<table>
<thead>
<tr>
<th>DOCKETED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number:</td>
<td>19-SB-100</td>
</tr>
<tr>
<td>Project Title:</td>
<td>SB 100 Joint Agency Report: Charting a path to a 100% Clean Energy Future</td>
</tr>
<tr>
<td>TN #:</td>
<td>230422</td>
</tr>
<tr>
<td>Document Title:</td>
<td>Presentation - LADWP SB 100 workshop - Southern California</td>
</tr>
<tr>
<td>Description:</td>
<td>Presentation by Jason Rondou</td>
</tr>
<tr>
<td>Filer:</td>
<td>Harinder Kaur</td>
</tr>
<tr>
<td>Organization:</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>Submitter Role:</td>
<td>Commission Staff</td>
</tr>
<tr>
<td>Submission Date:</td>
<td>10/28/2019 4:59:48 PM</td>
</tr>
<tr>
<td>Docketed Date:</td>
<td>10/29/2019</td>
</tr>
</tbody>
</table>
Los Angeles
100% Renewable Energy Study
Southern California SB 100
Scoping Workshop
October 29, 2019
In June 2017 Los Angeles City Council directed LADWP:

- To develop a partnership with DOE renewable lab to conduct 100% Renewable Energy Study
- Establish stakeholder process
LA100 Goals

- To determine what **investments** should be made to achieve a 100 percent renewable energy portfolio for LADWP
- Examine potential for high quality **careers** and equitable local economic development
- Incorporation of **CalEnviro** screen into each research area
- Prioritization of **environmental justice neighborhoods** as the immediate beneficiaries of localized air quality improvement and GHG reduction
- Analysis by the **Ratepayer Advocate** on how the 100% renewable scenarios fit within the current rate structure
LA100 Advisory Group

The 100% Renewable Advisory Group provides input and guidance throughout the study process. It is comprised of two individuals from each represented organization, one primary and one alternate member. The Advisory Group meets quarterly.
Recent Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 30, 2019</td>
<td>Suspended 2018 Strategic Long-Term Resource Plan (SLTRP)</td>
</tr>
<tr>
<td>February 12, 2019</td>
<td>Mayor Eric Garcetti announced no OTC repowering</td>
</tr>
<tr>
<td>April 29, 2019</td>
<td>Mayor Eric Garcetti announced L.A.’s Green New Deal</td>
</tr>
<tr>
<td>September 19, 2019</td>
<td>Held AG #9</td>
</tr>
<tr>
<td>September 24, 2019</td>
<td>LA100 Study was amended</td>
</tr>
</tbody>
</table>
Strategic Long-Term Resource Plan

Transition to 100% Renewables
Strategic Long-Term Resource Plan

LA100 (100% Renewable Study)
Determine investments to achieve 100% Renewables

Clean Grid LA
Replace 1660 MW by 2030

100% by 2045
Zero Carbon by 2050
www.ladwp.com/CleanEnergyFuture
100% Transition & Reliability

- The LADWP Balancing Authority Area is a large pocket of load with long transmission lines leading to it.
- Existing transmission lines are not sufficient to import 100% of the required energy most of the year without in-basin generation.
- Approximately 3200 MW of in-basin thermal generation is available to meet load and maintain reliability.
100% Transition & Reliability

- Imports come into the northern part of the basin, generation is located in the south
- The generation in the south is there to keep in-basin transmission lines from overloading (this is how the system was designed)
- Whenever we add an additional external resource, we increase the imports and the need for in-basin transmission or generation resources
Reliability

- More external transmission is needed to import external renewable resources
- More in-basin transmission and in-basin, dispatchable resources are needed as in-basin generation is retired
Case Study: Saddle Ridge Fire

- October 10, 2019
- Affected all three import paths into the LA basin
 - Pacific DC Intertie – complete loss
 - Victorville – LA – two of five lines
 - Barren Ridge – complete loss
- Import capability is 8350 MW (5939 MW for LA)
- October 11, 2019 peak load was 3331 MW
Case Study: Saddle Ridge Fire

- Import capability was reduced to 1650 MW (1442 MW for LA), a 4497 MW reduction for LA
- Adtl in-basin generation brought online – 951 MW
 - Peak in-basin generation was 2157 MW
 - An additional 515 MW for reserves
 - 135 MW of in-basin generation remained available
- 10-year October average 3611 MW, peak 5612 MW
- Sayre Fire, November 2008
 - 221 MW of load shed for 32 minutes
 - Impacted 115,000 customers
SB 100 Comments

- LADWP is a POU and BAA
 - Recognition of unique challenges
 - Flexibility in achieving SB 100
 - Equity and impact on rates

- Ensuring reliability & resiliency
 - Reliability Must Run (RMR)
 - Transmission
 - Continued investment in infrastructure

- Resource mix
 - Hydroelectric
 - Long duration storage

- Major contingencies