DOCKETED	
Docket Number:	19-BSTD-03
Project Title:	2022 Energy Code Pre-Rulemaking
TN #:	230286
Document Title:	Presentation - Weather Data for 2022 Standards
Description:	By Danny Tam of the California Energy Commission
Filer:	Patty Paul
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	10/18/2019 1:19:38 PM
Docketed Date:	10/18/2019

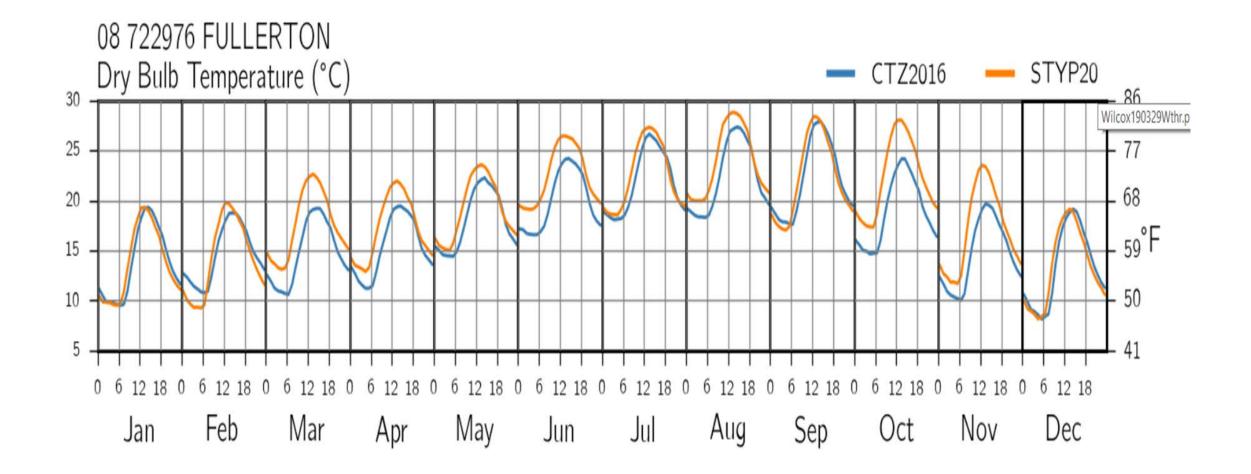
Weather Data for 2022 Standards

Danny Tam October 17, 2019 California Energy Commission

- Weather files are used for all energy calculations in T24 for compliance and development of the Standards
 - Also critical element for TDV development
- Pre-2013 Standards:
 - Weather files based on data from 1950 to 1980
 - Calculated solar data differ from satellite sources
 - Not synchronized and not completely compatible with TDV
- 2013 Standards:
 - Historical weather data with satellite solar data from 1998-2009
 - State-wide typical months permits the development of State-wide TDV, which is more representative of actual grid impact

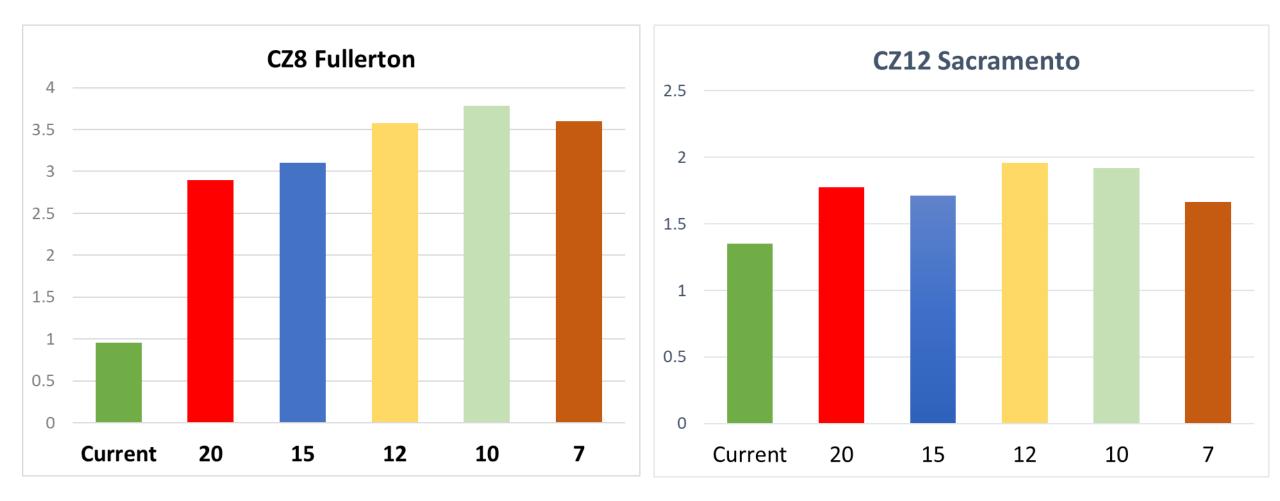
- Update data from 1998-2009 dataset to a 1998-2017 dataset
 - Use the best publicly data available to support standards (NREL NSRDB)
 - 12-year dataset, which was the best available at the time, is inadequate given new data available. Also some of the data was proprietary.
- Align better with data proposed to be used for IOU performance-based incentive programs
- Better reflect changing climate conditions in California

- Typical Meteorological Year (TMY)
 - Weather data selection method developed by NREL. Widely used for building simulation.
 - Elementals of selection includes global horizontal radiation, direct normal radiation, dry bulb temp, dew point temp and wind speed
 - Staff evaluated different scenarios using the most recent 20, 15, 12, 10, and 7 years of data
- CA Priority Climate Models (4 models)


Proposed Updates for 2022 Standards

- Continue to use State-wide TMY methodology

 Provides hourly weather data information to run CBECC
 Compatible with development of State-wide TDV
- Use 1998-2017 weather data
 - Use maximum amount of satellite weather data available
 - Incorporate the latest available weather data to better reflect changing climate conditions
 - Results in more resilient buildings in response to climate uncertainties

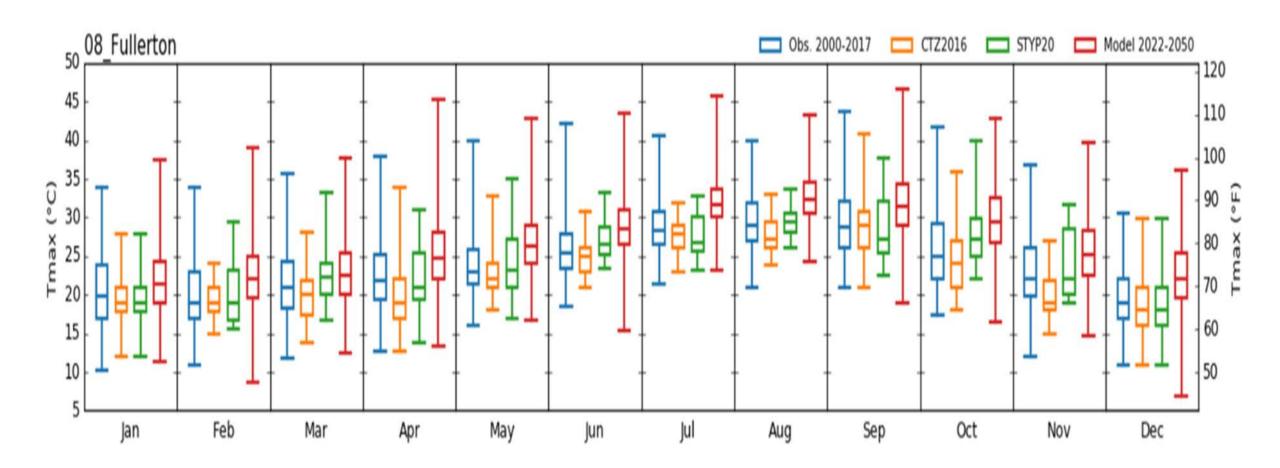


Climate Zone 8 Average Temperature STYP20 compared to CTZ2016

Cooling Load Comparison (kBtu/ft²)

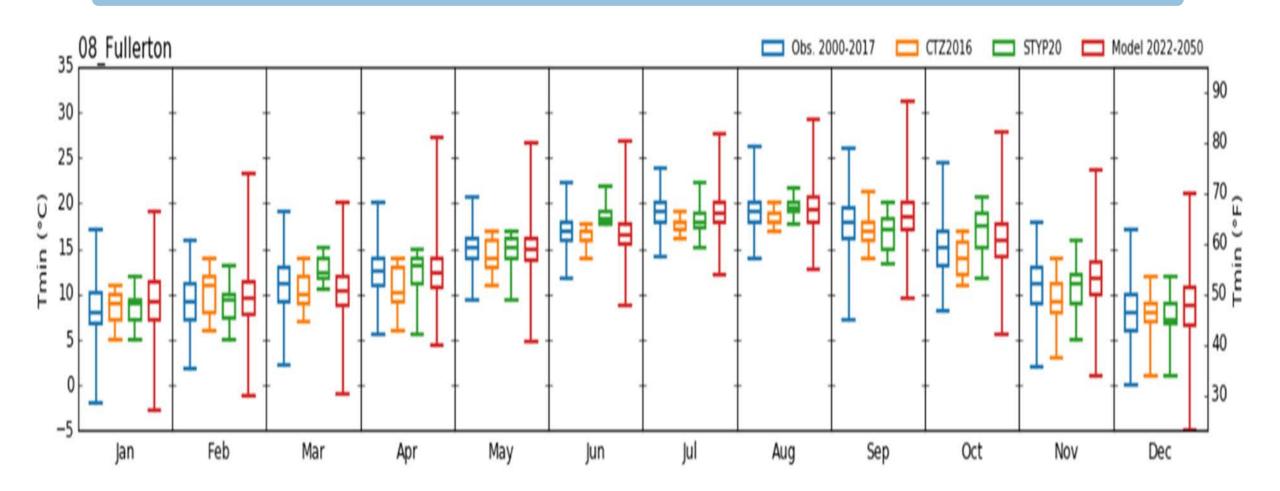
Cooling Load Comparison (kBtu/ft²)

	% Difference from Current							
Climate	STYP20	STYP15	STYP12	STYP10	STYP07			
01								
02	1022%	660%	890%	994%	913%			
03								
04	609%	649%	948%	790%	537%			
05								
06	208%	154%	117%	198%	614%			
07	7072%	6048%	7971%	8520%	19366%			
08	202%	223%	273%	294%	275%			
09	34%	45%	62%	67%	84%			
10	44%	51%	74%	67%	57%			
11	3%	7%	12%	13%	-4%			
12	32%	27%	45%	42%	23%			
13	27%	29%	37%	32%	30%			
14	0%	7%	17%	16%	0%			
15	-1%	2%	7%	7%	0%			
16	35%	75%	88%	92%	-56%			
Average	714%	614%	811%	856%	1680%			



Heating Load Comparison (kBtu/ft²)

	% Difference from Current							
Climate	STYP20	STYP15	STYP12	STYP10	STYP07			
01	-9%	-10%	-12%	-11%	-20%			
02	-19%	-16%	-14%	-23%	-24%			
03	-32%	-27%	-26%	-39%	-40%			
04	-42%	-37%	-42%	-46%	-49%			
05	-40%	-49%	-38%	-39%	-48%			
06	-56%	-60%	-78%	-73%	-79%			
07	-23%	-17%	-19%	-60%	-63%			
08	-51%	-47%	-72%	-72%	-80%			
09	-42%	-38%	-56%	-56%	-59%			
10	-22%	-29%	-63%	-64%	-72%			
11	-17%	-18%	-14%	-23%	-25%			
12	-24%	-22%	-19%	-27%	-30%			
13	-36%	-34%	-45%	-48%	-53%			
14	-23%	-19%	-13%	-25%	-30%			
15	-37%	-29%	-85%	-69%	-72%			
16	-13%	-10%	-19%	-16%	-20%			
Average	-30%	-29%	-39%	-43%	-48%			



Max Temp Comparison to Climate Models

Min Temp Comparison to Climate Models

- Cooling load goes up; heating load goes down
- Less change for climate zones that are already hot or cold
- Biggest change for transitional climate zones such as climate zone 8
- Full 20 year dataset is most technically solid and provides the path for the most resilient buildings
 - Avoids introducing data anomalies that result from smaller data sets

Questions?

