DOCKETED	
Docket Number:	19-MISC-04
Project Title:	Modeling Tool to Maximize Solar + Storage Benefits
TN #:	231017
Document Title:	E3's Workshop Slidedeck
Description:	N/A
Filer:	Liet Le
Organization:	California Energy Commission
Submitter Role:	Energy Commission
Submission Date:	12/9/2019 9:48:25 AM
Docketed Date:	12/9/2019

Modeling Tools to Maximize Solar + Storage Benefits

Comments Review and Case Study

Public Workshop

12/12/2019

Eric Cutter, Director (<u>eric@ethree.com</u>) Oliver Garnett, Consultant (<u>oliver@ethree.com</u>)

- + Project Overview and Schedule
- + Case study
 - SGIP
 - EV Managed Charging
 - Microgrid for PSPS
- + Model Updates for Final Release
- + Recommendations and Next Steps

- Founded in 1989, E3 is an industry leading consultancy in North America
- E3 operates at the nexus of energy, environment, and economics
- Our team employs a unique combination of economic analysis, modeling acumen, and deep institutional insight to solve complex problems for a diverse client base

Analyzes distributed energy resources, emphasizing their costs and benefits now and in the future

Supports rate design and distribution system planning

E3 has five defined working groups that create continual innovation from cutting edge projects and constant crossfertilization of best practices across the groups

Clean Energy

Provides market and policy analysis on clean energy technologies and climate change issues

Market Analysis

Models wholesale energy markets

both in isolation and as part of broader, more regional markets

Includes comprehensive and long-term GHG analysis

Asset Valuation

Determines asset values from multiple perspectives

Uses proprietary in-house models and in-depth knowledge of public policy, regulation and market institutions

Planning

Develops and deploys proprietary tools to aid resource planners

Informs longer-term system planning and forecasting

Key insights to inform system operators and market participants

Project Overview: EPC-17-004

+ Project Purpose

- Develop the Solar + Storage Tool that assesses the cost effectiveness of PV, storage, and other DER technologies for customers and ratepayers under different tariff and program designs
 - Simulate the operation of dispatchable DERs based on an optimization algorithm
 - Estimate value with a focus on location of the resource (Local Net Benefits Analysis (LNBA))
- Apply the tool to evaluate solar + storage systems being researched in other EPIC projects (GFO-16-309)
 - Results will be shared in today's workshop

+ The tool is available for download in this website:

- https://www.energy.ca.gov/research/mod_tool_max_solar_storage/
- User guide is also available, which contains a quick-start guide along with full instructions and methodology documentation
- Pre-loaded example cases
- No installation required

+ Three workshops

- June 2019: Tool and use cases overview
- August 2019: Case study results and tool demonstration
- Today: Final project presentation and wrap-up

+ A DER valuation tool with an optimization engine for dispatch

DER Shapes

+ Dispatchable

- Objective function: minimizing net costs
- Subject to technology, market, and incentive (e.g. ITC) constraints
- Co-optimization across multiple technologies with perfect foresight
- Price taker

+ Partial Dispatchable

- Dispatch with the consideration of customer comfort level
- Co-optimize with both dispatchable and partial dispatchable technologies

+ Fixed shapes

- User input based on the specific project or customer
- Default PV shapes pre-loaded for each climate zone

Other highlights

- •Temperature-based day mapping
- Flexible Optimization Window (Daily, Monthly, Annual) and Intervals (Hourly, 15mins, 5mins)

+ A wide range of benefit streams can be modeled

 The model is able to calculate and co-optimized against them – it is critical for value stacking

+ Benefit combinations

- Commonly used benefit combination for each use case is pre-defined
- Users can also mix and match and pick their own benefit streams

+ Other highlights

- Flexible rate and utility program design
 - E.g. multi-tiered TOU demand charge, daily demand charge, real time rate, asymmetric energy charges, volumetric payment for demand response, etc.
- Project-specific T&D Deferral Values (LNBA Style)

Customer sided

- Demand charge management
- TOU energy charge management
- Utility Program Revenue (e.g. DR program)
- Back-up power

Distribution System

- Project specific T&D deferral
- Interconnection costs
 reduction
- Reliability
- System avoided costs or Bulk system revenues

Bulk System

- Resource adequacy program
- Wholesale energy market
- Ancillary services revenue
- Project specific transmission deferral
- Renewable firming services

+ A Pro Forma is integrated into the model to calculate the all-in project costs, including:

- Capital costs
- Operating and maintenances costs
- Financing costs
- Incentives
 - Self-Generation Incentive Program (SGIP)
 - Investment Tax Credit (ITC)
- Taxes

+ Two financing options:

- <u>Self-financing</u> with the ability to specify a debt and equity ratio
- <u>Third-Party Leasing</u>

+ Users can also overwrite with their own cost estimate

Energy+Environmental Economics

+ Two BTM use cases consistent with HOMER

- 1,000 kW and 10 kW PV with 250kW/550kWh storage
- 48 hours optimization window

	HOMER (1000 kW PV)	Solar + Sto (1000 kW P	rage V)	HOMER (10 kW PV)	Solar + Storage (10 kW PV)		
Rate	SCE TOU-8-D-2- 50kV-NEM2	captured mo the rate components	st of	SCE TOU-8-D-2- 50kV-NEM2	captured most of the rate components		
PV	1000 kW	1000 kW		10 kW	10 kW		
ES	250 kW/550 kWh	250 kW/550	kWh	250 kW/550 kWh	250 kW/550 kWh		
Current Elecitricity Cost	\$520,452	\$493,480	95%	\$520,452	\$493,480	95%	
Year-1 Energy Cost	\$276,844	\$248,668	90%	\$276,844	\$248,668	90%	
Year-1 Demand Charge Cost	\$243,608	\$244,812	100%	\$243,608	\$244,812	100%	
Year-1 Energy Savings	\$132,869	\$112,524	85%	\$2,707	\$850	31%	
Year-1 Demand Charge Savings	\$104,484	\$109,552	105%	\$26,697	\$26,320	99%	
Total Year-1 Savings	\$237,353	\$222,077	94%	\$29,404	\$27,170	92%	

- + Costs & benefits behind-the-meter solar + storage
- + Targeted DER portfolios for local distribution deferral
- + Value of Vehicle Grid Integration (VGI)
- + Benefits of dynamic rates
- + Costs & benefits of microgrids
- + Utility-scale solar + storage

Case Study SGIP 2018 Impact Evaluation

- + The Self-Generation Incentive Program (SGIP) provides financial incentives for the installation of new qualifying technologies that are installed to meet all or a portion of the electric energy needs of a facility.
 - "The purpose of the SGIP is to <u>contribute to Greenhouse Gas (GHG) emission</u> <u>reductions</u>, demand reductions and reduced customer electricity purchases, resulting in the electric system reliability through improved transmission and distribution system utilization; as well as market transformation for distributed energy resource (DER) technologies."^[1]
- Of the \$567 million total SGIP incentive budget, \$448 million (79%) is allocated to energy storage
- + Itron and E3 conducted an 2018 Impact Evaluation of energy storage to understand whether the SGIP program is achieving these goals
 - Itron performs analysis of <u>actual impacts</u> of SGIP storage operations
 - E3 utilize the Solar + Storage tool to quantify <u>potential benefits under optimal</u> <u>dispatch with perfect foresight</u>

^{[1] &}lt;u>https://www.selfgenca.com/documents/handbook/2017</u>

2018 Impact Evaluation Approach

+ Energy storage customers were dispatched using three approaches:

+ A sample of 441 SGIP energy storage customers were modelled

• Sample results were used to estimate impacts for the entire SGIP population

+ Key inputs varied across customers

- Load
- PV output
- Storage parameters
- Electric rate

Note: this use case does require sophisticated post-processing!

Timing of Optimal Dispatch

+ Timing of charging/discharging varies significantly by dispatch approach

 System cost dispatch results in much higher depth of charge / discharge due to more dynamic price signal

Nonresidential Customers - System Dispatch Approach

							Moi	nth					
		1	2	3	4	5	6	7	8	9	10	11	12
	0	-0.139	-0.162	-0.175	-0.203	-0.290	-0.114	-0.186	-0.220	-0.080	-0.133	-0.075	-0.063
	1	-0.304	-0.193	-0.375	-0.524	-0.579	-0.322	-0.298	-0.266	-0.334	-0.495	-0.252	-0.222
	2	-0.438	-0.503	-0.508	-0.586	-0.570	-0.396	-0.502	-0.499	-0.347	-0.510	-0.523	-0.386
	3	-0.456	-0.467	-0.154	-0.059	-0.061	-0.030	-0.282	-0.206	-0.046	-0.080	-0.353	-0.289
	4	-0.072	-0.043	0.019	0.222	0.345	0.176	-0.029	-0.023	0.013	0.038	-0.027	-0.034
	5	0.017	0.066	0.342	0.612	0.646	0.456	0.095	0.259	0.310	0.375	0.201	0.019
	6	0.350	0.582	0.561	0.286	0.182	0.099	-0.023	0.079	0.124	0.475	0.531	0.317
	7	0.484	0.454	0.152	-0.063	-0.250	-0.636	-0.236	-0.395	-0.092	-0.018	0.173	0.349
	8	0.026	0.036	0.016	-0.211	-0.365	-0.509	-0.166	-0.327	-0.496	-0.134	-0.089	0.026
ng	9	-0.099	-0.036	-0.126	-0.190	-0.354	-0.320	-0.071	-0.113	-0.411	-0.414	-0.309	-0.041
in	10	-0.128	-0.217	-0.286	-0.323	-0.206	-0.098	-0.026	-0.064	-0.176	-0.477	-0.335	-0.084
ŝ	11	-0.234	-0.245	-0.435	-0.405	-0.261	-0.164	-0.012	-0.056	-0.064	-0.328	-0.267	-0.205
ä	12	-0.490	-0.510	-0.441	-0.239	-0.206	-0.078	-0.035	-0.004	-0.012	-0.106	-0.380	-0.508
۲Ľ	13	-0.334	-0.449	-0.388	-0.288	-0.185	-0.078	-0.012	0.017	-0.003	-0.081	-0.157	-0.371
ĭ	14	-0.157	-0.348	-0.209	-0.214	-0.245	-0.074	0.021	0.033	0.003	-0.068	-0.053	-0.156
	15	-0.012	-0.068	-0.149	-0.132	-0.109	-0.077	0.052	0.064	0.038	-0.007	0.022	0.004
	16	0.048	0.017	0.025	-0.038	-0.064	0.052	0.113	0.099	0.070	0.119	0.146	0.049
	17	0.527	0.218	0.130	0.076	0.069	0.084	0.369	0.466	0.413	0.615	0.635	0.525
	18	0.530	0.642	0.677	0.595	0.380	0.632	0.558	0.545	0.536	0.490	0.359	0.383
	19	0.099	0.249	0.404	0.541	0.708	0.472	0.154	0.128	0.104	0.104	0.075	0.104
	20	0.085	0.120	0.112	0.085	0.202	0.085	0.024	0.033	0.050	0.061	0.057	0.065
	21	0.043	0.057	0.056	0.055	0.066	0.042	-0.005	0.004	0.009	0.029	0.029	0.030
	22	0.008	0.005	-0.033	-0.007	0.029	-0.003	-0.043	-0.007	-0.056	-0.051	0.010	0.004
	23	-0.033	-0.063	-0.140	-0.047	-0.030	0.005	-0.066	-0.034	-0.039	-0.045	-0.050	-0.079

Nonresidential Customers - Bill Dispatch Approach

							Μοι	nth					
		1	2	3	4	5	6	7	8	9	10	11	12
	0	-0.043	-0.051	-0.052	-0.053	-0.066	-0.151	-0.147	-0.176	-0.152	-0.124	-0.067	-0.065
	1	-0.027	-0.032	-0.038	-0.038	-0.047	-0.094	-0.081	-0.089	-0.084	-0.075	-0.046	-0.049
	2	-0.027	-0.027	-0.034	-0.034	-0.046	-0.071	-0.063	-0.070	-0.064	-0.059	-0.050	-0.051
	3	-0.040	-0.039	-0.044	-0.042	-0.054	-0.074	-0.066	-0.080	-0.074	-0.072	-0.072	-0.074
	4	-0.064	-0.062	-0.053	-0.045	-0.069	-0.104	-0.086	-0.119	-0.110	-0.111	-0.104	-0.102
	5	-0.102	-0.094	-0.049	-0.038	-0.093	-0.153	-0.134	-0.182	-0.157	-0.149	-0.144	-0.145
	6	-0.029	-0.023	-0.012	-0.015	-0.042	-0.084	-0.079	-0.096	-0.081	-0.060	-0.049	-0.048
	7	-0.070	-0.073	-0.072	-0.077	-0.101	-0.173	-0.162	-0.180	-0.147	-0.129	-0.109	-0.087
	8	0.096	0.082	0.090	0.088	0.058	-0.001	0.010	0.004	0.004	0.094	0.166	0.166
ng	9	0.012	0.004	0.015	0.022	0.025	0.001	0.008	0.005	0.004	0.036	0.037	0.043
nni	10	0.004	0.004	-0.005	-0.001	0.017	-0.001	0.007	0.003	0.002	0.030	0.028	0.034
egi	11	0.003	0.003	-0.002	0.000	0.007	-0.012	0.002	-0.005	-0.002	0.031	0.025	0.027
8	12	0.005	0.006	-0.005	-0.006	0.104	0.262	0.245	0.281	0.248	0.136	0.025	0.024
Inc	13	-0.001	0.001	-0.029	-0.040	0.022	0.080	0.069	0.090	0.071	0.047	0.017	0.017
Ĭ	14	0.003	0.002	0.007	0.005	0.013	0.065	0.053	0.072	0.059	0.033	0.021	0.015
	15	-0.002	-0.002	0.000	-0.001	0.007	0.048	0.036	0.052	0.041	0.017	0.015	0.008
	16	0.053	0.047	0.050	0.056	0.074	0.131	0.118	0.149	0.121	0.099	0.078	0.063
	17	0.036	0.031	0.025	0.021	0.100	0.261	0.234	0.271	0.242	0.132	0.052	0.052
	18	0.024	0.023	0.024	0.025	0.014	-0.006	-0.008	-0.014	0.004	0.030	0.028	0.029
	19	0.015	0.016	0.019	0.024	0.018	0.009	0.003	-0.004	0.000	0.015	0.021	0.023
	20	0.043	0.042	0.049	0.039	0.037	0.060	0.061	0.059	0.056	0.088	0.066	0.064
	21	-0.029	-0.024	-0.028	-0.024	-0.092	-0.087	-0.085	-0.101	-0.080	-0.115	-0.062	-0.063
	22	-0.012	-0.010	-0.014	-0.015	-0.043	-0.045	-0.046	-0.051	-0.046	-0.057	-0.031	-0.030
	23	-0.012	-0.013	-0.016	-0.019	-0.032	-0.124	-0.127	-0.156	-0.137	-0.043	-0.031	-0.029

Shading represents maximum hourly net discharge /charge (kW / kW-rebated capacity)

Minimum -0.70 -0.19 0.00 0.34 0.73 Maximum

Population GHG Impacts – Optimal Dispatch

- + Under the Customer Bill Dispatch approach we see an emissions increase for both nonresidential and residential customers
- + Adding a carbon price to customer rates reduced emissions significantly
- The System Cost dispatch approach achieves the highest emission reduction – very dynamic signal well correlated with marginal emissions

- Objective was to reconcile difference between emission savings for residential customers under real dispatch and simulated dispatch (customer bill approach)
- When residential customers are required to charge entirely from Solar the population switches from being net emitter to net reducer of system emissions.

Population GHG estimate: +328 Tonnes CO₂

Population GHG estimate: -72 Tonnes CO₂

Dynamic Rates Analysis

- Sensitivity for Nonresidential customers only
- More dynamic rates generally lead to improved system cost and emission savings
- + The more dynamic the rate, the bigger the improvement

Utility	Dynamic Rate Used
PG&E	The Peak Day Pricing (PDP) option for A-6, A-10, E-19, and E-20
SCE	The Real-Time-Pricing (RTP) option for TOU-GS-2, TOU-GS-3, and TOU-8
SDG&E	The Grid Integration Rate (GIR)

Case Study Vehicle Grid Integration (VGI)

Electric vehicles can deliver value to the grid and capture new revenue streams

- + EVs are parked most of the time during which their batteries can provide flexibility services to the grid.
- + The Solar + Storage Tool can be used to simulate various VGI scenarios

Case Study – Methodology

- + Battery Electric Vehicle (BEV): 70 kWh, 6.6 kW
- + Objective: evaluate the value of VGI compared to EV charging baselines

Cases	Description	Price Signal	Diagram
Unmanaged Charging Baseline	Charge whenever a vehicle plugs in	No signal	
TOU Baseline	Charge against the TOU price blocks	Simulated TOU price blocks from wholesale electricity prices	
Managed Charging (V1G)	Manage when the EV charges from the grid and how fast	Wholesale electricity prices	
Vehicle-to-Grid (V2G)	Manage charging and discharging	Wholesale electricity prices	

Daily Dispatch Operation (Unmanaged Baseline, V1G, V2G)

+ Battery Electric Vehicle

- Year: 2020
- Battery energy: **70 kWh**
- Power: 6.6 kW
- No Ancillary Service
 market participation
- Home/Work charging
 available
- Dispatched against forecasted wholesale electricity price – Grid value

VGI value = VGI charging cost – Unmanaged Charging cost

- Under V2G, vehicles can generate revenue (negative cost) potentially allowing much greater value than V1G
 - In the V2G scenario vehicles can take advantage of high price hours by discharging to the grid, earning revenue
 - Under V1G vehicles are constrained by their SOC on arrival a

+ VGI value increases over time as prices become more volatile.

V1G/V2G Value (Unmanaged Baseline)

Grid Value of VGI – TOU Baseline

VGI value = VGI charging cost – TOU Charging cost

- + Charging can easily be timed to TOU tariff peaks without VGI technology
- When using TOU charging as the baseline, the additional value VGI provides is lower since TOU charging already provides some grid benefit relative to unmanaged charging

Note: the value of VGI compared to TOU Baseline is smaller than the value compared to Unmanaged Baseline because the charging cost under TOU Baseline is lower.

Case Study Microgrid for PSPS

Santa Monica Advanced Energy District

+ Microgrid feasibility study for the redeveloped City Yards facility

Other scenarios included Metro Maintenance and Bergamot Art Center facilities

+ The microgrid had to achieve the following goals:

- Approach zero net energy use during normal operation
- Operate during utility company power outages "Island mode"

+ Cost tests used to calculate net benefits under various scenarios

+ Microgrid technologies included:

• PV, Storage, Fuel Cell, and VGI

+ Microgrid sizing influenced by:

- Area / number of facilities covered
- Load at each facility to be covered
- Duration of "island mode" events
- + Base case scenario for Design load:
 - 1.2MW PV, 7.2MWh Storage
- + E3 Avoided Costs used
- + SCE and Clean Power Alliance rates were tested
- + Island mode assumptions:
 - Value of Lost Load (VoLL) taken from the Interruption Cost Estimate calculator residential \$5.82 / hr, small C&I: \$288.71 / hr, medium C&I: \$147.27 / hr
 - Outage frequency and duration calculated using SAIFI and SAIDI reliability calculations

[1] https://www.sce.com/nrc/reliability/reports/SantaMonica.pdf

Load Scenarios for City Yards Facility

Load Scenario	Max Annual Load (kw)	Load Notes
Design (EE)	344	City Yards load after energy efficiency measures
CNG Modification	278	Design load after CNG operation modification
Necessary Loads	247	CNG modification load without fire tower, solid waste admin, and streets conference road loads
Reduced Maintenance	200	Necessary loads with 50% reduction to City Yards load
No Maintenance	154	Necessary loads without City Yards load
No CNG / Maintenance	74.6	No maintenance load without CNG load
Critical Loads	41.7	Critical loads only

Cost to Santa Monica City

Participant Cost Test

The PCT assesses if a project is cost effective from the perspective of the <u>end consumer</u>

 Low cost effectiveness for SMCY due to large size of the microgrid relative to load

+ Bill savings largest under the CPA rate

- NSCR much higher
- Easier to reduce demand

Total Resource Cost Test

The TRC assesses the monetized costs and benefits to <u>California State</u>

- Avoided capacity accounts for most of the benefit
- Lower benefit under the CPA rate
 - SCE rate has more focus on energy charges – better alignment of rate signal with system avoided costs

Cost to non-participating ratepayers

Ratepayer Impact Measure

The RIM quantifies the impact of the microgrid on the <u>non-participating</u> ratepayers

 SCE rate compensates participant less – benefits to utility outweigh reductions in rate revenue

Rate design considerations

+ More dynamic rates can unlock far greater value from the microgrid

- + Including load from charging an EV fleet nearly doubles annual energy consumption
- + Adding managed charging technology (V1G) is cost effective with a 2.47 B/C ratio
 - Managed charging helps to reduce the demand charge and reduce usage of energy storage
- + V2G doesn't provide additional bill savings compared to V1G
 - The electricity bill is very low for SMCY and there is no room for additional demand charge reduction (discuss later)
- + But if EVs could participate in ancillary services market, much higher revenues can be generated

VGI Technology - Dispatch Behavior

SMCY electricity supply / demand balance – Monday April 17th

PSPS Break-Even VoLL

- + Shortfall with no VoLL: \$912,408
- + SMCY annual load: 882,724 kWh
- + Based on SAIDI and SAIFI outage assumptions:

Avg Outage Probability = $\frac{SAIDI \times SAIFI}{8760 \text{ hours} \times 60 \text{ mins/hour}}$

SAIDI = 62.4 mins / event SAIFI = 0.85 events / year

NPV of load covered during lifetime outage events: 875 kWh

Break-even VoLL = 1,042.77 \$ / kWh

+ Based on a Public Safety Power Shutoff Protocol (PSPS) outages:

Assuming total annual outage duration: 72 hours / year

NPV of load covered during lifetime outage events: 71,265 kWh*

```
Break-even VoLL = 12.80 $ / kWh
```

[1] Assuming outage events and duration remain constant over 25-year lifetime

Model Updates for Final Release

Model Update – What's New

• Inputs Generator UI are now separated into two individual UIs for better user experience (timeseries vs others)

 ancillary service settings can now be viewed and edited in UIs

Model

- executable files are now consolidated which effectively reduces the model size
- storage can now be operated under CAISO REM rules as one of the storage technology specification inputs

Data

 more example cases are now available along with the model package for better use case demonstration

) Model Update – Improvements

UI

- UI response speed and size
- consistency of chart color patterns in Dashboard
- more meaningful results in Dashboard

Model

- portfolio selection calculation methodology
- EV unmanaged charging calculation methodology
- general model improvements, including code conventions, results decimal place, warning messages, output process, and Python package requirements

Data

- default large_user: VoLL updated to 85 \$/kWh
- default FTM cost test definition
- default real-time rates
- default storage parameters
- default avoided cost settings

Model Update – Bug Fixes

UI

- Screening Tool: total distribution avoided costs can now show up when detailed T&D feature is TRUE
- Screening Tool: distribution network can now show up consistently
- Simplified UI: PAC cost test charts are now in the correct places
- General UI bug fixes including chart regrouping function, color pattern mismatch, a few dropdown list errors, user instructions, DER technology size calculation, and number format.

Model

- remove redundant CAIDI calculation
- remove typos in pro forma module, frequency check module
- export_snapshot feature can now work smoothly when it tries to save load modifier data
- fix the criteria of showing driving profile conflict warning message
- fix the way annual run results and hourly timeseries results are aggregated
- fix storage mileage calculation

Data

- convert default data to 2019\$
- default financial scenario: "Battery alone qualified for ITC" updated to FALSE
- default NP15/SP15 avoided generation capacity cost (see User Guide)
- default ancillary service setting: spin special requirement updated to FALSE
- zero out customer reliability value for FTM customers, and storage mileage cost
- fix example Rector data in distribution location, fixed day-type mismatch in some default utility rate inputs

Recommendations

Recommendations and Next Steps

- To provide a more user-friendly and robust DER evaluation tool for California, we recommend adding in or at least considering the following features in future studies:
- + Further development of simplified user interface
- + CAISO Market Rules
 - Modeling the detailed CAISO rules can be helpful for developers in their daily operation and project acquisition process.

+ Imperfect Foresight

 Dispatch simulation with imperfect foresight can provide a more realistic estimation of revenues.

+ Electrification

• More features can be added to further analyze the cost-effectiveness of the electrification. For example, natural gas bill calculations and building stock-rollover.

+ Customer Adoption Projection

+ Microgrid Sizing