DOCKETED		
Docket Number:	19-SB-100	
Project Title:	SB 100 Joint Agency Report: Charting a path to a 100% Clean Energy Future	
TN #:	230749	
Document Title:	Mary Ann Piette - Demand Flexibility	
Description:	Presentation by Mary Ann Piette, Lawrence Berkeley National Laboratory	
Filer:	Harinder Kaur	
Organization:	California Energy Commission	
Submitter Role:	Commission Staff	
Submission Date:	11/15/2019 3:09:37 PM	
Docketed Date:	11/15/2019	

Demand Flexibility CEC Workshop on 100% Clean Energy

Mary Ann Piette Lawrence Berkeley National Laboratory Nov 18, 2019

Brian Gerke, Peter Schwartz, Sarah Smith, Shuba Raghavan, Ronxgin Yin Lawrence Berkeley National Laboratory

Peter Alstone

Schatz Energy Research Center – Humboldt State University

ENERGY TECHNOLOGIES AREA

Demand Flexibility and Response Status and Opportunities

- 1. Current market size and planned development
- 2. DF and DR characteristics, market potential and barriers
- 3. Cost trends
- 4. New and emerging technical innovation
- 5. Future directions

ENERGY TECHNOLOGIES AREA

1. Current Market - 1.5 GW of DR in IOU and CAISO Programs

■PG&E ■SCE ■SDG&E

DR Opportunities and Programs (Near Term)

- Deemed incentives to small/medium businesses to facilitate ADR focus on HVAC and lighting
- 2 way communication to support advanced DR and transactive energy options
- Rebates/incentives encourage use of pre-selected list of smart or programmable Tstats
- Integrated Demand Side Management
- Title 24 Automated DR with OpenADR

2. DF and DR Characteristics, Market Potential and Barriers

DR Potential Study Overview

- Phase 1 and 2 study created supply curves for Shape, Shift, Shed and Shimmy – Shift is most valuable
- Phase 3 is addressing three broad questions:
 - How big is the Shift resource?
 - Where is the Shift resource and when is it available?
 - How can we get more Shift?
- Key takeaway: Shift can play an important role in supporting California's renewable present—and we can start trying it now!
- Phase 4 will include more technologies and grid linkages

3. DF Characteristics

End use	Sector	Approach/technology
Space cooling	Res	Pre-cooling with PCT
Space heating	Res	Pre-heating with PCT
HVAC	Com	Pre-cooling with PCT/EMS; Thermal storage
Ventilation	Res/Com	Advanced controls
Water heating	Res	Pre-heating and scheduling
	Com	Pre-heating and scheduling
Pool pumps	Res	Dynamic scheduling
Irrigation pumping	Ind (Ag)	Dynamic scheduling
Wastewater pumping	Ind	Dynamic scheduling
Water supply pumping	Ind	Dynamic scheduling/pumped storage
Industrial process	Ind	Dynamic scheduling
Pofrigoration	Com	Warehouse pre-cooling
Kenigeration	Res/Com	On-board thermal storage, smart cycling
EV charging	Res/Com	Dynamic scheduling
	Res/Com	Two-way charging
Battery (whole building)	All	Storage, two-way charging
Battery (distributed/point of use)	All	Storage, two-way charging
Plug Loads/Appliances	Res/Com	Dynamic scheduling (eg, dishwashing)
Lighting	Ind (Ag)	Indoor photoperiod shifting (grow lights)

Shift & GHG - Load Modifying DR CO₂ Savings Ranges From 0.10 - 0.25 tons/MWh

How shift reduces GHG

- Compliance frame: <u>avoids curtailment</u> enabling RPS targets at lower cost avoiding uneconomic RPS build-out.
- Operations frame: <u>arbitrage to reduce</u> <u>emissions</u> from differences in marginal emissions during shed and take times.
- Reducing load during evening peak can lower need to run power plants

Load Shift Working Group evaluated net loads, prices, estimated marginal emissions to test effectiveness of Shift strategies.

Marginal CO2 emissions over the course of a day Each line is a single day; blue is a line of best fit

WattTime SGIP Analysis

LBNL DR-Path Model Evaluates Shift

ENERGY TECHNOLOGIES AREA

BERKELEY LA

DR supply curve for Shift as function of levelized cost of procurement (\$/kWh-yr).

- Computes idealized dispatch curve with potential Shift events on zeropts.
- Combines shiftable load and probability of dispatch at each potential event, yields max weighted avg Shift per cluster.
- Pairs customer load clusters with DR-enabling tech and incentives to estimate supply of Shift enabled at given price.

DR-Path Example technology inputs

Residential PCT

- 1 tstat per house
- Fixed costs tstat + installation: ~\$300
- Fixed operating costs for software: ~\$15/yr.
- No variable costs
- Co-benefits- energy savings defray
 30% of costs
- Shift: 75% of load in 4-hr window.
- 10% energy penalty for shifted load.

Commercial Controls for HVAC

- •System costs assumed to scale with size.
- Variable initial cost ~\$250/kW.
- •No significant fixed costs.
- •No significant operating costs.
- •Co-benefits energy savings defray 30% of costs.
- -Shift : 60% of load in an 8-hour window.
- •10% energy penalty for shifted load.

Participating vs. Total Shift potential The importance of customer participation rates

Technology cost and performance levels constrain how much of the total shiftable load can be made accessible.

DR-Path includes a customer participation model based on historical participation rates, which sharply curtails residential participation. New engagement models may help.

3. Costs trends - To Enable Shift

Reducing technology costs can unlock new resources

BERKELEY LA

Shift Supply Curve for 2030 By sector and end use

BERKELEY LAB

4. Emerging Tech Innovation - Loads from Electrification

Electrified Residential Space & Water Heating

Assumed adoption of electrified space & water heating rate that can meet carbon neutrality mandate.

Only resid sector modeled in Phase 3 (non-residential more complex).

New Loads from Electrification Statewide Residential Demand with Electrification

Pathways to Shift as a Resource: Diverse Pilot Options to Try

- Load Shift Working Group Identified 6 pilot concept.
- Data from pilots are needed to chart a course for Shift resource

Read more at: https://gridworks.org/initiatives/initiatives-archive/load-shift-working-group/

5. Summary and Future – Demand Side can be Lowest Cost Path – California Needs to Innovate Quickly

- New Shift-enabling technologies (thermal storage)
- New Shiftable loads (electrification)
- Enhancing Shape automating TOU response + Digital Tariff
- Multi-year programs

BERKELEY LA

Need State wide Pricing Pilot 2.0!

Source: CAISO

Thank you to Our Sponsors

The California Public Utilities Commission and the California Energy Commission

Principal Investigator: Mary Ann Piette mapiette@lbl.gov

Technical Lead: Brian Gerke <u>bfgerke@lbl.gov</u>

ENERGY TECHNOLOGIES AREA