-Electric Efficiency & PV/Battery Package Measure Summary

CZ	Duct	<u>Infiltratio</u>	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	Slab	1	HVAC	PV
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	Code Min	1.0 PV scaling + 22 batt
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22 batt

Appendix G - Results by Climate Zone

Climate Zone 1	80
Climate Zone 2	82
Climate Zone 3	84
Climate Zone 4	86
Climate Zone 5 PG&E	88
Climate Zone 5 PG&E/SoCalGas	90
Climate Zone 6	92
Climate Zone 7	94
Climate Zone 8	90
Climate Zone 9	98
Climate Zone 10 SCE/SoCalGas	100
Climate Zone 10 SDGE	102
Climate Zone 11	104
Climate Zone 12	106
Climate Zone 13	108
Climate Zone 14 SCE/SoCalGas	110
Climate Zone 14 SDGE	112
Climate Zone 15	114
Climate Zone 16	116

Table 47: Single Family Climate Zone 1 Results Summary

Clim PG8	nate Zone 1 E	Annual Net			PV Size		quivalent ns (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
	Single Family		Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u>~</u>	Code Compliant	(0)	581	n/a	n/a	3.00	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	480	5.0	(80.0)	2.51	0.49	\$1,355	3.38	2.82
Mixed	Efficiency-Equipment	0	440	6.5	(0.07)	2.32	0.68	\$1,280	4.92	4.10
Ē	Efficiency & PV/Battery	(28)	480	10.5	0.04	2.40	0.60	\$4,788	0.96	1.79
N	Code Compliant	7,079	0	n/a	n/a	1.51	n/a	n/a	n/a	n/a
tric.	Efficiency-Non-Preempted	4,461	0	15.0	0.00	1.01	0.50	\$7,642	1.79	1.66
ilec	Efficiency-Equipment	5,933	0	6.5	0.00	1.29	0.22	\$2,108	2.94	2.74
AII-Electric ²	Efficiency & PV	889	0	31.0	2.67	0.52	1.00	\$18,192	1.81	1.45
_	Efficiency & PV/Battery	(14)	0	41.0	3.45	0.28	1.23	\$24,247	1.48	1.43
o e	Code Compliant	7,079	0	0.0	0.00	1.51	1.49	(\$5,349)	0.37	0.91
Fuel	Efficiency & PV	889	0	31.0	2.67	0.52	2.48	\$12,844	1.43	2.11
Mixed Fuel to All-Electric ³	Neutral Cost	5,270	0	8.0	1.35	1.26	1.74	\$0	0.00	1.09
ΞĒĒ	Min Cost Effectiveness	3,160	0	18.0	2.97	0.95	2.04	(\$6,372)	1.08	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

Table 48: Multifamily Climate Zone 1 Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 1	Annual	j		PV Size	CO2-Ed	quivalent ns (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u>~</u>	Code Compliant	(0)	180	n/a	n/a	2.75	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	147	3.0	0.00	2.31	0.44	\$960	1.10	1.18
Mixed	Efficiency-Equipment	(0)	159	2.0	(0.01)	2.48	0.27	\$507	1.29	1.41
Ξ	Efficiency & PV/Battery	(14)	147	11.5	0.07	2.13	0.61	\$2,807	0.39	1.33
8	Code Compliant	2,624	0	n/a	n/a	1.62	n/a	n/a	n/a	n/a
tric"	Efficiency-Non-Preempted	2,328	0	3.5	0.00	1.46	0.15	\$949	1.55	1.40
ileci	Efficiency-Equipment	2,278	0	3.0	0.00	1.41	0.20	\$795	2.39	2.26
AII-Electric	Efficiency & PV	499	0	22.5	1.37	0.75	0.86	\$5,538	2.04	1.50
	Efficiency & PV/Battery	(7)	0	34.5	1.80	0.38	1.24	\$8,632	1.38	1.47
5 ^د ع	Code Compliant	2,624	0	0.0	0.00	1.62	1.13	(\$2,337)	0.38	1.01
Fuel	Efficiency & PV	62	0	22.5	1.37	0.75	2.00	\$3,202	1.63	>1
Mixed Fuel to All-Electric	Neutral Cost	1,693	0	9.5	0.70	1.25	1.50	\$0	0.00	1.57
ΞĒĒ	Min Cost Effectiveness	1,273	0	14.0	1.01	1.09	1.66	(\$1,052)	1.14	3.76

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

Table 49: Single Family Climate Zone 2 Results Summary

Clim PG&	ate Zone 2 E	Annual Net		EDR	PV Size Change	CO2-E	equivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit (
Sing	le Family	kWh	Annual therms	EDK Margin⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	421	n/a	n/a	2.23	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	0	360	3.0	(0.04)	1.94	0.30	\$1,504	1.63	1.66
Mixed	Efficiency-Equipment	(0)	352	3.0	(0.03)	1.90	0.33	\$724	3.77	3.63
Ξ	Efficiency & PV/Battery	(22)	360	10.0	0.06	1.82	0.41	\$4,871	0.53	1.73
OI.	Code Compliant	5,014	0	n/a	n/a	1.11	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	4,079	0	4.5	0.00	0.94	0.18	\$3,943	1.21	1.07
AII-Electric ²	Efficiency-Equipment	4,122	0	5.0	0.00	0.94	0.17	\$2,108	2.25	2.10
¥	Efficiency & PV	847	0	19.0	2.07	0.49	0.63	\$12,106	1.83	1.38
	Efficiency & PV/Battery	(15)	0	30.0	2.71	0.26	0.86	\$17,610	1.41	1.48
Mixed Fuel to All-Electric ³	Code Compliant	5,014	0	0.0	0.00	1.11	1.12	(\$5,349)	0.52	1.59
ed Fu	Efficiency & PV	847	0	19.0	2.07	0.49	1.75	\$6,758	1.76	39.70
	Neutral Cost	2,891	0	9.5	1.36	0.82	1.41	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 50: Multifamily Climate Zone 2 Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 2	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	150	n/a	n/a	2.37	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	0	142	1.5	(0.02)	2.25	0.12	\$309	0.97	1.75
Mixed	Efficiency-Equipment	(0)	134	2.0	(0.01)	2.15	0.22	\$497	1.08	1.49
Ē	Efficiency & PV/Battery	(11)	142	10.5	0.04	2.07	0.30	\$2,125	0.20	1.81
7	Code Compliant	2,151	0	n/a	n/a	1.38	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	2,038	0	1.5	0.00	1.32	0.06	\$361	1.73	2.05
ile ci	Efficiency-Equipment	1,928	0	3.0	0.00	1.25	0.13	\$795	1.56	1.56
AII-Electric	Efficiency & PV	476	0	17.5	1.00	0.72	0.67	\$3,711	2.42	1.82
	Efficiency & PV/Battery	(7)	0	30.5	1.36	0.35	1.04	\$6,546	1.44	1.82
Mixed Fuel to All-Electric ³	Code Compliant	2,151	0	0.0	0.00	1.38	0.99	(\$2,337)	0.53	1.42
ed Fu Elect	Efficiency & PV	60	0	17.5	1.00	0.72	1.65	\$1,375	3.31	>1
	Neutral Cost	1,063	0	10.5	0.70	0.96	1.41	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 51: Single Family Climate Zone 3 Results Summary

Clim PG&	ate Zone 3 E	Annual	Annual	EDR Margin⁴	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit to Cost Ratio (B/C)	
Sing	le Family	Net kWh	therms		Change (kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	348	n/a	n/a	1.88	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	296	2.5	(0.03)	1.63	0.26	\$1,552	1.28	1.31
Mixed	Efficiency-Equipment	(0)	273	4.0	(0.03)	1.52	0.37	\$1,448	1.91	1.97
Ξ	Efficiency & PV/Battery	(20)	296	10.0	0.07	1.50	0.38	\$4,915	0.42	1.53
OI.	Code Compliant	4,355	0	n/a	n/a	1.00	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	3,584	0	4.5	0.00	0.85	0.15	\$1,519	2.60	2.36
<u> ec</u>	Efficiency-Equipment	3,670	0	4.0	0.00	0.86	0.14	\$2,108	1.76	1.62
AII-Electric ²	Efficiency & PV	790	0	18.0	1.77	0.46	0.54	\$8,517	2.22	1.68
	Efficiency & PV/Battery	(12)	0	29.0	2.37	0.23	0.76	\$13,857	1.56	1.64
Mixed Fuel to All-Electric ³	Code Compliant	4,355	0	0.0	0.00	1.00	0.89	(\$5,349)	0.55	1.53
d Fu	Efficiency & PV	790	0	18.0	1.77	0.46	1.43	\$3,169	2.88	>1
Mixe All-	Neutral Cost	2,217	0	10.5	1.35	0.70	1.18	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 52: Multifamily Climate Zone 3 Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 3	Annual		EDR	PV Size Change (kW) ⁵	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental Cost (\$)	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴		Total	Reduction		On-Bill	TDV
<u></u>	Code Compliant	(0)	133	n/a	n/a	2.13	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	127	0.5	(0.00)	2.06	0.07	\$175	1.00	1.11
Mixed	Efficiency-Equipment	(0)	119	1.5	(0.00)	1.94	0.19	\$403	1.11	1.23
Ξ	Efficiency & PV/Battery	(10)	127	10.0	0.05	1.86	0.27	\$1,991	0.12	1.61
7	Code Compliant	1,944	0	n/a	n/a	1.27	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,944	0	0.0	0.00	1.27	0.00	\$0	-	-
ile ci	Efficiency-Equipment	1,698	0	2.5	0.00	1.13	0.14	\$795	1.73	1.58
AII-Electric	Efficiency & PV	457	0	16.0	0.92	0.69	0.58	\$3,272	2.43	1.73
	Efficiency & PV/Battery	(7)	0	29.5	1.26	0.33	0.94	\$6,057	1.38	1.71
Mixed Fuel to All-Electric ³	Code Compliant	1,944	0	0.0	0.00	1.27	0.86	(\$2,337)	0.58	1.46
ed Fu Elect	Efficiency & PV	57	0	16.0	0.92	0.69	1.43	\$936	4.18	>1
	Neutral Cost	845	0	11.5	0.70	0.85	1.28	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 53: Single Family Climate Zone 4 Results Summary

Clim PG&	ate Zone 4 E	Annual Net	Annual	EDR Margin ⁴	PV Size Change	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit to Cost Ratio (B/C)	
Sing	le Family	kWh	therms		(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	0	347	n/a	n/a	1.88	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	0	306	2.5	(0.03)	1.68	0.20	\$1,556	0.93	1.15
Mixed	Efficiency-Equipment	(0)	294	2.5	(0.02)	1.62	0.26	\$758	2.39	2.67
Ξ	Efficiency & PV/Battery	(18)	306	10.0	0.07	1.55	0.33	\$4,911	0.33	1.64
a .	Code Compliant	4,342	0	n/a	n/a	1.00	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	3,775	0	3.0	0.00	0.89	0.11	\$1,519	1.92	1.84
<u> </u>	Efficiency-Equipment	3,747	0	3.5	0.00	0.88	0.12	\$2,108	1.52	1.52
AII-Electric ²	Efficiency & PV	814	0	17.0	1.84	0.48	0.52	\$8,786	2.13	1.62
	Efficiency & PV/Battery	(11)	0	28.5	2.44	0.25	0.75	\$14,141	1.52	1.67
Mixed Fuel to All-Electric ³	Code Compliant	4,342	0	0.0	0.00	1.00	0.88	(\$5,349)	0.55	1.59
d Fu	Efficiency & PV	814	0	17.0	1.84	0.48	1.40	\$3,438	2.64	>1
Mixe	Neutral Cost	2,166	0	10.0	1.35	0.70	1.18	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 54: Multifamily Climate Zone 4 Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 4	Annual		EDR	PV Size Change	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Cnange (kW)⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	134	n/a	n/a	2.16	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	127	1.0	(0.01)	2.06	0.10	\$329	0.75	1.24
Mixed	Efficiency-Equipment	(0)	123	1.5	(0.01)	2.01	0.15	\$351	1.06	1.74
Ē	Efficiency & PV/Battery	(9)	127	11.0	0.04	1.87	0.29	\$2,141	0.19	1.82
7	Code Compliant	1,887	0	n/a	n/a	1.25	n/a	n/a	n/a	n/a
tric ,	Efficiency-Non-Preempted	1,794	0	1.0	0.00	1.21	0.05	\$361	1.38	1.54
ile ci	Efficiency-Equipment	1,712	0	2.0	0.00	1.15	0.10	\$795	1.23	1.09
AII-Electric	Efficiency & PV	453	0	15.0	0.83	0.69	0.57	\$3,158	2.43	1.81
	Efficiency & PV/Battery	(7)	0	28.5	1.17	0.32	0.93	\$5,914	1.37	1.86
Mixed Fuel to All-Electric ³	Code Compliant	1,887	0	0.0	0.00	1.25	0.90	(\$2,337)	0.65	1.77
d Fu	Efficiency & PV	57	0	15.0	0.83	0.69	1.47	\$822	4.96	>1
	Neutral Cost	767	0	11.0	0.70	0.82	1.33	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design..

Climate Zone 5 PG&E

Table 55: Single Family Climate Zone 5 PG&E Results Summary

Clim PG&	ate Zone 5 E	Annual Net	Annual	EDR	PV Size Change	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit Ratio	
Sing	le Family	kWh	therms	Margin⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	0	331	n/a	n/a	1.79	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	281	2.5	(0.03)	1.55	0.24	\$1,571	1.10	1.22
Mixed	Efficiency-Equipment	(0)	279	2.5	(0.02)	1.54	0.25	\$772	2.29	2.48
Ξ	Efficiency & PV/Battery	(14)	281	9.0	0.07	1.43	0.36	\$4,911	0.41	1.46
a .	Code Compliant	4,452	0	n/a	n/a	1.01	n/a	n/a	n/a	n/a
tric"	Efficiency-Non-Preempted	3,687	0	4.0	0.00	0.86	0.15	\$1,519	2.58	2.31
AII-Electric ²	Efficiency-Equipment	3,737	0	4.0	0.00	0.87	0.14	\$2,108	1.85	1.70
A = E	Efficiency & PV	798	0	18.0	1.72	0.46	0.55	\$8,307	2.31	1.76
	Efficiency & PV/Battery	(8)	0	28.5	2.29	0.24	0.78	\$13,525	1.65	1.70
Mixed Fuel to All-Electric ³	Code Compliant	4,452	0	0.0	0.00	1.01	0.78	(\$5,349)	0.48	1.32
d Fu	Efficiency & PV	798	0	18.0	1.72	0.46	1.33	\$2,959	2.72	>1
	Neutral Cost	2,172	0	11.0	1.35	0.70	1.10	\$0	>1	40.07

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 56: Multifamily Climate Zone 5 PG&E Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 5 E	Annual	A	EDD	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Multi	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u>-</u>	Code Compliant	0	131	n/a	n/a	2.10	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	126	0.5	(0.00)	2.03	0.07	\$180	0.99	1.03
Mixed	Efficiency-Equipment	(0)	117	1.5	(0.00)	1.92	0.19	\$358	1.24	1.34
Ξ	Efficiency & PV/Battery	(7)	126	9.5	0.05	1.84	0.26	\$1,985	0.17	1.58
	Code Compliant	2,044	0	n/a	n/a	1.32	n/a	n/a	n/a	n/a
tric ²	Efficiency-Non-Preempted	1,990	0	0.5	0.00	1.30	0.03	\$247	1.09	0.86
ilec	Efficiency-Equipment	1,738	0	3.5	0.00	1.15	0.17	\$795	2.15	2.03
All-Electric ²	Efficiency & PV	465	0	17.0	0.91	0.70	0.62	\$3,293	2.53	1.82
	Efficiency & PV/Battery	(6)	0	30.0	1.24	0.34	0.98	\$6,026	1.50	1.77
Mixed Fuel to All-Electric ³	Code Compliant	2,044	0	0.0	0.00	1.32	0.78	(\$2,337)	0.50	1.28
d Fu	Efficiency & PV	58	0	17.0	0.91	0.70	1.40	\$956	3.80	>1
	Neutral Cost	874	0	12.5	0.70	0.87	1.23	\$0	>1	23.44

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Climate Zone 5 PG&E/SoCalGas

Table 57: Single Family Climate Zone 5 PG&E/SoCalGas Results Summary

	ate Zone 5 E/SoCalGas	Annual			PV Size	CO2-E	equivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
	le Family	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On- Bill	TDV
<u>-</u>	Code Compliant	0	331	n/a	n/a	1.79	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	281	2.5	(0.03)	1.55	0.24	\$1,571	0.92	1.22
Mixed	Efficiency-Equipment	(0)	279	2.5	(0.02)	1.54	0.25	\$772	1.98	2.48
Ē	Efficiency & PV/Battery	(14)	281	9.0	0.07	1.43	0.36	\$4,911	0.35	1.46
8	Code Compliant	4,452	0	n/a	n/a	1.01	n/a	n/a	n/a	n/a
tri	Efficiency-Non-Preempted	3,687	0	4.0	0.00	0.86	0.15	\$1,519	2.58	2.31
<u> </u>	Efficiency-Equipment	3,737	0	4.0	0.00	0.87	0.14	\$2,108	1.85	1.70
AII-Electric ²	Efficiency & PV	798	0	18.0	1.72	0.46	0.55	\$8,307	2.31	1.76
	Efficiency & PV/Battery	(8)	0	28.5	2.29	0.24	0.78	\$13,525	1.65	1.70
Mixed Fuel to All-Electric ³	Code Compliant	4,452	0	0.0	0.00	1.01	0.78	(\$5,349)	0.48	1.32
d Fu	Efficiency & PV	798	0	18.0	1.72	0.46	1.33	\$2,959	2.75	>1
Mixe All-L	Neutral Cost	2,172	0	11.0	1.35	0.70	1.10	\$0	>1	40.07

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 58: Multifamily Climate Zone 5 PG&E/SoCalGas Results Summary (Per Dwelling Unit)

Clim	ate Zone 5	,					quivalent	NPV of		
	E/SoCalGas	Annual			PV Size		ons (lbs/sf)	Lifetime		to Cost (B/C)
	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	0	131	n/a	n/a	2.10	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	126	0.5	(0.00)	2.03	0.07	\$180	0.85	1.03
Mixed	Efficiency-Equipment	(0)	117	1.5	(0.00)	1.92	0.19	\$358	1.09	1.34
Ξ	Efficiency & PV/Battery	(7)	126	9.5	0.05	1.84	0.26	\$1,985	0.16	1.58
O.	Code Compliant	2,044	0	n/a	n/a	1.32	n/a	n/a	n/a	n/a
tric"	Efficiency-Non-Preempted	1,990	0	0.5	0.00	1.30	0.03	\$247	1.09	0.86
:lect	Efficiency-Equipment	1,738	0	3.5	0.00	1.15	0.17	\$795	2.15	2.03
AII-Electric ²	Efficiency & PV	465	0	17.0	0.91	0.70	0.62	\$3,293	2.53	1.82
	Efficiency & PV/Battery	(6)	0	30.0	1.24	0.34	0.98	\$6,026	1.50	1.77
Mixed Fuel to All-Electric ³	Code Compliant	2,044	0	0.0	0.00	1.32	0.78	(\$2,337)	0.65	1.28
d Fu	Efficiency & PV	58	0	17.0	0.91	0.70	1.40	\$956	4.98	>1
	Neutral Cost	874	0	12.5	0.70	0.87	1.23	\$0	>1	23.44

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 59: Single Family Climate Zone 6 Results Summary

	ate Zone 6 /SoCalGas	Annual	Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Sing	le Family	Net kWh	Annual therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u>-</u>	Code Compliant	(0)	249	n/a	n/a	1.57	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	0	229	2.0	(0.02)	1.47	0.10	\$1,003	0.66	1.15
Mixed	Efficiency-Equipment	(0)	218	1.5	(0.01)	1.41	0.15	\$581	1.58	2.04
Ξ	Efficiency & PV/Battery	(13)	229	9.5	0.08	1.22	0.34	\$4,367	0.95	1.42
8	Code Compliant	3,099	0	n/a	n/a	0.87	n/a	n/a	n/a	n/a
tric"	Efficiency-Non-Preempted	2,885	0	2.0	0.00	0.83	0.05	\$926	1.31	1.41
<u> </u>	Efficiency-Equipment	2,746	0	2.5	0.00	0.80	0.08	\$846	2.20	2.29
All-Electric	Efficiency & PV	722	0	14.0	1.37	0.63	0.24	\$6,341	1.19	1.48
	Efficiency & PV/Battery	(6)	0	26.0	1.93	0.33	0.55	\$11,513	1.20	1.50
Mixed Fuel to All-Electric ³	Code Compliant	3,099	0	0.0	0.00	0.87	0.69	(\$5,349)	1.19	2.46
ed Fu	Efficiency & PV	722	0	14.0	1.37	0.63	0.93	\$992	3.07	>1
	Neutral Cost	959	0	12.0	1.36	0.67	0.89	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 60: Multifamily Climate Zone 6 Results Summary (Per Dwelling Unit)

	ate Zone 6 /SoCalGas	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	114	n/a	n/a	2.17	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	112	1.0	(0.01)	2.14	0.03	\$190	0.65	1.49
Mixed	Efficiency-Equipment	(0)	103	1.0	(0.00)	2.03	0.15	\$213	1.43	1.74
Ē	Efficiency & PV/Battery	(6)	112	10.5	0.04	1.76	0.41	\$2,007	0.64	1.55
7	Code Compliant	1,558	0	n/a	n/a	1.28	n/a	n/a	n/a	n/a
tric ,	Efficiency-Non-Preempted	1,531	0	1.0	0.00	1.26	0.02	\$231	0.65	1.34
ile ct	Efficiency-Equipment	1,430	0	2.0	0.00	1.20	0.08	\$361	1.62	1.91
AII-Electric	Efficiency & PV	427	0	13.5	0.70	0.97	0.31	\$2,580	1.24	1.71
	Efficiency & PV/Battery	(5)	0	27.5	1.02	0.49	0.79	\$5,303	1.28	1.67
Mixed Fuel to All-Electric ³	Code Compliant	1,558	0	0.0	0.00	1.28	0.90	(\$2,337)	2.59	2.38
d Fu	Efficiency & PV	53	0	13.5	0.70	0.97	1.20	\$243	9.50	>1
	Neutral Cost	459	0	12.5	0.70	0.99	1.18	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 61: Single Family Climate Zone 7 Results Summary

Clim	ate Zone 7 &E	Annual Net		EDR	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit (
Sing	le Family	kWh	Annual therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	196	n/a	n/a	1.30	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	196	0.0	0.00	1.30	0.00	\$0	-	-
Mixed	Efficiency-Equipment	0	171	1.5	(0.00)	1.18	0.12	\$606	1.50	1.40
Ξ	Efficiency & PV/Battery	(12)	189	9.0	0.10	1.04	0.26	\$3,506	0.07	1.52
0.1	Code Compliant	2,479	0	n/a	n/a	0.75	n/a	n/a	n/a	n/a
tric 2	Efficiency-Non-Preempted	2,479	0	0.0	0.00	0.75	0.00	\$0	-	-
<u> </u>	Efficiency-Equipment	2,222	0	2.0	0.00	0.69	0.06	\$846	1.60	1.65
All-Electric	Efficiency & PV	674	0	11.0	1.10	0.58	0.17	\$4,436	1.87	1.55
	Efficiency & PV/Battery	(6)	0	24.0	1.61	0.29	0.46	\$9,413	1.32	1.56
Mixed Fuel to All-Electric ³	Code Compliant	2,479	0	0.0	0.00	0.75	0.55	(\$5,349)	1.04	2.54
d Fu	Efficiency & PV	674	0	11.0	1.10	0.58	0.72	(\$912)	>1	>1
	Neutral Cost	267	0	13.5	1.35	0.55	0.75	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 62: Multifamily Climate Zone 7 Results Summary (Per Dwelling Unit)

Clim	ate Zone 7	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	110	n/a	n/a	2.11	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	108	0.5	(0.01)	2.08	0.03	\$90	0.73	2.24
Mixed	Efficiency-Equipment	(0)	99	2.0	(0.00)	1.96	0.15	\$366	1.07	1.41
Ξ	Efficiency & PV/Battery	(6)	108	11.0	0.05	1.71	0.40	\$1,900	0.04	1.61
7	Code Compliant	1,434	0	n/a	n/a	1.21	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,416	0	0.5	0.00	1.20	0.01	\$202	0.60	1.02
ile ci	Efficiency-Equipment	1,319	0	1.5	0.00	1.14	0.07	\$361	1.59	1.71
AII-Electric	Efficiency & PV	412	0	12.5	0.61	0.94	0.27	\$2,261	2.08	1.76
	Efficiency & PV/Battery	(5)	0	27.0	0.92	0.47	0.74	\$4,916	1.26	1.71
Mixed Fuel to All-Electric ³	Code Compliant	1,434	0	0.0	0.00	1.21	0.90	(\$2,337)	1.12	2.47
ed Fu Elect	Efficiency & PV	51	0	12.5	0.61	0.94	1.17	(\$75)	>1	>1
Mixe All-	Neutral Cost	294	0	13.5	0.70	0.91	1.20	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 63: Single Family Climate Zone 8 Results Summary

_	ate Zone 8 /SoCalGas	Annual Net	Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit t	
Sing	le Family	kWh	therms	Margin⁴	Change (kW)⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	206	n/a	n/a	1.38	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	198	1.0	(0.02)	1.34	0.05	\$581	0.57	1.41
Mixed	Efficiency-Equipment	0	181	1.5	(0.01)	1.27	0.12	\$586	1.30	1.82
Ξ	Efficiency & PV/Battery	(13)	198	8.0	0.08	1.11	0.27	\$3,944	1.10	1.48
8	Code Compliant	2,576	0	n/a	n/a	0.80	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	2,483	0	1.5	0.00	0.78	0.02	\$926	0.57	1.22
<u> </u>	Efficiency-Equipment	2,352	0	1.5	0.00	0.75	0.05	\$412	2.82	3.03
All-Electric	Efficiency & PV	703	0	10.5	1.13	0.62	0.18	\$5,373	1.00	1.48
	Efficiency & PV/Battery	(7)	0	21.5	1.67	0.32	0.48	\$10,493	1.14	1.49
Mixed Fuel to All-Electric ³	Code Compliant	2,576	0	0.0	0.00	0.80	0.58	(\$5,349)	1.83	2.99
ed Fu	Efficiency & PV	703	0	10.5	1.13	0.62	0.77	\$25	107.93	>1
	Neutral Cost	439	0	11.0	1.36	0.60	0.78	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 64: Multifamily Climate Zone 8 Results Summary (Per Dwelling Unit)

	ate Zone 8 /SoCalGas	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	109	n/a	n/a	2.18	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	106	1.5	(0.02)	2.13	0.05	\$250	0.70	1.36
Mixed	Efficiency-Equipment	(0)	99	1.0	(0.00)	2.04	0.14	\$213	1.37	1.67
Ē	Efficiency & PV/Battery	(6)	106	9.5	0.03	1.77	0.41	\$2,066	0.84	1.50
7	Code Compliant	1,409	0	n/a	n/a	1.26	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,373	0	1.0	0.00	1.24	0.02	\$231	0.87	1.72
ile ci	Efficiency-Equipment	1,276	0	1.5	0.00	1.18	0.08	\$361	1.63	1.75
AII-Electric	Efficiency & PV	426	0	11.5	0.60	0.99	0.27	\$2,240	1.26	1.78
	Efficiency & PV/Battery	(5)	0	24.0	0.92	0.53	0.73	\$4,962	1.31	1.68
Mixed Fuel to All-Electric ³	Code Compliant	1,409	0	0.0	0.00	1.26	0.91	(\$2,337)	6.69	2.67
ed Fu Elect	Efficiency & PV	53	0	11.5	0.60	0.99	1.18	(\$96)	>1	>1
	Neutral Cost	309	0	12.0	0.70	0.98	1.20	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 65: Single Family Climate Zone 9 Results Summary

	ate Zone 9 /SoCalGas	Annual		EDR	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit t	
Sing	le Family	Net kWh	Annual therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u> </u>	Code Compliant	0	229	n/a	n/a	1.53	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	216	2.5	(0.04)	1.46	0.07	\$912	0.69	1.97
Mixed	Efficiency-Equipment	0	201	2.5	(0.04)	1.38	0.15	\$574	1.80	3.66
Ξ	Efficiency & PV/Battery	(14)	216	8.5	0.05	1.23	0.30	\$4,263	1.11	1.66
8	Code Compliant	2,801	0	n/a	n/a	0.87	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	2,645	0	2.5	0.00	0.84	0.04	\$1,180	0.78	1.96
<u> </u>	Efficiency-Equipment	2,460	0	3.0	0.00	0.80	0.07	\$846	2.11	3.22
All-Electric	Efficiency & PV	745	0	11.5	1.16	0.66	0.21	\$5,778	1.08	1.64
	Efficiency & PV/Battery	(9)	0	21.0	1.72	0.37	0.50	\$10,932	1.16	1.60
Mixed Fuel to All-Electric ³	Code Compliant	2,801	0	0.0	0.00	0.87	0.66	(\$5,349)	1.67	2.90
ed Fu	Efficiency & PV	745	0	11.5	1.16	0.66	0.87	\$429	7.15	>1
	Neutral Cost	594	0	10.0	1.36	0.67	0.86	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 66: Multifamily Climate Zone 9 Results Summary (Per Dwelling Unit)

	ate Zone 9 /SoCalGas	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit t Ratio (
Multi	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	0	111	n/a	n/a	2.24	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	109	1.5	(0.03)	2.19	0.05	\$136	1.46	3.35
Mixed	Efficiency-Equipment	(0)	101	2.5	(0.03)	2.08	0.16	\$274	1.66	2.87
Ē	Efficiency & PV/Battery	(7)	109	9.5	0.03	1.84	0.40	\$1,947	1.03	1.71
8	Code Compliant	1,468	0	n/a	n/a	1.33	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,414	0	1.5	0.00	1.30	0.03	\$231	1.29	2.70
ile ci	Efficiency-Equipment	1,334	0	1.5	0.00	1.25	0.08	\$361	1.63	1.58
AII-Electric	Efficiency & PV	441	0	11.0	0.60	1.04	0.29	\$2,232	1.34	1.91
	Efficiency & PV/Battery	(7)	0	23.0	0.92	0.58	0.75	\$4,949	1.35	1.77
Mixed Fuel to All-Electric ³	Code Compliant	1,468	0	0.0	0.00	1.33	0.91	(\$2,337)	4.38	2.55
ed Fu Elect	Efficiency & PV	55	0	11.0	0.60	1.04	1.20	(\$104)	>1	>1
	Neutral Cost	331	0	11.0	0.70	1.03	1.21	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Climate Zone 10 SCE/SoCalGas

Table 67: Single Family Climate Zone 10 SCE/SoCalGas Results Summary

_	ate Zone 10 /SoCalGas	Annual Net	Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit Ratio	
Sing	le Family	kWh	therms	Margin⁴	Change (kW)⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	239	n/a	n/a	1.61	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	217	3.0	(0.07)	1.48	0.13	\$1,648	0.63	1.33
Mixed	Efficiency-Equipment	(0)	209	3.0	(0.06)	1.45	0.16	\$593	2.05	3.84
Ξ	Efficiency & PV/Battery	(12)	217	9.5	0.03	1.25	0.36	\$4,999	1.00	1.64
8	Code Compliant	2,981	0	n/a	n/a	0.94	n/a	n/a	n/a	n/a
tric"	Efficiency-Non-Preempted	2,673	0	3.0	0.00	0.88	0.07	\$1,773	0.92	1.52
<u> </u>	Efficiency-Equipment	2,563	0	3.0	0.00	0.85	0.10	\$949	2.27	3.19
All-Electric	Efficiency & PV	762	0	11.0	1.17	0.70	0.24	\$6,405	1.08	1.50
	Efficiency & PV/Battery	(6)	0	21.0	1.74	0.41	0.53	\$11,606	1.16	1.58
Mixed Fuel to All-Electric ³	Code Compliant	2,981	0	0.0	0.00	0.94	0.67	(\$5,349)	1.45	2.66
d Fu	Efficiency & PV	762	0	11.0	1.17	0.70	0.91	\$1,057	3.04	>1
	Neutral Cost	770	0	9.0	1.36	0.74	0.87	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 68: Multifamily Climate Zone 10 SCE/SoCalGas Results Summary (Per Dwelling Unit)

	ate Zone 10 /SoCalGas	Annual	Ammural	EDB	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	112	n/a	n/a	2.29	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	108	1.5	(0.02)	2.23	0.06	\$278	0.81	1.69
Mixed	Efficiency-Equipment	(0)	102	2.5	(0.04)	2.13	0.16	\$250	1.96	3.27
Ξ	Efficiency & PV/Battery	(6)	108	10.0	0.03	1.88	0.41	\$2,089	1.12	1.79
7	Code Compliant	1,507	0	n/a	n/a	1.39	n/a	n/a	n/a	n/a
tric į	Efficiency-Non-Preempted	1,425	0	1.5	0.00	1.34	0.05	\$361	1.16	2.00
ile ct	Efficiency-Equipment	1,369	0	1.5	0.00	1.31	0.08	\$361	1.71	1.98
AII-Electric	Efficiency & PV	450	0	10.5	0.60	1.09	0.30	\$2,371	1.31	1.79
	Efficiency & PV/Battery	(4)	0	23.0	0.93	0.63	0.76	\$5,108	1.35	1.78
Mixed Fuel to All-Electric ³	Code Compliant	1,507	0	0.0	0.00	1.39	0.90	(\$2,337)	3.35	2.36
d Fu	Efficiency & PV	56	0	10.5	0.60	1.09	1.20	\$34	70.89	>1
	Neutral Cost	372	0	10.5	0.70	1.10	1.19	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Climate Zone 10 SDGE

Table 69: Single Family Climate Zone 10 SDGE Results Summary

Clim	ate Zone 10 &E	Annual Net	Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit Ratio	
Sing	le Family	kWh	therms	Margin⁴	Change (kW)⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	239	n/a	n/a	1.61	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	217	3.0	(0.07)	1.48	0.13	\$1,648.10	0.80	1.33
Mixed	Efficiency-Equipment	(0)	209	3.0	(0.06)	1.45	0.16	\$593.40	2.64	3.84
Ē	Efficiency & PV/Battery	(12)	217	9.5	0.03	1.25	0.36	\$4,999.50	0.64	1.64
OI.	Code Compliant	2,981	0	n/a	n/a	0.94	n/a	n/a	n/a	n/a
tric ²	Efficiency-Non-Preempted	2,673	0	3.0	0.00	0.88	0.07	\$1,772.82	1.08	1.52
: <u> </u> ect	Efficiency-Equipment	2,563	0	3.0	0.00	0.85	0.10	\$948.63	2.62	3.19
All-Electric	Efficiency & PV	762	0	11.0	1.17	0.70	0.24	\$6,405.39	1.68	1.50
	Efficiency & PV/Battery	(6)	0	21.0	1.74	0.41	0.53	\$11,606.13	1.48	1.58
Mixed Fuel to All-Electric ³	Code Compliant	2,981	0	0.0	0.00	0.94	0.67	(\$5,349)	0.90	2.66
ed Fu	Efficiency & PV	762	0	11.0	1.17	0.70	0.91	\$1,057	4.55	>1
	Neutral Cost	770	0	9.0	1.36	0.74	0.87	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 70: Multifamily Climate Zone 10 SDGE Results Summary (Per Dwelling Unit)

Clim	ate Zone 10	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	112	n/a	n/a	2.29	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	108	1.5	(0.02)	2.23	0.06	\$278.06	1.09	1.69
Mixed	Efficiency-Equipment	(0)	102	2.5	(0.04)	2.13	0.16	\$249.93	2.60	3.27
Ē	Efficiency & PV/Battery	(6)	108	10.0	0.03	1.88	0.41	\$2,088.94	0.27	1.79
7	Code Compliant	1,507	0	n/a	n/a	1.39	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,425	0	1.5	0.00	1.34	0.05	\$360.62	1.53	2.00
ile ci	Efficiency-Equipment	1,369	0	1.5	0.00	1.31	0.08	\$360.85	2.05	1.98
AII-Electric	Efficiency & PV	450	0	10.5	0.60	1.09	0.30	\$2,370.68	2.12	1.79
	Efficiency & PV/Battery	(4)	0	23.0	0.93	0.63	0.76	\$5,107.56	1.52	1.78
Mixed Fuel to All-Electric ³	Code Compliant	1,507	0	0.0	0.00	1.39	0.90	(\$2,337)	0.73	2.36
ed Fu Elect	Efficiency & PV	56	0	10.5	0.60	1.09	1.20	\$34	54.15	>1
	Neutral Cost	372	0	10.5	0.70	1.10	1.19	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 71: Single Family Climate Zone 11 Results Summary

Clim PG&	ate Zone 11 E	Annual	Annual	EDR	PV Size		iquivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Sing	le Family	Net kWh	Annual therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	378	n/a	n/a	2.14	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	333	4.0	(0.19)	1.90	0.24	\$3,143	0.78	1.20
Mixed	Efficiency-Equipment	0	320	5.0	(0.21)	1.83	0.31	\$1,222	2.50	3.68
Ξ	Efficiency & PV/Battery	(18)	333	9.0	(0.09)	1.78	0.36	\$6,503	0.39	1.64
21	Code Compliant	4,585	0	n/a	n/a	1.15	n/a	n/a	n/a	n/a
tric ²	Efficiency-Non-Preempted	3,815	0	4.5	0.00	0.99	0.16	\$3,735	1.24	1.47
<u> </u>	Efficiency-Equipment	3,533	0	5.5	0.00	0.93	0.22	\$2,108	2.97	3.33
All-Electric	Efficiency & PV	957	0	14.0	1.79	0.60	0.55	\$10,827	1.84	1.55
	Efficiency & PV/Battery	(13)	0	23.0	2.49	0.36	0.79	\$16,555	1.54	1.66
Mixed Fuel to All-Electric ³	Code Compliant	4,585	0	0.0	0.00	1.15	0.99	(\$5,349)	0.49	1.69
d Fu	Efficiency & PV	957	0	14.0	1.79	0.60	1.54	\$5,478	1.64	>1
	Neutral Cost	2,429	0	7.0	1.36	0.85	1.29	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 72: Multifamily Climate Zone 11 Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 11	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	141	n/a	n/a	2.38	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	0	127	2.5	(0.05)	2.18	0.20	\$850	0.65	1.17
Mixed	Efficiency-Equipment	(0)	126	3.0	(0.06)	2.16	0.22	\$317	1.84	3.29
Ξ	Efficiency & PV/Battery	(9)	127	10.5	0.01	2.00	0.38	\$2,663	0.43	1.77
7	Code Compliant	1,974	0	n/a	n/a	1.42	n/a	n/a	n/a	n/a
tric.	Efficiency-Non-Preempted	1,732	0	3.5	0.00	1.29	0.13	\$1,011	1.40	1.64
ile ci	Efficiency-Equipment	1,707	0	3.5	0.00	1.26	0.16	\$795	2.02	2.33
AII-Electric	Efficiency & PV	504	0	13.0	0.77	0.81	0.61	\$3,601	2.22	1.81
	Efficiency & PV/Battery	(6)	0	25.0	1.14	0.45	0.98	\$6,472	1.48	1.89
Mixed Fuel to All-Electric ³	Code Compliant	1,974	0	0.0	0.00	1.42	0.96	(\$2,337)	0.56	1.33
d Fu	Efficiency & PV	63	0	13.0	0.77	0.81	1.56	\$1,264	3.03	>1
	Neutral Cost	866	0	9.0	0.70	0.99	1.38	\$0	>1	73.96

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 73: Single Family Climate Zone 12 Results Summary

Clim PG&	ate Zone 12 E	Annual		EDR	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Sing	le Family	Net kWh	Annual therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u> </u>	Code Compliant	(0)	390	n/a	n/a	2.11	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	344	3.5	(0.06)	1.88	0.23	\$1,679	1.18	1.83
Mixed	Efficiency-Equipment	0	338	3.0	(0.05)	1.85	0.26	\$654	3.31	4.65
Ξ	Efficiency & PV/Battery	(23)	344	9.5	0.04	1.76	0.35	\$5,045	0.48	1.89
01	Code Compliant	4,492	0	n/a	n/a	1.05	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	3,958	0	3.5	0.00	0.94	0.10	\$3,735	0.78	1.06
<u> </u>	Efficiency-Equipment	3,721	0	5.0	0.00	0.90	0.15	\$2,108	2.00	2.51
AII-Electric ²	Efficiency & PV	867	0	15.5	1.97	0.51	0.53	\$11,520	1.69	1.41
	Efficiency & PV/Battery	(15)	0	25.0	2.62	0.29	0.76	\$17,064	1.33	1.53
Mixed Fuel to All-Electric ³	Code Compliant	4,492	0	0.0	0.00	1.05	1.07	(\$5,349)	0.63	1.89
ed Fu Elect	Efficiency & PV	867	0	15.5	1.97	0.51	1.60	\$6,172	1.77	>1
Mixe All-1	Neutral Cost	2,374	0	8.0	1.35	0.76	1.36	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV/Battery, and Neutral Cost packages.

Table 74: Multifamily Climate Zone 12 Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 12 E	Annual	A	EDD	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	143	n/a	n/a	2.33	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	135	1.5	(0.02)	2.21	0.12	\$291	1.10	2.22
Mixed	Efficiency-Equipment	0	128	2.5	(0.03)	2.12	0.21	\$434	1.25	2.22
Ξ	Efficiency & PV/Battery	(11)	135	10.0	0.03	2.03	0.30	\$2,106	0.34	1.98
	Code Compliant	1,963	0	n/a	n/a	1.34	n/a	n/a	n/a	n/a
tric ²	Efficiency-Non-Preempted	1,792	0	2.5	0.00	1.24	0.09	\$1,011	0.91	1.12
ile ct	Efficiency-Equipment	1,744	0	2.5	0.00	1.21	0.13	\$795	1.56	1.63
AII-Electric	Efficiency & PV	472	0	14.0	0.84	0.73	0.60	\$3,835	2.08	1.65
	Efficiency & PV/Battery	(8)	0	26.5	1.20	0.38	0.96	\$6,656	1.31	1.76
Mixed Fuel to All-Electric ³	Code Compliant	1,963	0	0.0	0.00	1.34	1.00	(\$2,337)	0.64	1.66
d Fu	Efficiency & PV	59	0	14.0	0.84	0.73	1.60	\$1,498	2.88	>1
	Neutral Cost	872	0	9.5	0.70	0.92	1.42	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 75: Single Family Climate Zone 13 Results Summary

Clim PG&	ate Zone 13 E	Annual		EDR	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Sing	le Family	Net kWh	Annual therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u> </u>	Code Compliant	(0)	352	n/a	n/a	2.02	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	311	4.5	(0.21)	1.80	0.22	\$3,060	0.76	1.28
Mixed	Efficiency-Equipment	(0)	292	5.5	(0.24)	1.70	0.32	\$611	5.26	8.40
Ξ	Efficiency & PV/Battery	(19)	311	9.5	(0.11)	1.69	0.33	\$6,432	0.39	1.69
01	Code Compliant	4,180	0	n/a	n/a	1.08	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	3,428	0	5.0	0.00	0.92	0.15	\$4,154	1.12	1.40
AII-Electric ²	Efficiency-Equipment	3,177	0	6.0	0.00	0.87	0.21	\$2,108	2.88	3.30
A HE	Efficiency & PV	934	0	13.0	1.61	0.57	0.50	\$10,532	1.70	1.47
	Efficiency & PV/Battery	(11)	0	22.0	2.32	0.35	0.73	\$16,283	1.45	1.59
Mixed Fuel to All-Electric ³	Code Compliant	4,180	0	0.0	0.00	1.08	0.94	(\$5,349)	0.54	1.83
ed Fu Elect	Efficiency & PV	934	0	13.0	1.61	0.57	1.44	\$5,184	1.56	>1
Mixe All-	Neutral Cost	2,092	0	7.0	1.36	0.79	1.23	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 76: Multifamily Climate Zone 13 Results Summary (Per Dwelling Unit)

Clim PG&	ate Zone 13	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	135	n/a	n/a	2.30	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	123	3.0	(0.05)	2.12	0.18	\$831	0.63	1.27
Mixed	Efficiency-Equipment	(0)	121	3.0	(0.07)	2.10	0.21	\$290	1.95	3.75
Ē	Efficiency & PV/Battery	(9)	123	10.5	0.00	1.95	0.35	\$2,649	0.43	1.82
7	Code Compliant	1,849	0	n/a	n/a	1.36	n/a	n/a	n/a	n/a
tric.	Efficiency-Non-Preempted	1,629	0	3.0	0.00	1.24	0.12	\$1,011	1.31	1.56
AII-Electric	Efficiency-Equipment	1,590	0	3.5	0.00	1.21	0.16	\$795	1.98	2.28
AII-E	Efficiency & PV	501	0	12.0	0.73	0.80	0.56	\$3,462	2.12	1.71
	Efficiency & PV/Battery	(5)	0	23.5	1.11	0.44	0.92	\$6,362	1.41	1.82
Mixed Fuel to All-Electric ³	Code Compliant	1,849	0	0.0	0.00	1.36	0.94	(\$2,337)	0.63	1.54
ed Fu Elect	Efficiency & PV	63	0	12.0	0.73	0.80	1.50	\$1,125	3.22	>1
	Neutral Cost	773	0	8.5	0.70	0.94	1.36	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Climate Zone 14 SCE/SoCalGas

Table 77: Single Family Climate Zone 14 SCE/SoCalGas Results Summary

	ate Zone 14 /SoCalGas	Annual			PV Size	CO2-E	quivalent ns (lbs/sf)	NPV of Lifetime	Benefit t	
	le Family	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	371	n/a	n/a	2.35	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	319	4.5	(0.17)	2.06	0.29	\$1,662	1.57	2.46
Mixed	Efficiency-Equipment	(0)	305	5.5	(0.19)	1.98	0.36	\$799	3.95	6.14
Ē	Efficiency & PV/Battery	(5)	319	9.0	(80.0)	1.83	0.52	\$5,004	1.45	1.92
a l	Code Compliant	4,725	0	n/a	n/a	1.38	n/a	n/a	n/a	n/a
tric ²	Efficiency-Non-Preempted	3,819	0	5.5	0.00	1.19	0.19	\$4,154	0.95	1.46
ile ct	Efficiency-Equipment	3,676	0	6.0	0.00	1.16	0.22	\$2,108	2.29	3.13
AII-Electric	Efficiency & PV	953	0	15.5	1.60	0.93	0.45	\$10,459	1.21	1.62
	Efficiency & PV/Battery	(2)	0	23.5	2.21	0.63	0.75	\$15,872	1.40	1.65
c و t	Code Compliant	4,725	0	0.0	0.00	1.38	0.97	(\$5,349)	0.72	1.67
Fuel	Efficiency & PV	953	0	15.5	1.60	0.93	1.42	\$5,111	1.01	>1
Mixed Fuel to All-Electric ³	Neutral Cost	2,299	0	8.5	1.35	1.15	1.19	\$0	0.00	>1
ΞĒĒ	Min Cost Effectiveness	1,853	0	10.0	1.61	1.12	1.23	(\$1,000)	1.24	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

Table 78: Multifamily Climate Zone 14 SCE/SoCalGas Results Summary (Per Dwelling Unit)

	ate Zone 14 /SoCalGas	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	141	n/a	n/a	2.76	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	126	3.0	(0.04)	2.53	0.23	\$874	0.73	1.21
Mixed	Efficiency-Equipment	(0)	126	3.0	(0.05)	2.52	0.23	\$347	1.96	2.99
Ξ	Efficiency & PV/Battery	(3)	126	9.5	0.01	2.18	0.58	\$2,669	1.21	1.53
QI.	Code Compliant	2,022	0	n/a	n/a	1.73	n/a	n/a	n/a	n/a
tric.	Efficiency-Non-Preempted	1,759	0	3.5	0.00	1.58	0.15	\$1,011	1.24	1.65
	Efficiency-Equipment	1,748	0	3.5	0.00	1.56	0.16	\$795	1.59	2.20
AII-Electric ²	Efficiency & PV	504	0	14.0	0.70	1.26	0.47	\$3,356	1.39	1.91
	Efficiency & PV/Battery	(2)	0	24.5	1.03	0.79	0.94	\$6,093	1.42	1.86
Mixed Fuel to All-Electric ³	Code Compliant	2,022	0	0.0	0.00	1.73	1.03	(\$2,337)	1.13	1.48
d Fu	Efficiency & PV	63	0	14.0	0.70	1.26	1.50	\$1,019	2.57	>1
Mixe All-l	Neutral Cost	772	0	10.0	0.7	1.41	1.35	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Climate Zone 14 SDGE

Table 79: Single Family Climate Zone 14 SDGE Results Summary

Climate Zone 14 SDG&E Single Family		Annual Net	Annual	EDR	PV Size	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)	
		kWh	therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	371	n/a	n/a	2.35	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	319	4.5	(0.17)	2.06	0.29	\$1,662	1.92	2.46
Mixed	Efficiency-Equipment	(0)	305	5.5	(0.19)	1.98	0.36	\$799	4.88	6.14
Σ	Efficiency & PV/Battery	(5)	319	9.0	(0.08)	1.83	0.52	\$5,004	1.36	1.92
8	Code Compliant	4,725	0	n/a	n/a	1.38	n/a	n/a	n/a	n/a
tric"	Efficiency-Non-Preempted	3,819	0	5.5	0.00	1.19	0.19	\$4,154	1.30	1.46
<u> </u>	Efficiency-Equipment	3,676	0	6.0	0.00	1.16	0.22	\$2,108	2.92	3.13
All-Electric	Efficiency & PV	953	0	15.5	1.60	0.93	0.45	\$10,459	1.80	1.62
	Efficiency & PV/Battery	(2)	0	23.5	2.21	0.63	0.75	\$15,872	1.73	1.65
Mixed Fuel to All-Electric ³	Code Compliant	4,725	0	0.0	0.00	1.38	0.97	(\$5,349)	0.60	1.67
d Fu	Efficiency & PV	953	0	15.5	1.60	0.93	1.42	\$5,111	1.94	>1
	Neutral Cost	2,299	0	8.5	1.35	1.15	1.19	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV/Battery, and Neutral Cost packages.

Table 80: Multifamily Climate Zone 14 SDGE Results Summary (Per Dwelling Unit)

Climate Zone 14 SDG&E Multifamily		Annual		Annual EDB	PV Size	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)	
		Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
Mixed Fuel 1	Code Compliant	(0)	141	n/a	n/a	2.76	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	(0)	126	3.0	(0.04)	2.53	0.23	\$874	0.93	1.21
	Efficiency-Equipment	(0)	126	3.0	(0.05)	2.52	0.23	\$347	2.48	2.99
Ē	Efficiency & PV/Battery	(3)	126	9.5	0.01	2.18	0.58	\$2,669	0.57	1.53
7	Code Compliant	2,022	0	n/a	n/a	1.73	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,759	0	3.5	0.00	1.58	0.15	\$1,011	1.47	1.65
AII-Electric	Efficiency-Equipment	1,748	0	3.5	0.00	1.56	0.16	\$795	2.00	2.20
A II-E	Efficiency & PV	504	0	14.0	0.70	1.26	0.47	\$3,356	2.16	1.91
	Efficiency & PV/Battery	(2)	0	24.5	1.03	0.79	0.94	\$6,093	1.77	1.86
Mixed Fuel to All-Electric ³	Code Compliant	2,022	0	0.0	0.00	1.73	1.03	(\$2,337)	0.51	1.48
ed Fu Elect	Efficiency & PV	63	0	14.0	0.70	1.26	1.50	\$1,019	2.60	>1
	Neutral Cost	772	0	10.0	0.70	1.41	1.35	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 81: Single Family Climate Zone 15 Results Summary

Climate Zone 15 SCE/SoCalGas Single Family		Annual	Annual	EDR	PV Size	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)	
		Net kWh	Annual therms	Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u>-</u>	Code Compliant	0	149	n/a	n/a	1.69	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	0	141	4.5	(0.43)	1.56	0.13	\$2,179	1.00	1.58
Mixed	Efficiency-Equipment	(0)	132	4.5	(0.45)	1.51	0.18	(\$936)	>1	>1
Σ	Efficiency & PV/Battery	(3)	141	7.0	(0.34)	1.38	0.32	\$5,521	1.25	1.65
8	Code Compliant	2,149	0	n/a	n/a	1.32	n/a	n/a	n/a	n/a
tric.	Efficiency-Non-Preempted	1,230	0	5.5	0.00	1.12	0.20	\$4,612	1.12	1.58
<u> ec</u>	Efficiency-Equipment	866	0	7.0	0.00	1.04	0.28	\$2,108	3.30	4.47
All-Electric	Efficiency & PV	1,030	0	6.0	0.12	1.10	0.22	\$5,085	1.12	1.57
	Efficiency & PV/Battery	(2)	0	13.0	0.83	0.84	0.48	\$10,860	1.22	1.61
Mixed Fuel to All-Electric ³	Code Compliant	2,149	0	0.0	0.00	1.32	0.37	(\$5,349)	1.73	2.21
d Fu	Efficiency & PV	1,030	0	6.0	0.12	1.10	0.59	(\$264)	>1	>1
	Neutral Cost	23	0	6.0	1.36	1.13	0.57	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 82: Multifamily Climate Zone 15 Results Summary (Per Dwelling Unit)

Climate Zone 15 SCE/SoCalGas		Annual Annual		EDD.	PV Size	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	0	93	n/a	n/a	2.53	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	0	92	4.0	(0.15)	2.42	0.11	\$510	1.35	2.28
Mixed	Efficiency-Equipment	0	86	4.0	(0.16)	2.33	0.20	(\$157)	>1	>1
Ē	Efficiency & PV/Battery	(3)	92	8.5	(0.10)	2.13	0.40	\$2,317	1.45	1.91
7	Code Compliant	1,243	0	n/a	n/a	1.78	n/a	n/a	n/a	n/a
tric ,	Efficiency-Non-Preempted	954	0	4.0	0.00	1.61	0.17	\$1,011	1.50	2.28
ile ci	Efficiency-Equipment	764	0	6.0	0.00	1.50	0.29	\$1,954	1.24	1.72
AII-Electric	Efficiency & PV	548	0	7.0	0.24	1.50	0.28	\$1,826	1.43	2.07
	Efficiency & PV/Battery	(3)	0	16.5	0.62	1.08	0.70	\$4,732	1.42	1.91
Mixed Fuel to All-Electric ³	Code Compliant	1,243	0	0.0	0.00	1.78	0.75	(\$2,337)	6.36	2.35
ed Fu Elect	Efficiency & PV	68	0	7.0	0.24	1.50	1.03	(\$511)	>1	>1
	Neutral Cost	78	0	7.5	0.70	1.48	1.05	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

Table 83: Single Family Climate Zone 16 Results Summary

Climate Zone 16 PG&E		Annual			PV Size		quivalent ns (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
	le Family	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u></u>	Code Compliant	(0)	605	n/a	n/a	3.31	n/a	n/a	n/a	n/a
Mixed Fuel ¹	Efficiency-Non-Preempted	0	454	5.0	0.01	2.59	0.72	\$3,542	1.62	1.46
	Efficiency-Equipment	0	474	6.0	(80.0)	2.66	0.65	\$2,441	2.19	2.20
Ē	Efficiency & PV/Battery	(18)	454	10.5	0.10	2.36	0.95	\$6,877	0.93	1.47
O.	Code Compliant	7,694	0	n/a	n/a	1.73	n/a	n/a	n/a	n/a
AII-Electric ²	Efficiency-Non-Preempted	5,696	0	9.5	0.00	1.38	0.35	\$5,731	1.72	1.69
<u> </u>	Efficiency-Equipment	6,760	0	4.5	0.00	1.55	0.18	\$2,108	2.36	2.32
A=E	Efficiency & PV	1,032	0	26.5	2.75	0.94	0.79	\$16,582	2.09	1.62
	Efficiency & PV/Battery	(11)	0	35.0	3.45	0.64	1.09	\$22,315	1.75	1.58
ರ್ಲಿ	Code Compliant	7,694	0	0.0	0.00	1.73	1.58	(\$5,349)	0.31	0.68
Fuel	Efficiency & PV	1,032	0	26.5	2.75	0.94	2.37	\$11,234	1.55	2.02
Mixed Fuel to All-Electric ³	Neutral Cost	5,398	0	8.5	1.35	1.51	1.80	\$0	0.00	0.74
ΞĒĒ	Min Cost Effectiveness	3,358	0	16.0	2.56	1.32	1.99	(\$4,753)	1.24	1.40

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

Table 84: Multifamily Climate Zone 16 Results Summary (Per Dwelling Unit)

Climate Zone 16 PG&E		Annual		PV Size		CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)		TDV
<u></u>	Code Compliant	0	206	n/a	n/a	3.45	n/a	n/a	n/a	n/a
Fuel 1	Efficiency-Non-Preempted	(0)	172	2.0	0.03	3.02	0.44	\$937	1.11	1.19
Mixed	Efficiency-Equipment	(0)	183	2.5	(0.02)	3.12	0.33	\$453	1.76	2.15
Ξ	Efficiency & PV/Battery	(9)	172	9.5	0.08	2.65	0.80	\$2,741	0.52	1.41
8	Code Compliant	2,699	0	n/a	n/a	1.86	n/a	n/a	n/a	n/a
tric.	Efficiency-Non-Preempted	2,329	0	4.0	0.00	1.70	0.16	\$843	2.08	2.05
iect	Efficiency-Equipment	2,470	0	3.0	0.00	1.74	0.13	\$795	1.59	1.70
AII-Electric	Efficiency & PV	518	0	19.5	1.07	1.23	0.63	\$4,423	2.58	1.89
_	Efficiency & PV/Battery	(6)	0	29.5	1.42	0.75	1.11	\$7,245	1.71	1.76
Mixed Fuel to All-Electric ³	Code Compliant	2,699	0	0.0	0.00	1.86	1.59	(\$2,337)	0.43	1.03
d Fu	Efficiency & PV	65	0	19.5	1.07	1.23	2.22	\$2,087	2.87	>1
	Neutral Cost	1,518	0	10.0	0.70	1.56	1.90	\$0	>1	2.58

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

⁵Positive values indicate an increase in PV capacity relative to the Standard Design.