DOCKETED			
Docket Number:	19-BSTD-06		
Project Title:	Local Ordinances Exceeding the 2019 Energy Code		
TN #:	229958-2		
Document Title:	Menlo Park 2019 - Ordinance 1057		
Description:	N/A		
Filer:	Gabriel Taylor		
Organization:	California Energy Commission		
Submitter Role:	Commission Staff		
Submission Date:	10/3/2019 3:43:45 PM		
Docketed Date:	10/3/2019		

City Manager's Office

September 30, 2019

Attn: Mr. Gabriel Taylor and Mr. Peter Strait California Energy Commission 1516 Ninth Street, MS-37 Sacramento, CA 95814-5512

RE: Filing of local amendment of the California Building Standards Code City of Menlo Park Ordinance No. 1057

Dear Mr. Taylor and Mr. Strait,

The City of Menlo Park is pleased to apply for approval from the California Energy Commission (CEC) Menlo Park's adopted amendments to the 2019 Edition of the California Green Building Standards Code through Ordinance No.1057 (Attachment A). The ordinance was approved by the City Council on September 24, 2019 and if approved by the CEC, will become effective January 1, 2020.

We would also like to take this opportunity to thank you for your guidance and responsiveness as we navigated through Menlo Park's reach code efforts that would require electrification for new buildings. We could not have developed a groundbreaking building code without your expertise, knowledge, and willingness to challenge traditional ways of building to reduce greenhouse gas emissions. It has certainly set a new tone for the Bay Area.

We are in a unique time locally and globally. Locally, we are experiencing an increase in development to address housing affordability and stock as well as the potential expansion of Facebook that would add a new neighborhood to the community. At the same time, we are addressing climate change with the very few levers that local government has to make an impact.

The major areas of development mentioned above are occurring near the bay and would be vulnerable to sea level rise as a result of climate change. This was a motivating factor in developing a reach code that would ensure these new buildings do not become a further contributor to climate impacts. In addition, over 95% of Menlo Park residents and businesses are customers of Peninsula Clean Energy (PCE) that provides 90% greenhouse gas free electricity at a rate less than PG&E. This provides an opportunity for new buildings to take advantage of the renewable energy available by using electricity instead of natural gas.

Our application to the California Energy Commission is based on the collective reach code preparation performed by TRC, Peninsula Clean Energy and Silicon Valley Clean Energy using the prepared statewide cost effectiveness studies.

The ordinance seeks to require electrification of new buildings by mandating the following:

- 1. **New Residential Buildings** will require an electric fuel source for space heating, water heating and clothes dryers. Natural gas can still be used for cooktops and fireplaces. Prewiring for future electric appliances is required where natural gas appliances are used.
- 2. **Nonresidential buildings** will require electricity as the fuel source for all appliances. There are a few exceptions for certain building types, such as life science buildings space heating, public agency owned and operated emergency operations centers, and cookware for nonresidential kitchens. If an exception is granted, natural gas appliance locations must be electrically prewired for future electric appliance installation. Lastly, all newly constructed nonresidential buildings must install a minimum amount of on-site solar production based on square footage.

The City will continue to enforce Title 24, Part 6, as well as the proposed ordinance. The proposed ordinance will protect the environment and will require buildings to consume no more energy than the State standards. Thus, there are no reasonably foreseeable adverse impacts, and no possibility that the activity in question may have a significant effect on the environment. As the lead agency, the City has also determined that this activity is exempt from CEQA under section 15061(b)(3).

In accordance with Public Resources Code Section 25402.1 (h)2 and Section 10-106 of the Building Energy Efficiency Standards, this package of materials includes evidence that the proposed local ordinance has been approved in a public meeting process, is cost effective, and is more stringent than the energy requirements set by California's 2019 Building Energy Efficiency Standards Title 24, Part 6. Please find the following supporting attachments enclosed:

- A. Signed Ordinance No. 1057
- B. September 10 staff report to the City of Menlo Park City Council providing further analysis on cost effectiveness
- C. Statewide Cost Effectiveness Study Residential
- D. Statewide Cost Effectiveness Study Nonresidential
- E. Supplemental Memorandum from TRC regarding cost effectiveness studies
- F. Evidence of CEQA compliance through the attached Notice of Exemption

Lastly, we also respectfully request that the CEC expedite updating compliance software to allow use of large central electric water heating systems by the first quarter of 2020. High-rise multifamily developers expressed concerns about the unavailability of compliance software for large central heat pump water heaters. A pathway in the building code was leveraged with the stakeholders by using individual electric water heating units or "mini-plant" type systems that serve up to eight units. However, this is not ideal and this technology is being used in other parts of the country and world. We understand that the CEC is currently working on resolving this issue over the next year, but a more expedited process would be appreciated by the building sector.

If you have any questions, please contact Rebecca Lucky, Sustainability Manager, at 650-330-6765 or rllucky@menlopark.org

Thank you again for your guidance, and for considering Menlo Park's Ordinance No.1057 for approval. We look forward to working with you again in the future.

Sincerely,

25

110

Starla Jerome-Robinson City Manager

ORDINANCE NO. 1057

AN ORDINANCE OF THE CITY COUNCIL OF THE CITY OF MENLO PARK AMENDING CHAPTER 12.04 [ADOPTION OF CODES] AND CHAPTER 12.16 [ENERGY CODE] OF TITLE 12 [BUILDINGS AND CONSTRUCTION] OF THE MENLO PARK MUNICIPAL CODE TO ADOPT A LOCAL "REACH" CODE

WHEREAS, the City of Menlo Park ("City") wishes to adopt a building code in accordance with law and to use the most updated regulations in the processing of development in the City;

WHEREAS, California Health and Safety Code section 17958 requires that cities adopt building regulations that are substantially the same as those adopted by the California Building Standards Commission and contained in the California Building Standards;

WHEREAS, the California Energy Code is a part of the California Building Standards which implements minimum energy efficiency standards in buildings through mandatory requirements, prescriptive standards, and performances standards;

WHEREAS, California Health and Safety Code Sections 17958.5, 17958.7 and 18941.5 provide that the City may make changes or modifications to the building standards contained in the California Building Standards based upon express findings that such changes or modifications are reasonably necessary because of local climatic, geological or topographical conditions;

WHEREAS, the City Council of the City of Menlo Park finds that each of the amendments, additions and deletions to the California Energy Code contained in this ordinance are reasonably necessary because of local climatic, geological or topographical conditions described in Section 1;

WHEREAS, Public Resources Code Section 25402.I(h)2 and Section 10-106. of the Building Energy Efficiency Standards (Standards) establish a process which allows local adoption of energy standards that are more stringent than the statewide Standards, provided that such local standards are cost effective and the California Energy Commission finds that the standards will require buildings to be designed to consume no more energy than permitted by the California Energy Code;

WHEREAS, the California Codes and Standards Reach Code Program, has determined specific modifications to the 2019 State Energy Code for each climate zone that are cost effective;

WHEREAS, that such modifications will result in designs that consume less energy than they would under the 2019 State Energy Code;

WHEREAS, the City of Menlo Park, through TRC Advanced Energy, has performed an additional cost effectiveness analyses as required by the California Energy Commission for the local amendments to the California Energy Code contained in this ordinance which memo is hereby incorporated by reference;

WHEREAS, based upon these analyses, the City Council of the City of Menlo Park finds that the local amendments to the California Energy Code contained in this ordinance are cost effective and will require buildings to be designed to consume no more energy than permitted by the California Energy Code;

Ordinance No. 1057 Page 2 of 11

WHEREAS, because of the City's unique local climatic, geologic and topographic conditions, the City desires to make amendments and additions to the code.

NOW, THEREFORE, THE CITY COUNCIL OF THE CITY OF MENLO PARK DOES ORDAIN AS FOLLOWS:

<u>SECTION 1: FINDINGS AND DETERMINATIONS.</u> The following local climatic, conditions justify modifications to the California Building Standards Code.

A. Climatic: The City is located in Climate Zone 3 as established in the 2019 California Energy Code. Climate Zone 3 incorporates mostly coastal communities from Marin County to southern Monterey County including San Francisco. The City experiences precipitation ranging from 13 to 20 inches per year with an average of approximately 15 inches per year. Ninety-five percent of precipitation falls during the months of November through April, leaving a dry period of approximately six months each year. Relative humidity remains moderate most of the time. Temperatures in the summer average around 80 degrees Fahrenheit and in the winter in the mid 50 degrees Fahrenheit. Prevailing winds in the area come from the west with velocities generally in the 12 miles per hour range, gusting from 25 to 35 miles per hour. These climatic conditions along with the greenhouse emissions generated from structures in both the residential and nonresidential sectors requires exceeding the energy standards for building construction established in the 2019 California Buildings Standards Code. The City Council also adopted a Climate Action Plan that has a goal of reducing greenhouse gas emissions 27% below 2005 levels by 2020. In order to achieve and maintain this goal, the City needs to adopt policies and regulations that reduce the use of fossil fuels that contribute to climate change, such as natural gas in buildings, in new development. Human activities, such as burning natural gas to heat buildings, releases greenhouse gases into the atmosphere and causes an overall increase in global average temperature. This causes sea levels to rise, affecting the City's shoreline and infrastructure.

Many new buildings in Menlo Park will be built near the coastline in an area known as the Bayfront Area that is situated on marshlands and former salt ponds. San Francisquito Creek also runs through the City, which creates an increasing potential flooding risk with climate change as a result of human generated greenhouse gas emissions. Menlo Park is vulnerable to sea level rise where new development is proposed in this code cycle. New buildings that are directly vulnerable to sea level rise should avoid generating additional greenhouse gas emissions. The proposed Reach Code would ensure that new buildings use cleaner sources of energy that are greenhouse gas free.

B. <u>Geologic</u>: The City of Menlo Park is subject to earthquake hazard caused by its proximity to San Andreas fault. This fault runs from Hollister, through the Santa Cruz Mountains, epicenter of the 1989 Loma Prieta earthquake, then on up the San Francisco Peninsula, then offshore at Daly City near Mussel Rock. This is the approximate location of the epicenter of the 1906 San Francisco earthquake. The other fault is Hayward Fault. This fault is about 74 mi long, situated mainly along the western base of the hills on the east side of San Francisco Bay. Both of these faults are considered major Northern California earthquake faults which may experience rupture at any time. Thus, because the City is within a seismic area

Ordinance No. 1057 Page 3 of 11

> which includes these earthquake faults, the modifications and changes cited herein are designed to better limit property damage as a result of seismic activity and to establish criteria for repair of damaged properties following a local emergency.

C. <u>Topographic</u>: The City of Menlo Park is contiguous with the San Francisco Bay, resulting in a natural receptor for storm and waste water run-off. Also the City is located in an area that is relatively high liquefaction potential given its proximity to the Bay. The surface condition consists mostly of stiff to dense sandy clay, which is highly plastic and expansive in nature. The aforementioned conditions within the City create hazardous conditions for which departure from California Building Standards Code is warranted

<u>SECTION 2: AMENDMENT OF CODE.</u> Section 12.04.010 of Chapter 12.04 [Adoption of Codes] of Title 12 [Buildings and Construction] is hereby repealed and a new Section 12.04.010 is hereby added to read as follows:

12.04.010 Municipal building code.

The following codes are hereby adopted and by reference are incorporated herein as if set forth in full:

(1) The 2019 California Administrative Code, published by the International Code Council, as amended in Part 1 of the California Building Standards Code, California Code of Regulations Title 24;

(2) The 2019 California Building Code based on the International Building Code, 2018 Edition, published by the International Code Council, together with those omissions, amendments, exceptions and additions thereto as amended in Part 2 of the California Building Standards Code, California Code of Regulations Title 24;

(3) The 2019 California Residential Code based on the International Residential Code, 2018 Edition, published by the International Code Council, together with those omissions, amendments, exceptions and additions thereto as amended in Part 2.5 of the California Building Standards Code, California Code of Regulations Title 24;

(4) The 2019 California Electrical Code the National Electrical Code, 2017 Edition, published by the National Fire Protection Association, together with those omissions, amendments, exceptions and additions thereto as amended in Part 3 of the California Building Standards Code, California Code of Regulations Title 24;

(5) The 2019 California Mechanical Code the Uniform Mechanical Code, 2018 Edition, published by the International Association of Plumbing and Mechanical Officials, together with those omissions, amendments, exceptions and additions thereto as amended in Part 4 of the California Building Standards Code, California Code of Regulations Title 24;

(6) The 2019 California Plumbing code the Uniform Plumbing Code, 2018 Edition, including the Installation Standards thereto, published by the International Association of Plumbing and Mechanical Officials, together with those omissions, amendments, exceptions and additions thereto as amended in Part 5 of the California Building Standards Code, California Code of Regulations Title 24;

(7) The 2019 California Energy Code, published by the International Code Council, as amended in Part 6 of the California Building Standards Code, California Code of Regulations Title 24;

(8) The 2019 California Historical Building Code, published by the International Code Council, as amended in Part 8 of the California Building Standards Code, California Code of Regulations Title 24;

(9) The 2019 California Existing Building Code based on the 2018 International Existing Building Code Edition, published by the International Code Council, together with those omissions, amendments, exceptions and additions thereto as amended in Part 10 of the California Building Standards Code, California Code of Regulations Title 24 ;

(10) The 2019 California Green Building Standards Code, published by the International Code Council, as amended in Part 11 of the California Building Standards Code, California Code of Regulations Title 24; and

(11) The 2019 California Referenced Standards Code, published by the International Code Council, as amended in Part 12 of the California Building Standards Code, California Code of Regulations Title 24.

A copy of each code is on file in the office of the city clerk. The provisions of this title, including said codes and amendments thereto, shall be known as the building code of the city.

<u>SECTION 3: AMENDMENT OF CODE.</u> Chapter 12.16 [Energy Code] of Title 12 [Buildings and Construction] is hereby repealed and a new Chapter 12.16 is hereby added to read as follows:

SECTION 100.0 - Scope

(e) Sections applicable to particular buildings. TABLE 100.0-A and this subsection list the provisions of Part 6 that are applicable to different types of buildings covered by Section 100.0(a).

- All buildings. Sections 100.0 through 110.12 apply to all buildings. EXCEPTION to Section 100.0(e) 1: Spaces or requirements not listed in TABLE 100.0-A.
- 2. Newly constructed buildings.
 - A. All newly constructed buildings. Sections 110.0 through 110.12 apply to all newly constructed buildings within the scope of Section 100.0(a). In addition, newly constructed buildings shall meet the requirements of Subsections B, C, D or E, as applicable; and shall be an All-Electric Building as defined in Section 100.1(b).

Exception 1: Non-Residential Buildings containing a Scientific Laboratory Building, such area may contain a non-electric Space Conditioning System. To take advantage of this exception applicant shall provide third party verification that All-Electric space heating requirement is not cost effective and feasible. Exception 2: All Residential buildings may contain non-electric Cooking Appliances and Fireplaces.

Exception 3: Exemption for public agency owned and operated emergency centers. To take advantage of this exception applicant shall provide third party verification that All-Electric space heating requirement is not cost effective and feasible.

Conditional Exception 4: Non-residential buildings containing a for-profit restaurant open to the public or an employee kitchen may apply to a City Council appointed body, which body shall be designated from time to time by the City Council, for an exception to install gas-fueled cooking appliances. This request must be based on a business-related reason to cook with a flame that cannot be reasonably achieved with an electric fuel source. Examples include barbequethemed restaurants and pizza ovens. The City Council appointed body shall grant this exception if they find the following:

1. There is a business-related reason to cook with a flame;

2. This need cannot be reasonably achieved with an electric fuel source;
3. The applicant has employed reasonable methods to mitigate the greenhouse gas impacts of the gas-fueled appliance;

4. The applicant shall comply with the pre-wiring provision of Note 1 below.

The City Council appointed body's decision shall be final unless the applicant appeals to the City Council within 15 days of the appointed body's decision. The City Council's decision on the appeal shall be final.

Note 1: If natural gas appliances are used in any of the above exceptions 1-4, natural gas appliance locations must also be electrically pre-wired for future electric appliance installation. They shall include the following:

1. A dedicated circuit, phased appropriately, for each appliance, with a minimum amperage requirement for a comparable electric appliance (see manufacturer's recommendations) with an electrical receptacle or junction box that is connected to the electric panel with conductors of adequate capacity, extending to within 3 feet of the appliance and accessible with no obstructions. Appropriately sized conduit may be installed in lieu of conductors;

2. Both ends of the unused conductor or conduit shall be labeled with the words "For Future Electric appliance" and be electrically isolated;

3. A reserved circuit breaker space shall be installed in the electrical panel adjacent to the circuit breaker for the branch circuit and labeled for each circuit, an example is as follows (i.e "For Future Electric Range;") and

4. All electrical components, including conductors, receptacles, junction boxes, or blank covers, related to this section shall be installed in accordance with the California Electrical Code.

Note 2: If any of the exceptions 1-4 are granted, the Building Official shall have the authority to approve alternative materials, design and methods of construction or equipment per CBC 104.

Section 100.1(b) is modified by adding the following definitions:

ALL ELECTRIC BUILDING: is a building that has no natural gas or propane plumbing installed within the building, and that uses electricity as the source of energy for its space heating, water heating, cooking appliances, and clothes drying appliances. All Electric Buildings may include solar thermal pool heating.

Scientific Laboratory Building: is a building or area where research, experiments, and measurement in medical, and life sciences are performed and/or stored requiring examination of fine details. The building may include workbenches, countertops, scientific instruments, and supporting offices.

Section 100.1 is modified as follows:

SHADING – is the protection from heat gains because of direct solar radiation by permanently attached exterior devices of building elements, interior shading devices, glazing material, adherent materials, including items located outside the building footprint such as Heritage trees or high rise buildings that may affect shading.

Section 110.2 is modified as follows:

SECTION 110.2 – MANDATORY REQUIREMENTS FOR SPACE-CONDITIONING EQUIPMENT

Certification by Manufacturers. Any space-conditioning equipment listed in this section, <u>meeting</u> <u>the requirements of section 100.0 (e)2A</u>, may be installed only if the manufacturer has certified to the Commission that the equipment complies with all the applicable requirements of this section.

Section 110.3 is modified as follows:

SECTION 110.3 – MANDATORY REQUIREMENTS FOR SERVICE WATER-HEATING SYSTEMS AND EQUIPMENT

(a) Certification by manufacturers. Any service water-heating system or equipment, meeting the requirements of section 100.0 (e)2A, may be installed only if the manufacturer has certified that the system or equipment complies with all of the requirements of this subsection for that system or equipment.

Section 110.4 is modified as follows:

SECTION 110.4 – MANDATORY REQUIREMENTS FOR POOL AND SPA SYSTEMS AND EQUIPMENT

(a) Certification by Manufacturers. Any pool or spa heating system or equipment, meeting the requirements of section 100.0 (e)2A, may be installed only if the manufacturer has certified that the system or equipment has all of the following:

Section 110.5 is modified as follows:

SECTION 110.5 – NATURAL GAS CENTRAL FURNACES, COOKING EQUIPMENT, POOL AND SPA HEATERS, AND FIREPLACES: PILOT LIGHTS PROHIBITED

Any natural gas system or equipment, meeting the requirements of Section 100.0 (e)2A,

Ordinance No. 1057 Page 7 of 11

listed below may be installed only if it does not have a continuously burning pilot light:

Section 110.10 is modified as follows:

SECTION 110.10 – MANDATORY REQUIREMENTS FOR SOLAR READY BUILDINGS AND SOLAR PANEL SYSTEM REQUIREMENTS FOR NON-RESIDENTIAL NEW BUILDINGS (a) Covered Occupancies.

- Single Family Residences. Single family residences located in subdivisions with ten or more single family residences and where the application for a tentative subdivision map for the residences has been deemed complete approved by the enforcement agency, which do not have a photovoltaic system installed, shall comply with the requirements of Section 110.10(b) through 110.10(e).
- 2. Low-rise Multifamily Buildings. Low-rise multi-family buildings that do not have a photovoltaic system installed shall comply with the requirements of Section 110.10(b) through 110.10(d).
- Hotel/Motel Occupancies and High-rise Multifamily Buildings. Hotel/motel occupancies and high-rise multifamily buildings with ten habitable stories or fewer shall comply with the requirements of Section 110.10(b) through 110.10(d)- and <u>Table 2.</u>
- Nonresidential Buildings. Nonresidential buildings with three habitable stories or fewer, other than healthcare facilities, shall comply with the requirements of Section 110.10(b) through 110.10(d)- and Table 2.

Square footage of building	Size of panel
Less than 10,000 sq. ft.	Minimum of 3-kilowatt PV systems
Greater than or equal to 10,000 sq. ft.	Minimum of 5-kilowatt PV systems

equipment otherwise required for compliance with Part 6.

(b) Solar Zone.

 Minimum Solar Zone Area. The solar zone shall have a minimum total area as described below. The solar zone shall comply with access, pathway, smoke ventilation, and spacing requirements as specified in Title 24, Part 9 or other Parts of Title 24 or in any requirements adopted by a local jurisdiction. The solar zone total area shall be comprised of areas that have no dimension less than five feet and are no less than 80 square feet each for buildings with roof areas less than or equal to 10,000 square feet or no less than 160 square feet each for buildings with roof areas greater than 10,000 square feet.

A. Single Family Residences. The solar zone shall be located on the roof or overhang of the building and have a total area no less than 250 square feet.

EXCEPTION 1 to Section 110.10(b)1A: Single family residences with a permanently installed domestic solar water-heating system meeting the installation criteria specified in the Reference Residential Appendix RA4 and with a minimum solar savings fraction of 0.50.

EXCEPTION 2 to Section 110.10(b)1A: Single family residences with three habitable stories or more and with a total floor area less than or equal to 2000 square feet and having a solar zone total area no less than 150 square feet.

EXCEPTION 3 to Section 110.10(b)1A: Single family residences located in the Wildland-Urban Interface Fire Area as defined in Title 24, Part 2 and having a whole house fan and having a solar zone total area no less than 150 square feet.

EXCEPTION 4 to Section 110.10(b)1A: Buildings with a designated solar zone area that is no less than 50 percent of the potential solar zone area. The potential solar zone area is the total area of any low-sloped roofs where the annual solar access is 70 percent or greater and any steep-sloped roofs oriented between 90 degrees and 300 degrees of true north where the annual solar access is 70 percent or greater. Solar access is the ratio of solar insolation including shade to the solar insolation without shade. Shading from obstructions located on the roof or any other part of the building shall not be included in the determination of annual solar access.

EXCEPTION 5 to Section 110.10(b)1A: Single family residences having a solar zone total area no less than 150 square feet and where all thermostats are demand responsive controls and comply with Section 110.12(a), and are capable of receiving and responding to Demand Response Signals prior to granting of an occupancy permit by the enforcing agency.

EXCEPTION 6 to Section 110.10(b)1A: Single family residences meeting the following conditions:

A. All thermostats are demand responsive controls that comply with Section 110.12(a), and are capable of receiving and responding to Demand Response Signals prior to granting of an occupancy permit by the enforcing agency.

B. Comply with one of the following measures:

i. Install a dishwasher that meets or exceeds the ENERGY STAR Program requirements with a refrigerator that meets or exceeds the ENERGY STAR Program requirements, a whole house fan driven by an electronically commutated motor, or an SAE J1772 Level 2 Electric Vehicle Supply Equipment (EVSE or EV Charger) with a minimum of 40 amperes; or

ii. Install a home automation system capable of, at a minimum, controlling the appliances and lighting of the dwelling and responding to demand response signals; or

iii. Install alternative plumbing piping to permit the discharge from the clothes washer and all showers and bathtubs to be used for an irrigation system in compliance with the California Plumbing Code and any applicable local ordinances; or

iv. Install a rainwater catchment system designed to comply with the California Plumbing Code and any applicable local ordinances, and that uses rainwater flowing from at least 65 percent of the available roof area. Ordinance No. 1057 Page 9 of 11

> B. Low-rise and High-rise Multifamily Buildings, Hotel/Motel Occupancies, and Nonresidential Buildings. The solar zone shall be located on the roof or overhang of the building or on the roof or overhang of another structure located within 250 feet of the building or on covered parking installed with the building project, and shall have a total area no less than 15 percent of the total roof area of the building excluding any skylight area. The solar zone requirement is applicable to the entire building, including mixed occupancy.

EXCEPTION 1 to Section 110.10(b)1B: High-rise Multifamily Buildings, Hotel/Motel Occupancies, and Nonresidential Buildings with a permanently installed solar electric system having a nameplate DC power rating, measured under Standard Test Conditions, of no less than one watt per square foot of roof area.

EXCEPTION 2 to Section 110.10(b)1B: High-rise multifamily buildings, hotel/motel occupancies with a permanently installed domestic solar water-heating system complying with Section 150.1(c)8Biii- and an additional collector area of 40 square feet.

EXCEPTION 3 to Section 110.10(b)1B: Buildings with a designated solar zone area that is no less than 50 percent of the potential solar zone area. The potential solar zone area is the total area of any low-sloped roofs where the annual solar access is 70 percent or greater and any steep-sloped roofs oriented between 90 degrees and 300 degrees of true north where the annual solar access is 70 percent or greater. Solar access is the ratio of solar insolation including shade to the solar insolation without shade. Shading from obstructions located on the roof or any other part of the building shall not be included in the determination of annual solar access.

EXCEPTION 4 to Section 110.10(b)1B: Low-rise and high-rise multifamily buildings with all thermostats in each dwelling unit are demand response controls that comply with Section 110.12(a), and are capable of receiving and responding to Demand Response Signals prior to granting of an occupancy permit by the enforcing agency. In addition, either A or B below:

A. In each dwelling unit, comply with one of the following measures:

i. Install a dishwasher that meets or exceeds the ENERGY STAR Program requirements with either a refrigerator that meets or exceeds the ENERGY STAR Program requirements or a whole house fan driven by an electronically commutated motor; or

ii. Install a home automation system that complies with Section 110.12(a) and is capable of, at a minimum, controlling the appliances and lighting of the dwelling and responding to demand response signals; or iii. Install alternative plumbing piping to permit the discharge from the clothes washer and all showers and bathtubs to be used for an irrigation system in compliance with the California Plumbing Code and any applicable local ordinances; or

iv. Install a rainwater catchment system designed to comply with the California Plumbing Code and any applicable local ordinances, and that uses rainwater flowing from at least 65 percent of the available roof area.

B. Meet the Title 24, Part 11, Section A4.106.8.2 requirements for electric vehicle charging spaces.

EXCEPTION 5 to Section 110.10(b)1B: Buildings where the roof is designed and approved to be used for vehicular traffic or parking or for a heliport.

Exception 6 to section 110.10(b)1B: Performance equivalency approved by the building official.

2. Azimuth. All sections of the solar zone located on steep-sloped roofs shall be oriented between 90 degrees and 300 degrees of true north.

3. Shading.

A. No obstructions, including but not limited to, vents, chimneys, architectural features, and roof mounted equipment, shall be located in the solar zone.

B. Any obstruction, located on the roof or any other part of the building that projects above a solar zone shall be located at least twice the distance, measured in the horizontal plane, of the height difference between the highest point of the obstruction and the horizontal projection of the nearest point of the solar zone, measured in the vertical plane.

EXCEPTION to Section 110.10(b)3: Any roof obstruction, located on the roof or any other part of the building, that is oriented north of all points on the solar zone.

C. The solar zone needs to account for shading from obstructions that may impact the area required in 110.10(b)1B. When determined by the Building Official that conditions exist where excessive shading occurs and solar zones cannot be met, a performance equivalency approved by the Building Official may be used as an alternative.

4. Structural Design Loads on Construction Documents. For areas of the roof designated as solar zone, the structural design loads for roof dead load and roof live load shall be clearly indicated on the construction documents.

NOTE: Section 110.10(b)4 does not require the inclusion of any collateral loads for future solar energy systems.

(c) Interconnection Pathways.

1. The construction documents shall indicate a location reserved for inverters and metering equipment and a pathway reserved for routing of conduit from the solar zone to the point of interconnection with the electrical service.

2. For single family residences and central water-heating systems, the construction documents shall indicate a pathway for routing of plumbing from the solar zone to the water-heating system.

(d) Documentation. A copy of the construction documents or a comparable document indicating the information from Sections 110.10(b) through 110.10(c) shall be provided to the occupant.

(e) Main Electrical Service Panel.

1. The main electrical service panel shall have a minimum busbar rating of 200 amps. 2. The main electrical service panel shall have a reserved space to allow for the installation of a double pole circuit breaker for a future solar electric installation. The reserved space shall be permanently marked as "For Future Solar Electric". Ordinance No. 1057 Page 11 of 11

<u>SECTION 5: EXEMPTION FROM CEQA.</u> The City Council finds, pursuant to Title 14 of the California Administrative Code, Section 15061(b)(3) that this Ordinance is exempt from the requirements of the California Environmental Quality Act ("CEQA") on the grounds that these standards are more stringent than the State energy standards, there are no reasonably foreseeable adverse impacts and there is no possibility that the activity in question may have a significant effect on the environment.

<u>SECTION 6: SEVERABILITY.</u> If any part of this Ordinance is held to be invalid or inapplicable to any situation by a court of competent jurisdiction, such decision shall not affect the validity of the remaining portions of this Ordinance or the applicability of this Ordinance to other situations.

<u>SECTION 7: EFFECTIVE DATE.</u> This Ordinance shall become effective following approval by the California Energy Commission, but in no event before January 1, 2020.

<u>SECTION 8: POSTING.</u> Within fifteen (15) days of its adoption, the Ordinance shall be posted in three (3) public places within the City of Menlo Park, and the Ordinance, or a summary of the Ordinance prepared by the City Attorney, shall be published in a local newspaper used to publish official notices for the City of Menlo Park prior to the effective date.

INTRODUCED on this tenth day of September, 2019.

PASSED AND ADOPTED as an ordinance of the City of Menlo Park at a regular meeting of said City Council on this twenty-fourth day of September 2019, by the following vote:

AYES:Carlton, Combs, Mueller, NashNOES:NoneABSENT:TaylorABSTAIN:None

APPROVED:

Ray Mueller, Mayor

ATTEST:

City Clerk

STAFF REPORT

City Council Meeting Date: Staff Report Number:

9/24/2019 19-187-CC

Consent Calendar:

Introduction of Ordinance No. 1057 adopting updated building codes and local amendments to the 2019 California Energy Code to require higher levels of building electrification and solar production for newly constructed buildings to reduce greenhouse gas emissions effective January 1, 2020

Executive Summary

Staff recommends that the City Council introduce Ordinance No. 1057 adopting updated building codes and local amendments to the 2019 California Energy Code as written in Attachment A that would require higher levels of building electrification and solar production for newly constructed buildings to reduce greenhouse gas emissions effective January 1, 2020, as originally presented August 27, with the following City Council directed amendments to Section 100:

- 1. Clothes dryers to use electricity for residential homes and low-rise multifamily buildings.
- 2. All new buildings to be electric-ready if allowed to use natural gas appliances through exceptions or appeal.
- 3. Nonresidential kitchens (such as office cafeterias and for-profit restaurants) to be all-electric with the right to appeal for gas cooking appliances.

The amendments above are determined to meet the cost effectiveness requirement. If the City Council desires to make substantive amendments beyond those outlined above, it is unlikely that the codes will be implemented by January 1, 2020.

For the purposes of application to the California Energy Commission (CEC,) the following report outlines the background and analysis supporting this ordinance development and does not include any new information for City Council consideration.

Policy Issues

Adoption of environmentally sustainable local amendments to the California Building Code (known as Reach Codes) is in the City Council 2019 workplan. Adopting local energy codes that reduce fossil fuels, such as natural gas used in buildings, aligns with the City's climate action plan to reduce greenhouse gas emissions (GHG) and the climate and sustainability resolution (Resolution No. 6493) signed by the mayor on Earth Day that specifies working toward zero carbon (greenhouse gas free) buildings. The adoption of local building code standards or amendments requires City Council and state approval.

Background

California state building code and local Reach Code opportunity

Each local government is required by law to adopt new changes to the California Building Standards Code every three years (known as code cycles) proposed by the State. The next code cycle will take effect January 1, 2020.

This creates an opportunity to simultaneously adopt optional local building code amendments (known as Reach Codes) that exceed state code standards. Historically, cities/counties sometimes adopt amendments to the Energy (Title 24, Part 6) and California Green Building Standards – CALGreen (Title 24, Part 11) codes to meet local environmental goals or aspirations.

Menlo Park's environmental goal is to meet its greenhouse gas reduction goal of 27 percent below 2005 levels by 2020 as outlined in the City's climate action plan (Attachment B.) New buildings that have energy delivered from burning fossil fuels contribute to climate change by emitting greenhouse gases (GHG). In 2013, energy usage from buildings accounted for 55 percent (196,000 tons) of the total community GHG emissions in Menlo Park.

More than 80 percent of a building's energy use relates to heating/cooling space and heating water. Natural gas is fossil fuel that is typically used for heating space and water for building occupants. As increased development occurs in the community, it is important to consider feasible and reasonable policies and regulations that will not increase the community's natural gas usage to achieve or exceed the City's GHG emissions reduction goal.

Menlo Park is in a unique position due to its large renewable energy portfolio. Residents and businesses in Menlo Park receive energy from Peninsula Clean Energy (PCE,) which provides 50 percent renewable energy and 90 percent greenhouse gas (carbon) free electricity at a cost slightly less than PG&E.

This creates a significant Reach Code opportunity to reduce future GHG in new buildings by discouraging or eliminating the use of natural gas. This can be accomplished by incentivizing and/or requiring new buildings to use more electric appliances to utilize the clean renewable electricity available rather than natural gas. All-electric buildings are defined as having electric appliances for space heating, water heating, clothes-drying, fireplaces and cooking appliances.

Based on past building permit trends and the number of new developments in the planning phase, Menlo Park may experience over the upcoming code cycle the replacement and rebuild of 100 new homes and the addition of 21 new buildings that include high-rise residential, retail, office and hotels (if approved.) If these buildings still use natural gas for heating, 212,876 tons of GHG would be emitted over the expected life of the buildings (30 years for residential and 50 years for commercial.) This adds about 5,000 to 6,000 tons each year to the community GHG emissions (equivalent to the weight of 130 humpback whales.) In addition, the majority of development would occur near the bay front, which is vulnerable to sea level rise resulting from climate change. This provides further motivation to avoid additional GHG emissions.

PCE has a goal to be 100 percent greenhouse gas free by 2021, which would mean all new all-electric buildings in Menlo Park would be GHG free by 2021. This maximizes the use of clean and renewable energy currently available and ensures that the climate action plan goals are met.

It is also important to note that as the State and region quickly move toward renewable energy, future regulation will likely require electrification of buildings, particularly through retrofit requirements. Addressing electrification now for new buildings avoids hardships and costs for building owners in the future. The state is already requiring that power providers achieve 100 percent greenhouse gas (carbon) free electricity by

2045 (Senate Bill 100.)

City Council direction

Staff presented reach code options and recommendations at three EQC meetings and two City Council meetings before the September 10 meeting. Each meeting outcome provided additional direction for increased electrification requirements (Attachment C.) Based on the last City Council meeting August 27, staff has incorporated the direction to require:

- 1. Clothes dryers to use electricity for residential homes and low-rise multifamily buildings.
- 2. All new buildings to be electric-ready if allowed to use natural gas appliances through exceptions or appeal.
- 3. Nonresidential kitchens (such as office cafeterias and for-profit restaurants) to be all-electric with the right to appeal for gas cooking appliances.

Floor area ratio (FAR) exclusions are not recommended for changes as the zoning ordinance already allows a process and methods for excluding mechanical equipment.

Analysis

Proposed Reach Code

The proposed Reach Code in Attachment A only applies to newly constructed buildings, and not additions or remodels. Tenant improvements that result from an all-electric core and shell would also be required to comply. Based on the evaluation criteria and City Council direction August 27, the proposed Reach Code for Menlo Park would have the following standards/requirements:

Table 1: Summary of proposed Reach Code requirements/standards		
Building type	Requirements/Standards	
New residential buildings (single family and three stories or less multifamily)	Require to build all-electric building for: Space heating, water heating and clothes dryers. a. Natural gas can still be used for stoves, fireplaces or other appliances if desired. b. Prewiring for electric appliances is required where natural gas appliances are used.	
New nonresidential buildings and high-rise multifamily buildings (three stories and greater)	Require to: 1. Build an all-electric building that uses electricity as the source of energy for all appliances, including but not limited to heating/cooling appliances, cooking appliances, fireplaces and clothes dryers; and	
	 2. Install a minimum amount of on-site solar based on square footage: a. Less than 10,000 square feet requires a minimum of three kilowatt photovoltaic system b. Greater than or equal to 10,000 square feet requires a minimum of five kilowatt photovoltaic system 	
	Exceptions include: - Life science buildings may use natural gas for space heating if desired. To grant exception, applicants are required to provide third-party verification to analyze why all- electric space-heating requirement is not cost effective and feasible.	
	- Public agency owned and operated emergency operations centers (such as fire stations and police stations) may use natural gas. To grant exception, applicants are required to provide third-party verification to analyze why all-electric space-heating requirement is not cost effective and feasible.	
	- Nonresidential kitchens (such as for-profit restaurants and cafeterias) may appeal under certain conditions to an appointed body designated by the City Council if they want to use natural gas stoves. The advisory body's decision can be appealed to City Council.	
	For all exceptions, natural gas appliance locations must be electrically pre-wired for future electric appliance installation	

The Reach Code option was chosen based on these following criteria:

- Feasibility and cost-effectiveness
- Significant greenhouse gas reductions (greatest environmental benefit)
- Ease of implementation and efficiency for the development community and city operations
- Community acceptance

State code and Reach Code process

The California Health and Safety Code enables local communities to modify the California Building Standards Code and adopt different or more restrictive requirements with the caveat that:

- The local modifications must be substantially equivalent to or more stringent than the building standards published by the California Building Standards Code; and
- The local jurisdiction is required to make specific or express findings that such changes are reasonably necessary because of local geological, climatic or topographic conditions.

These findings are included in Attachment A. If Reach Codes involve energy requirements, cities/counties need to file an application to the CEC to prove that any local amendments related to the energy code are cost effective and save more energy than those required by the state. This is done through submitting a cost effectiveness study to the CEC.

Cost effectiveness study results

The studies and memorandum in Attachment E, F, and G present the research and cost effectiveness analysis of various building prototypes with different Reach Code options.

The studies act as tools for communities to select different Reach Code options ranging from increased energy efficiency to all-electric requirements. For Menlo Park, the studies provide evidence that the proposed electric requirements for new buildings and solar production are cost effective. Table 2 highlights the estimated cost savings between new all-electric and natural gas buildings.

Table 2: Cost savings between all-electric and natural gas building				
Building prototype	Construction savings	Operational savings		
Single family home	Up to \$5,349	\$4,416		
Multifamily- three stories or less (per dwelling unit)	Up to \$2,337	\$1,864		
Office	\$82,330	\$52,738		
Retail	\$24,111	\$22,661		
Hotel	\$1.3 million	\$1.24 million		

A majority of the cost savings is experienced upfront in the construction phase by avoiding the cost to install natural gas infrastructure. Additionally, building operational savings was calculated using time dependent valuation (TDV.) TDV was developed by the CEC to reflect time dependent value of energy including the long-term projected costs of energy, such as the cost of energy during peak periods. It also provides a value for GHG emissions produced/reduced as part of the calculation. TDV is expressed as the overall lifecycle savings of a building, which for the purposes of the study is 15 years for residential and 30 years for nonresidential.

If peak demand costs and greenhouse gas costs are removed from TDV, the cost to operate single-family, multifamily, offices and hotels would be increased. However, there are other important local factors to consider that would further reduce operational costs. For example, Menlo Park's electricity provider, PCE, has slightly lower electricity rates than the PG&E rates used in the cost effectiveness studies.

Additionally, the studies used the lowest energy efficient appliances allowable under federal law for the building prototypes. There is higher energy efficient and cost effective appliances available on the market that would further reduce utility bill costs for customers.

In addition, producing on-site solar as required under the proposed Reach Code for new buildings would further reduce operation costs. Based on Menlo Park's PCE rates, nonresidential/high-rise residential onsite solar requirements, and higher energy efficient appliances available, the expected average annual utility bill would be much lower than projected in the cost effectiveness studies.

Also, the addition of the prewiring requirement directed by City Council is considered to be cost effective. The supplemental memorandum from TRC (Attachment G) confirms that the cost to pre-wire for stoves is

Staff Report #: 19-187-CC

minimal. Natural gas cooking appliances use electricity for ignition, fans and lights. Electrical outlets will already be present. The cost of pre-wiring is estimated to be \$280 as opposed to \$930 to retrofit an existing electrical line.

Overall, the proposed Reach Code requirements have been shown to be cost effective.

Community engagement and feedback

Five public meetings between February and August 2019 have been held regarding Reach Code options. Multiple news articles have been published about the proposed Reach Codes. Since the August 27 meeting, a San Jose Mercury article was published August 28 regarding the proposed Reach Codes (Attachment J.)

A project page (Attachment K) was published on the City's website in July. In addition, the planning division has been providing information to current planning permit applicants about the proposed Reach Codes that could impact their project when applying for building permits after January 1, 2020. Staff spoke with various stakeholders concerned about the proposed Reach Codes multiple times.

Exemption for life sciences laboratories

Staff received feedback from the development community, residents, energy providers, the CEC, and nonprofit organizations. In July and August, staff addressed some community concerns about the reliability of an all-electric laboratory or life science building. These buildings contain vulnerable lab experiments, which depend on temperature-controlled rooms. Menlo Park has a life science district that houses incubator space for startup companies and medical/biotechnology research and development companies. Staff met with life science stakeholders to understand the concerns and explore options for all-electric life science buildings.

While all-electric laboratories and life science buildings are technically feasible as demonstrated by the University of California systems (Attachment D,) staff recommended those buildings to be exempted only for space heating. Life science buildings in Menlo Park have a higher tenant turnover rate than university campuses. The stakeholders need flexibility to change the building structures to attract new tenants.

As a result of lacking case studies, life science buildings may use natural gas for space heating, but water heating appliances are required to be electric. However, for every life science and laboratory building permit application, the applicant must submit a third-party verification to analyze why electric heating is not feasible and cost effective. This exception only applies to the 2019 building code cycle (effective January 1, 2020) and would be re-evaluated in 2022.

All-electric high-rise residential buildings

In August, staff received feedback from some high-rise residential building stakeholders. They had two main concerns. First, the state codes do not provide a pathway for large central electric water heating systems to be used for compliance and secondly, the unknown reliability of these electric water systems to provide domestic hot water. Staff consulted with TRC (cost effectiveness study technical consultants,) the CEC, and the City's building division to consider these concerns.

After further analysis, it was found that there are two alternative state code pathways for compliance:

- 1. Provide individual electric water heating systems to each unit; or
- 2. Use a smaller scale electric central water heating system that serves up to eight units, which are also known as "mini-plants."

In addition, staff found many case studies (Attachment H and I) of all-electric high-rise residential buildings.

Staff Report #: 19-187-CC

It should be noted that these buildings are not typical and are considered cutting edge. This requires innovative thinking and leadership in designing all-electric hot water systems.

After working on alternative state code pathways and case studies with the high-rise residential stakeholders, they expressed willingness at the City Council meeting August 27 to take on the challenge of all-electric buildings, but still acknowledged that this comes with challenges and requested consideration of exclusions in FAR calculations to account for the increased mechanical equipment. FAR exclusions are specified by zoning code and therefore not a matter would require a separate ordinance amendment. As this time, however, staff does not recommend exploration of zoning code changes as the zoning ordinance already allows a process and methods for excluding mechanical equipment.

Next steps

If approved, a second reading of the ordinance is tentatively scheduled September 24.

After adoption by City Council September 24, staff will submit the proposed Reach Codes to the California Building Standards Commission and the CEC for approval. Approval can take up to 60 days from the CEC. Staff has been working closely with the CEC to ensure that the proposed Reach Codes and cost effectiveness studies meet the state standards for adopting local energy code amendments. After approval by the CEC, staff will submit the proposed Reach Codes to the Building Standards Commission for final approval.

Staff will also develop an implementation plan over the next few months to prepare the necessary protocols and procedures for development applicants to comply with the Reach Codes. In addition, staff will inform the development community of the changes before the January 1, 2020 effective date.

The building code amendments discussed in this report focus on the Energy Code. Energy code local amendments are more difficult to process as they require a separate cost effectiveness study, and public review and approval by the CEC. Staff anticipates recommending additional local amendments to the Green Building code, Fire Code and possible other uniform State building codes. As these other local amendments do not require CEC approval, staff anticipates bringing forward a second building code ordinance for City Council approval in November 2019. The second ordinance will address the remainder of the uniform codes required by the state to adopt.

Environmental Review

Pursuant to Title 14 of the California Administrative Code, Section 15061(b)(3) this ordinance is exempt from the requirements of the California Environmental Quality Act ("CEQA") on the grounds that these standards are more stringent than the State energy standards, there are no reasonably foreseeable adverse impacts and there is no possibility that the activity in question may have a significant effect on the environment.

Public Notice

Public notification was achieved by posting the agenda, with the agenda items being listed, at least 72 hours prior to the meeting.

Attachments

Staff Report #: 19-187-CC

- A. Ordinance No. 1057 amending Title 12 (Buildings and Construction) of the Menlo Park Municipal Code adopting the updated uniform building codes and adopting local amendments to the Energy Code
- B. Hyperlink climate action plan: menlopark.org/ArchiveCenter/ViewFile/Item/8360
- C. Summary of staff's recommendation and City Council direction
- D. Hyperlink 2017 UC study by Point Energy Innovations: https://www.ucop.edu/sustainability/_files/Carbon%20Neutral%20New%20Building%20Cost%20Study% 20FinalReport.pdf
- E. Hyperlink Statewide Reach Code residential cost effectiveness study: menlopark.org/DocumentCenter/View/22644/H4--Att-C
- F. Hyperlink Statewide Reach Code nonresidential cost effectiveness study: menlopark.org/DocumentCenter/View/22642/H4---Att-D
- G. Supplemental TRC memorandum
- H. Scott Shell's all-electric buildings presentation
- I. Supplemental memo on all-electric high-rise residential buildings
- J. Hyperlink August 28 San Jose Mercury News article: https://www.mercurynews.com/2019/08/28/menlo-park-opts-for-a-natural-gas-ban-almost-asrestrictive-as-berkeley/
- K. Hyperlink Reach Code project page: menlopark.org/reachcodes

Report prepared by: Joanna Chen, Sustainability Specialist Rebecca Lucky, Sustainability Manager Chuck Andrews, Assistant Community Development Director Cara Silver, Assistant City Attorney

ORDINANCE NO. 1057

AN ORDINANCE OF THE CITY COUNCIL OF THE CITY OF MENLO PARK AMENDING CHAPTER 12.04 [ADOPTION OF CODES] AND CHAPTER 12.16 [ENERGY CODE] OF TITLE 12 [BUILDINGS AND CONSTRUCTION] OF THE MENLO PARK MUNICIPAL CODE TO ADOPT A LOCAL "REACH" CODE

WHEREAS, the City of Menlo Park ("City") wishes to adopt a building code in accordance with law and to use the most updated regulations in the processing of development in the City;

WHEREAS, California Health and Safety Code section 17958 requires that cities adopt building regulations that are substantially the same as those adopted by the California Building Standards Commission and contained in the California Building Standards;

WHEREAS, the California Energy Code is a part of the California Building Standards which implements minimum energy efficiency standards in buildings through mandatory requirements, prescriptive standards, and performances standards;

WHEREAS, California Health and Safety Code Sections 17958.5, 17958.7 and 18941.5 provide that the City may make changes or modifications to the building standards contained in the California Building Standards based upon express findings that such changes or modifications are reasonably necessary because of local climatic, geological or topographical conditions;

WHEREAS, the City Council of the City of Menlo Park finds that each of the amendments, additions and deletions to the California Energy Code contained in this ordinance are reasonably necessary because of local climatic, geological or topographical conditions described in Section 1;

WHEREAS, Public Resources Code Section 25402.I(h)2 and Section 10-106. of the Building Energy Efficiency Standards (Standards) establish a process which allows local adoption of energy standards that are more stringent than the statewide Standards, provided that such local standards are cost effective and the California Energy Commission finds that the standards will require buildings to be designed to consume no more energy than permitted by the California Energy Code;

WHEREAS, the California Codes and Standards Reach Code Program, has determined specific modifications to the 2019 State Energy Code for each climate zone that are cost effective;

WHEREAS, that such modifications will result in designs that consume less energy than they would under the 2019 State Energy Code;

WHEREAS, the City of Menlo Park, through TRC Advanced Energy, has performed an additional cost effectiveness analyses as required by the California Energy Commission for the local amendments to the California Energy Code contained in this ordinance which memo is hereby incorporated by reference;

WHEREAS, based upon these analyses, the City Council of the City of Menlo Park finds that the local amendments to the California Energy Code contained in this ordinance are cost

effective and will require buildings to be designed to consume no more energy than permitted by the California Energy Code;

WHEREAS, because of the City's unique local climatic, geologic and topographic conditions, the City desires to make amendments and additions to the code.

NOW, THEREFORE, THE CITY COUNCIL OF THE CITY OF MENLO PARK DOES ORDAIN AS FOLLOWS:

<u>SECTION 1: FINDINGS AND DETERMINATIONS.</u> The following local climatic, conditions justify modifications to the California Building Standards Code.

A. Climatic: The City is located in Climate Zone 3 as established in the 2019 California Energy Code. Climate Zone 3 incorporates mostly coastal communities from Marin County to southern Monterey County including San Francisco. The City experiences precipitation ranging from 13 to 20 inches per vear with an average of approximately 15 inches per year. Ninety-five percent of precipitation falls during the months of November through April, leaving a dry period of approximately six months each year. Relative humidity remains moderate most of the time. Temperatures in the summer average around 80 degrees Fahrenheit and in the winter in the mid 50 degrees Fahrenheit. Prevailing winds in the area come from the west with velocities generally in the 12 miles per hour range, gusting from 25 to 35 miles per hour. These climatic conditions along with the greenhouse emissions generated from structures in both the residential and nonresidential sectors requires exceeding the energy standards for building construction established in the 2019 California Buildings Standards Code. The City Council also adopted a Climate Action Plan that has a goal of reducing greenhouse gas emissions 27% below 2005 levels by 2020. In order to achieve and maintain this goal, the City needs to adopt policies and regulations that reduce the use of fossil fuels that contribute to climate change, such as natural gas in buildings, in new development. Human activities, such as burning natural gas to heat buildings, releases greenhouse gases into the atmosphere and causes an overall increase in global average temperature. This causes sea levels to rise, affecting the City's shoreline and infrastructure.

Many new buildings in Menlo Park will be built near the coastline in an area known as the Bayfront Area that is situated on marshlands and former salt ponds. San Francisquito Creek also runs through the City, which creates an increasing potential flooding risk with climate change as a result of human generated greenhouse gas emissions. Menlo Park is vulnerable to sea level rise where new development is proposed in this code cycle. New buildings that are directly vulnerable to sea level rise should avoid generating additional greenhouse gas emissions. The proposed Reach Code would ensure that new buildings use cleaner sources of energy that are greenhouse gas free.

B. <u>Geologic</u>: The City of Menlo Park is subject to earthquake hazard caused by its proximity to San Andreas fault. This fault runs from Hollister, through the Santa Cruz Mountains, epicenter of the 1989 Loma Prieta earthquake, then on up the San Francisco Peninsula, then offshore at Daly City near Mussel Rock. This is the approximate location of the epicenter of the 1906 San Francisco earthquake. The other fault is Hayward Fault. This fault is about 74 mi long, situated mainly along

the western base of the hills on the east side of San Francisco Bay. Both of these faults are considered major Northern California earthquake faults which may experience rupture at any time. Thus, because the City is within a seismic area which includes these earthquake faults, the modifications and changes cited herein are designed to better limit property damage as a result of seismic activity and to establish criteria for repair of damaged properties following a local emergency.

C. <u>Topographic</u>: The City of Menlo Park is contiguous with the San Francisco Bay, resulting in a natural receptor for storm and waste water run-off. Also the City is located in an area that is relatively high liquefaction potential given its proximity to the Bay. The surface condition consists mostly of stiff to dense sandy clay, which is highly plastic and expansive in nature. The aforementioned conditions within the City create hazardous conditions for which departure from California Building Standards Code is warranted

<u>SECTION 2: AMENDMENT OF CODE.</u> Section 12.04.010 of Chapter 12.04 [Adoption of Codes] of Title 12 [Buildings and Construction] is hereby repealed and a new Section 12.04.010 is hereby added to read as follows:

12.04.010 Municipal building code.

The following codes are hereby adopted and by reference are incorporated herein as if set forth in full:

(1) The 2019 California Administrative Code, published by the International Code Council, as amended in Part 1 of the California Building Standards Code, California Code of Regulations Title 24;

(2) The 2019 California Building Code based on the International Building Code, 2018 Edition, published by the International Code Council, together with those omissions, amendments, exceptions and additions thereto as amended in Part 2 of the California Building Standards Code, California Code of Regulations Title 24;

(3) The 2019 California Residential Code based on the International Residential Code, 2018 Edition, published by the International Code Council, together with those omissions, amendments, exceptions and additions thereto as amended in Part 2.5 of the California Building Standards Code, California Code of Regulations Title 24;

(4) The 2019 California Electrical Code the National Electrical Code, 2017 Edition, published by the National Fire Protection Association, together with those omissions, amendments, exceptions and additions thereto as amended in Part 3 of the California Building Standards Code, California Code of Regulations Title 24;

(5) The 2019 California Mechanical Code the Uniform Mechanical Code, 2018 Edition, published by the International Association of Plumbing and Mechanical Officials, together with those omissions, amendments, exceptions and additions thereto as amended in Part 4 of the California Building Standards Code, California Code of Regulations Title 24;

(6) The 2019 California Plumbing code the Uniform Plumbing Code, 2018 Edition, including the Installation Standards thereto, published by the International Association of

Plumbing and Mechanical Officials, together with those omissions, amendments, exceptions and additions thereto as amended in Part 5 of the California Building Standards Code, California Code of Regulations Title 24;

(7) The 2019 California Energy Code, published by the International Code Council, as amended in Part 6 of the California Building Standards Code, California Code of Regulations Title 24;

(8) The 2019 California Historical Building Code, published by the International Code Council, as amended in Part 8 of the California Building Standards Code, California Code of Regulations Title 24;

(9) The 2019 California Existing Building Code based on the 2018 International Existing Building Code Edition, published by the International Code Council, together with those omissions, amendments, exceptions and additions thereto as amended in Part 10 of the California Building Standards Code, California Code of Regulations Title 24;

(10) The 2019 California Green Building Standards Code, published by the International Code Council, as amended in Part 11 of the California Building Standards Code, California Code of Regulations Title 24; and

(11) The 2019 California Referenced Standards Code, published by the International Code Council, as amended in Part 12 of the California Building Standards Code, California Code of Regulations Title 24.

A copy of each code is on file in the office of the city clerk. The provisions of this title, including said codes and amendments thereto, shall be known as the building code of the city.

<u>SECTION 3: AMENDMENT OF CODE.</u> Chapter 12.16 [Energy Code] of Title 12 [Buildings and Construction] is hereby repealed and a new Chapter 12.16 is hereby added to read as follows:

SECTION 100.0 - Scope

(e) Sections applicable to particular buildings. TABLE 100.0-A and this subsection list the provisions of Part 6 that are applicable to different types of buildings covered by Section 100.0(a).

- All buildings. Sections 100.0 through 110.12 apply to all buildings. EXCEPTION to Section 100.0(e) 1: Spaces or requirements not listed in TABLE 100.0-A.
- 2. Newly constructed buildings.
 - A. All newly constructed buildings. Sections 110.0 through 110.12 apply to all newly constructed buildings within the scope of Section 100.0(a). In addition, newly constructed buildings shall meet the requirements of Subsections B, C, D or E, as applicable; and shall be an All-Electric Building as defined in Section 100.1(b).

Exception 1: Non-Residential Buildings containing a Scientific Laboratory Building, such area may contain a non-electric Space Conditioning System.

To take advantage of this exception applicant shall provide third party verification that All-Electric space heating requirement is not cost effective and feasible.

Exception 2: All Residential buildings may contain non-electric Cooking Appliances and Fireplaces.

Exception 3: Exemption for public agency owned and operated emergency centers. To take advantage of this exception applicant shall provide third party verification that All-Electric space heating requirement is not cost effective and feasible.

Conditional Exception 4: Non-residential buildings containing a for-profit restaurant open to the public or an employee kitchen may apply to a City Council appointed body, such as the Planning Commission or Environmental Quality Commission, for an exception to install gas-fueled cooking appliances. This request must be based on a business-related reason to cook with a flame that cannot be reasonably achieved with an electric fuel source. Examples include barbeque-themed restaurants and pizza ovens. The City Council appointed body shall grant this exception if they find the following:

1. There is a business-related reason to cook with a flame;

2. This need cannot be reasonably achieved with an electric fuel source;
3. The applicant has employed reasonable methods to mitigate the greenhouse gas impacts of the gas-fueled appliance;

4. The applicant shall comply with the pre-wiring provision of Note 1 below.

The City Council appointed body's decision shall be final unless the applicant appeals to the City Council within 15 days of the appointed body's decision. The City Council's decision on the appeal shall be final.

Note 1: If natural gas appliances are used in any of the above exceptions 1-4, natural gas appliance locations must also be electrically pre-wired for future electric appliance installation. They shall include the following:

1. A dedicated circuit, phased appropriately, for each appliance, with a minimum amperage requirement for a comparable electric appliance (see manufacturer's recommendations) with an electrical receptacle or junction box that is connected to the electric panel with conductors of adequate capacity, extending to within 3 feet of the appliance and accessible with no obstructions. Appropriately sized conduit may be installed in lieu of conductors;

2. Both ends of the unused conductor or conduit shall be labeled with the words "For Future Electric appliance" and be electrically isolated:

3. A reserved circuit breaker space shall be installed in the electrical panel adjacent to the circuit breaker for the branch circuit and labeled for each circuit, an example is as follows (i.e "For Future Electric Range;") and

4. All electrical components, including conductors, receptacles, junction boxes, or blank covers, related to this section shall be installed in accordance with the California Electrical Code.

Note 2: If any of the exceptions 1-4 are granted, the Building Official shall have the authority to approve alternative materials, design and methods of construction or equipment per CBC 104.

Section 100.1(b) is modified by adding the following definitions:

ALL ELECTRIC BUILDING: is a building that has no natural gas or propane plumbing installed within the building, and that uses electricity as the source of energy for its space heating, water heating, cooking appliances, and clothes drying appliances. All Electric Buildings may include solar thermal pool heating.

<u>Scientific Laboratory Building: is a building or area where research, experiments, and</u> <u>measurement in medical, and life sciences are performed and/or stored requiring examination of</u> <u>fine details. The building may include workbenches, countertops, scientific instruments, and</u> <u>supporting offices</u>.

Section 100.1 is modified as follows:

SHADING – is the protection from heat gains because of direct solar radiation by permanently attached exterior devices of building elements, interior shading devices, glazing material, adherent materials, including items located outside the building footprint such as Heritage trees or high rise buildings that may affect shading.

Section 110.2 is modified as follows:

SECTION 110.2 – MANDATORY REQUIREMENTS FOR SPACE-CONDITIONING EQUIPMENT

Certification by Manufacturers. Any space-conditioning equipment listed in this section. <u>meeting</u> the requirements of section 100.0 (e)2A, may be installed only if the manufacturer has certified to the Commission that the equipment complies with all the applicable requirements of this section.

Section 110.3 is modified as follows:

SECTION 110.3 – MANDATORY REQUIREMENTS FOR SERVICE WATER-HEATING SYSTEMS AND EQUIPMENT

(a) Certification by manufacturers. Any service water-heating system or equipment, meeting the requirements of section 100.0 (e)2A, may be installed only if the manufacturer has certified that the system or equipment complies with all of the requirements of this subsection for that system or equipment.

Section 110.4 is modified as follows:

SECTION 110.4 – MANDATORY REQUIREMENTS FOR POOL AND SPA SYSTEMS AND EQUIPMENT

(a) Certification by Manufacturers. Any pool or spa heating system or equipment, meeting the requirements of section 100.0 (e)2A, may be installed only if the manufacturer has certified that the system or equipment has all of the following:

Section 110.5 is modified as follows:

SECTION 110.5 – NATURAL GAS CENTRAL FURNACES, COOKING EQUIPMENT, POOL AND SPA HEATERS, AND FIREPLACES: PILOT LIGHTS PROHIBITED

Any natural gas system or equipment, meeting the requirements of Section 100.0 (e)2A, listed below may be installed only if it does not have a continuously burning pilot light:

Section 110.10 is modified as follows:

SECTION 110.10 – MANDATORY REQUIREMENTS FOR SOLAR READY BUILDINGS AND SOLAR PANEL SYSTEM REQUIREMENTS FOR NON-RESIDENTIAL NEW BUILDINGS (a) Covered Occupancies.

- 1. Single Family Residences. Single family residences located in subdivisions with ten or more single family residences and where the application for a tentative subdivision map for the residences has been deemed complete approved by the enforcement agency, which do not have a photovoltaic system installed, shall comply with the requirements of Section 110.10(b) through 110.10(e).
- 2. Low-rise Multifamily Buildings. Low-rise multi-family buildings that do not have a photovoltaic system installed shall comply with the requirements of Section 110.10(b) through 110.10(d).
- Hotel/Motel Occupancies and High-rise Multifamily Buildings. Hotel/motel occupancies and high-rise multifamily buildings with ten habitable stories or fewer shall comply with the requirements of Section 110.10(b) through 110.10(d)- and <u>Table 2.</u>
- Nonresidential Buildings. Nonresidential buildings with three habitable stories or fewer, other than healthcare facilities, shall comply with the requirements of Section 110.10(b) through 110.10(d)- and Table 2.

Table 2: Solar panel requirements for all new nonresidential and high rise residential buildings				
Square footage of building	Size of panel			
Less than 10,000 sq. ft.	Minimum of 3-kilowatt PV systems			
Greater than or equal to 10,000 sq. ft.	Minimum of 5-kilowatt PV systems			

EXCEPTION: As an alternative to a solar PV system, the building type may provide a solar hot water system (solar thermal) with a minimum collector area of 40 square feet, additional to any other solar thermal equipment otherwise required for compliance with Part 6.

(b) Solar Zone.

1. Minimum Solar Zone Area. The solar zone shall have a minimum total area as described below. The solar zone shall comply with access, pathway, smoke ventilation, and spacing requirements as specified in Title 24, Part 9 or other Parts of Title 24 or in any requirements adopted by a local jurisdiction. The solar zone total area shall be comprised of areas that have no dimension less than five feet and are no less than 80 square feet each for buildings with roof areas less than or equal to 10,000 square feet or no less than 160 square feet each for buildings with roof areas greater than 10,000 square feet.

A. Single Family Residences. The solar zone shall be located on the roof or overhang of the building and have a total area no less than 250 square feet.

EXCEPTION 1 to Section 110.10(b)1A: Single family residences with a permanently installed domestic solar water-heating system meeting the installation criteria specified in the Reference Residential Appendix RA4 and with a minimum solar savings fraction of 0.50.

EXCEPTION 2 to Section 110.10(b)1A: Single family residences with three habitable stories or more and with a total floor area less than or equal to 2000 square feet and having a solar zone total area no less than 150 square feet.

EXCEPTION 3 to Section 110.10(b)1A: Single family residences located in the Wildland-Urban Interface Fire Area as defined in Title 24, Part 2 and having a whole house fan and having a solar zone total area no less than 150 square feet.

EXCEPTION 4 to Section 110.10(b)1A: Buildings with a designated solar zone area that is no less than 50 percent of the potential solar zone area. The potential solar zone area is the total area of any low-sloped roofs where the annual solar access is 70 percent or greater and any steep-sloped roofs oriented between 90 degrees and 300 degrees of true north where the annual solar access is 70 percent or greater. Solar access is the ratio of solar insolation including shade to the solar insolation without shade. Shading from obstructions located on the roof or any other part of the building shall not be included in the determination of annual solar access.

EXCEPTION 5 to Section 110.10(b)1A: Single family residences having a solar zone total area no less than 150 square feet and where all thermostats are demand responsive controls and comply with Section 110.12(a), and are capable of receiving and responding to Demand Response Signals prior to granting of an occupancy permit by the enforcing agency.

EXCEPTION 6 to Section 110.10(b)1A: Single family residences meeting the following conditions:

A. All thermostats are demand responsive controls that comply with Section 110.12(a), and are capable of receiving and responding to Demand Response Signals prior to granting of an occupancy permit by the enforcing agency.

B. Comply with one of the following measures:

i. Install a dishwasher that meets or exceeds the ENERGY STAR Program requirements with a refrigerator that meets or exceeds the ENERGY STAR Program requirements, a whole house fan driven by an electronically commutated motor, or an SAE J1772 Level 2 Electric Vehicle Supply Equipment (EVSE or EV Charger) with a minimum of 40 amperes; or

ii. Install a home automation system capable of, at a minimum, controlling the appliances and lighting of the dwelling and responding to demand response signals; or

iii. Install alternative plumbing piping to permit the discharge from the clothes washer and all showers and bathtubs to be used for an irrigation system in compliance with the California Plumbing Code and any applicable local ordinances; or iv. Install a rainwater catchment system designed to comply with the California Plumbing Code and any applicable local ordinances, and that uses rainwater flowing from at least 65 percent of the available roof area.

B. Low-rise and High-rise Multifamily Buildings, Hotel/Motel Occupancies, and Nonresidential Buildings. The solar zone shall be located on the roof or overhang of the building or on the roof or overhang of another structure located within 250 feet of the building or on covered parking installed with the building project, and shall have a total area no less than 15 percent of the total roof area of the building excluding any skylight area. The solar zone requirement is applicable to the entire building, including mixed occupancy.

EXCEPTION 1 to Section 110.10(b)1B: High-rise Multifamily Buildings, Hotel/Motel Occupancies, and Nonresidential Buildings with a permanently installed solar electric system having a nameplate DC power rating, measured under Standard Test Conditions, of no less than one watt per square foot of roof area.

EXCEPTION 2 to Section 110.10(b)1B: High-rise multifamily buildings, hotel/motel occupancies with a permanently installed domestic solar water-heating system complying with Section 150.1(c)8Biii- and an additional collector area of 40 square feet.

EXCEPTION 3 to Section 110.10(b)1B: Buildings with a designated solar zone area that is no less than 50 percent of the potential solar zone area. The potential solar zone area is the total area of any low-sloped roofs where the annual solar access is 70 percent or greater and any steep-sloped roofs oriented between 90 degrees and 300 degrees of true north where the annual solar access is 70 percent or greater. Solar access is the ratio of solar insolation including shade to the solar insolation without shade. Shading from obstructions located on the roof or any other part of the building shall not be included in the determination of annual solar access.

EXCEPTION 4 to Section 110.10(b)1B: Low-rise and high-rise multifamily buildings with all thermostats in each dwelling unit are demand response controls that comply with Section 110.12(a), and are capable of receiving and responding to Demand Response Signals prior to granting of an occupancy permit by the enforcing agency. In addition, either A or B below:

A. In each dwelling unit, comply with one of the following measures:

i. Install a dishwasher that meets or exceeds the ENERGY STAR Program requirements with either a refrigerator that meets or exceeds the ENERGY STAR Program requirements or a whole house fan driven by an electronically commutated motor; or

ii. Install a home automation system that complies with Section 110.12(a) and is capable of, at a minimum, controlling the appliances and lighting of the dwelling and responding to demand response signals; or

iii. Install alternative plumbing piping to permit the discharge from the clothes washer and all showers and bathtubs to be used for an irrigation

Ordinance No. 1057 Page 10

system in compliance with the California Plumbing Code and any applicable local ordinances; or

iv. Install a rainwater catchment system designed to comply with the California Plumbing Code and any applicable local ordinances, and that uses rainwater flowing from at least 65 percent of the available roof area.

B. Meet the Title 24, Part 11, Section A4.106.8.2 requirements for electric vehicle charging spaces.

EXCEPTION 5 to Section 110.10(b)1B: Buildings where the roof is designed and approved to be used for vehicular traffic or parking or for a heliport.

Exception 6 to section 110.10(b)1B: Performance equivalency approved by the building official.

2. Azimuth. All sections of the solar zone located on steep-sloped roofs shall be oriented between 90 degrees and 300 degrees of true north.

3. Shading.

A. No obstructions, including but not limited to, vents, chimneys, architectural features, and roof mounted equipment, shall be located in the solar zone.

B. Any obstruction, located on the roof or any other part of the building that projects above a solar zone shall be located at least twice the distance, measured in the horizontal plane, of the height difference between the highest point of the obstruction and the horizontal projection of the nearest point of the solar zone, measured in the vertical plane.

EXCEPTION to Section 110.10(b)3: Any roof obstruction, located on the roof or any other part of the building, that is oriented north of all points on the solar zone.

C. The solar zone needs to account for shading from obstructions that may impact the area required in 110.10(b)1B. When determined by the Building Official that conditions exist where excessive shading occurs and solar zones cannot be met, a performance equivalency approved by the Building Official may be used as an alternative.

4. Structural Design Loads on Construction Documents. For areas of the roof designated as solar zone, the structural design loads for roof dead load and roof live load shall be clearly indicated on the construction documents.

NOTE: Section 110.10(b)4 does not require the inclusion of any collateral loads for future solar energy systems.

(c) Interconnection Pathways.

1. The construction documents shall indicate a location reserved for inverters and metering equipment and a pathway reserved for routing of conduit from the solar zone to the point of interconnection with the electrical service.

2. For single family residences and central water-heating systems, the construction documents shall indicate a pathway for routing of plumbing from the solar zone to the water-heating system.

(d) Documentation. A copy of the construction documents or a comparable document indicating the information from Sections 110.10(b) through 110.10(c) shall be provided to the occupant.

(e) Main Electrical Service Panel.

 The main electrical service panel shall have a minimum busbar rating of 200 amps.
 The main electrical service panel shall have a reserved space to allow for the installation of a double pole circuit breaker for a future solar electric installation. The reserved space shall be permanently marked as "For Future Solar Electric".

SECTION 5: EXEMPTION FROM CEQA. The City Council finds, pursuant to Title 14 of the California Administrative Code, Section 15061(b)(3) that this Ordinance is exempt from the requirements of the California Environmental Quality Act ("CEQA") on the grounds that these standards are more stringent than the State energy standards, there are no reasonably foreseeable adverse impacts and there is no possibility that the activity in question may have a significant effect on the environment.

SECTION 6: SEVERABILITY. If any part of this Ordinance is held to be invalid or inapplicable to any situation by a court of competent jurisdiction, such decision shall not affect the validity of the remaining portions of this Ordinance or the applicability of this Ordinance to other situations.

<u>SECTION 7: EFFECTIVE DATE.</u> This Ordinance shall become effective following approval by the California Energy Commission, but in no event before January 1, 2020.

<u>SECTION 8: POSTING.</u> Within fifteen (15) days of its adoption, the Ordinance shall be posted in three (3) public places within the City of Menlo Park, and the Ordinance, or a summary of the Ordinance prepared by the City Attorney, shall be published in a local newspaper used to publish official notices for the City of Menlo Park prior to the effective date.

INTRODUCED on this tenth day of September, 2019.

PASSED AND ADOPTED as an ordinance of the City of Menlo Park at a regular meeting of said City Council on this _____ day of _____, 2019, by the following vote:

AYES:

NOES:

ABSENT:

ABSTAIN:

APPROVED:

ATTEST:

Ray Mueller, Mayor

Judi A. Herren, City Clerk

	Table 1: Summary of staff's recommendations and City Council direction			
Meeting date	Building Type	Staff recommendation	Outcome/Direction	
Environmental Quality Commission meeting (February, May, June 2019)	Residential buildings (single family and three stories or less multifamily) Nonresidential buildings and high- rise multifamily buildings (three stories and greater)	All new buildings to be at minimum electrically heated (space conditioning and water appliances) and in addition, for nonresidential new buildings to produce minimum amount of on-site solar power	EQC Commissioners unanimously advise City Council to approve staff's recommendation	
City Council Meeting (July 16, 2019)	Residential buildings	At minimum, must be electrically heated or all-electric	City Council agreed. No further direction.	
(,,	Nonresidential buildings and high- rise multifamily buildings	At minimum, must be electrically heated and install minimum amount of on-site solar power	 City Council provided further direction to: Require new nonresidential buildings be all-electric Explore all-electric options for life science buildings Include exception for for-profit restaurants to allow natural gas stoves 	
City Council Meeting (August 27, 2019)	Residential buildings	At minimum, must be electrically heated or all-electric	City Council provided further direction to require: - All-electric clothes dryers - Pre-wiring for electric stove and fireplaces	
	Nonresidential buildings and high- rise multifamily buildings	 Remove the exception for for- profit restaurant use of natural gas stoves Must be all-electric with two exceptions (a) life science buildings for space heating (b) emergency operations centers Install minimum amount of on- site solar power 	 Agreed with staff's recommendation, but provided further direction to: allow appeal process for nonresidential kitchens to use natural gas stoves Pre-wiring for electric appliances for all buildings types where natural gas is allowed through exceptions or appeal Explore floor area ratio (FAR) exclusions for high-rise residential to allow for innovative water heating systems 	

ATTACHMENT G

August 13, 2019

MEMORANDUM

To: Gabriel Taylor, Peter Strait (California Energy Commission)

From: Farhad Farahmand, Abhijeet Pande (TRC), Rafael Reyes (Peninsula Clean Energy)

Re: Interpretation of Cost Effectiveness Analysis as it Relates to Menlo Park Reach Code Proposal

As part of an amendment to the California Building Standards Code, the City of Menlo Park is seeking a requirement for all new construction buildings to be all-electric but allows for several exceptions. For residential buildings, the City is proposing to allow natural gas to be used for cooking and decorative fireplaces. For nonresidential buildings, certain categories of buildings such as public safety buildings, designated emergency centers as well as commercial buildings containing scientific laboratories that require natural gas for operational and process reasons are proposed to be exempted.

This memo serves to clarify the cost-effectiveness justification of these proposals as required by California Code of Regulations (CCR), Title 24, Part 1, §10-106 and request the Energy Commission's preliminary approval of this justification. If approved, an updated version of this interpretation will be included with Menlo Park's application to the Energy Commission.

The statewide investor owned utility codes and standards program developed a new construction cost effectiveness analysis for all California climate zones which included all-electric measures as part of multiple packages. These analyses have been attached, and:

- Were performed for both residential and nonresidential buildings
 - The residential prototypes included 4 end-uses in analysis: space heating, water heating, cooking, and clothes drying. These assumed savings from avoided natural gas infrastructure to and within the residence.
 - The nonresidential prototypes included 2 end-uses in analysis: space heating and water heating.
- Found that it is cost-effective to construct all-electric buildings compared to the 2019 Standards ACM baseline, including all end-uses analyzed, partially due to upfront cost savings associated with foregoing a natural gas connection to the building.

Menlo Park's code proposal would allow the construction of all-electric buildings which has been shown to be cost-effective using the TDV cost-effectiveness metric.

We seek your preliminary confirmation that the existing cost effectiveness studies completed are sufficient to support Menlo Park's proposal, considering further that:

 In residential buildings, a proposed building with electric space- or water-heating is already compared to a standard building with these electric end-uses. Thus, no cost effectiveness criteria are explicitly required for the electrification of these end-uses. The exemption for gas to be allowed for cooking or decorative fireplaces is a voluntary choice to be made by a homeowner/builder and as such does not need to be shown to be cost-effective. Additionally, the cost to add pre-wiring for cooktops/ovens is minimal at the time of new construction since there is an electrical outlet present even for gas cooktops since they are electronic/electric ignition and have other electronic components like fans and lights that need electricity supply. So, the pre-wiring for future induction cooktops only requires upsizing the wire gauge (a minimal cost at time of construction) and a different outlet (also a minimal upgrade cost). A recent cost-estimate provided by Scott Shell at EHDD Architects (based on data provided by tbd consultants) estimates this cost to be \$280 at the time of new construction. Retrofitting an existing electrical line with an upsized one that can power induction would cost \$930. So, it is inherently cost-effective for the lesser expense be done at time of construction as opposed to spending more year or more later to add the capability.

- The cost-effectiveness study conducted by TRC for the Statewide Codes and Standards Team at the Investor Owned Utilities (IOU) used a hotel prototype for establishing cost-effectiveness for both hotel as well as high-rise residential applications. This is partly because there was no high-rise residential prototype available and the Title 24 compliance tools lack modeling of central water heating systems. Since the Title 24, part 6 requirements for hotel/motel guestrooms are the same as those of high-rise residential dwelling units, and because the prototype was modeled with individual space and water heaters, we believe the use of the hotel prototype is appropriate to represent high-rise residential as well. Further, any nonresidential spaces modeled for the hotel prototype would have to be modeled with same/similar systems if those same end uses exist in a high-rise residential building. Thus, we are confident that the hotel prototype is sufficient for high-rise residential applications.
- In nonresidential buildings, the prototypes examined in the cost effectiveness analysis only included space heating and water heating electrification. Other end uses targeted in the Menlo Park ordinance are unregulated appliances such as cooking, clothes drying which are not explicitly modeled in Title 24 compliance calculations. Adding requirements for these end uses to be electric does not impact the TDV budget for the building or compliance with Title 24. These will however impact the overall fist cost of the all-electric building as well as operational impacts. These impacts however are not likely to be significant compared with the overall cost savings of around \$25,000 for offices and retail and almost \$1M for hotel occupancies. Electric cooking and clothes drying first cost difference compared to natural gas versions are between \$800-\$2000 per appliance. Operational cost increases are around \$2,000 per appliance over the building's lifetime. Thus, the added first and operation costs for electric appliances are unlikely to be greater than the significant cost savings resulting from eliminating natural gas infrastructure.

We thus propose that existing cost-effectiveness studies should be sufficient to justify Menlo Park requirements. Any guidance on this approach and/or code language format is much appreciated.

ATTACHMENT H

The Cost Effectiveness of Building Electrification

Comments from Bay Area Architects & Engineers August 21, 2019

Scott Shell, FAIA, Principal

ehdd

Casa Adelante, 2060 Folsom, San Francisco

Maceo May Veterans Apartments, Treasure Island

Balboa Upper Yard Family Apts, San Francisco

Malcolm Harris, Principal MITHŪN

We have a number of all-electric multifamily housing projects. I'm a huge, huge fan of this change to all-electric multifamily housing. It is better in every way, a great simplification of the system. Less expensive, higher performance, less maintenance, more sustainable.

It is a major cost saving move that pays for a lot of other upgrades.

At Maceo May we saw big savings from eliminating gas fired hydronic heating, the gas connection, and the solar thermal required by T24.

The savings paid for continuous exterior insulation, energy recovery ventilators (eliminating Z-ducts), electric resistance heat, and PVs. With these upgrades we are beating Title 24 by 20%, getting more Green Points, and lower GHGs on a grid that's getting cleaner.

The occupants get better indoor air quality benefits from the energy recovery ventilators.

Hunters Point Shipyard Block 52, San Francisco

Hunters Point Shipvard Block 54, San Francisco

Malcolm Harris, Principal

мітнūм

Overall the system is just much simpler—there is just one energy system—electrical, rather than two.

The gas fired boiler & hydronic systems are very problematic at every step from design to construction to maintenance. During construction there are often leaks. Commissioning is a constant challenge, and there are lots of tenant complaints in first few months. Operations is challenging as maintenance staff are not equipped to operate the digital BMS system.

Casa Adelante 127 residential Units, 9 stories, under construction. Developers: TNDC/CCDC, Architect: Mithun & YA Studio.

Maceo May 105 residential units, in permitting. Chinatown Community Development Center, Swords to Plowshares.

Balboa Upper Yard Family Apts 120 residential units, in design development. Developer Mission Housing

Development & Related California.

Hunters Point Shipyard Block 52 136 residential units total, Design Development. Developer McCormack, Baron, Salazar.

Hunters Point Shipyard Block 54 136 residential units total, Design Development. Developer McCormack, Baron, Salazar.

681 Florida 136 residential units total, In Design Development. Developers: TNDC & MEDA

Santana Row Lot 11

UC Davis Webster Hall Replacement

American Geophysical Union

Hormoz Janssens, Principal

Almost all our projects are all-electric, I have only been using gas systems where required by the client.

Electric is almost always less expensive or cost neutral. Very rarely is it more expensive. Often it is our value engineering option.

Most project types work just fine. We are doing a 500,000 sf all electric office for Microsoft, with major cost savings using heat pumps vs a central plant.

We do lots of detailed cost analysis with developers to find the most cost-effective solution. For example, at Bay Meadows our all electric design for 1 million sf of development was significantly less expensive than a traditional rooftop package unit + boiler + reheat system.

UC Santa Cruz Student Housing West

270 Brannan, San Francisco

Hormoz Janssens, Principal

The space requirements are smaller for all-electric, instead of having two to three separate systems for space heating, cooling, and hot water, we can do it with a single heat pump system, that space can be used for other things or the building made smaller for more savings.

Maintenance is less than most conventional systems because you have just one system. Maintenance is just like an air-conditioning system, it's the same thing in reverse, and you eliminate the boiler.

A huge benefit for heat pumps is reducing water use. Using an air source heat pump for cooling rather than a cooling tower has large water savings.

We've done several all electric commercial food service projects that have been very successful. The Chef's quite skeptical at the beginning, but now say they will never go back to cooking on gas.

Chatam University Dining Commons

UC Santa Cruz Student Housing West

UC Irvine Student Housing West, Developer ACC

UC Riverside Dundee Residence Hall, Developer ACC

David Phillips, Associate Vice President for Energy & Sustainability UC Office of the President

The University of California has committed to carbon neutrality by 2025. We are prioritizing all-electric new buildings (required starting June 2019), and then electrifying existing buildings & systems over time.

Our studies show that all electric mechanical equipment capital costs are comparable for academic & lab buildings, and the costs are lower for residential buildings. Twenty year life cycle costs are comparable for Academic and labs buildings, and lower for residential buildings.

UC has many all-electric housing projects, office buildings, and laboratories now in place and many more in design.

UC's carbon neutrality strategies are pragmatic: don't allow growth to increase carbon emissions; and then transition *existing* buildings and systems off fossil fuels over time. Decarbonizing Your Campus thru Electrification, SCUP 2019

Exploratorium, San Francisco

Packard Foundation, Los Altos

Marin Country Day School, Corte Madera

Scott Shell, Principal ehdd.

We have completed a dozen or so all electric buildings. 10-15 years ago it was not common in California, and we saw some cost premium on those early projects.

In the last 5-7 years all-electric has become much more common on our projects which are primarily commercial and educational. It is now generally cost neutral or less expensive. There are more manufacturers providing equipment, and the subcontractors are more familiar with installing it.

Last year we had an all-electric project go to bid and the total cost came back higher than expected. In an attempt to reduce cost, we asked the mechanical contactors to price a standard gas heating system instead. They came back with no cost savings between gas and all electric, so the client decided to stay with the preferred all-electric option.

Mark Day School, San Rafael

Boulder Commons

Lick Wilmerding High School, San Francisco

Scott Shell, Principal ehdd.

When the University of California, one of our largest clients, decided to prohibit gas in new projects that really got our attention. It now seems irresponsible to recommend gas to our clients who may then have to retrofit them before that equipment reaches the end of its life in order to meet their carbon goals or local mandates to decarbonize. We don't want to be saddling our clients with stranded assets.

Last year I interviewed seven leading mechanical engineers that we work with asking if the building industry is ready to go all electric. They agreed that the vast majority of buildings can go all-electric, and the cost is competitive with a few exceptions.

Most of our all electric projects also include PVs, it is LESS expensive for our clients to get their electricity from PV than from their utility. With a power purchase agreement there is no out of pocket cost. Some clients decided to fund the PVs themselves since it provides a favorable financial return. Ten years ago solar was seen as an expensive solution for projects with big budgets. It is amazing to see how quickly that has flipped.

Cascade Apartments, Seattle

4700 Brooklyn Ave NE, Seattle

Shawn Oram, Principal

ECOTOPE

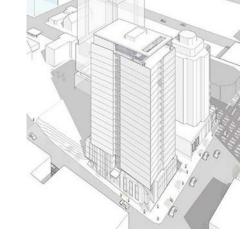
Ecotope has completed 26 central heat pump water heating projects since 2008, mostly 100-500 unit projects. Partial list:

Mid Rise | 50-400 dwelling units

- Stream 134 units (2) 10T Colmac Air-Source HP in below-grade parking
- Sunset Electric 92 units Colmac in below-grade parking
- Stackhouse 120 units Colmac in underground parking deck
- Augusta Apartments 224 units Colmac in below-grade parking
- Batik Apartments 195 units Colmac in underground parking deck
- Yesler 3 227 Colmac in underground parking deck
- · Jackson Apartments 526 units Colmac in underground parking deck
- Colina Apartments 131 units, Sanden Decentralized
- The Vale Apartments 134 units Versati 2, Multi-Pass
- Waterfront Place 137/135 units Versati 2, Multi-Pass
- Hopeworks 67 units , Sanden CO2 Stacks

High Rise | 200-450 dwelling units

- 4700 Brooklyn 284 units Colmac with VRF Temp Maintenance
- Cascade 430 units Colmac with VRF Temp Maintenance
- 1200 45th -245 units In Design


Batik Apartments, Seattle

Jackson Apartments, Seattle

August Apartments, Seattle

ehdd.

1200 NE 45th, Seattle

Coliseum Place, Oakland

Altamira Family Apartments, Sonoma

Peter Waller, Principal

PYATOK

We have several current all-electric multi-family projects. In our experience it has been indispensable to have a knowledgeable energy/Title 24 consultant on the team to help guide both analysis and design.

It is critical to share information about best practices and lessons learned. By sharing best practices we can reduce mistakes.

We work with both non-profit and for-profit housing developers that own and operate lots of buildings. It is important to make sure everyone is aware of the potential challenges that come with new technology.

The life span of the current generation of heat pump water heaters may be less than the traditional gas fired boilers, depending on operating conditions. We expect the life span will increase as the market becomes deeper and more sophisticated, but we try to be open about this reality with our clients. With that in mind provide access for maintenance and future replacement down the road.

Quetzal Gardens, San Jose

Valley Glen, Dixon

Sean Armstrong, Redwood Energy

Redwood Energy Foremost Zero Net Energy Specialists in Multifamily Housing

All-electric construction consistently reduces construction costs and ongoing utility bills.

It saves between \$2,500 and \$5,000 per residence for the developer to not plumb gas. When infrastructure and appliance costs are added up, a recent study done by Rocky Mountain Institute found a median increased cost of \$8,800 more per house for gas infrastructure, piping, purchasing appliances and venting

Only education is preventing developers from profiting from the technological innovations available in the all-electric domain.

Developers have been choosing all electric construction because it cost less to build and that trend has been going on for 24 years now.

New construction is easy technically and financially and because the construction cost savings justify going all-electric.

Plaza Point, Arcata

Cloverdale, Corporation for Better Housing

Colonial House Apartments, Oxnard

Atascadero, Corporation for Better Housing

Sean Armstrong, Redwood Energy

Redwood Energy Foremost Zero Net Energy Specialists in Multifamily Housing

New construction is easy technically and financially and because the construction cost savings justify going all-electric.

Because an all-electric building can achieve higher mechanical system efficiency than a gas burning building, it is lower cost for developers building all-electric to comply with the Title 24 Energy Code. We documented this is our report A Zero Emissions All-Electric Multi-family Construction Guide, see the graphic on page 7.

https://fossilfreebuildings.org/ElectricMFGuide.pdf

152 N. 3rd, San Jose

The Tidelands Housing, San Francisco

Peter Rumsey, Principal

There are great examples of all electric buildings for virtually every building type that are cost effective. It is very easy for our firm to design these systems, we are very familiar with them.

For Multifamily projects we are seeing a lot of developers use electric heating with high levels of insulation in apartments that don't need cooling.

All electric air-cooled VRF heat pumps are very common on multifamily projects up to ten stories where cooling is needed; this is very cost effective.

Developers are using VRF systems on small to medium sized commercial buildings. Production home builders have been using central heat pump heating and cooling units for many years. And we are seeing a surge in the use of larger heat pumps for generating hot water systems. Central hot water systems can have a cost premium, but it is very small as a percentage of the building cost.

Pier 70, Building 12

The Exploratorium, San Francisco

Peter Rumsey, Principal

Large 20 story multifamily high-rise require a water source heat pump and that equipment still has a cost premium.

Cooking remains a hard sell in many cases, a lot of people are very skeptical of giving up gas. Technically this isn't a problem, the experts at the Food Service Technology Center in San Ramon say an electric fryer provides better and more even heat than gas. Induction ranges are excellent.

The market for all electric buildings and heat pumps has been making significant inroads in California, and this had gotten the attention of manufacturers. General Contractors and mechanical subcontractors are getting more familiar with this approach as well.

Title 24 used to discourage electric heating of all types and is now more neutral on the issue. I understand that future versions of title 24 are going to be more encouraging of some types of electric heating.

Alexander Valley Medical Center

Goldman School of Public Policy + Housing

SMUD Office & Operations Building, Sacramento

Ted Tiffany, Principal

We have designed quite a few all electric buildings. The Goldman School of Public Policy is as designed all-electric and construction cost compared favorably to gas. This also allowed for individually metered apartments so tenants paid their own utility bills.

The UCOP did a robust cost analysis of various building types and in almost all cases it found lower life cycle costs with all-electric buildings. It is important to manage TOU rates. First cost savings are partly dependent on if you can eliminate the gas service, which in most cases you can; if you do this generally makes the construction cost less than mixed fuel buildings.

https://www.ucop.edu/sustainability/_files/Carbon%20Neutral%20New %20Building%20Cost%20Study%20FinalReport.pdf

Albany High School

Silver Oak Winery

Ted Tiffany, Principal

For most building types and sizes, there is no technical reason preventing the industry from shifting to all-electric buildings.

Laboratories and Hospitals can be more of a challenge as all electric due to the high outside air loads, demands for sterilization, and high hot water loads. They are possible, but more challenging.

Sonoma Clean Power

J. Craig Venter Institute Lab, San Diego

SFO Consolidated Admin Facility

Integrated Genomics Lab, LBNL

Eric Solrain, Principal

Integral currently has dozens of all-electric buildings recently complete, in construction, and in design. There has been a big sea change in recent years towards all-electric. Around 50% of our work is currently electric.

There is lot of momentum in Multi-family Residential and in Commercial projects moving to electric systems.

Comparing the construction cost of all-electric to gas depends on what you are comparing it to. If comparing to a high-performance design such as LEED Gold then all-electric is cheaper. If comparing to moderate performance building then all-electric is cost neutral. If comparing to the most basic design, there may be a small cost premium.

There are some significant code changes in California energy code in 2019 that will make all electric even more cost competitive, especially for multifamily.

435 Indio, Sunnyvale

415 Mathilda, Sunnyvale

380 N. Pastoria, Mountain View

Eric Solrain, Principal

All electric has several big advantages:

- Electric equipment takes up significantly less space and that space can be used for other things. At 1700 Webster the gas option filled the roof with equipment, while the heat pump option had much less equipment so they were able to put a nice deck and pool on the roof.
- Getting gas service to the equipment, and a flue out through the building can be challenging problems and cost money. Getting makeup air to gas boilers can be challenging.
- For large multi-family projects heat-pump dryers avoid all the problems associate with venting.
- There have been good advances in heat pump choices in recent years. Aermec and Climacool make excellent equipment, that can heat and cool simultaneously with robust controls.
- There are huge climate benefits to shifting from gas to electric. London is completely redoing it's 10 year old decarbonization plan which was drafted when they had a dirty electric grid. Their grid is much cleaner now so they are quickly revising the plan to promote electrification.

Edwina Benner, Sunnyvale

Stoddard Housing, Napa

Nick Young

ASSOCIATION FOR ENERGY AFFORDABILITY

In multifamily buildings with individual heating and hot water systems for each unit it's a no-brainer to go all-electric, from a cost, modeling, technology, and code compliance perspective. **All-electric should be the standard design for these projects.**

For Multifamily buildings with central domestic hot water there are also excellent options using electric heat pumps. We are seeing these projects go with Sanden, Colmac, and Nyle heat pumps.

A significant challenge is that Title 24 doesn't have a modeling pathway for central hot water systems. The CEC is working on fixing this, targeting the 2019 code cycle.

Our all-electric multi-family projects include: Edwina Benner Plaza in Sunnyvale, 2437 Eagle Ave in Alameda, St Paul's Commons in Walnut Creek, Stoddard Housing in Napa, Casa Adelante in San Francisco, and Maceo May in San Francisco.

Casa Adelante, San Francisco

ATTACHMENT I City Manager's Office

MEMORANDUM

Date: 8/27/2019

To: Mayor and Members of the City Council

From: Rebecca L. Lucky, Sustainability Manager

Re: Reach Code high rise residential stakeholder feedback and recommendation

On July 16, the City Council directed staff to bring forward an all-electric Reach Code for new nonresidential buildings for adoption on August 27. A high-rise residential building more than three stories is considered nonresidential under the state building codes. Therefore, the proposed Menlo Park Reach Code would require new high-rise residential buildings to be all-electric. All-electric means no gas infrastructure inside the building. Appliances used for space heating, water heating, and cooking must be electric.

This is a cutting edge policy that has positioned Menlo Park at the forefront of local Reach Codes in the state to reduce greenhouse gas emissions from the building sector. The policy is driven by the amount of potential new development that may be realized in the next three years that would lead to increased community greenhouse gas emissions if allowed to use natural gas. This would create challenges in meeting existing and future Climate Action Plan goals to reduce emissions. Using only electricity in new buildings provides a solid foundation to reducing and curbing local greenhouse gas emissions. Menlo Park's electricity is anticipated to be 100% greenhouse gas free by 2021.

The proposed policy has also raised concerns by high rise residential development stakeholders related to electric water heating. The traditional industry practice is to use a central natural gas water heating system (boilers) to provide hot water to a large number of units within a building.

Stakeholders identified two main issues in converting to an electric water heating system for high rise residential:

- 1. At this time, the state codes do not provide a pathway for a large central electric water heating system to be used for compliance. The California Energy Commission is working on updating its model over the next 12-18 months to allow for a large central electric water heating system.
- 2. Large electric central water heating systems (heat pumps) are not commonly used and can have technical issues.

Staff followed up with the cost effectiveness study technical consultants (TRC), the California Energy Commission, and building department to investigate the concerns.

Although the state codes do not provide a pathway for larger central electric water heating systems, the state codes do provide two other pathways for compliance, which are to:

- 1. Provide individual electric water heating systems to each unit; or
- 2. Use a smaller scale electric central water heating system that serves up to eight units. This is referred to as "mini-plants."

These alternative pathways are feasible for high rise residential. The operational cost between a central natural gas water heating system and a smaller scale central electric water heating system are similar.

These alternative pathways are not common practice, and require careful and thoughtful design in order to achieve desired results of efficiency and cost effectiveness. It is also equally important to choose the most environmentally friendly electric heat pump. Heat pumps use refrigerants that have an environmental impact and not all heat pumps are created equally. There are product guides available to help consumers and developers make the best choices.

As stated previously, the proposed all-electric policy is cutting edge, and is intended to drive new innovative thinking and leadership in designing hot water systems. In addition, it requires consumers and developers to make smart appliance decisions that will further save on costs while reducing environmental impacts.

There are educational forums and workshops to help support developers in transitioning to all-electric buildings occurring in October. Redwood Energy has also provided a Zero Emissions All-Electric Multifamily Construction Guide. Examples of high-rise all-electric residential buildings include:

- Edwina Benner Plaza by MidPen Housing in Sunnyvale is a four story residential building. Hot water is provided by two innovative central heat pump water heating plants paired with large storage tanks to shift heat pump loads away from peak periods.
- **205 Jones Street Apartments in San Francisco** is a retrofit by Mercy Housing (affordable home developer). This project replaced central natural gas boilers with electric central heat pump domestic water heaters.
- St. Mark Hotel Apartments in Oakland is another retrofit that replaced 80% efficient natural gas boilers with 400% efficient electric centralized heat pumps. Resulted in considerable site energy savings.
- Coliseum Place in Oakland will be a six story high rise residential development, and will be using a "mini-plant" hot water system design. Water heating for the units will be provided by individual Rheem or 80-gallon heat pump water heaters (3.55 UEF) where multiple units share one tank. To compensate for the length of piping to farthest resident in the "mini-plant" design, 3/8 piping was used to reduce hot water wait time. This saves on construction cost by not having to install recirculating piping.
- Hillandale Gateway, Silver Spring, MD is an 11 story tall apartment complex also using a "mini-plant" hot water approach. Apartments share 80-gallon electric heat pump tanks among two to four apartments (centralized), but without energy loses of a recirculation system.
- **Casa Adelante, San Francisco** will be a nine story affordable housing building. Electric central colmac air source heat pumps will be used for hot water heating with solar thermal power and it also provides some space

heating.

- Quetzal Gardens, San Jose are six story mixed use affordable rental apartments. Water heating is provided by NEEA-Rated, Rheem electric heat pump water heaters in 50, 65, and 80-gallon tanks for each bedroom unit type.
- Other all-electric high rise residential buildings include: Maceo May Veterans Apartments (Treasure Island), Balboa Upper Yard Family Apartments (San Francisco), 681 Florida Apartments (San Francisco), UC Santa Cruz Student Housing West, UC Irvine Student Housing West, Linda Vista (Mountain View).

Staff has provided these findings to the high rise residential stakeholders.

Recommended Action

Based on alternative pathways provided in the state codes for electric water heating, current technology, and supporting examples of all-electric high rise residential buildings, staff recommendations that the City Council move forward with requiring all-electric for high rise residential.

Alternative Action

Exempt high-rise residential from water heating until the state codes provide a pathway for larger centralized electric heat pumps.

ATTACHMENT C

Title 24, Parts 6 and 11 Local Energy Efficiency Ordinances

2019 Cost-effectiveness Study: Low-Rise Residential New Construction

Prepared for: Kelly Cunningham Codes and Standards Program Pacific Gas and Electric Company

Prepared by: Frontier Energy, Inc. Misti Bruceri & Associates, LLC

Last Modified: August 01, 2019

LEGAL NOTICE

This report was prepared by Pacific Gas and Electric Company and funded by the California utility customers under the auspices of the California Public Utilities Commission.

Copyright 2019, Pacific Gas and Electric Company. All rights reserved, except that this document may be used, copied, and distributed without modification.

Neither PG&E nor any of its employees makes any warranty, express or implied; or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product, policy or process disclosed in this document; or represents that its use will not infringe any privately-owned rights including, but not limited to, patents, trademarks or copyrights.

Table of Contents

Ac	rony	yms		5
1			uction	
2			dology and Assumptions	
	2.1	В	uilding Prototypes	1
	2.2	Μ	leasure Analysis	3
	2	.2.1	Federal Preemption	4
	2	.2.2	Energy Design Rating	4
	2	.2.3	Energy Efficiency Measures	5
	2.3	Pa	ackage Development	8
	2	.3.1	Solar Photovoltaics (PV)	8
	2	.3.2	Energy Storage (Batteries)	8
	2.4	In	cremental Costs	9
	2.5	С	ost-effectiveness	3
	2	.5.1	On-Bill Customer Lifecycle Cost13	3
	2	.5.2	TDV Lifecycle Cost1	5
	2.6	El	ectrification Evaluation1	5
	2.7	G	reenhouse Gas Emissions18	8
3	R	esults	5	8
	3.1	P١	/ and Battery System Sizing	9
	3.2	Si	ngle Family Results	1
	3	.2.1	GHG Emission Reductions	6
	3.3	Μ	Iultifamily Results	6
	3	.3.1	GHG Emission Reductions	2
	3.4	El	ectrification Results	2
	3	.4.1	Single Family	3
	3	.4.2	Multifamily	3
4	С	onclu	sions & Summary	1
5	R	efere	nces	4
Ap	pen	dix A	– California Climate Zone Map 46	6
Ap	pen		– Utility Tariff Details	
	•	1:	- Single Family Detailed Results	7
	pen			
Ap	open open	dix D	– Single Family Measure Summary	1
Ap Ap	open open open	dix D dix E	– Single Family Measure Summary	1 8
Ap Ap Ap	open open open open	dix D dix E dix F	– Single Family Measure Summary	1 8 2

List of Tables

Table 1: Prototype Characteristics	2
Table 2: Characteristics of the Mixed Fuel vs All-Electric Prototype	3
Table 3: Lifetime of Water Heating & Space Conditioning Equipment Measures	9
Table 4: Incremental Cost Assumptions	10
Table 5: IOU Utility Tariffs Applied Based on Climate Zone	14
Table 6: Incremental Costs – All-Electric Code Compliant Home Compared to a Mixed Fuel Code Compliant Home	ome
Table 7: PV & Battery Sizing Details by Package Type	
Table 8: Single Family Package Lifetime Incremental Costs	
Table 9: Single Family Package Cost-Effectiveness Results for the Mixed Fuel Case ^{1,2}	
Table 10: Single Family Package Cost-Effectiveness Results for the All-Electric Case ^{1,2}	
Table 11: Multifamily Package Incremental Costs per Dwelling Unit	
Table 12: Multifamily Package Cost-Effectiveness Results for the Mixed Fuel Case ^{1,2}	29
Table 13: Multifamily Package Cost-effectiveness Results for the All-Electric Case ^{1,2}	30
Table 14: Single Family Electrification Results	
Table 15: Comparison of Single Family On-Bill Cost Effectiveness Results with Additional PV	
Table 16: Multifamily Electrification Results (Per Dwelling Unit)	
Table 17: Comparison of Multifamily On-Bill Cost Effectiveness Results with Additional PV (Per Dwelling Unit	
Table 18: Summary of Single Family Target EDR Margins	
Table 19: Summary of Multifamily Target EDR Margins	43
Table 20: PG&E Baseline Territory by Climate Zone	
Table 21: SCE Baseline Territory by Climate Zone	51
Table 22: SoCalGas Baseline Territory by Climate Zone	53
Table 23: SDG&E Baseline Territory by Climate Zone	54
Table 24: Real Utility Rate Escalation Rate Assumptions	56
Table 25: Single Family Mixed Fuel Efficiency Package Cost-Effectiveness Results	57
Table 26: Single Family Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results	58
Table 27: Single Family All-Electric Efficiency Package Cost-Effectiveness Results	59
Table 28: Single Family All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results	
Table 29: Single Family Mixed Fuel Efficiency – Non-Preempted Package Measure Summary	61
Table 30: Single Family Mixed Fuel Efficiency – Equipment, Preempted Package Measure Summary	
Table 31: Single Family Mixed Fuel Efficiency & PV/Battery Package Measure Summary	
Table 32: Single Family All-Electric Efficiency – Non-Preempted Package Measure Summary	
Table 33: Single Family All-Electric Efficiency – Equipment, Preempted Package Measure Summary	
Table 34: Single Family All-Electric Efficiency & PV Package Measure Summary	
Table 35: Single Family All-Electric Efficiency & PV/Battery Package Measure Summary	
Table 36: Multifamily Mixed Fuel Efficiency Package Cost-Effectiveness Results	
Table 37: Multifamily Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results	
Table 38: Multifamily All-Electric Efficiency Package Cost-Effectiveness Results	
Table 39: Multifamily All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results	
Table 40: Multifamily Mixed Fuel Efficiency – Non-Preempted Package Measure Summary	
Table 41: Multifamily Mixed Fuel Efficiency – Equipment, Preempted Package Measure Summary	
Table 42: Multifamily Mixed Fuel Efficiency & PV/Battery Package Measure Summary	
Table 43: Multifamily All-Electric Efficiency – Non-Preempted Package Measure Summary	
Table 44: Multifamily All-Electric Efficiency – Equipment, Preempted Package Measure Summary	
Table 45: Multifamily All-Electric Efficiency & PV Package Measure Summary	
Table 46: Multifamily All-Electric Efficiency & PV/Battery Package Measure Summary	
Table 47: Single Family Climate Zone 1 Results Summary	80

Table 48: Multifamily Climate Zone 1 Results Summary (Per Dwelling Unit)	81
Table 49: Single Family Climate Zone 2 Results Summary	82
Table 50: Multifamily Climate Zone 2 Results Summary (Per Dwelling Unit)	83
Table 51: Single Family Climate Zone 3 Results Summary	84
Table 52: Multifamily Climate Zone 3 Results Summary (Per Dwelling Unit)	85
Table 53: Single Family Climate Zone 4 Results Summary	86
Table 54: Multifamily Climate Zone 4 Results Summary (Per Dwelling Unit)	87
Table 55: Single Family Climate Zone 5 PG&E Results Summary	88
Table 56: Multifamily Climate Zone 5 PG&E Results Summary (Per Dwelling Unit)	
Table 57: Single Family Climate Zone 5 PG&E/SoCalGas Results Summary	90
Table 58: Multifamily Climate Zone 5 PG&E/SoCalGas Results Summary (Per Dwelling Unit)	
Table 59: Single Family Climate Zone 6 Results Summary	92
Table 60: Multifamily Climate Zone 6 Results Summary (Per Dwelling Unit)	
Table 61: Single Family Climate Zone 7 Results Summary	
Table 62: Multifamily Climate Zone 7 Results Summary (Per Dwelling Unit)	
Table 63: Single Family Climate Zone 8 Results Summary	
Table 64: Multifamily Climate Zone 8 Results Summary (Per Dwelling Unit)	
Table 65: Single Family Climate Zone 9 Results Summary	
Table 66: Multifamily Climate Zone 9 Results Summary (Per Dwelling Unit)	
Table 67: Single Family Climate Zone 10 SCE/SoCalGas Results Summary	
Table 68: Multifamily Climate Zone 10 SCE/SoCalGas Results Summary (Per Dwelling Unit)	
Table 69: Single Family Climate Zone 10 SDGE Results Summary	
Table 70: Multifamily Climate Zone 10 SDGE Results Summary (Per Dwelling Unit)	. 103
Table 71: Single Family Climate Zone 11 Results Summary	
Table 72: Multifamily Climate Zone 11 Results Summary (Per Dwelling Unit)	
Table 73: Single Family Climate Zone 12 Results Summary	
Table 74: Multifamily Climate Zone 12 Results Summary (Per Dwelling Unit)	
Table 75: Single Family Climate Zone 13 Results Summary	
Table 76: Multifamily Climate Zone 13 Results Summary (Per Dwelling Unit)	
Table 77: Single Family Climate Zone 14 SCE/SoCalGas Results Summary	
Table 78: Multifamily Climate Zone 14 SCE/SoCalGas Results Summary (Per Dwelling Unit)	
Table 79: Single Family Climate Zone 14 SDGE Results Summary	
Table 80: Multifamily Climate Zone 14 SDGE Results Summary (Per Dwelling Unit)	
Table 81: Single Family Climate Zone 15 Results Summary	
Table 82: Multifamily Climate Zone 15 Results Summary (Per Dwelling Unit)	. 115
Table 83: Single Family Climate Zone 16 Results Summary	
Table 84: Multifamily Climate Zone 16 Results Summary (Per Dwelling Unit)	. 117

List of Figures

Figure 1: Graphical description of EDR scores (courtesy of Energy Code Ace)	5
Figure 2: B/C ratio comparison for PV and battery sizing	20
Figure 3: Single family Total EDR comparison	25
Figure 4: Single family EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency packages	and
the Total EDR Margin for the Efficiency & PV and Efficiency & PV/Battery packages)	25
Figure 5: Single family greenhouse gas emissions comparison	26
Figure 6: Multifamily Total EDR comparison	31
Figure 7: Multifamily EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency packages a	and
the Total EDR Margin for the Efficiency & PV and Efficiency & PV/Battery packages)	31
Figure 8: Multifamily greenhouse gas emissions comparison	32

t
5
7
7
)
)
1
5

Acronyms

2020 PV\$	Present value costs in 2020
ACH50	Air Changes per Hour at 50 pascals pressure differential
ACM	Alternative Calculation Method
AFUE	Annual Fuel Utilization Efficiency
B/C	Lifecycle Benefit-to-Cost Ratio
BEopt	Building Energy Optimization Tool
BSC	Building Standards Commission
CAHP	California Advanced Homes Program
CBECC-Res	Computer program developed by the California Energy Commission for use in demonstrating compliance with the California Residential Building Energy Efficiency Standards
CFI	California Flexible Installation
CFM	Cubic Feet per Minute
CMFNH	California Multifamily New Homes
CO ₂	Carbon Dioxide
CPC	California Plumbing Code
CZ	California Climate Zone
DHW	Domestic Hot Water
DOE	Department of Energy
DWHR	Drain Water Heat Recovery
EDR	Energy Design Rating
EER	Energy Efficiency Ratio
EF	Energy Factor
GHG	Greenhouse Gas
HERS Rater	Home Energy Rating System Rater
HPA	High Performance Attic
HPWH	Heat Pump Water Heater
HSPF	Heating Seasonal Performance Factor
HVAC	Heating, Ventilation, and Air Conditioning
IECC	International Energy Conservation Code
IOU	Investor Owned Utility
kBtu	kilo-British thermal unit
kWh	Kilowatt Hour
LBNL	Lawrence Berkeley National Laboratory

LCC	Lifecycle Cost
LLAHU	Low Leakage Air Handler Unit
VLLDCS	Verified Low Leakage Ducts in Conditioned Space
MF	Multifamily
NAECA	National Appliance Energy Conservation Act
NEEA	Northwest Energy Efficiency Alliance
NEM	Net Energy Metering
NPV	Net Present Value
NREL	National Renewable Energy Laboratory
PG&E	Pacific Gas and Electric Company
PV	Photovoltaic
SCE	Southern California Edison
SDG&E	San Diego Gas and Electric
SEER	Seasonal Energy Efficiency Ratio
SF	Single Family
CASE	Codes and Standards Enhancement
TDV	Time Dependent Valuation
Therm	Unit for quantity of heat that equals 100,000 British thermal units
Title 24	Title 24, Part 6
TOU	Time-Of-Use
UEF	Uniform Energy Factor

ZNE Zero-net Energy

1 Introduction

The California Building Energy Efficiency Standards Title 24, Part 6 (Title 24) (Energy Commission, 2018b) is maintained and updated every three years by two state agencies, the California Energy Commission (Energy Commission) and the Building Standards Commission (BSC). In addition to enforcing the code, local jurisdictions have the authority to adopt local energy efficiency ordinances, or reach codes, that exceed the minimum standards defined by Title 24 (as established by Public Resources Code Section 25402.1(h)2 and Section 10-106 of the Building Energy Efficiency Standards). Local jurisdictions must demonstrate that the requirements of the proposed ordinance are cost-effective and do not result in buildings consuming more energy than is permitted by Title 24. In addition, the jurisdiction must obtain approval from the Energy Commission and file the ordinance with the BSC for the ordinance to be legally enforceable.

This report documents cost-effective combinations of measures that exceed the minimum state requirements, the 2019 Building Energy Efficiency Standards, effective January 1, 2020, for new single family and low-rise (one-to three-story) multifamily residential construction. The analysis includes evaluation of both mixed fuel and all-electric homes, documenting that the performance requirements can be met by either type of building design. Compliance package options and cost-effectiveness analysis in all sixteen California climate zones (CZs) are presented (see Appendix A – California Climate Zone Map for a graphical depiction of Climate Zone locations). All proposed package options include a combination of efficiency measures and on-site renewable energy.

2 Methodology and Assumptions

This analysis uses two different metrics to assess cost-effectiveness. Both methodologies require estimating and quantifying the incremental costs and energy savings associated with energy efficiency measures. The main difference between the methodologies is the manner in which they value energy and thus the cost savings of reduced or avoided energy use.

- <u>Utility Bill Impacts (On-Bill)</u>: Customer-based Lifecycle Cost (LCC) approach that values energy based upon estimated site energy usage and customer on-bill savings using electricity and natural gas utility rate schedules over a 30-year duration accounting for discount rate and energy cost inflation.
- <u>Time Dependent Valuation (TDV)</u>: Energy Commission LCC methodology, which is intended to capture the "societal value or cost" of energy use including long-term projected costs such as the cost of providing energy during peak periods of demand and other societal costs such as projected costs for carbon emissions, as well as grid transmission and distribution impacts. This metric values energy use differently depending on the fuel source (gas, electricity, and propane), time of day, and season. Electricity used (or saved) during peak periods has a much higher value than electricity used (or saved) during off-peak periods (Horii et al., 2014). This is the methodology used by the Energy Commission in evaluating cost-effectiveness for efficiency measures in Title 24, Part 6.

2.1 Building Prototypes

The Energy Commission defines building prototypes which it uses to evaluate the cost-effectiveness of proposed changes to Title 24 requirements. At the time that this report was written, there are two single family prototypes and one low-rise multifamily prototype. All three are used in this analysis in development of the above-code packages. Table 1 describes the basic characteristics of each prototype. Additional details on the prototypes can be found in the Alternative Calculation Method (ACM) Approval Manual (Energy Commission, 2018a). The prototypes have equal geometry on all walls, windows and roof to be orientation neutral.

Tuble 11110totype characteristics			
Characteristic	Single Family One-Story	Single Family Two-Story	Multifamily
Conditioned Floor Area	2,100 ft ²	2,700 ft ²	6,960 ft ² : (4) 780 ft ² & (4) 960 ft ² units
Num. of Stories	1	2	2
Num. of Bedrooms	3	3	(4) 1-bed & (4) 2-bed units
Window-to-Floor Area Ratio	20%	20%	15%

Table 1	Prototyne	Characteristics
		unai acter istics

Source: 2019 Alternative Calculation Method Approval Manual (California Energy Commission, 2018a).

The Energy Commission's protocol for single family prototypes is to weight the simulated energy impacts by a factor that represents the distribution of single-story and two-story homes being built statewide, assuming 45 percent single-story and 55 percent two-story. Simulation results in this study are characterized according to this ratio, which is approximately equivalent to a 2,430-square foot (ft²) house.¹

The methodology used in the analyses for each of the prototypical building types begins with a design that precisely meets the minimum 2019 prescriptive requirements (zero compliance margin). Table 150.1-A in the 2019 Standards (Energy Commission, 2018b) lists the prescriptive measures that determine the baseline design in each climate zone. Other features are consistent with the Standard Design in the ACM Reference Manual (Energy Commission, 2019), and are designed to meet, but not exceed, the minimum requirements. Each prototype building has the following features:

- Slab-on-grade foundation.
- Vented attic.
- High performance attic in climate zones where prescriptively required (CZ 4, 8-16) with insulation installed at the ceiling and below the roof deck per Option B. (Refer to Table 150.1-A in the 2019 Standards.)
- Ductwork located in the attic for single family and within conditioned space for multifamily.

Both mixed fuel and all-electric prototypes are evaluated in this study. While in past code cycles an all-electric home was compared to a home with gas for certain end-uses, the 2019 code includes separate prescriptive and performance paths for mixed-fuel and all-electric homes. The fuel specific characteristics of the mixed fuel and all-electric prototypes are defined according to the 2019 ACM Reference Manual and described in Table 2.²

¹ 2,430 ft² = (45% x 2,100 ft²) + (55% x 2,700 ft²)

² Standards Section 150.1(c)8.A.iv.a specifies that compact hot water distribution design and a drain water heat recovery system or extra PV capacity are required when a heat pump water heater is installed prescriptively. The efficiency of the distribution and the drain water heat recovery systems as well as the location of the water heater applied in this analysis are based on the Standard Design assumptions in CBECC-Res which result in a zero-compliance margin for the 2019 basecase model.

Table 2: Characteristics of the Mixed Fuel vs All-Electric Prototype			
Characteristic	Mixed Fuel	All-Electric	
Space Heating/Cooling ¹	Gas furnace 80 AFUE Split A/C 14 SEER, 11.7 EER	Split heat pump 8.2 HSPF, 14 SEER, 11.7 EER	
Water Heater ^{1,2, 3, 4}	Gas tankless UEF = 0.81	50gal HPWH UEF = 2.0 SF: located in the garage MF CZ 2,4,6-16: located in living space MF CZ 1,3,5: located in exterior closet	
Hot Water Distribution	Code minimum. All hot water lines insulated	Basic compact distribution credit, (CZ 6-8,15) Expanded compact distribution credit, compactness factor = 0.6 (CZ 1-5,9-14,16)	
Drain Water Heat Recovery Efficiency	None	CZ 1: unequal flow to shower = 42% CZ 16: equal flow to shower & water heater = 65% None in other CZs	
Cooking	Gas	Electric	
Clothes Drying	Gas	Electric	

 Table 2: Characteristics of the Mixed Fuel vs All-Electric Prototype

¹Equipment efficiencies are equal to minimum federal appliance efficiency standards.

²The multifamily prototype is evaluated with individual water heaters. HPWHs located in the living space do not have ducting for either inlet or exhaust air; CBECC-Res does not have the capability to model ducted HPWHs.

³UEF = uniform energy factor. HPWH = heat pump water heater. SF = single family. MF = multifamily.

⁴CBECC-Res applies a 50gal water heater when specifying a storage water heater. Hot water draws differ between the prototypes based on number of bedrooms.

2.2 Measure Analysis

The California Building Energy Code Compliance simulation tool, CBECC-RES 2019.1.0, was used to evaluate energy impacts using the 2019 Title 24 prescriptive standards as the benchmark, and the 2019 TDV values. TDV is the energy metric used by the Energy Commission since the 2005 Title 24 energy code to evaluate compliance with the Title 24 standards.

Using the 2019 baseline as the starting point, prospective energy efficiency measures were identified and modeled in each of the prototypes to determine the projected energy (Therm and kWh) and compliance impacts. A large set of parametric runs were conducted to evaluate various options and develop packages of measures that exceed minimum code performance. The analysis utilizes a parametric tool based on Micropas³ to automate and manage the generation of CBECC-Res input files. This allows for quick evaluation of various efficiency measures across multiple climate zones and prototypes and improves quality control. The batch process functionality of CBECC-Res is utilized to simulate large groups of input files at once. Annual utility costs were calculated using hourly data output from CBECC-Res and electricity and natural gas tariffs for each of the investor owned utilities (IOUs).

³ Developed by Ken Nittler of Enercomp, Inc.

The Reach Codes Team selected packages and measures based on cost-effectiveness as well as decades of experience with residential architects, builders, and engineers along with general knowledge of the relative acceptance of many measures.

2.2.1 Federal Preemption

The Department of Energy (DOE) sets minimum efficiency standards for equipment and appliances that are federally regulated under the National Appliance Energy Conservation Act (NAECA), including heating, cooling, and water heating equipment. Since state and local governments are prohibited from adopting policies that mandate higher minimum efficiencies than the federal standards require, the focus of this study is to identify and evaluate cost-effective packages that do not include high efficiency equipment. While this study is limited by federal preemption, in practice builders may use any package of compliant measures to achieve the performance goals, including high efficiency appliances. Often, these measures are the simplest and most affordable measures to increase energy performance.

2.2.2 Energy Design Rating

The 2019 Title 24 code introduces California's Energy Design Rating (EDR) as the primary metric to demonstrate compliance with the energy code. EDR is still based on TDV but it uses a building that is compliant with the 2006 International Energy Conservation Code (IECC) as the reference building. The reference building has an EDR score of 100 while a zero-net energy (ZNE) home has an EDR score of zero (Energy Commission, 2018d). See Figure 1 for a graphical representation of this. While the Reference Building is used to determine the rating, the Proposed Design is still compared to the Standard Design based on the prescriptive baseline assumptions to determine compliance.

The EDR is calculated by CBECC-Res and has two components:

- 1. An "Efficiency EDR" which represents the building's energy use without solar generation.⁴
- 2. A "Total EDR" that represents the final energy use of the building based on the combined impact of efficiency measures, PV generation and demand flexibility.

For a building to comply, two criteria are required:

- (1) the proposed Efficiency EDR must be equal to or less than the Efficiency EDR of the Standard Design, and
- (2) the proposed Total EDR must be equal to or less than the Total EDR of the Standard Design.

Single family prototypes used in this analysis that are minimally compliant with the 2019 Title 24 code achieve a Total EDR between 20 and 35 in most climates.

This concept, consistent with California's "loading order" which prioritizes energy efficiency ahead of renewable generation, requires projects meet a minimum Efficiency EDR before PV is credited but allows for PV to be traded off with additional efficiency when meeting the Total EDR. A project may improve on building efficiency beyond the minimum required and subsequently reduce the PV generation capacity required to achieve the required Total EDR but may not increase the size of the PV system and trade this off with a reduction of efficiency measures. Figure 1 graphically summarizes how both Efficiency EDR and PV / demand flexibility EDR are used to calculate the Total EDR used in the 2019 code and in this analysis.

⁴ While there is no compliance credit for solar PV as there is under the 2016 Standards, the credit for installing electric storage battery systems that meet minimum qualifications can be applied to the Efficiency EDR.

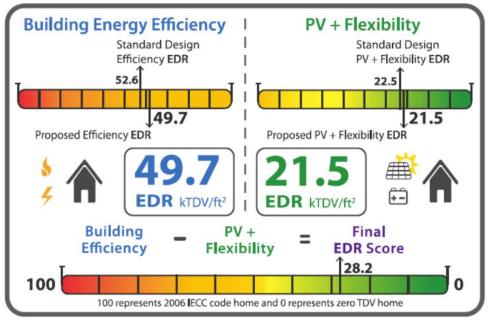


Figure 1: Graphical description of EDR scores (courtesy of Energy Code Ace⁵)

Results from this analysis are presented as EDR Margin, a reduction in the EDR score relative to the Standard Design. EDR Margin is a better metric to use than absolute EDR in the context of a reach code because absolute values vary, based on the home design and characteristics such as size and orientation. This approach aligns with how compliance is determined for the 2019 Title 24 code, as well as utility incentive programs, such as the California Advanced Homes Program (CAHP) & California Multifamily New Homes (CMFNH), which require minimum performance criteria based on an EDR Margin for low-rise residential projects. The EDR Margin is calculated according to Equation 1 for the two efficiency packages and Equation 2 for the Efficiency & PV and Efficiency & PV/Battery packages (see Section 2.3).

Equation 1

EDR Margin_{efficiency} = Standard Design **Efficiency** EDR - Proposed Design **Efficiency** EDR

Equation 2

EDR Margin_{efficiency & PV} = Standard Design **Total** EDR - Proposed Design **Total** EDR

2.2.3 Energy Efficiency Measures

Following are descriptions of each of the efficiency measures evaluated under this analysis. Because not all of the measures described below were found to be cost-effective and cost-effectiveness varied by climate zone, not all measures are included in all packages and some of the measures listed are not included in any final package. For a list of measures included in each efficiency package by climate zone, see Appendix D – Single Family Measure Summary and Appendix F – Multifamily Measure Summary.

Reduced Infiltration (ACH50): Reduce infiltration in single family homes from the default infiltration assumption of five (5) air changes per hour at 50 Pascals (ACH50)⁶ by 40 to 60 percent to either 3 ACH50 or 2 ACH50. HERS

⁶ Whole house leakage tested at a pressure difference of 50 Pascals between indoors and outdoors.

⁵ <u>https://energycodeace.com/</u>

rater field verification and diagnostic testing of building air leakage according to the procedures outlined in the 2019 Reference Appendices RA3.8 (Energy Commission, 2018c). This measure was not applied to multifamily homes because CBECC-Res does not allow reduced infiltration credit for multifamily buildings.

Improved Fenestration: Reduce window U-factor to 0.24. The prescriptive U-factor is 0.30 in all climates. In climate zones 1, 3, 5, and 16 where heating loads dominate, an increase in solar heat gain coefficient (SHGC) from the default assumption of 0.35 to 0.50 was evaluated in addition to the reduction in U-factor.

<u>Cool Roof</u>: Install a roofing product that's rated by the Cool Roof Rating Council to have an aged solar reflectance (ASR) equal to or greater than 0.25. Steep-sloped roofs were assumed in all cases. Title 24 specifies a prescriptive ASR of 0.20 for Climate Zones 10 through 15 and assumes 0.10 in other climate zones.

Exterior Wall Insulation: Decrease wall U-factor in 2x6 walls to 0.043 from the prescriptive requirement of 0.048 by increasing exterior insulation from one-inch R-5 to 1-1/2 inch R-7.5. This was evaluated for single family buildings only in all climate zones except 6 and 7 where the prescriptive requirement is higher (U-factor of 0.065) and improving beyond the prescriptive value has little impact.

<u>High Performance Attics (HPA)</u>: HPA with R-38 ceiling insulation and R-30 insulation under the roof deck. In climates where HPA is already required prescriptively this measure requires an incremental increase in roof insulation from R-19 or R-13 to R-30. In climates where HPA is not currently required (Climate Zones 1 through 3, and 5 through 7), this measure adds roof insulation to an uninsulated roof as well as increasing ceiling insulation from R-30 to R-38 in Climate Zones 3, 5, 6 and 7.

<u>Slab Insulation</u>: Install R-10 perimeter slab insulation at a depth of 16-inches. For climate zone 16, where slab insulation is required, prescriptively this measure increases that insulation from R-7 to R-10.

Duct Location (Ducts in Conditioned Space): Move the ductwork and equipment from the attic to inside the conditioned space in one of the three following ways.

- 1. Locate ductwork in conditioned space. The air handler may remain in the attic provided that 12 linear feet or less of duct is located outside the conditioned space including the air handler and plenum. Meet the requirements of 2019 Reference Appendices RA3.1.4.1.2. (Energy Commission, 2018c)
- 2. All ductwork and equipment located entirely in conditioned space meeting the requirements of 2019 Reference Appendices RA3.1.4.1.3. (Energy Commission, 2018c)
- 3. All ductwork and equipment located entirely in conditioned space with ducts tested to have less than or equal to 25 cfm leakage to outside. Meet the requirements of Verified Low Leakage Ducts in Conditioned Space (VLLDCS) in the 2019 Reference Appendices RA3.1.4.3.8. (Energy Commission, 2018c)

Option 1 and 2 above apply to single family only since the basecase for multifamily assumes ducts are within conditioned space. Option 3 applies to both single family and multifamily cases.

<u>Reduced Distribution System (Duct) Leakage</u>: Reduce duct leakage from 5% to 2% and install a low leakage air handler unit (LLAHU). This is only applicable to single family homes since the basecase for multifamily assumes ducts are within conditioned space and additional duct leakage credit is not available.

Low Pressure Drop Ducts: Upgrade the duct distribution system to reduce external static pressure and meet a maximum fan efficacy of 0.35 Watts per cfm for gas furnaces and 0.45 Watts per cfm for heat pumps operating at full speed. This may involve upsizing ductwork, reducing the total effective length of ducts, and/or selecting low pressure drop components such as filters. Fan watt draw must be verified by a HERS rater according to the procedures outlined in the 2019 Reference Appendices RA3.3 (Energy Commission, 2018c). New federal regulations that went into effect July 3, 2019 require higher fan efficiency for gas furnaces than for heat pumps and air handlers, which is why the recommended specification is different for mixed fuel and all-electric homes.

<u>HERS Verification of Hot Water Pipe Insulation</u>: The California Plumbing Code (CPC) requires pipe insulation on all hot water lines. This measure provides credit for HERS rater verification of pipe insulation requirements according to the procedures outlined in the 2019 Reference Appendices RA3.6.3. (Energy Commission, 2018c)

Compact Hot Water Distribution: Two credits for compact hot water distribution were evaluated.

- <u>Basic Credit</u>: Design the hot water distribution system to meet minimum requirements for the basic compact hot water distribution credit according to the procedures outlined in the 2019 Reference Appendices RA4.4.6 (Energy Commission, 2018c). In many single family homes this may require moving the water heater from an exterior to an interior garage wall. Multifamily homes with individual water heaters are expected to easily meet this credit with little or no alteration to plumbing design. CBECC-Res software assumes a 30% reduction in distribution losses for the basic credit.
- Expanded Credit: Design the hot water distribution system to meet minimum requirements for the expanded compact hot water distribution credit according to the procedures outlined in the 2019 Reference Appendices RA3.6.5 (Energy Commission, 2018c). In addition to requiring HERS verification that the minimum requirements for the basic compact distribution credit are met, this credit also imposes limitations on pipe location, maximum pipe diameter, and recirculation system controls allowed.

Drain Water Heat Recovery (DWHR): For multifamily buildings add DWHR that serves the showers in an unequal flow configuration (pre-heated water is piped directly to the shower) with 50% efficiency. This upgrade assumes all apartments are served by a DWHR with one unit serving each apartment individually. For a slab-on-grade building this requires a horizontal unit for the first-floor apartments.

Federally Preempted Measures:

The following additional measures were evaluated. Because these measures require upgrading appliances that are federally regulated to high efficiency models, they cannot be used to show cost-effectiveness in a local ordinance. The measures and packages are presented here to show that there are several options for builders to meet the performance targets. Heating and cooling capacities are autosized by CBECC-Res in all cases.

<u>High Efficiency Furnace</u>: For the mixed-fuel prototypes, upgrade natural gas furnace to one of two condensing furnace options with an efficiency of 92% or 96% AFUE.

<u>High Efficiency Air Conditioner</u>: For the mixed-fuel prototypes, upgrade the air conditioner to either single-stage SEER 16 / EER 13 or two-stage SEER 18 / EER 14 equipment.

<u>High Efficiency Heat Pump</u>: For the all-electric prototypes, upgrade the heat pump to either single-stage SEER 16 / EER 13 / HSPF 9 or two-stage SEER 18 / EER 14 / HSPF 10 equipment.

<u>High Efficiency Tankless Water Heater</u>: For the mixed-fuel prototype, upgrade tankless water heater to a condensing unit with a rated Uniform Energy Factor (UEF) of 0.96.

<u>High Efficiency Heat Pump Water Heater (HPWH)</u>: For the all-electric prototypes, upgrade the federal minimum heat pump water heater to a HPWH that meets the Northwest Energy Efficiency Alliance (NEEA)⁷ Tier 3 rating. The evaluated NEEA water heater is an 80gal unit and is applied to all three building prototypes. Using the same

⁷ Based on operational challenges experienced in the past, NEEA established rating test criteria to ensure newly installed HPWHs perform adequately, especially in colder climates. The NEEA rating requires an Energy Factor equal to the ENERGY STAR performance level and includes requirements regarding noise and prioritizing heat pump use over supplemental electric resistance heating.

water heater provides consistency in performance across all the equipment upgrade cases, even though hot water draws differ across the prototypes.

2.3 Package Development

Three to four packages were evaluated for each prototype and climate zone, as described below.

- 1) <u>Efficiency Non-Preempted</u>: This package uses only efficiency measures that don't trigger federal preemption issues including envelope, and water heating and duct distribution efficiency measures.
- <u>Efficiency Equipment, Preempted</u>: This package shows an alternative design that applies HVAC and water heating equipment that are more efficient than federal standards. The Reach Code Team considers this more reflective of how builders meet above code requirements in practice.
- Efficiency & PV: Using the Efficiency Non-Preempted Package as a starting point⁸, PV capacity is added to offset most of the estimated electricity use. This only applies to the all-electric case, since for the mixed fuel cases, 100% of the projected electricity use is already being offset as required by 2019 Title 24, Part 6.
- 4) <u>Efficiency & PV/Battery</u>: Using the Efficiency & PV Package as a starting point, PV capacity is added as well as a battery system.

2.3.1 Solar Photovoltaics (PV)

Installation of on-site PV is required in the 2019 residential code. The PV sizing methodology in each package was developed to offset annual building electricity use and avoid oversizing which would violate net energy metering (NEM) rules.⁹ In all cases, PV is evaluated in CBECC-Res according to the California Flexible Installation (CFI) assumptions.

The Reach Code Team used two options within the CBECC-Res software for sizing the PV system, described below. Analysis was conducted to determine the most appropriate sizing method for each package which is described in the results.

- Standard Design PV the same PV capacity as is required for the Standard Design case¹⁰
- Specify PV System Scaling a PV system sized to offset a specified percentage of the estimated electricity use of the Proposed Design case

2.3.2 Energy Storage (Batteries)

A battery system was evaluated in CBECC-Res with control type set to "Time of Use" and with default efficiencies of 95% for both charging and discharging. The "Time of Use" option assumes batteries are charged anytime PV generation is greater than the house load but controls when the battery storage system discharges. During the summer months (July – September) the battery begins to discharge at the beginning of the peak period at a maximum rate until fully discharged. During discharge the battery first serves the house load but will

¹⁰ The Standard Design PV system is sized to offset the electricity use of the building loads which are typically electric in a mixed fuel home, which includes all loads except space heating, water heating, clothes drying, and cooking.

⁸ In cases where there was no cost-effective Efficiency – Non-Preempted Package, the most cost-effective efficiency measures for that climate zone were also included in the Efficiency & PV Package in order to provide a combination of both efficiency and PV beyond code minimum.

⁹ NEM rules apply to the IOU territories only.

discharge to the electric grid if there is excess energy available. During other months the battery discharges whenever the PV system does not cover the entire house load and does not discharge to the electric grid. This control option is considered to be most reflective of the current products on the market. This control option requires an input for the "First Hour of the Summer Peak" and the Statewide CASE Team applied the default hour in CBECC-Res which differs by climate zone (either a 6pm or 7pm start). The Self Utilization Credit was taken when the battery system was modeled.

2.4 Incremental Costs

Table 4 below summarizes the incremental cost assumptions for measures evaluated in this study. Incremental costs represent the equipment, installation, replacement, and maintenance costs of the proposed measures relative to the base case.¹¹ Replacement costs are applied to HVAC and DHW equipment, PV inverters, and battery systems over the 30-year evaluation period. There is no assumed maintenance on the envelope, HVAC, or DHW measures since there should not be any additional maintenance cost for a more efficient version of the same system type as the baseline. Costs were estimated to reflect costs to the building owner. When costs were obtained from a source that didn't already include builder overhead and profit, a markup of ten percent was added. All costs are provided as present value in 2020 (2020 PV\$). Costs due to variations in furnace, air conditioner, and heat pump capacity by climate zone were not accounted for in the analysis.

Equipment lifetimes applied in this analysis for the water heating and space conditioning measures are summarized in Table 3.

Table 3: Lifetime of Water Heating & Space Conditioning Equipment Measures

Measure	Lifetime
Gas Furnace	20
Air Conditioner	20
Heat Pump	15
Gas Tankless Water Heater	20
Heat Pump Water Heater	15

Source: City of Palo Alto 2019 Title 24 Energy Reach Code Costeffectiveness Analysis Draft (TRC, 2018) which is based on the Database of Energy Efficiency Resources (DEER).¹²

¹¹ Interest costs due to financing are not included in the incremental costs presented in the Table 4 but are accounted for in the lifetime cost analysis. All first costs are assumed to be financed in a mortgage, see Section 2.5 for details.

¹² <u>http://www.deeresources.com</u>

		Incremental C	ost (2020 PV\$)	
			Multifamily	
	Performance		(Per Dwelling	
Measure	Level	Single Family	Unit)	Source & Notes
Non-Preempt	ed Measures			
Reduced	3.0 vs 5.0 ACH50	\$391	n/a	NREL's BEopt cost database (\$0.115/ft ² for 3 ACH50 & \$0.207/ft ² for 2 ACH50) + \$100 HERS
Infiltration	2.0 vs 5.0 ACH50	\$613	n/a	rater verification.
Window U- factor	0.24 vs 0.30	\$2,261	\$607	\$4.23/ft ² window area based on analysis conducted for the 2019 and 2022 Title 24 cycles (Statewide CASE Team, 2018).
Window SHGC	0.50 vs 0.35	\$0	\$0	Data from CASE Report along with direct feedback from Statewide CASE Team that higher SHGC does not necessarily have any incremental cost (Statewide CASE Team, 2017d). Applies to CZ 1,3,5,16.
Cool Roof -	0.25 vs 0.20	\$237	\$58	Costs based on 2016 Cost-effectiveness Study for Cool Roofs reach code analysis for 0.28 solar
Aged Solar Reflectance	0.20 vs 0.10	\$0	\$0	reflectance product. (Statewide Reach Codes Team, 2017b).
Exterior Wall Insulation	R-7.5 vs R-5	\$818	n/a	Based on increasing exterior insulation from 1" R-5 to 1.5" R-7.5 in a 2x6 wall (Statewide CASE Team, 2017c). Applies to single family only in all climates except CZ 6, 7.
Under-Deck	R-13 vs R-0	\$1,338	\$334	Costs for R-13 (\$0.64/ft ²), R-19 (\$0.78/ft ²) and R-30 (\$1.61/ft ²) based on data presented in the
Roof	R-19 vs R-13	\$282	\$70	2019 HPA CASE Report (Statewide CASE Team, 2017b) along with data collected directly from
Insulation	R-30 vs R-19	\$1,831	\$457	builders during the 2019 CASE process. The R-30 costs include additional labor costs for
(HPA)	R-38 vs R-30	\$585	\$146	cabling. Costs for R-38 from NREL's BEopt cost database.
Attic Floor Insulation	R-38 vs R-30	\$584	\$146	NREL's BEopt cost database: \$0.34/ft ² ceiling area
	R-10 vs R-0	\$553	\$121	\$4/linear foot of slab perimeter based on internet research. Assumes 16in depth.
Slab Edge Insulation	R-10 vs R-7	\$157	\$21	\$1.58/linear foot of slab perimeter based on NREL's BEopt cost database. This applies to CZ 16 only where R-7 slab edge insulation is required prescriptively. Assumes 16in depth.
	<12 feet in attic	\$358	n/a	
	Ducts in Conditioned Space	\$658	n/a	Costs based on a 2015 report on the Evaluation of Ducts in Conditioned Space for New
Duct Location	Verified Low Leakage Ducts in Conditioned Space	\$768	\$110	California Homes (Davis Energy Group, 2015). HERS verification cost of \$100 for the Verified Low Leakage Ducts in Conditioned Space credit.

Table 4: Incremental Cost Assumptions

		Incremental C	ost (2020 PV\$)					
			Multifamily					
	Performance		(Per Dwelling					
Measure	Level	Single Family	Unit)	Source & Notes				
Distribution	2% vs 5%	\$96	n/a	1-hour labor. Labor rate of \$96 per hour is from 2019 RSMeans for sheet metal workers and includes an average City Cost Index for labor for California cities & 10% for overhead and profit. Applies to single family only since ducts are assumed to be in conditioned space for multifamily				
System Leakage	Low Leakage Air Handler	\$0	n/a	Negligible cost based on review of available products. There are more than 6,000 Energy Commission certified units and the list includes many furnace and heat pump air handler product lines from the major manufacturers, including minimum efficiency, low cost product lines.				
Low Pressure Drop Ducts	0.35 vs 0.45	\$96	\$48	Costs assume one-hour labor for single family and half-hour per multifamily apartment. Labor rate of \$96 per hour is from 2019 RSMeans for sheet metal workers and includes an average				
(Fan W/cfm)	0.45 vs 0.58	\$96	\$48	City Cost Index for labor for California cities.				
Hot Water Pipe Insulation	HERS verified	\$110	\$83	Cost for HERS verification only, based on feedback from HERS raters. \$100 per single family home and \$75 per multifamily unit before markup.				
Compact Hot Water	Basic credit \$150		\$0	For single family add 20-feet venting at \$12/ft to locate water heater on interior garage wall, less 20-feet savings for less PEX and pipe insulation at \$4.88/ft. Costs from online retailers. Many multifamily buildings are expected to meet this credit without any changes to distribution design.				
Distribution	Expanded credit	n/a	\$83	Cost for HERS verification only. \$75 per multifamily unit before markup. This was only evaluated for multifamily buildings.				
Drain Water Heat Recovery	50% efficiency	n/a	\$690	Cost from the 2019 DWHR CASE Report assuming a 2-inch DWHR unit. The CASE Report multifamily costs were based on one unit serving 4 dwelling units with a central water heater. Since individual water heaters serve each dwelling unit in this analysis, the Reach Code Team used single family costs from the CASE Report. Costs in the CASE Report were based on a 46.1% efficient unit, a DWHR device that meets the 50% efficiency assumed in this analysis may cost a little more. (Statewide CASE Team, 2017a).				
Federally Pre	-empted Measur	es						
Furnace AFUE	92% vs 80%	\$139	\$139	Equipment costs from online retailers for 40-kBtu/h unit. Cost saving for 6-feet of venting at \$26/foot due to lower cost venting requirements for condensing (PVC) vs non-condensing				
	96% vs 80%	\$244	\$244	(stainless) furnaces. Replacement at year 20 assumes a 50% reduction in first cost. Value at year 30 based on remaining useful life is included.				
Air	16/13 vs 14/11.7	\$111	\$111	Costs from online retailers for 2-ton unit. Replacement at year 20 assumes a 50% reduction in				
Conditioner SEER/EER	18/14 vs 14/11.7	\$1,148	\$1,148	first cost. Value at year 30 based on remaining useful life is included.				

		Incremental C	ost (2020 PV\$)	
			Multifamily	
	Performance		(Per Dwelling	
Measure	Level	Single Family	Unit)	Source & Notes
Heat Pump SEER/EER	16/13/9 vs 14/11.7/8.2	\$411	\$411	Costs from online retailers for 2-ton unit. Replacement at year 15 assumes a 50% reduction in
/HSPF	18/14/10 vs 14/11.7/8.2	\$1,511	\$1,511	first cost.
Tankless Water Heater Energy Factor	0.96 vs 0.81	\$203	\$203	Equipment costs from online retailers for 40-kBtu/h unit. Cost saving for 6-feet of venting at \$26/foot due to lower cost venting requirements for condensing (PVC) vs non-condensing (stainless) furnaces. Replacement at year 15 assumes a 50% reduction in first cost.
HPWH	NEEA Tier 3 vs 2.0 EF	\$294	\$294	Equipment costs from online retailers. Replacement at year 15 assumes a 50% reduction in first cost.
PV + Battery				
PV System	System size varies	\$3.72/W-DC	\$3.17/W-DC	First costs are from LBNL's Tracking the Sun 2018 costs (Barbose et al., 2018) and represent costs for the first half of 2018 of \$3.50/W-DC for residential system and \$2.90/W-DC for non- residential system ≤500 kW-DC. These costs were reduced by 16% for the solar investment tax credit, which is the average credit over years 2020-2022. Inverter replacement cost of \$0.14/W-DC present value includes replacements at year 11 at \$0.15/W-DC (nominal) and at year 21 at \$0.12/W-DC (nominal) per the 2019 PV CASE Report (California Energy Commission, 2017). System maintenance costs of \$0.31/W-DC present value assume \$0.02/W-DC (nominal) annually per the 2019 PV CASE Report (California Energy Commission, 2017). 10% overhead and profit added to all costs
Battery	System size varies by building type	\$656/kWh	\$656/kWh	\$633/kWh first cost based on the PV Plus Battery Study report (Statewide Reach Codes Team, 2018) as the average cost of the three systems that were analyzed. This cost was reduced by 16% for the solar investment tax credit, which is the average credit over years 2020-2022. Replacement cost at year 15 of \$100/kWh based on target price reductions (Penn, 2018).

Table 4: Incremental Cost Assumptions

2.5 Cost-effectiveness

Cost-effectiveness was evaluated for all sixteen climate zones and is presented based on both TDV energy, using the Energy Commission's LCC methodology, and an On-Bill approach using residential customer utility rates. Both methodologies require estimating and quantifying the value of the energy impact associated with energy efficiency measures over the life of the measures (30 years) as compared to the prescriptive Title 24 requirements.

Results are presented as a lifecycle benefit-to-cost (B/C) ratio, a net present value (NPV) metric which represents the cost-effectiveness of a measure over a 30-year lifetime taking into account discounting of future savings and costs and financing of incremental first costs. A value of one indicates the NPV of the savings over the life of the measure is equivalent to the NPV of the lifetime incremental cost of that measure. A value greater than one represents a positive return on investment. The B/C ratio is calculated according to Equation 3.

$\begin{array}{l} \textbf{Equation 3} \\ Benefit-to-Cost \ Ratio = \frac{NPV \ of \ lifetime \ benefit}{NPV \ of \ lifetime \ cost} \end{array}$

In most cases the benefit is represented by annual utility savings or TDV savings and the cost by incremental first cost and replacement costs. However, in some cases a measure may have incremental cost savings but with increased energy related costs. In this case, the benefit is the lower first cost and the cost is the increase in utility bills. The lifetime costs or benefits are calculated according to Equation 4.

Equation 4 NPV of lifetime cost/benefit = $\sum_{t=1}^{n} Annual \cos t/benefit_t * (1 + r)^t$

Where:

- *n* = analysis term
- r = discount rate

The following summarizes the assumptions applied in this analysis to both methodologies.

- Analysis term of 30-years
- Real discount rate of 3 percent
- Inflation rate of 2 percent
- First incremental costs are financed into a 30-year mortgage
- Mortgage interest rate of 4.5 percent
- Average tax rate of 20 percent (to account for tax savings due to loan interest deductions)

2.5.1 On-Bill Customer Lifecycle Cost

Residential utility rates were used to calculate utility costs for all cases and determine On-Bill customer costeffectiveness for the proposed packages. The Reach Codes Team obtained the recommended utility rates from each IOU based on the assumption that the reach codes go into effect January of 2020. Annual utility costs were calculated using hourly electricity and gas output from CBECC-Res and applying the utility tariffs summarized in Table 5. Appendix B – Utility Tariff Details includes the utility rate schedules used for this study. The applicable residential time-of-use (TOU) rate was applied to all cases.¹³ Annual electricity production in excess of annual electricity consumption is credited to the utility account at the applicable wholesale rate based on the approved

¹³ Under NEM rulings by the CPUC (D-16-01-144, 1/28/16), all new PV customers shall be in an approved TOU rate structure. <u>https://www.cpuc.ca.gov/General.aspx?id=3800</u>

NEM2 tariffs for that utility. Minimum daily use billing and mandatory non-bypassable charges have been applied. Future change to the NEM tariffs are likely; however, there is a lot of uncertainty about what those changes will be and if they will become effective during the 2019 code cycle (2020-2022). The net surplus compensation rates for each utility are as follows:¹⁴

- PG&E: \$0.0287 / kWh
- SCE: \$0.0301 / kWh
- SDG&E: \$0.0355 / kWh

Utility rates were applied to each climate zone based on the predominant IOU serving the population of each zone according to Two SCE tariff options were evaluated: TOU-D-4-9 and TOU-D-PRIME. The TOU-D-PRIME rate is only available to customers with heat pumps for either space or water heating, a battery storage system, or an electric vehicle and therefore was only evaluated for the all-electric cases and the Efficiency & PV/Battery packages. The rate which resulted in the lowest annual cost to the customer was used for this analysis, which was TOU-D-4-9 in all cases with the exception of the single family all-electric cases in Climate Zone 14.

Table 5. Climate Zones 10 and 14 are evaluated with both SCE/SoCalGas and SDG&E tariffs since each utility has customers within these climate zones. Climate Zone 5 is evaluated under both PG&E and SoCalGas natural gas rates.

Two SCE tariff options were evaluated: TOU-D-4-9 and TOU-D-PRIME. The TOU-D-PRIME rate is only available to customers with heat pumps for either space or water heating, a battery storage system, or an electric vehicle and therefore was only evaluated for the all-electric cases and the Efficiency & PV/Battery packages. The rate which resulted in the lowest annual cost to the customer was used for this analysis, which was TOU-D-4-9 in all cases with the exception of the single family all-electric cases in Climate Zone 14.

Climate Zones	Electric / Gas	Electricity	Natural	
Climate zones	Utility	(Time-of-use)	Gas	
1-5, 11-13, 16	PG&E	E-TOU, Option B	G1	
5	PG&E / SoCalGas	E-TOU, Option B	GR	
6 9 10 14 15		TOU-D-4-9 or	CP	
6, 8-10, 14, 15	SCE / SoCal Gas	TOU-D-PRIME	GR	
7, 10, 14	SDG&E	TOU-DR1	GR	

Table 5: IOU Utility Tariffs Applied Based on Climate Zone

Source: Utility websites, See Appendix B – Utility Tariff Details for details on the tariffs applied.

Utility rates are assumed to escalate over time, using assumptions from research conducted by Energy and Environmental Economics (E3) in the 2019 study Residential Building Electrification in California study (Energy & Environmental Economics, 2019). Escalation of natural gas rates between 2019 and 2022 is based on the currently filed General Rate Cases (GRCs) for PG&E, SoCalGas and SDG&E. From 2023 through 2025, gas rates are assumed to escalate at 4% per year above inflation, which reflects historical rate increases between 2013 and 2018. Escalation of electricity rates from 2019 through 2025 is assumed to be 2% per year above inflation, based on electric utility estimates. After 2025, escalation rates for both natural gas and electric rates are assumed to drop to a more conservative 1% escalation per year above inflation for long-term rate trajectories beginning in 2026 through 2050. See Appendix B – Utility Tariff Details for additional details.

¹⁴ Net surplus compensation rates based on 1-year average February 2018 – January 2019.

2.5.2 <u>TDV Lifecycle Cost</u>

Cost-effectiveness was also assessed using the Energy Commission's TDV LCC methodology. TDV is a normalized monetary format developed and used by the Energy Commission for comparing electricity and natural gas savings, and it considers the cost of electricity and natural gas consumed during different times of the day and year. The 2019 TDV values are based on long term discounted costs of 30 years for all residential measures. The CBECC-Res simulation software outputs are in terms of TDV kBTUs. The present value of the energy cost savings in dollars is calculated by multiplying the TDV kBTU savings by a net present value (NPV) factor, also developed by the Energy Commission. The NPV factor is \$0.173/TDV kBtu for residential buildings.

Like the customer B/C ratio, a TDV B/C ratio value of one indicates the savings over the life of the measure are equivalent to the incremental cost of that measure. A value greater than one represents a positive return on investment. The ratio is calculated according to Equation 5.

 $\begin{array}{l} \textbf{Equation 5} \\ \textbf{TDV Benefit} - to - \textit{Cost Ratio} = \frac{\textit{TDV energy savings * NPV factor}}{\textit{NPV of lifetime incremental cost}} \end{array}$

2.6 Electrification Evaluation

In addition to evaluating upgrades to mixed fuel and all-electric buildings independently that do not result in fuel switching, the Reach Code Team also analyzed the impact on construction costs, utility costs, and TDV when a builder specifies and installs electric appliances instead of the gas appliances typically found in a mixed fuel building. This analysis compared the code compliant mixed fuel prototype, which uses gas for space heating, water heating, cooking, and clothes drying, with the code compliant all-electric prototype. It also compared the all-electric Efficiency & PV Package with the code compliance mixed fuel prototype. In these cases, the relative costs between natural gas and electric appliances, differences between in-house electricity and gas infrastructure and the associated infrastructure costs for providing gas to the building were also included.

A variety of sources were reviewed when determining incremental costs. The sources are listed below.

- SMUD All-Electric Homes Electrification Case Study (EPRI, 2016)
- City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis (TRC, 2018)
- Building Electrification Market Assessment (E3, 2019)
- Decarbonization of Heating Energy Use in California Buildings (Hopkins et al., 2018)
- Analysis of the Role of Gas for a Low-Carbon California Future (Navigant, 2008)
- Rulemaking No. 15-03-010 An Order Instituting Rulemaking to Identify Disadvantaged Communities in the San Joaquin Valley and Analyze Economically Feasible Options to Increase Access to Affordable Energy in Those Disadvantages Communities (California Public Utilities Commission, 2016)
- 2010-2012 WO017 Ex Ante Measure Cost Study: Final Report (Itron, 2014)
- Natural gas infrastructure costs provided by utility staff through the Reach Code subprogram
- Costs obtained from builders, contractors and developers

Incremental costs are presented in Table 6. Values in parentheses represent a lower cost or cost reduction in the electric option relative to mixed fuel. The costs from the available sources varied widely, making it difficult to develop narrow cost estimates for each component. For certain components data is provided with a low to high range as well as what were determined to be typical costs and ultimately applied in this analysis. Two sets of typical costs are presented, one which is applied in the On-Bill cost effectiveness methodology and another applied in the TDV methodology. Details of these differences are explained in the discussion of site gas infrastructure costs in the following pages.

Measure	Incr	<u>emental C</u> Single	ost (2020 Family ¹	<u>PV\$)</u>	Incremental Cost (2020 PV\$) Multifamily ¹ (Per Dwelling Unit)					
	Low	High	Typical (On-Bill)	Typical (TDV)	Low	High	Typical (On-Bill)	Typical (TDV)		
Heat Pump vs Gas Furnace/Split AC	(\$2,770)	\$620	(\$:	221)						
Heat Pump Water Heater vs Gas Tankless	(\$1,120)	\$1,120		\$0		ma as Si	ada Famili			
Electric vs Gas Clothes Dryer ²	(\$428)	\$820		\$0	Sd	me as si	ngle Famil	у		
Electric vs Gas Cooking ²	\$0	\$1,800		\$0						
Electric Service Upgrade	\$200	\$800	\$	600	\$150	\$600	\$6	00		
In-House Gas Infrastructure	(\$1,670)	(\$550)	(\$	800)	(\$600)	(\$150)	(\$6	00)		
Site Gas Infrastructure	(\$25,000)	(\$900)	(\$5,750)	(\$11,836)	(\$16,250)	(\$310)	(\$3,140)	(\$6,463)		
Total First Cost	(\$30,788)	\$3,710	(\$6,171)	(\$12,257)	(\$20,918)	\$4,500	(\$3,361)	(\$6,684)		
Present Value of Equipment Replace		\$1,266				\$1,2	266			
Lifetime Cost Including Replacemen Cost	(\$5,349)	(\$11,872)			(\$2,337)	(\$5,899)				

Table 6: Incremental Costs – All-Electric Code Compliant Home Compared to a Mixed Fuel Code Compliant Home

¹Low and high costs represent the potential range of costs and typical represents the costs used in this analysis and determined to be most representative of the conditions described in this report. Two sets of typical costs are presented, one which is applied in the On-Bill cost effectiveness methodology and another applied in the TDV methodology. ²Typical costs assume electric resistance technology. The high range represents higher end induction cooktops and heat pump clothes dryers. Lower cost induction cooktops are available.

Typical incremental costs for switching from a mixed fuel design to an all-electric design are based on the following assumptions:

Appliances: The Reach Code Team determined that the typical first installed cost for electric appliances is very similar to that for natural gas appliances. This was based on information provided by HVAC contractors, plumbers and builders as well as a review of other studies. After review of various sources, the Reach Code Team concluded that the cost difference between gas and electric resistance options for clothes dryers and stoves is negligible and that the lifetimes of the two technologies are also similar.

HVAC: Typical HVAC incremental costs were based on the City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis (TRC, 2018) which assumes approximately \$200 first cost savings for the heat pump relative to the gas furnace and air conditioner. Table 6 also includes the present value of the incremental replacement costs for the heat pump based on a 15-year lifetime and a 20-year lifetime for the gas furnace in the mixed fuel home.

DHW: Typical costs for the water heating system were based on equivalent installed first costs for the HPWH and tankless gas water heater. This accounts for slightly higher equipment cost but lower installation labor due to the elimination of the gas flue. Incremental replacement costs for the HPWH are based on a 15-year lifetime and a 20-year lifetime for the tankless water heater.

For multifamily, less data was available and therefore a range of low and high costs is not provided. The typical first cost for multifamily similarly is expected to be close to the same for the mixed fuel and allelectric designs. However, there are additional considerations with multifamily such as greater complexity for venting of natural gas appliances as well as for locating the HPWH within the conditioned space (all climates except Climate Zones 1, 3, and 5, see Table 2) that may impact the total costs.

<u>Electric service upgrade</u>: The study assumes an incremental cost to run 220V service to each appliance of \$200 per appliance for single family homes and \$150 per appliance per multifamily apartment based on cost estimates from builders and contractors. The Reach Code Team reviewed production builder utility plans for

mixed-fuel homes and consulted with contractors to estimate which electricity and/or natural gas services are usually provided to the dryer and oven. Typical practice varied, with some builders providing both gas and electric service to both appliances, others providing both services to only one of the appliances, and some only providing gas. For this study, the Reach Code Team determined that for single family homes the typical cost is best qualified by the practice of providing 220V service and gas to either the dryer and the oven and only gas service to the other. For multifamily buildings it's assumed that only gas is provided to the dryer and oven in the mixed fuel home.

It is assumed that no upgrades to the electrical panel are required and that a 200 Amp panel is typically installed for both mixed fuel and all-electric new construction homes. There are no incremental electrical site infrastructure requirements.

<u>In-house gas infrastructure (from meter to appliances)</u>: Installation cost to run a gas line from the meter to the appliance location is \$200 per appliance for single family and \$150 per appliance per multifamily apartment based on cost estimates from builders and contractors. The cost estimate includes providing gas to the water heater, furnace, dryer and cooktop.

Site gas infrastructure: The cost-effective analysis components with the highest degree of variability are the costs for on-site gas infrastructure. These costs can be project dependent and may be significantly impacted by such factors as utility territory, site characteristics, distance to the nearest gas main and main location, joint trenching, whether work is conducted by the utility or a private contractor, and number of dwelling units per development. All gas utilities participating in this study were solicited for cost information. The typical infrastructure costs for single family homes presented in Table 6 are based on cost data provided by PG&E and reflect those for a new subdivision in an undeveloped area requiring the installation of natural gas infrastructure, including a main line. Infrastructure costs for infill development can also be highly variable and may be higher than in an undeveloped area. The additional costs associated with disruption of existing roads, sidewalks, and other structures can be significant. Total typical costs in Table 6 assume \$10,000 for extension of a gas main, \$1,686 for a service lateral, and \$150 for the meter.

Utility Gas Main Extensions rules¹⁵ specify that the developer has the option to only pay 50% of the total cost for a main extension after subtraction of allowances for installation of gas appliances. This 50% refund and the appliance allowance deductions are accounted for in the site gas infrastructure costs under the On-Bill cost-effectiveness methodology. The net costs to the utility after partial reimbursement from the developer are included in utility ratebase and recovered via rates to all customers. The total cost of \$5,750 presented in Table 6 reflects a 50% refund on the \$10,000 extension and appliance deductions of \$1,086 for a furnace, water heater, cooktop, and dryer. Under the On-Bill methodology this analysis assumes this developer option will remain available through 2022 and that the cost savings are passed along to the customer.

The 50% refund and appliance deductions were not applied to the site gas infrastructure costs under the TDV cost-effectiveness methodology based on input received from the Energy Commission and agreement from the Reach Code technical advisory team that the approach is appropriate. TDV cost savings impacts extend beyond the customer and account for societal impacts of energy use. Accounting for the full cost of the infrastructure upgrades was determined to be justified when evaluating under the TDV methodology.

SDG&E Rule 15: http://regarchive.sdge.com/tm2/pdf/GAS_GAS-RULES_GRULE15.pdf

¹⁵ PG&E Rule 15: <u>https://www.pge.com/tariffs/tm2/pdf/GAS_RULES_15.pdf</u>

SoCalGas Rule 20: https://www.socalgas.com/regulatory/tariffs/tm2/pdf/20.pdf

Less information was available for the costs associated with gas infrastructure for low-rise multifamily development. The typical cost in Table 6 for the On-Bill methodology is based on TRC's City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis (TRC, 2018). These costs, provided by the City of Palo Alto, are approximately \$25,100 for an 8-unit new construction building and reflect connection to an existing main for infill development. Specific costs include plan review, connection charges, meter and manifold, plumbing distribution, and street cut fees. While these costs are specifically based on infill development and from one municipal utility, the estimates are less than those provided by PG&E reflecting the average cost differences charged to the developer between single family and multifamily in an undeveloped area (after accounting for deductions per the Gas Main Extensions rule). To convert costs charged to the developer to account for the full infrastructure upgrade cost (costs applied in the TDV methodology analysis), a factor of 2.06¹⁶ was calculated based on the single family analysis. This same factor was applied to the multifamily cost of \$3,140 to arrive at \$6,463 (see Table 6).

2.7 Greenhouse Gas Emissions

Equivalent CO₂ emission savings were calculated based on outputs from the CBECC-Res simulation software. Electricity emissions vary by region and by hour of the year. CBECC-Res applies two distinct hourly profiles, one for Climate Zones 1 through 5 and 11 through 13 and another for Climate Zones 6 through 10 and 14 through 16. For natural gas a fixed factor of 0.005307 metric tons/therm is used. To compare the mixed fuel and allelectric cases side-by-side, greenhouse gas (GHG) emissions are presented as CO₂-equivalent emissions per square foot of conditioned floor area.

3 Results

The primary objective of the evaluation is to identify cost-effective, non-preempted performance targets for both single family and low-rise multifamily prototypes, under both mixed fuel and all-electric cases, to support the design of local ordinances requiring new low-rise residential buildings to exceed the minimum state requirements. The packages presented are representative examples of designs and measures that can be used to meet the requirements. In practice, a builder can use any combination of non-preempted or preempted compliant measures to meet the requirements.

This analysis covered all sixteen climate zones and evaluated two efficiency packages, including a nonpreempted package and a preempted package that includes upgrades to federally regulated equipment, an Efficiency & PV Package for the all-electric scenario only, and an Efficiency & PV/Battery Package. For the efficiency-only packages, measures were refined to ensure that the non-preempted package was cost-effective based on one of the two metrics applied in this study, TDV or On-Bill. The preempted equipment package, which the Reach Code Team considers to be a package of upgrades most reflective of what builders commonly apply to exceed code requirements, was designed to be cost-effective based on the On-Bill cost-effectiveness approach.

Results are presented as EDR Margin instead of compliance margin. EDR is the metric used to determine code compliance in the 2019 cycle. Target EDR Margin is based on taking the calculated EDR Margin for the case and rounding down to the next half of a whole number. Target EDR Margin for the Efficiency Package are defined based on the lower of the EDR Margin of the non-preempted package and the equipment, preempted package. For example, if for a particular case the cost-effective non-preempted package has an EDR Margin of 3 and the preempted package an EDR Margin of 4, the Target EDR Margin is set at 3.

¹⁶ This factor includes the elimination of the 50% refund for the main extension and adding back in the appliance allowance deductions.

For a package to qualify, a minimum EDR Margin of 0.5 was required. This is to say that a package that only achieved an EDR Margin of 0.4, for example, was not considered. An EDR Margin less than 0.5 generally corresponds to a compliance margin lower than 5% and was considered too small to ensure repeatable results. In certain cases, the Reach Code Team did not identify a cost-effective package that achieved the minimum EDR Margin of 0.5.

Although some of the efficiency measures evaluated were not cost-effective and were eliminated, the following measures are included in at least one package:

- Reduced infiltration
- Improved fenestration
- Improved cool roofs
- High performance attics
- Slab insulation
- Reduced duct leakage
- Verified low leakage ducts in conditioned space
- Low pressure-drop distribution system
- Compact hot water distribution system, basic and expanded
- High efficiency furnace, air conditioner & heat pump (preempted)
- High efficiency tankless water heater & heat pump water heater (preempted)

3.1 PV and Battery System Sizing

The approach to determining the size of the PV and battery systems varied based on each package and the source fuel. Table 7 describes the PV and battery sizing approaches applied to each of the four packages. For the **Efficiency Non-preempted and Efficiency – Equipment, Preempted packages** a different method was applied to each the two fuel scenarios. In all **mixed fuel cases**, the PV was sized to offset 100% of the estimated electrical load and any electricity savings from efficiency measures were traded off with a smaller PV system. Not downsizing the PV system after adding efficiency measures runs the risk of producing more electricity than is consumed, reducing cost-effectiveness and violating NEM rules. While the impact of this in most cases is minor, analysis confirmed that cost-effectiveness improved when reducing the system size to offset 100% of the electricity usage as opposed to keeping the PV system the same size as the Standard Design.

In the **all-electric Efficiency cases**, the PV system size was left to match the Standard Design (Std Design PV), and the inclusion of energy efficiency measures was not traded off with a reduced capacity PV system. Because the PV system is sized to meet the electricity load of a mixed fuel home, it is cost-effective to keep the PV system the same size and offset a greater percentage of the electrical load.

For the **Efficiency & PV case on the all-electric home**, the Reach Code Team evaluated PV system sizing to offset 100%, 90% and 80% of the total calculated electricity use. Of these three, sizing to 90% proved to be the most cost-effective based on customer utility bills. This is a result of the impact of the annual minimum bill which is around \$120 across all the utilities. The "sweet spot" is a PV system that reduces electricity bills just enough to match the annual minimum bill; increasing the PV size beyond this adds first cost but does not result in utility bill savings.

Package	Mixed Fuel	All-Electric
Efficiency (Envelope & Equipment)	PV Scaled @ 100% electricity	Std Design PV
Efficiency & PV	n/a	PV Scaled @ 90%
	PV Scaled @ 100% electricity	PV Scaled @ 100%
Efficiency & PV/Battery	5kWh / SF home	5kWh / SF home
	2.75kWh/ MF apt	2.75kWh/ MF apt

Table 7: PV & Battery Sizing Details by Package Type

A sensitivity analysis was conducted to determine the appropriate battery and PV capacity for the Efficiency & PV/Battery Packages using the 1-story 2,100 square foot prototype in Climate Zone 12. Results are shown in Figure 2. The current version of CBECC-Res requires a minimum battery size of 5 kWh to qualify for the self-utilization credit. CBECC-Res allows for PV oversizing up to 160% of the building's estimated electricity load when battery storage systems are installed; however, the Reach Code Team considered this high, potentially problematic from a grid perspective, and likely not acceptable to the utilities or customers. The Reach Code Team compared cost-effectiveness of 5kWh and 7.5kWh battery systems as well as of PV systems sized to offset 90%, 100%, or 120% of the estimated electrical load.

Results show that from an on-bill perspective a smaller battery size is more cost-effective. The sensitivity analysis also showed that increasing the PV capacity from 90% to 120% of the electricity use reduced cost-effectiveness. From the TDV perspective there was little difference in results across all the scenarios, with the larger battery size being marginally more cost-effective. Based on these results, the Reach Code Team applied to the Efficiency & PV/Battery Package a 5kWh battery system for single family homes with PV sized to offset 100% of the electricity load. Even though PV scaled to 90% was the most cost-effective, sizing was increased to 100% to evaluate greater generation beyond the Efficiency & PV Package and to achieve zero net electricity. These results also show that in isolation, the inclusion of a battery system reduces cost-effectiveness compared to the same size PV system without batteries.

For multifamily buildings the battery capacity was scaled to reflect the average ratio of battery size to PV system capacity (kWh/kW) for the single family Efficiency & PV Package. This resulted in a 22kWh battery for the multifamily building, or 2.75kWh per apartment.

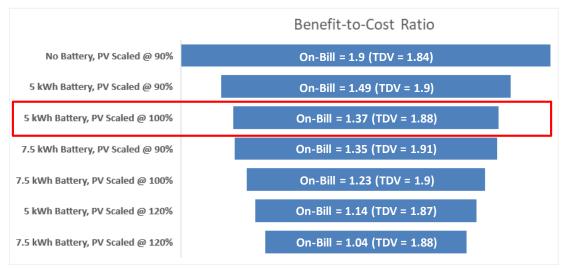


Figure 2: B/C ratio comparison for PV and battery sizing

3.2 Single Family Results

Table 8 through Table 10 contain cost effectiveness findings for the single family packages. Table 8 summarizes the package costs for all of the mixed fuel and all-electric efficiency, PV and battery packages. The mixed fuel results are evaluated and presented relative to a mixed fuel code compliant basecase while the all-electric results are relative to an all-electric code compliant basecase.

Table 9 and Table 10 present the B/C ratios for all the single family packages according to both the On-Bill and TDV methodologies for the mixed fuel and the all-electric cases, respectively. Results are cost-effective based on TDV for all cases except for Climate Zone 7 where no cost-effective combination of non-preempted efficiency measures was found that met the minimum 0.5 EDR Margin threshold. Cases where the B/C ratio is indicated as ">1" refer to instances where there are incremental cost savings in addition to annual utility bill savings. In these cases, there is no cost associated with the upgrade and benefits are realized immediately.

Figure 3 presents a comparison of Total EDRs for single family buildings and Figure 4 presents the EDR Margin results. Each graph compares the mixed fuel and all-electric cases as well as the various packages. The EDR Margin for the **Efficiency Package** for most climates is between 1.0 and 5.5 for mixed fuel cases and slightly higher, between 1.5 and 6.5, for the all-electric design. No cost-effective **mixed fuel or all-electric non-preempted Efficiency package** was found Climate Zone 7.

For the **mixed fuel case, the Efficiency & PV/Battery** Package increased the EDR Margin to values between 7.0 and 10.5. Because of the limitations on oversizing PV systems to offset natural gas use it is not feasible to achieve higher EDR Margins by increasing PV system capacity.

For the **all-electric case, the Efficiency & PV** Package resulted in EDR Margins of 11.0 to 19.0 for most climates; adding a battery system increased the EDR Margin by an additional 7 to 13 points. Climate zones 1 and 16, which have high heating loads, have much higher EDR Margins for the Efficiency & PV package (26.5-31.0). The Standard Design PV, which is what is applied in the all-electric Efficiency Package, is not sized to offset any of the heating load. When the PV system is sized to offset 90% of the total electricity use, the increase is substantial as a result. In contrast, in Climate Zone 15 the Standard Design PV system is already sized to cover the cooling electricity load, which represents 40% of whole building electricity use. Therefore, increasing the PV size to offset 90% of the electric load in this climate only results in adding approximately 120 Watts of PV capacity and subsequently a negligible impact on the EDR.

Additional results details can be found in Appendix C – Single Family Detailed Results with summaries of measures included in each of the packages in Appendix D – Single Family Measure Summary. A summary of results by climate zone is presented in Appendix G – Results by Climate Zone.

		Mixed Fuel	<u> </u>		All-El	ectric		
Climate Zone	Non-Preempted	Equipment - Preempted	Efficiency & PV/Battery	Non-Preempted	Equipment - Preempted	Efficiency & PV	Efficiency & PV/Battery	
CZ01	+\$1,355	+\$1,280	+\$5,311	+\$7,642	+\$2,108	+\$18,192	+\$24,770	
CZ02	+\$1,504	+\$724	+\$5,393	+\$3,943	+\$2,108	+\$12,106	+\$18,132	
CZ03	+\$1,552	+\$1,448	+\$5,438	+\$1,519	+\$2,108	+\$8,517	+\$14,380	
CZ04	+\$1,556	+\$758	+\$5,434	+\$1,519	+\$2,108	+\$8,786	+\$14,664	
CZ05	+\$1,571	+\$772	+\$5,433	+\$1,519	+\$2,108	+\$8,307	+\$14,047	
CZ06	+\$1,003	+\$581	+\$4,889	+\$926	+\$846	+\$6,341	+\$12,036	
CZ07	n/a	+\$606	+\$4,028	n/a	+\$846	+\$4,436	+\$9,936	
CZ08	+\$581	+\$586	+\$4,466	+\$926	+\$412	+\$5,373	+\$11,016	
CZ09	+\$912	+\$574	+\$4,785	+\$1,180	+\$846	+\$5,778	+\$11,454	
CZ10	+\$1,648	+\$593	+\$5,522	+\$1,773	+\$949	+\$6,405	+\$12,129	
CZ11	+\$3,143	+\$1,222	+\$7,026	+\$3,735	+\$2,108	+\$10,827	+\$17,077	
CZ12	+\$1,679	+\$654	+\$5,568	+\$3,735	+\$2,108	+\$11,520	+\$17,586	
CZ13	+\$3,060	+\$611	+\$6,954	+\$4,154	+\$2,108	+\$10,532	+\$16,806	
CZ14	+\$1,662	+\$799	+\$5,526	+\$4,154	+\$2,108	+\$10,459	+\$16,394	
CZ15	+\$2,179	-(\$936)	+\$6,043	+\$4,612	+\$2,108	+\$5,085	+\$11,382	
CZ16	+\$3,542	+\$2,441	+\$7,399	+\$5,731	+\$2,108	+\$16,582	+\$22,838	

 Table 8: Single Family Package Lifetime Incremental Costs

		ie 7. Single	y	0		iciency &	PV/Batt	tery				
		Non-P	reempted	ł	Equipme	nt - Preer	npted	Target				Target
		Efficiency	On-Bill	TDV	Efficiency	On-Bill	TDV	Efficiency	Total	On-Bill	TDV	Total
		EDR	B/C	B/C	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR
CZ	Utility	Margin	Ratio	Ratio	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin
01	PG&E	5.3	3.4	2.8	6.9	4.9	4.1	5.0	10.6	0.9	1.6	10.5
02	PG&E	3.3	1.6	1.7	3.3	3.8	3.6	3.0	10.1	0.5	1.6	10.0
03	PG&E	3.0	1.3	1.3	4.1	1.9	2.0	2.5	10.0	0.4	1.4	10.0
04	PG&E	2.5	0.9	1.2	2.7	2.4	2.7	2.5	10.1	0.3	1.5	10.0
05	PG&E	2.7	1.1	1.2	2.6	2.3	2.5	2.5	9.4	0.4	1.3	9.0
05	PG&E/SoCalGas	2.7	0.9	1.2	2.6	2.0	2.5	2.5	9.4	0.3	1.3	9.0
06	SCE/SoCalGas	2.0	0.7	1.2	2.0	1.6	2.0	1.5	9.8	0.8	1.3	9.5
07	SDG&E	0.0	-	-	1.5	1.5	1.4	0.0	9.2	0.1	1.3	9.0
08	SCE/SoCalGas	1.3	0.6	1.4	1.6	1.3	1.8	1.0	8.4	0.9	1.3	8.0
09	SCE/SoCalGas	2.6	0.7	2.0	2.9	1.8	3.7	2.5	8.8	1.0	1.5	8.5
10	SCE/SoCalGas	3.2	0.6	1.3	3.2	2.0	3.8	3.0	9.6	1.0	1.5	9.5
10	SDG&E	3.2	0.8	1.3	3.2	2.6	3.8	3.0	9.6	0.6	1.5	9.5
11	PG&E	4.3	0.8	1.2	5.1	2.5	3.7	4.0	9.2	0.4	1.5	9.0
12	PG&E	3.5	1.2	1.8	3.4	3.3	4.6	3.0	9.6	0.4	1.7	9.5
13	PG&E	4.6	0.8	1.3	5.8	5.3	8.4	4.5	9.7	0.4	1.6	9.5
14	SCE/SoCalGas	5.0	1.6	2.5	5.8	4.0	6.1	4.5	9.0	1.3	1.7	9.0
14	SDG&E	5.0	1.9	2.5	5.8	4.9	6.1	4.5	9.0	1.2	1.7	9.0
15	SCE/SoCalGas	4.8	1.0	1.6	5.0	>1	>1	4.5	7.1	1.1	1.5	7.0
16	PG&E	5.4	1.6	1.5	6.2	2.2	2.2	5.0	10.5	0.9	1.4	10.5

 Table 9: Single Family Package Cost-Effectiveness Results for the Mixed Fuel Case 1.2

¹">1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix D – Single Family Measure Summary.

_		ss results for the All Licetife case														
					Efficiency	fficiency				Efficien	cy & PV	1	Effici	ency &	PV/Ba	ttery
		Non-Pi	eempte	ed	Equipmen	it - Preer	npted	Target				Target				Target
		Efficiency	On-Bill	TDV	Efficiency	On-Bill	TDV	Efficiency	Total	On-Bill	TDV	Total	Total	On-Bill	TDV	Total
		EDR	B/C	B/C	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR
CZ	Utility	Margin	Ratio	Ratio	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin
01	PG&E	15.2	1.8	1.7	6.9	2.9	2.7	6.5	31.4	1.8	1.5	31.0	41.2	1.4	1.4	41.0
02	PG&E	4.9	1.2	1.1	5.1	2.3	2.1	4.5	19.4	1.8	1.4	19.0	30.1	1.4	1.4	30.0
03	PG&E	4.7	2.6	2.4	4.4	1.8	1.6	4.0	18.5	2.2	1.7	18.0	29.3	1.5	1.6	29.0
04	PG&E	3.4	1.9	1.8	3.9	1.5	1.5	3.0	17.2	2.1	1.6	17.0	28.6	1.5	1.6	28.5
05	PG&E	4.4	2.6	2.3	4.4	1.9	1.7	4.0	18.2	2.3	1.8	18.0	28.7	1.6	1.6	28.5
05	PG&E/SoCalGas	4.4	2.6	2.3	4.4	1.9	1.7	4.0	18.2	2.3	1.8	18.0	28.7	1.6	1.6	28.5
06	SCE/SoCalGas	2.0	1.3	1.4	2.9	2.2	2.3	2.0	14.3	1.2	1.5	14.0	26.1	1.2	1.4	26.0
07	SDG&E	0.0	-	-	2.2	1.6	1.7	0.0	11.3	1.9	1.5	11.0	24.2	1.3	1.5	24.0
08	SCE/SoCalGas	1.6	0.6	1.2	1.8	2.8	3.0	1.5	10.9	1.0	1.5	10.5	21.6	1.1	1.4	21.5
09	SCE/SoCalGas	2.8	0.8	2.0	3.3	2.1	3.2	2.5	11.5	1.1	1.6	11.5	21.3	1.1	1.5	21.0
10	SCE/SoCalGas	3.1	0.9	1.5	3.4	2.3	3.2	3.0	11.1	1.1	1.5	11.0	21.2	1.1	1.5	21.0
10	SDG&E	3.1	1.1	1.5	3.4	2.6	3.2	3.0	11.1	1.7	1.5	11.0	21.2	1.4	1.5	21.0
11	PG&E	4.6	1.2	1.5	5.9	3.0	3.3	4.5	14.2	1.8	1.6	14.0	23.2	1.5	1.6	23.0
12	PG&E	3.8	0.8	1.1	5.1	2.0	2.5	3.5	15.7	1.7	1.4	15.5	25.4	1.3	1.5	25.0
13	PG&E	5.1	1.1	1.4	6.0	2.9	3.3	5.0	13.4	1.7	1.5	13.0	22.5	1.4	1.5	22.0
14	SCE/SoCalGas	5.6	1.0	1.5	6.0	2.3	3.1	5.5	15.5	1.2	1.6	15.5	23.9	1.4	1.6	23.5
14	SDG&E	5.6	1.3	1.5	6.0	2.9	3.1	5.5	15.5	1.8	1.6	15.5	23.9	1.7	1.6	23.5
15	SCE/SoCalGas	5.6	1.1	1.6	7.3	3.3	4.5	5.5	6.2	1.1	1.6	6.0	13.5	1.2	1.5	13.0
16	PG&E	9.7	1.7	1.7	4.9	2.4	2.3	4.5	27.0	2.1	1.6	26.5	35.4	1.7	1.5	35.0

Table 10: Single Family Package Cost-Effectiveness Results for the All-Electric Case^{1,2}

¹">1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix D – Single Family Measure Summary

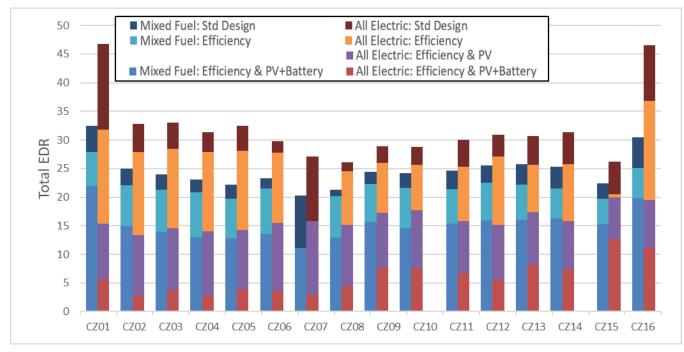


Figure 3: Single family Total EDR comparison

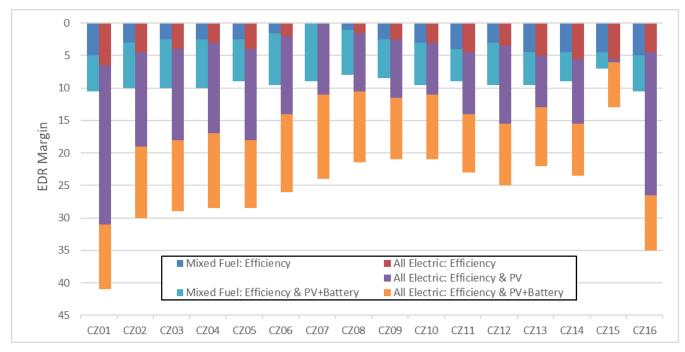
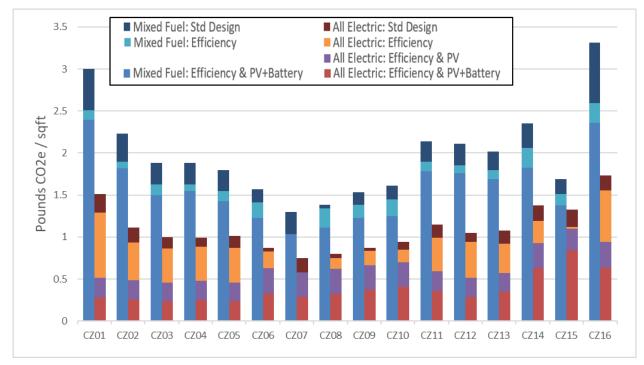



Figure 4: Single family EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency packages and the Total EDR Margin for the Efficiency & PV and Efficiency & PV/Battery packages)

3.2.1 GHG Emission Reductions

Figure 5 compares annual GHG emissions for both mixed fuel and all-electric single family 2019 code compliant cases with Efficiency, Efficiency & PV and Efficiency & PV/Battery packages. GHG emissions vary by climate but are consistently higher in mixed fuel cases than all-electric. Standard Design mixed fuel emissions range from 1.3 (CZ 7) to 3.3 (CZ 16) lbs CO2e/square foot of floor area, where all-electric Standard Design emissions range from 0.7 to 1.7 lbs CO2e/ ft². Adding efficiency, PV and batteries to the mixed fuel code compliant prototype reduces GHG emissions by 20% on average to between 1.0 and 1.8 lbs CO2e/ft², with the exception of Climate Zones 1 and 16. Adding efficiency, PV and batteries to the all-electric code compliant prototype reduces annual GHG emissions by 65% on average to 0.8 lbs CO2e/ft² or less. None of the cases completely eliminate GHG emissions. Because of the time value of emissions calculation for electricity in CBECC-Res, there is always some amount of GHG impacts with using electricity from the grid.

Figure 5: Single family greenhouse gas emissions comparison

3.3 Multifamily Results

Table 11 through Table 13 contain cost effectiveness findings for the multifamily packages. Table 11 summarizes the package costs for all the mixed fuel and all-electric efficiency, PV and battery packages.

Table 12 and Table 13 present the B/C ratios for all the packages according to both the On-Bill and TDV methodologies for the mixed fuel and the all-electric cases, respectively. All the packages are cost-effective based on TDV except Climate Zone 3 for the all-electric cases where no cost-effective combination of non-preempted efficiency measures was found that met the minimum 0.5 EDR Margin threshold. Cases where the B/C ratio is indicated as ">1" refer to instances where there are incremental cost savings in addition to annual utility bill savings. In these cases, there is no cost associated with this upgrade and benefits are realized immediately.

It is generally more challenging to achieve equivalent savings targets cost-effectively for the multifamily cases than for the single family cases. With less exterior surface area per floor area the impact of envelope measures

is diminished in multifamily buildings. Ducts are already assumed to be within conditioned space and therefore only one of the duct measures found to be cost-effective in single family homes can be applied.

Figure 6 presents a comparison of Total EDRs for the multifamily cases and Figure 7 presents the EDR Margin results. Each graph compares the mixed fuel and all-electric cases as well as the various packages. Cost-effective efficiency packages were found for all **mixed fuel cases**. The Target EDR Margins for the **mixed fuel Efficiency Package** are 0.5 for Climate Zones 3, 5 and 7, between 1.0 and 2.5 for Climate Zones 1, 2, 4, 6, 8 through 12 and 16, and between 3.0 and 4.0 in Climate Zones 13 through 15. For the **all-electric case, no cost-effective non-preempted efficiency packages** were found in Climate Zone 3. The Target EDR Margins are between 0.5 and 2.5 for Climate Zones 2, 4 through 10 and 12, and between 3.0 and 4.0 in Climate Zones 1, 11, and 13 through 16.

For the **mixed fuel case, the Efficiency & PV/Battery Package** results in an EDR Margin of between 8.5 and 11.5 across all climate zones. Most of these packages were not found to be cost-effective based on utility bill savings alone, but they all are cost-effective based on TDV energy savings. For the **all-electric case, the Efficiency & PV Package** resulted in EDR Margins of 10.5 to 17.5 for most climates; adding a battery system increased the EDR Margin by an additional 10 to 15 points. Climate zones 1 and 16, which have high heating loads, have much higher EDR Margins for the **Efficiency & PV package** (19.5-22.5). The Standard Design PV, which is what is applied in the **Efficiency Package**, is not sized to offset any of the heating load. When the PV system is sized to offset 90% of the total electricity use, the increase is substantial as a result. In Climate Zone 15 the Standard Design PV system is already sized to cover the cooling electricity load, which represents 30% of whole building electricity use. Therefore, increasing the PV size to offset 90% of the electric load in this climate only results in adding approximately 240 Watts of PV capacity per apartment and subsequently a much smaller impact on the EDR than in other climate zones. Because of the limitations on oversizing PV systems to offset natural gas use it is not feasible to achieve comparable EDR Margins for the mixed fuel case as in the all-electric case.

Additional results details can be found in Appendix E – Multifamily Detailed Results with summaries of measures included in each of the packages in Appendix F – Multifamily Measure Summary. A summary of results by climate zone is presented in Appendix G – Results by Climate Zone.

		Mixed Fuel		All-Electric					
Climate	Non-	Equipment -	Efficiency &	Non-	Equipment -	Efficiency	Efficiency &		
Zone	Preempted	Preempted	PV/Battery	Preempted	Preempted	& PV	PV/Battery		
CZ01	+\$960	+\$507	+\$3,094	+\$949	+\$795	+\$5,538	+\$8,919		
CZ02	+\$309	+\$497	+\$2,413	+\$361	+\$795	+\$3,711	+\$6,833		
CZ03	+\$175	+\$403	+\$2,279	n/a	+\$795	+\$3,272	+\$6,344		
CZ04	+\$329	+\$351	+\$2,429	+\$361	+\$795	+\$3,158	+\$6,201		
CZ05	+\$180	+\$358	+\$2,273	+\$247	+\$795	+\$3,293	+\$6,314		
CZ06	+\$190	+\$213	+\$2,294	+\$231	+\$361	+\$2,580	+\$5,590		
CZ07	+\$90	+\$366	+\$2,188	+\$202	+\$361	+\$2,261	+\$5,203		
CZ08	+\$250	+\$213	+\$2,353	+\$231	+\$361	+\$2,240	+\$5,249		
CZ09	+\$136	+\$274	+\$2,234	+\$231	+\$361	+\$2,232	+\$5,236		
CZ10	+\$278	+\$250	+\$2,376	+\$361	+\$361	+\$2,371	+\$5,395		
CZ11	+\$850	+\$317	+\$2,950	+\$1,011	+\$795	+\$3,601	+\$6,759		
CZ12	+\$291	+\$434	+\$2,394	+\$1,011	+\$795	+\$3,835	+\$6,943		
CZ13	+\$831	+\$290	+\$2,936	+\$1,011	+\$795	+\$3,462	+\$6,650		
CZ14	+\$874	+\$347	+\$2,957	+\$1,011	+\$795	+\$3,356	+\$6,380		
CZ15	+\$510	-(\$157)	+\$2,604	+\$1,011	+\$1,954	+\$1,826	+\$5,020		
CZ16	+\$937	+\$453	+\$3,028	+\$843	+\$795	+\$4,423	+\$7,533		

 Table 11: Multifamily Package Incremental Costs per Dwelling Unit

		ne 12. muit		Ŭ	Efficiency				Efficiency & PV/Battery			
		Non-P	reempted	ł	Equipme	nt - Preen	npted	Target				Target
		Efficiency	On-Bill	TDV	Efficiency	On-Bill	TDV	Efficiency	Total	On-Bill	TDV	Total
		EDR	B/C	B/C	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR
CZ	Utility	Margin	Ratio	Ratio	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin
01	PG&E	3.4	1.1	1.2	2.3	1.3	1.4	2.0	11.5	0.4	1.2	11.5
02	PG&E	1.8	1.0	1.7	2.3	1.1	1.5	1.5	10.9	0.2	1.6	10.5
03	PG&E	0.6	1.0	1.1	1.6	1.1	1.2	0.5	10.3	0.1	1.4	10.0
04	PG&E	1.3	0.8	1.2	1.9	1.1	1.7	1.0	11.2	0.2	1.6	11.0
05	PG&E	0.5	1.0	1.0	1.5	1.2	1.3	0.5	9.9	0.2	1.4	9.5
05	PG&E/SoCalGas	0.5	0.8	1.0	1.5	1.1	1.3	0.5	9.9	0.1	1.4	9.5
06	SCE/SoCalGas	1.3	0.6	1.5	1.3	1.4	1.7	1.0	10.7	0.6	1.4	10.5
07	SDG&E	0.9	0.7	2.2	2.0	1.1	1.4	0.5	11.0	0.0	1.4	11.0
08	SCE/SoCalGas	1.5	0.7	1.4	1.1	1.4	1.7	1.0	9.9	0.7	1.3	9.5
09	SCE/SoCalGas	1.8	1.5	3.3	2.8	1.7	2.9	1.5	9.7	0.9	1.5	9.5
10	SCE/SoCalGas	1.7	0.8	1.7	2.9	2.0	3.3	1.5	10.4	1.0	1.6	10.0
10	SDG&E	1.7	1.1	1.7	2.9	2.6	3.3	1.5	10.4	0.2	1.6	10.0
11	PG&E	2.9	0.7	1.2	3.2	1.8	3.3	2.5	10.5	0.4	1.6	10.5
12	PG&E	1.9	1.1	2.2	2.8	1.2	2.2	1.5	10.3	0.3	1.7	10.0
13	PG&E	3.1	0.6	1.3	3.4	2.0	3.8	3.0	10.7	0.4	1.6	10.5
14	SCE/SoCalGas	3.1	0.7	1.2	3.3	2.0	3.0	3.0	9.6	1.1	1.4	9.5
14	SDG&E	3.1	0.9	1.2	3.3	2.5	3.0	3.0	9.6	0.5	1.4	9.5
15	SCE/SoCalGas	4.2	1.4	2.3	4.4	>1	>1	4.0	8.8	1.3	1.7	8.5
16	PG&E	2.4	1.1	1.2	2.9	1.8	2.1	2.0	9.9	0.5	1.3	9.5

Table 12: Multifamily Package Cost-Effectiveness Results for the Mixed Fuel Case^{1,2}

¹">1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix F – Multifamily Measure Summary.

		Efficiency							Efficiency & PV					Efficiency & PV/Battery			
		Non-Preempted			Equipm	ent - Preen	npted										
								Target				Target				Target	
		Efficiency			Efficiency			Efficiency	Total	On-Bill	TDV	Total	Total	On-Bill	TDV	Total	
		EDR	B/C	B/C	EDR	On-Bill	B/C	EDR	EDR	B/C	B/C	EDR	EDR	B/C	B/C	EDR	
CZ	Utility	Margin	Ratio	Ratio	Margin	B/C Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin	Margin	Ratio	Ratio	Margin	
0			1.6	1.4	3.3	2.4	2.3	3.0	22.5	2.0	1.5	22.5	34.5	1.3	1.4	34.5	
0	2 PG&E	1.9	1.7	2.1	3.2	1.6	1.6	1.5	17.5	2.4	1.8	17.5	30.9	1.4	1.7	30.5	
0	B PG&E	0.0	-	-	2.7	1.7	1.6	0.0	16.1	2.4	1.7	16.0	29.5	1.3	1.6	29.5	
0	PG&E	1.4	1.4	1.5	2.2	1.2	1.1	1.0	15.0	2.4	1.8	15.0	28.9	1.3	1.8	28.5	
0	5 PG&E	0.6	1.1	0.9	3.6	2.1	2.0	0.5	17.1	2.5	1.8	17.0	30.3	1.4	1.7	30.0	
0	Figering PG&E/SoCalGas	0.6	1.1	0.9	3.6	2.1	2.0	0.5	17.1	2.5	1.8	17.0	30.3	1.4	1.7	30.0	
0	5 SCE/SoCalGas	1.0	0.7	1.3	2.2	1.6	1.9	1.0	13.8	1.2	1.7	13.5	27.5	1.2	1.6	27.5	
0	7 SDG&E	0.6	0.6	1.0	1.9	1.6	1.7	0.5	12.8	2.1	1.8	12.5	27.1	1.2	1.6	27.0	
0	3 SCE/SoCalGas	1.2	0.9	1.7	1.9	1.6	1.8	1.0	11.6	1.3	1.8	11.5	24.2	1.2	1.6	24.0	
0	SCE/SoCalGas	1.6	1.3	2.7	1.5	1.6	1.6	1.5	11.3	1.3	1.9	11.0	23.3	1.3	1.7	23.0	
1	SCE/SoCalGas	1.8	1.2	2.0	1.8	1.7	2.0	1.5	10.8	1.3	1.8	10.5	23.3	1.3	1.7	23.0	
1) SDG&E	1.8	1.5	2.0	1.8	2.0	2.0	1.5	10.8	2.1	1.8	10.5	23.3	1.4	1.7	23.0	
1	L PG&E	3.5	1.4	1.6	3.9	2.0	2.3	3.5	13.4	2.2	1.8	13.0	25.3	1.4	1.8	25.0	
1	2 PG&E	2.6	0.9	1.1	2.9	1.6	1.6	2.5	14.4	2.1	1.6	14.0	26.6	1.3	1.7	26.5	
1	B PG&E	3.3	1.3	1.6	3.8	2.0	2.3	3.0	12.2	2.1	1.7	12.0	23.9	1.4	1.7	23.5	
1	SCE/SoCalGas	3.7	1.2	1.6	3.8	1.6	2.2	3.5	14.0	1.4	1.9	14.0	24.8	1.4	1.8	24.5	
1	SDG&E	3.7	1.5	1.6	3.8	2.0	2.2	3.5	14.0	2.2	1.9	14.0	24.8	1.7	1.8	24.5	
1	SCE/SoCalGas	4.4	1.5	2.3	6.4	1.2	1.7	4.0	7.1	1.4	2.1	7.0	16.9	1.3	1.8	16.5	
1	6 PG&E	4.1	2.1	2.1	3.2	1.6	1.7	3.0	19.6	2.6	1.9	19.5	29.9	1.6	1.7	29.5	

Table 13: Multifamily Package Cost-effectiveness Results for the All-Electric Case^{1,2}

¹">1" indicates cases where there are both first cost savings and annual utility bill savings.

²Information about the measures included for each climate zone are described in Appendix F – Multifamily Measure Summary.

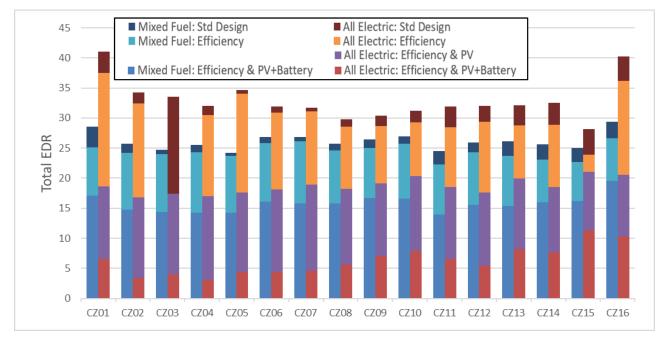


Figure 6: Multifamily Total EDR comparison

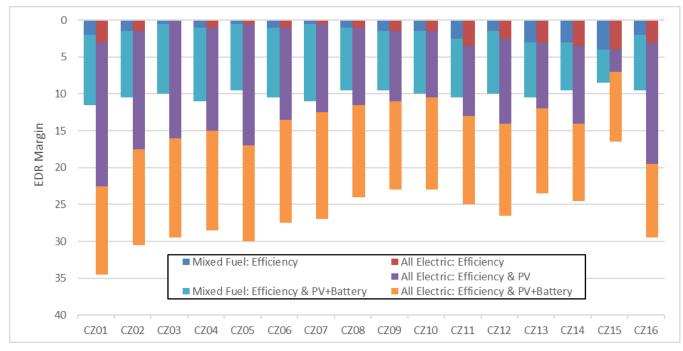
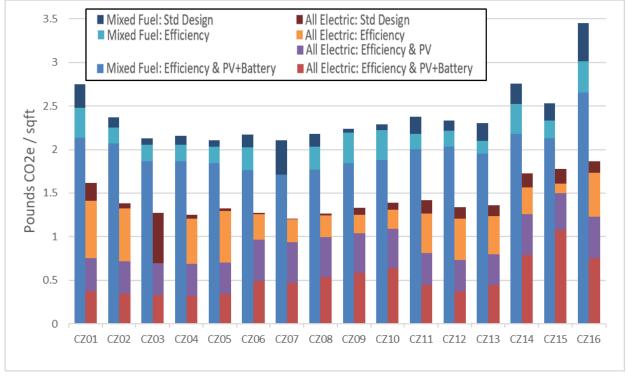



Figure 7: Multifamily EDR Margin comparison (based on Efficiency EDR Margin for the Efficiency packages and the Total EDR Margin for the Efficiency & PV and Efficiency & PV/Battery packages)

3.3.1 GHG Emission Reductions

Figure 8 compares annual GHG emissions for both mixed fuel and all-electric multifamily 2019 code compliant cases with Efficiency, Efficiency & PV and Efficiency & PV/Battery packages. GHG emissions vary by climate but are consistently higher in mixed fuel cases than all-electric. Standard design mixed fuel emissions range from 2.0 to 3.0 lbs CO2e/square foot of floor area, where all-electric standard design emissions range from 1.2 to 1.7 lbs CO2e/ ft². Adding PV, batteries and efficiency to the mixed fuel code compliant prototype reduces annual GHG emissions by 17% on average to between 1.7 and 2.2 lbs CO2e/ft², except Climate Zone 16. Adding PV, batteries and efficiency to the all-electric code compliant prototype reduces annual GHG emissions by 64% on average to 0.6 lbs CO2e/ft² or less with the exception of Climate Zones 14, 15 and 16. As in the single family case, none of the cases completely eliminate GHG emissions because of the time value of emissions calculation for electricity in CBECC-Res.

Figure 8: Multifamily greenhouse gas emissions comparison

3.4 Electrification Results

Cost-effectiveness results comparing mixed fuel and all-electric cases are summarized below. The tables show average annual utility bill impacts and lifetime utility bill impacts, which account for fuel escalation for electricity and natural gas (see Section 2.5), lifetime equipment cost savings, and both On-Bill and TDV cost-effectiveness (B/C ratio). Positive utility bill values indicate lower utility costs for the all-electric home relative to the mixed fuel case while negative values in red and parenthesis indicate higher utility costs for the all-electric case. Lifetime equipment cost savings due to eliminating natural gas infrastructure and replacement costs for appliances based on equipment life. Positive values for the lifetime equipment cost savings indicate lower installed costs for the all-electric and negative values indicate higher costs. B/C ratios 1.0 or greater indicate positive cost-effectiveness. Cases where the B/C ratio is indicated as ">1" refer to instances where there was incremental cost savings in addition to annual utility bill savings. In these cases, there is no cost associated with this upgrade and benefits are realized immediately.

Three scenarios were evaluated:

- 1. <u>2019 Code Compliant</u>: Compares a 2019 code compliant all-electric home with a 2019 code compliant mixed fuel home.
- <u>Efficiency & PV Package</u>: Compares an all-electric home with efficiency and PV sized to 90% of the annual electricity use to a 2019 code compliant mixed fuel home. The first cost savings in the code compliant all-electric house is invested in above code efficiency and PV reflective of the Efficiency & PV packages described above.
- 3. <u>Neutral Cost Package</u>: Compares an all-electric home with PV beyond code minimum with a 2019 code compliant mixed fuel home. The PV system for the all-electric case is sized to result in a zero lifetime incremental cost relative to a mixed fuel home.

3.4.1 Single Family

Table 14, Table 15, Figure 9, Figure 10, and Figure 11 present results of cost-effectiveness analysis for electrification of single family buildings, according to both the On-Bill and TDV methodologies. Based on typical cost assumptions arrived at for this analysis, the lifetime equipment costs for the single family code compliant all-electric option are approximately \$5,350 less than the mixed fuel code compliant option. Cost savings are entirely due to the elimination of gas infrastructure, which was assumed to be a savings of \$5,750. When evaluating cost-effectiveness based on TDV, the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction are not applied and therefore the cost savings are twice as much.

Under the Efficiency & PV Package and the On-Bill analysis, the incremental cost of the efficiency and PV is typically more than the cost savings seen in the code compliant case, which results in a net cost increase in most climate zones for the all-electric case. In climates with small heating loads (7 and 15) there continues to be an incremental cost savings for the all-electric home. With the TDV analysis, there is still an incremental cost savings in all climates except 1 and 16 for single family.

Utility impacts differ by climate zone and utility, but utility costs for the code compliant all-electric option are typically higher than for the compliant mixed fuel design. There are utility cost savings across all climates zones and building types for the all-electric Efficiency & PV Package, resulting in a more cost-effective option.

The all-electric code compliant option is cost-effective based on the On-Bill approach for single family homes in Climate Zones 6 through 9, 10 (SCE/SoCalGas territory only), and 15. The code compliant option is cost-effective based on the TDV methodology in all climate zones except 1 and 16. If the same costs used for the On-Bill approach are also used for the TDV approach (incorporating the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction), the all-electric code compliant option is cost-effective in Climate Zones 6 through 10. The Efficiency & PV all-electric option is cost-effective in all climate zones based on both the On-Bill and TDV methodologies. In many cases it is cost-effective immediately with lower equipment and utility costs.

The last set of results in Table 14 shows the neutral cost case where the cost savings for the all-electric code compliant home is invested in a larger PV system, resulting in a lifetime incremental cost of zero based on the On-Bill approach. This package results in utility cost savings in all cases except Climate Zones 1, 14 (SCE/SoCalGas territory only), and 16. For these three cases the Reach Code Team evaluated how much additional PV would be required to result in a cost-effective package. These results are presented in Table 15 and show that an additional 1.6kW in Climate Zone 1 results in a B/C ratio of 1.1. For Climate Zone 14 and 16 adding 0.25kW and 1.2kW, respectively, results in a B/C ratio of 1.2. Neutral cost cases are cost-effective based on the TDV methodology in all climate zones except 16.

3.4.2 <u>Multifamily</u>

Multifamily results are found in Table 16, Table 17, Figure 12, Figure 13, and Figure 14. Lifetime costs for the multifamily code compliant all-electric option are approximately \$2,300 less than the mixed fuel code compliant option, entirely due to the elimination of gas infrastructure. When evaluating cost-effectiveness based on TDV,

the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction are not applied and therefore the cost savings are approximately 2.5 times higher.

With the Efficiency & PV Package and the On-Bill analysis, due to the added cost of the efficiency and PV there is a net cost increase for the all-electric case in all climate zones for except 7, 8, 9, and 15. With the TDV analysis, there is still an incremental cost savings in all climates. Like the single family results, utility costs are typically higher for the code compliant all-electric option but lower than the code compliant mixed fuel option with the Efficiency & PV Package.

The all-electric code compliant option is cost-effective based on the On-Bill approach for multifamily in Climate Zones 6 through 9, 10 and 14 (SCE/SoCalGas territory only), and 15. Based on the TDV methodology, the code compliant option for multifamily is cost-effective for all climate zones. If the same costs used for the On-Bill approach are also used for the TDV approach (incorporating the Utility Gas Main Extensions rules 50% refund and appliance allowance deduction), the all-electric code compliant option is cost-effective in Climate Zones 8 and 9. Like the single family cases, the Efficiency & PV all-electric option is cost-effective in all climate zones based on both the On-Bill and TDV methodologies.

The last set of results in Table 16 show the neutral cost case where the cost savings for the all-electric code compliant home is invested in a larger PV system, resulting in a lifetime incremental cost of zero based on the On-Bill approach. This package results in utility cost savings in all cases except Climate Zone 1. For this case the Reach Code Team evaluated how much additional PV would be required to result in a cost-effective package. These results are presented in Table 17 and show that an additional 0.3kW per apartment results in a B/C ratio of 1.1. Neutral cost cases are cost-effective based on the TDV methodology in all climate zones except 16.

		On-Bill Cost-effectiveness ¹					TDV Cost-effectiveness				
		Average A	Annual U	tility Bill	Lit	fetime NPV		Lifetime NPV			
			<u>Savings</u>								
				Net		Equipment	On-Bill		Equipment	TDV	
			Natural	Utility	Utility Bill	Cost	B/C	TDV Cost	Cost	B/C	
CZ	Utility	Electricity	Gas	Savings	Savings	Savings	Ratio ²	Savings	Savings	Ratio	
				2019 C	ode Complia	int Home					
01	PG&E	-(\$1,194)	+\$712	-(\$482)	-(\$14,464)	+\$5,349	0.4	-(\$13,081)	+\$11,872	0.9	
02	PG&E	-(\$825)	+\$486	-(\$340)	-(\$10,194)	+\$5,349	0.5	-(\$7,456)	+\$11,872	1.6	
03	PG&E	-(\$717)	+\$391	-(\$326)	-(\$9,779)	+\$5,349	0.5	-(\$7,766)	+\$11,872	1.5	
04	PG&E	-(\$710)	+\$387	-(\$322)	-(\$9,671)	+\$5,349	0.6	-(\$7,447)	+\$11,872	1.6	
05	PG&E	-(\$738)	+\$367	-(\$371)	-(\$11,128)	+\$5,349	0.5	-(\$8,969)	+\$11,872	1.3	
05	PG&E/SoCalGas	-(\$738)	+\$370	-(\$368)	-(\$11,034)	+\$5,349	0.5	-(\$8,969)	+\$11,872	1.3	
06	SCE/SoCalGas	-(\$439)	+\$289	-(\$149)	-(\$4,476)	+\$5,349	1.2	-(\$4,826)	+\$11,872	2.5	
07	SDG&E	-(\$414)	+\$243	-(\$171)	-(\$5,134)	+\$5,349	1.0	-(\$4,678)	+\$11,872	2.5	
08	SCE/SoCalGas	-(\$347)	+\$249	-(\$97)	-(\$2,921)	+\$5,349	1.8	-(\$3,971)	+\$11,872	3.0	
09	SCE/SoCalGas	-(\$377)	+\$271	-(\$107)	-(\$3,199)	+\$5,349	1.7	-(\$4,089)	+\$11,872	2.9	
10	SCE/SoCalGas	-(\$403)	+\$280	-(\$123)	-(\$3,684)	+\$5,349	1.5	-(\$4,458)	+\$11,872	2.7	
10	SDG&E	-(\$496)	+\$297	-(\$198)	-(\$5,950)	+\$5,349	0.9	-(\$4,458)	+\$11,872	2.7	
11	PG&E	-(\$810)	+\$447	-(\$364)	-(\$10,917)	+\$5,349	0.5	-(\$7,024)	+\$11,872	1.7	
12	PG&E	-(\$740)	+\$456	-(\$284)	-(\$8,533)	+\$5,349	0.6	-(\$6,281)	+\$11,872	1.9	
13	PG&E	-(\$742)	+\$413	-(\$329)	-(\$9,870)	+\$5,349	0.5	-(\$6,480)	+\$11,872	1.8	
14	SCE/SoCalGas	-(\$661)	+\$413	-(\$248)	-(\$7,454)	+\$5,349	0.7	-(\$7,126)	+\$11,872	1.7	
14	SDG&E	-(\$765)	+\$469	-(\$296)	-(\$8,868)	+\$5,349	0.6	-(\$7,126)	+\$11,872	1.7	
15	SCE/SoCalGas	-(\$297)	+\$194	-(\$103)	-(\$3,090)	+\$5,349	1.7	-(\$5,364)	+\$11,872	2.2	
16	PG&E	-(\$1,287)	+\$712	-(\$575)	-(\$17,250)	+\$5,349	0.3	-(\$17,391)	+\$11,872	0.7	

Table 14: Single Family Electrification Results

		On-Bill Cost-effectiveness ¹						TDV Cost-effectiveness			
		Average				fetime NPV	Lifetime NPV				
			Savings		<u></u>			<u></u>			
			<u></u>				0.01				
			Network	Net		Equipment			Equipment		
67		F I+!!+	Natural	Utility	Utility Bill	Cost	B/C	TDV Cost	Cost	B/C	
CZ	Utility	Electricity	Gas	Savings	Savings	Savings	Ratio ²	Savings	Savings	Ratio	
01	DC0.5	(600)	. 674.2		ency & PV P			. 642.264	(66.224)	2.4	
01	PG&E	-(\$99)	+\$712	+\$613	+\$18,398	-(\$12,844)	1.4	+\$13,364	-(\$6,321)	2.1	
02	PG&E	-(\$89)	+\$486	+\$397	+\$11,910	-(\$6,758)	1.8	+\$9,307	-(\$234)	39.7	
03	PG&E	-(\$87)	+\$391	+\$304	+\$9,119	-(\$3,169)	2.9	+\$6,516	+\$3,355	>1	
04	PG&E	-(\$85)	+\$387	+\$302	+\$9,074	-(\$3,438)	2.6	+\$6,804	+\$3,086	>1	
05	PG&E	-(\$98)	+\$367	+\$268	+\$8,054	-(\$2,959)	2.7	+\$5,625	+\$3,564	>1	
05	PG&E/SoCalGas	-(\$98)	+\$370	+\$272	+\$8,148	-(\$2,959)	2.8	+\$5,625	+\$3,564	>1	
06	SCE/SoCalGas	-(\$188)	+\$289	+\$102	+\$3,049	-(\$992)	3.1	+\$4,585	+\$5,531	>1	
07	SDG&E	-(\$137)	+\$243	+\$106	+\$3,174	+\$912	>1	+\$2,176	+\$7,436	>1	
08	SCE/SoCalGas	-(\$160)	+\$249	+\$89	+\$2,664	-(\$25)	107.9	+\$3,965	+\$6,499	>1	
09	SCE/SoCalGas	-(\$169)	+\$271	+\$102	+\$3,067	-(\$429)	7.1	+\$5,368	+\$6,094	>1	
10	SCE/SoCalGas	-(\$173)	+\$280	+\$107	+\$3,216	-(\$1,057)	3.0	+\$5,165	+\$5,466	>1	
10	SDG&E	-(\$137)	+\$297	+\$160	+\$4,805	-(\$1,057)	4.5	+\$5,165	+\$5,466	>1	
11	PG&E	-(\$147)	+\$447	+\$300	+\$8,988	-(\$5,478)	1.6	+\$9,776	+\$1,045	>1	
12	PG&E	-(\$92)	+\$456	+\$364	+\$10,918	-(\$6,172)	1.8	+\$9,913	+\$352	>1	
13	PG&E	-(\$144)	+\$413	+\$269	+\$8,077	-(\$5,184)	1.6	+\$8,960	+\$1,339	>1	
14	SCE/SoCalGas	-(\$241)	+\$413	+\$172	+\$5,164	-(\$5,111)	1.0	+\$9,850	+\$1,412	>1	
14	SDG&E	-(\$139)	+\$469	+\$330	+\$9,910	-(\$5,111)	1.9	+\$9,850	+\$1,412	>1	
15	SCE/SoCalGas	-(\$107)	+\$194	+\$87	+\$2,603	+\$264	>1	+\$2,598	+\$6,787	>1	
16	PG&E	-(\$130)	+\$712	+\$582	+\$17,457	-(\$11,234)	1.6	+\$9,536	-(\$4,710)	2.0	
					itral Cost Pa						
01	PG&E	-(\$869)	+\$712	-(\$157)	-(\$4,704)	+\$0	0	-(\$6,033)	+\$6,549	1.1	
02	PG&E	-(\$445)	+\$486	+\$40	+\$1,213	+\$0	>1	+\$868	+\$6,505	>1	
03	PG&E	-(\$335)	+\$391	+\$56	+\$1,671	+\$0	>1	+\$483	+\$6,520	>1	
04	PG&E	-(\$321)	+\$387	+\$66	+\$1,984	+\$0	>1	+\$1,062	+\$6,521	>1	
05	PG&E	-(\$335)	+\$367	+\$31	+\$938	+\$0	>1	-(\$163)	+\$6,519	40.1	
05	PG&E/SoCalGas	-(\$335)	+\$370	+\$34	+\$1,031	+\$0	>1	-(\$163)	+\$6,519	40.1	
06	SCE/SoCalGas	-(\$227)	+\$289	+\$63	+\$1,886	+\$0	>1	+\$3,258	+\$6,499	>1	
07	SDG&E	-(\$72)	+\$243	+\$171	+\$5,132	+\$0	>1	+\$3,741	+\$6,519	>1	
08	SCE/SoCalGas	-(\$144)	+\$249	+\$105	+\$3,162	+\$0	>1	+\$4,252	+\$6,515	>1	
09	SCE/SoCalGas	-(\$170)	+\$271	+\$100	+\$3,014	+\$0	>1	+\$4,271	+\$6,513	>1	
10	SCE/SoCalGas	-(\$199)	+\$280	+\$81	+\$2,440	+\$0	>1	+\$3,629	+\$6,494	>1	
10	SDG&E	-(\$155)	+\$297	+\$143	+\$4,287	+\$0	>1	+\$3,629	+\$6,494	>1	
11	PG&E	-(\$426)	+\$447	+\$21	+\$630	+\$0	>1	+\$1,623	+\$6,504	>1	
12	PG&E	-(\$362)	+\$456	+\$94	+\$2,828	+\$0	>1	+\$2,196	+\$6,525	>1	
13	PG&E	-(\$370)	+\$413	+\$43	+\$1,280	+\$0	>1	+\$1,677	+\$6,509	>1	
14	SCE/SoCalGas	-(\$416)	+\$413	-(\$4)	-(\$107)	+\$0	0	+\$2,198	+\$6,520	>1	
14	SDG&E	-(\$391)	+\$469	+\$79	+\$2,356	+\$0	>1	+\$2,198	+\$6,520	>1	
15	SCE/SoCalGas	-(\$98)	+\$194	+\$97	+\$2,900	+\$0	>1	+\$2,456	+\$6,483	>1	
16	PG&E	-(\$878)	+\$712	-(\$166)	-(\$4,969)	+\$0	0	-(\$8,805)	+\$6,529	0.7	

¹Red values in parentheses indicate an increase in utility bill costs or an incremental first cost for the all-electric home. ²">1" indicates cases where there are both first cost savings and annual utility bill savings.

	PV												
			Neutra	l Cost		Min. Cost Effectiveness							
		PV		Equipment	On-Bill			Equipment	On-Bill				
		Capacity	Utility Bill	Cost	B/C	PV Capacity	Utility Bill	Cost	B/C				
CZ	Utility	(kW)	Savings	Savings	Ratio	(kW)	Savings	Savings	Ratio				
01	PG&E	4.7	-(\$4,704)	+\$0	0	6.3	+\$6,898	-(\$6,372)	1.1				
14	SCE/SoCalGas	4.5	-(\$107)	+\$0	0	4.8	+\$1,238	-(\$1,000)	1.2				
16	PG&E	4.1	-(\$4,969)	+\$0	0	5.3	+\$5,883	-(\$4,753)	1.2				

Table 15: Comparison of Single Family On-Bill Cost Effectiveness Results with Additional
PV

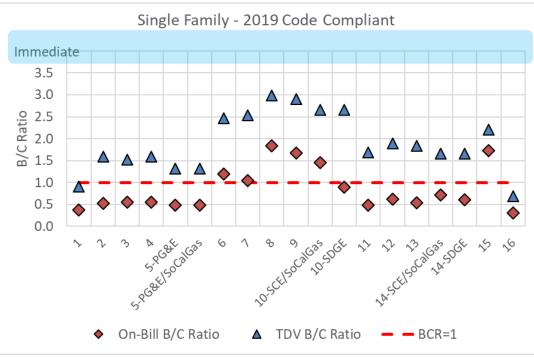


Figure 9: B/C ratio results for a single family all-electric code compliant home versus a mixed fuel code compliant home

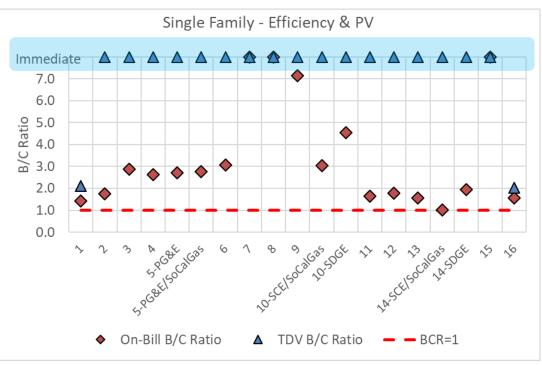


Figure 10: B/C ratio results for the single family Efficiency & PV all-electric home versus a mixed fuel code compliant home

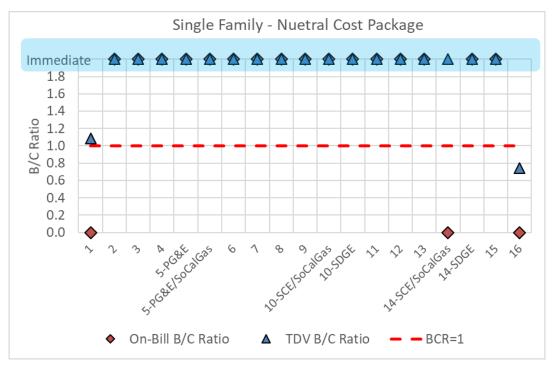


Figure 11: B/C ratio results for the single family neutral cost package all-electric home versus a mixed fuel code compliant home

			Or	n-Bill Cost	-effectivene	ess ¹	TDV Cost-effectiveness			
		Average A	Annual Ut	tility Bill	Li	fetime NPV		Lif	etime NPV	
			<u>Savings</u>							
				Net		Equipment	On-Bill		Equipment	TDV
			Natural	Utility	Utility Bill	Cost	B/C	TDV Cost	Cost	B/C
CZ	Utility	Electricity	Gas	Savings	Savings	Savings	Ratio ²	Savings	Savings	Ratio
		,			ode Complia				0.000	
01	PG&E	-(\$396)	+\$193	-(\$203)	-(\$6,079)	+\$2,337	0.4	-(\$5,838)	+\$5,899	1.0
02	PG&E	-(\$310)	+\$162	-(\$148)	-(\$4,450)	+\$2,337	0.5	-(\$4,144)	+\$5,899	1.4
03	PG&E	-(\$277)	+\$142	-(\$135)	-(\$4,041)	+\$2,337	0.6	-(\$4,035)	+\$5,899	1.5
04	PG&E	-(\$264)	+\$144	-(\$120)	-(\$3,595)	+\$2,337	0.6	-(\$3,329)	+\$5,899	1.8
05	PG&E	-(\$297)	+\$140	-(\$157)	-(\$4,703)	+\$2,337	0.5	-(\$4,604)	+\$5,899	1.3
05	PG&E/SoCalGas	-(\$297)	+\$178	-(\$119)	-(\$3,573)	+\$2,337	0.7	-(\$4,604)	+\$5,899	1.3
06	SCE/SoCalGas	-(\$191)	+\$161	-(\$30)	-(\$902)	+\$2,337	2.6	-(\$2,477)	+\$5,899	2.4
07	SDG&E	-(\$206)	+\$136	-(\$70)	-(\$2,094)	+\$2,337	1.1	-(\$2,390)	+\$5,899	2.5
08	SCE/SoCalGas	-(\$169)	+\$157	-(\$12)	-(\$349)	+\$2,337	6.7	-(\$2,211)	+\$5,899	2.7
09	SCE/SoCalGas	-(\$177)	+\$159	-(\$18)	-(\$533)	+\$2,337	4.4	-(\$2,315)	+\$5,899	2.5
10	SCE/SoCalGas	-(\$183)	+\$159	-(\$23)	-(\$697)	+\$2,337	3.4	-(\$2,495)	+\$5,899	2.4
10	SDG&E	-(\$245)	+\$139	-(\$106)	-(\$3,192)	+\$2,337	0.7	-(\$2,495)	+\$5,899	2.4
11	PG&E	-(\$291)	+\$153	-(\$138)	-(\$4,149)	+\$2,337	0.6	-(\$4,420)	+\$5,899	1.3
12	PG&E	-(\$277)	+\$155	-(\$122)	-(\$3,665)	+\$2,337	0.6	-(\$3,557)	+\$5,899	1.7
13	PG&E	-(\$270)	+\$146	-(\$124)	-(\$3,707)	+\$2,337	0.6	-(\$3,821)	+\$5,899	1.5
14	SCE/SoCalGas	-(\$255)	+\$187	-(\$69)	-(\$2,062)	+\$2,337	1.1	-(\$3 <i>,</i> 976)	+\$5,899	1.5
14	SDG&E	-(\$328)	+\$175	-(\$154)	-(\$4,607)	+\$2,337	0.5	-(\$3 <i>,</i> 976)	+\$5,899	1.5
15	SCE/SoCalGas	-(\$154)	+\$142	-(\$12)	-(\$367)	+\$2,337	6.4	-(\$2,509)	+\$5,899	2.4
16	PG&E	-(\$404)	+\$224	-(\$180)	-(\$5,411)	+\$2,337	0.4	-(\$5,719)	+\$5,899	1.0
				Effici	ency & PV P	ackage				
01	PG&E	-(\$19)	+\$193	+\$174	+\$5,230	-(\$3,202)	1.6	+\$2,467	+\$361	>1
02	PG&E	-(\$10)	+\$162	+\$152	+\$4,549	-(\$1,375)	3.3	+\$2,605	+\$2,187	>1
03	PG&E	-(\$12)	+\$142	+\$130	+\$3,910	-(\$936)	4.2	+\$1,632	+\$2,626	>1
04	PG&E	-(\$8)	+\$144	+\$136	+\$4,080	-(\$822)	5.0	+\$2,381	+\$2,740	>1
05	PG&E	-(\$19)	+\$140	+\$121	+\$3,635	-(\$956)	3.8	+\$1,403	+\$2,606	>1
05	PG&E/SoCalGas	-(\$19)	+\$178	+\$159	+\$4,765	-(\$956)	5.0	+\$1,403	+\$2,606	>1
06	SCE/SoCalGas	-(\$84)	+\$161	+\$77	+\$2,309	-(\$243)	9.5	+\$1,940	+\$3,319	>1
07	SDG&E	-(\$49)	+\$136	+\$87	+\$2,611	+\$75	>1	+\$1,583	+\$3,638	>1
08	SCE/SoCalGas	-(\$74)	+\$157	+\$83	+\$2,480	+\$96	>1	+\$1,772	+\$3,658	>1
09	SCE/SoCalGas	-(\$76)	+\$159	+\$82	+\$2,469	+\$104	>1	+\$1,939	+\$3,667	>1
10	SCE/SoCalGas	-(\$79)	+\$159	+\$80	+\$2,411	-(\$34)	70.9	+\$1,737	+\$3,528	>1
10	SDG&E	-(\$77)	+\$139	+\$61	+\$1,842	-(\$34)	54.2	+\$1,737	+\$3,528	>1
11	PG&E	-(\$25)	+\$153	+\$128	+\$3,834	-(\$1,264)	3.0	+\$2,080	+\$2,298	>1
12	PG&E	-(\$11)	+\$155	+\$144	+\$4,316	-(\$1,498)	2.9	+\$2,759	+\$2,064	>1
13	PG&E	-(\$26)	+\$146	+\$121	+\$3,625	-(\$1,125)	3.2	+\$2,083	+\$2,437	>1
14	SCE/SoCalGas	-(\$99)	+\$187	+\$87	+\$2,616	-(\$1,019)	2.6	+\$2,422	+\$2,543	>1
14	SDG&E	-(\$86)	+\$175	+\$88	+\$2,647	-(\$1,019)	2.6	+\$2,422	+\$2,543	>1
15	SCE/SoCalGas	-(\$67)	+\$142	+\$75	+\$2,247	+\$511	>1	+\$1,276	+\$4,073	>1
16	PG&E	-(\$24)	+\$224	+\$200	+\$5,992	-(\$2 <i>,</i> 087)	2.9	+\$2,629	+\$1,476	>1

Table 16: Multifamily Electrification Results (Per Dwelling Unit)

On-Bill Cost-effectiveness¹ TDV Cost-effectiveness Average Annual Utility Bill Lifetime NPV Lifetime NPV Savings Net **Equipment On-Bill Equipment TDV Utility Bill** Cost **TDV Cost** Cost B/C Natural Utility B/C CZ Utility Electricity Gas Savings Savings Savings Ratio² Savings Savings Ratio **Neutral Cost Package** +\$193 -(\$35) +\$0 01 PG&E -(\$228) -(\$1,057) 0 -(\$2,267) +\$3,564 1.6 02 +\$162 +\$0 PG&E -(\$115) +\$47 +\$1,399 >1 +\$59 +\$3,563 >1 03 PG&E +\$142 +\$61 +\$1,843 +\$0 +\$3,562 -(\$81) >1 +\$138 >1 04 PG&E -(\$64) +\$144 +\$80 +\$2,402 +\$0 >1 +\$983 +\$3,563 >1 05 +\$140 +\$1,490 +\$0 +\$3,564 PG&E -(\$90) +\$50 >1 -(\$152) 23.4 >1 05 PG&E/SoCalGas -(\$90) +\$178 +\$87 +\$2,620 +\$0 -(\$152) +\$3,564 23.4 06 +\$161 +\$2,144 +\$0 +\$3,562 SCE/SoCalGas -(\$90) +\$71 >1 +\$1,612 >1 07 -(\$32) +\$136 +\$105 +\$3,135 +\$0 +\$1,886 +\$3,560 SDG&E >1 >1 08 SCE/SoCalGas -(\$67) +\$157 +\$90 +\$2,705 +\$0 +\$1,955 +\$3,564 >1 >1 09 +\$0 +\$3,561 SCE/SoCalGas -(\$71) +\$159 +\$87 +\$2,623 >1 +\$1,924 >1 10 SCE/SoCalGas -(\$78) +\$159 +\$81 +\$2,431 +\$0 >1 +\$1,588 +\$3,561 >1 10 SDG&E -(\$71) +\$139 +\$68 +\$2,033 +\$0 >1 +\$1,588 +\$3,561 >1 11 PG&E -(\$93) +\$153 +\$59 +\$1,783 +\$0 -(\$48) +\$3,562 >1 74.0 12 PG&E -(\$82) +\$155 +\$73 +\$2,184 +\$0 >1 +\$739 +\$3,564 >1 13 +\$146 +\$2,034 +\$0 +\$3,560 PG&E -(\$79) +\$68 >1 +\$310 >1 14 -(\$141) +\$187 +\$45 +\$1,359 +\$0 +\$747 +\$3,562 SCE/SoCalGas >1 >1 14 SDG&E -(\$137) +\$175 +\$38 +\$1,131 +\$0 >1 +\$747 +\$3,562 >1 15 +\$142 +\$3,560 SCE/SoCalGas -(\$50) +\$92 +\$2,771 +\$0 >1 +\$1,738 >1 16 PG&E -(\$194) +\$224 +\$30 +\$900 +\$0 +\$3,564 >1 -(\$1,382) 2.6

2019 Energy Efficiency Ordinance Cost-effectiveness Study

¹Red values in parentheses indicate an increase in utility bill costs or an incremental first cost for the all-electric home. ²">1" indicates cases where there are both first cost savings and annual utility bill savings.

Table 17: Comparison of Multifamily On-Bill Cost Effectiveness Results with Additional PV
(Per Dwelling Unit)

			Neutra	Cost		Min. Cost Effectiveness				
		PV		Equipment		PV	Equipment			
		Capacity	Utility Bill Cost On-Bill C		Capacity	Utility Bill	Cost	On-Bill		
CZ	Utility	(kW)	Savings	Savings	B/C Ratio	(kW)	Savings	Savings	B/C Ratio	
01	PG&E	2.7	-(\$1,057)	+\$0	0	3.0	+\$1,198	-(\$1,052)	1.1	

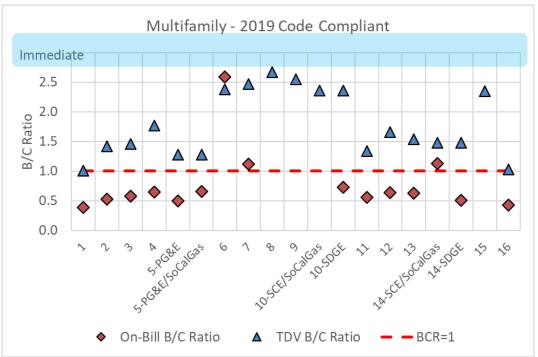


Figure 12: B/C ratio results for a multifamily all-electric code compliant home versus a mixed fuel code compliant home

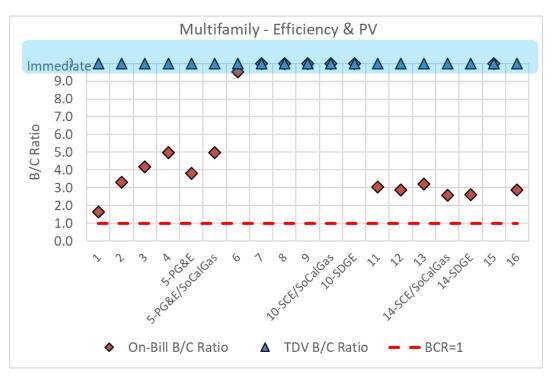


Figure 13: B/C ratio results for the multifamily Efficiency & PV all-electric home versus a mixed fuel code compliant home

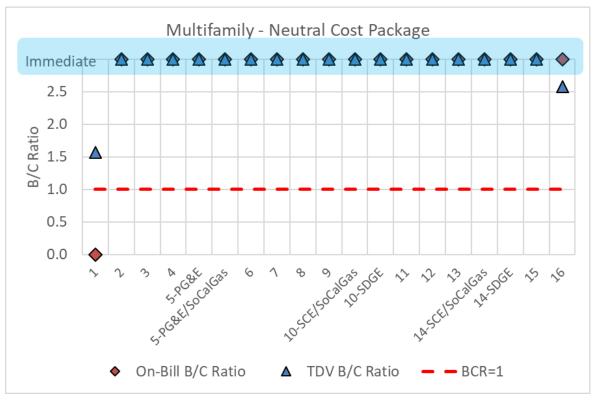


Figure 14: B/C ratio results for the multifamily neutral cost package all-electric home versus a mixed fuel code compliant home

4 Conclusions & Summary

This report evaluated the feasibility and cost-effectiveness of "above code" performance specifications through the application of efficiency measures, PV, and electric battery storage in all 16 California climate zones. The analysis found cost-effective packages across the state for both single family and low-rise multifamily buildings. For the building types and climate zones where cost-effective packages were identified, the results of this analysis can be used by local jurisdictions to support the adoption of reach codes. Cost-effectiveness was evaluated according to two metrics: On-Bill customer lifecycle benefit-to-cost and TDV lifecycle benefit-to-cost. While all the above code targets presented are based on packages that are cost-effective under at least one of these metrics, they are not all cost-effective under both metrics. Generally, the test for being cost-effective under the TDV methodology is less challenging than under the On-Bill methodology. Therefore, all packages presented are cost-effective based on TDV, and may or may not be cost-effective based on the On-Bill method. It is up to each jurisdiction to determine what metric is most appropriate for their application. A summary of results by climate zone are presented in Appendix G – Results by Climate Zone.

Above code targets are presented as Target EDR Margin, which have been defined for each scenario where a cost-effective package was identified. Target EDR Margins represent the maximum "reach" values that meet the requirements. Jurisdictions may adopt less stringent requirements. For the Efficiency Package the Target EDR Margin was defined based on the lower EDR Margin of the Efficiency – Non-Preempted Package and the Efficiency – Equipment, Preempted Package. For example, if the cost-effective Non-Preempted package has an EDR Margin of 3 and the Preempted package an EDR Margin of 4, the Target EDR Margin is set at 3.

The average incremental cost for the single family Efficiency packages is ~\$1,750. The Efficiency & PV Package average incremental cost is \$9,180 and for the Efficiency & PV/Battery Package it is approximately \$5,600 for the

2019 Energy Efficiency Ordinance Cost-effectiveness Study

mixed fuel cases and \$15,100 for the all-electric cases. The incremental costs for each multifamily apartment are approximately 30-40% lower. See Table 8 and Table 11 for a summary of package costs by case.

Table 18 and Table 19 summarize the maximum Target EDR Margins determined to be cost effective for each package for single family and multifamily, respectively. Cases labeled as "n/a" in the tables indicate where no cost-effective package was identified under either On-Bill or TDV methodology.

This analysis also looked at the GHG emissions impacts of the various packages. An all-electric design reduces GHG emissions 40-50% in most cases relative to a comparable mixed fuel design.

There is significant interest throughout California on electrification of new buildings. The Reach Code Team assembled data on the cost differences between a code compliant mixed fuel building and a code compliant allelectric building. Based on lifetime equipment cost savings (the difference in first cost for equipment and infrastructure combined with incremental replacement costs) of \$5,349 for an all-electric single family home this analysis found that from a customer on-bill perspective, the all-electric code compliant option is cost-effective in Climates Zones 6 through 9, 10 (SCE/SoCalGas territory only), and 15, and cost-effective in all climate zones except 1 and 16 based on TDV. For multifamily buildings, based on a cost savings of \$2,337 per apartment, the code compliant option is cost-effective in Climates Zones 6 through 9, 10 & 14 (SCE/SoCalGas territory only), and 15, and cost-effective based on TDV.

Adding efficiency and PV to the code compliant all-electric buildings increases the cost-effectiveness in all climate zones. The Efficiency & PV Package is cost-effective when compared to a mixed fuel code compliant building in all climate zones for both single family and multifamily buildings based on both the On-Bill and TDV methodologies. The Efficiency & PV package adds PV to offset 90% of the electricity use of the home. While this results in higher installed costs, the reduced lifetime utility costs are larger (\$0 to \$6,000 lifetime incremental equipment costs in many climates for single family homes and an associated \$4,500 to \$13,500 lifetime utility cost savings across the same cases), resulting in positive B/C ratios for all cases.

The Reach Code Team also evaluated a neutral cost electrification scenario where the cost savings for the allelectric code compliant home is invested in a larger PV system, resulting in a lifetime incremental cost of zero based on the On-Bill approach. This package results in utility cost savings and positive on-bill B/C ratio in all cases except Climate Zones 1 and 16 for single family, and Climate Zone 1 for low-rise multifamily. Increasing the PV sizes in those climates by approximately 30% resulted in positive on-bill B/C ratios, while still not resulting in oversizing of PV systems.

Other studies have shown that cost-effectiveness of electrification increases with high efficiency space conditioning and water heating equipment in the all-electric home. This was not directly evaluated in this analysis but based on the favorable cost-effectiveness results of the Equipment, Preempted package for the individual mixed fuel and all-electric upgrades it's expected that applying similar packages to the electrification analysis would result in increased cost-effectiveness.

The Reach Code Team found there can be substantial variability in first costs, particularly related to natural gas infrastructure. Costs are project-dependent and will be impacted by such factors as site characteristics, distance to the nearest gas main, joint trenching, whether work is conducted by the utility or a private contractor, and number of homes per development among other things. While the best cost data available to the Reach Code Team was applied in this analysis, individual projects may experience different costs, either higher or lower than the estimates presented here.

e.	Mixe	Mixed Fuel All-Electric			_
Climate Zone		Efficiency &			Efficiency &
Clima Zone	Efficiency	PV/Battery	Efficiency	Efficiency & PV	PV/Battery
01	5.0	10.5	6.5	31.0	41.0
02	3.0	10.0	4.5	19.0	30.0
03	2.5	10.0	4.0	18.0	29.0
04	2.5	10.0	3.0	17.0	28.5
05	2.5	9.0	4.0	18.0	28.5
06	1.5	9.5	2.0	14.0	26.0
07	n/a	9.0	n/a	11.0	24.0
08	1.0	8.0	1.5	10.5	21.5
09	2.5	8.5	2.5	11.5	21.0
10	3.0	9.5	3.0	11.0	21.0
11	4.0	9.0	4.5	14.0	23.0
12	3.0	9.5	3.5	15.5	25.0
13	4.5	9.5	5.0	13.0	22.0
14	4.5	9.0	5.5	15.5	23.5
15	4.5	7.0	5.5	6.0	13.0
16	5.0	10.5	4.5	26.5	35.0

 Table 18: Summary of Single Family Target EDR Margins

Table 19: Summary of Multifamily Target EDR Margins

e	Mixe	d Fuel	j i di	All-Electric		
Climate Zone		Efficiency &			Efficiency &	
Clima Zone	Efficiency	PV/Battery	Efficiency	Efficiency & PV	PV/Battery	
01	2.0	11.5	3.0	22.5	34.5	
02	1.5	10.5	1.5	17.5	30.5	
03	0.5	10.0	n/a	16.0	29.5	
04	1.0	11.0	1.0	15.0	28.5	
05	0.5	9.5	0.5	17.0	30.0	
06	1.0	10.5	1.0	13.5	27.5	
07	0.5	11.0	0.5	12.5	27.0	
08	1.0	9.5	1.0	11.5	24.0	
09	1.5	9.5	1.5	11.0	23.0	
10	1.5	10.0	1.5	10.5	23.0	
11	2.5	10.5	3.5	13.0	25.0	
12	1.5	10.0	2.5	14.0	26.5	
13	3.0	10.5	3.0	12.0	23.5	
14	3.0	9.5	3.5	14.0	24.5	
15	4.0	8.5	4.0	7.0	16.5	
16	2.0	9.5	3.0	19.5	29.5	

5 References

California Energy Commission. 2017. Rooftop Solar PV System. Measure number: 2019-Res-PV-D Prepared by Energy and Environmental Economics, Inc. <u>https://efiling.energy.ca.gov/getdocument.aspx?tn=221366</u>

California Energy Commission. 2018a. 2019 Alternative Calculation Method Approval Manual. CEC-400-2018-023-CMF. December 2018. California Energy Commission. <u>https://www.energy.ca.gov/2018publications/CEC-400-2018-023/CEC-400-2018-023-CMF.pdf</u>

California Energy Commission. 2018b. 2019 Building Energy Efficiency Standards for Residential and Nonresidential Buildings. CEC-400-2018-020-CMF. December 2018. California Energy Commission. https://www.energy.ca.gov/2018publications/CEC-400-2018-020/CEC-400-2018-020-CMF.pdf

California Energy Commission. 2018d. 2019 Residential Compliance Manual. CEC-400-2018-017-CMF. December 2018. California Energy Commission. <u>https://www.energy.ca.gov/2018publications/CEC-400-2018-017/CEC-400-2018-017/CEC-400-2018-017-CMF.pdf</u>

California Energy Commission. 2019. 2019 Residential Alternative Calculation Method Reference Manual. CEC-400-2019-005-CMF. May 2019. California Energy Commission. https://www.energy.ca.gov/2019publications/CEC-400-2019-005/CEC-400-2019-005-CMF.pdf

California Public Utilities Commission. 2016. Rulemaking No. 15-03-010 An Order Instituting Rulemaking to Identify Disadvantaged Communities in the San Joaquin Valley and Analyze Economically Feasible Options to Increase Access to Affordable Energy in Those Disadvantages Communities. Proposed Decision of Commissioner Guzman Aceves. April 07, 2017. <u>http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M183/K389/183389022.PDF</u>

Davis Energy Group. 2015. Evaluation of Ducts in Conditioned Space for New California Homes. Prepared for Pacific Gas and Electric Company. March 2015. <u>https://www.etcc-ca.com/reports/evaluation-ducts-conditioned-space-new-california-homes</u>

Energy & Environmental Economics. 2019. Residential Building Electrification in California. April 2019. https://www.ethree.com/wp-

content/uploads/2019/04/E3_Residential_Building_Electrification_in_California_April_2019.pdf

EPRI. 2016. SMUD All-Electric Homes Electrification Case Study: Summary for the Three-Prong Test Discussion. Electric Power Research Institute, Inc. September. 2016. Presentation to Sacramento Municipal Utility District.

Horii, B., E. Cutter, N. Kapur, J. Arent, and D. Conotyannis. 2014. "Time Dependent Valuation of Energy for Developing Building Energy Efficiency Standards."

http://www.energy.ca.gov/title24/2016standards/prerulemaking/documents/2014-07-09_workshop/2017_TDV_Documents/

Itron. 2014. 2010-2012 WO017 Ex Ante Measure Cost Study: Final Report. Itron. May 2014. Presented to California Public Utilities Commission.

Barbose, Galen and Darghouth, Naim. 2018. Tracking the Sun. Installed Price Trends for Distributed Photovoltaic Systems in the United States – 2018 Edition. Lawrence Berkeley National Laboratory. September 2018. https://emp.lbl.gov/sites/default/files/tracking the sun 2018 edition final 0.pdf

Navigant. 2018. Analysis of the Role of Gas for a Low-Carbon California Future. July 24, 2018. Prepared for Southern California Gas Company.

https://www.socalgas.com/1443741887279/SoCalGas_Renewable_Gas_Final-Report.pdf

Penn, Ivan. 2018. Cheaper Battery Is Unveiled as a Step to a Carbon-Free Grid. The New York Times. September 2018. <u>https://www.nytimes.com/2018/09/26/business/energy-environment/zinc-battery-solar-power.html</u>. Accessed January 29, 2019.

Statewide CASE Team. 2017a. Codes and Standards Enhancement (CASE) Initiative Drain Water Heat Recovery – Final Report. July 2017. <u>http://title24stakeholders.com/wp-content/uploads/2017/09/2019-T24-CASE-</u> <u>Report_DWHR_Final_September-2017.pdf</u>

Statewide CASE Team. 2017b. Codes and Standards Enhancement (CASE) Initiative High Performance Attics – Final Report. September 2017. <u>http://title24stakeholders.com/wp-content/uploads/2017/09/2019-T24-CASE-Report_HPA_Final_September-2017.pdf</u>

Statewide CASE Team. 2017c. Codes and Standards Enhancement (CASE) Initiative High Performance Walls – Final Report. September 2017. <u>http://title24stakeholders.com/wp-content/uploads/2017/09/2019-T24-CASE-Report_HPW_Final_September-2017.pdf</u>

Statewide CASE Team. 2017d. Codes and Standards Enhancement (CASE) Initiative Residential High Performance Windows & Doors – Final Report. August 2017. <u>http://title24stakeholders.com/wp-</u> <u>content/uploads/2017/09/2019-T24-CASE-Report Res-Windows-and-Doors Final September-2017.pdf</u>

Statewide CASE Team. 2018. Energy Savings Potential and Cost-Effectiveness Analysis of High Efficiency Windows in California. Prepared by Frontier Energy. May 2018. <u>https://www.etcc-ca.com/reports/energy-savings-potential-and-cost-effectiveness-analysis-high-efficiency-windows-california</u>

Statewide Reach Codes Team. 2016. CALGreen Cost-Effectiveness Study. Prepared for Pacific Gas and Electric Company. Prepared by Davis Energy Group. November 2016. <u>http://localenergycodes.com/download/50/file_path/fieldList/2016%20RNC%20Tiers%201-2%20Cost-Eff%20Report</u>

Statewide Reach Codes Team. 2017a. CALGreen All-Electric Cost-Effectiveness Study. Prepared for Pacific Gas and Electric Company. Prepared by Davis Energy Group. October 2017. http://localenergycodes.com/download/276/file_path/fieldList/2016%20RNC%20All-Electric%20Cost-Eff%20Report

Statewide Reach Codes Team. 2017b. 2016 Title 24 Residential Reach Code Recommendations: Costeffectiveness Analysis for All California Climate Zones. Prepared for Southern California Edison. Prepared by TRC Energy Services. August 2017.

http://localenergycodes.com/download/283/file_path/fieldList/2016%20RNC%20Reach%20Code%20Tier%203 %20Cost-Eff%20Report

Statewide Reach Codes Team. 2018. PV + Battery Storage Study. Prepared for Pacific Gas and Electric Company. Prepared by EnergySoft. July, 2018.

http://localenergycodes.com/download/430/file_path/fieldList/PV%20Plus%20Battery%20Storage%20Report

Hopkins, Asa, Takahashi, Kenji, Glick, Devi, Whited, Melissa. 2018. Decarbonization of Heating Energy Use in California Buildings. Synapse Energy Economics, Inc. October 2018. <u>http://www.synapse-</u>energy.com/sites/default/files/Decarbonization-Heating-CA-Buildings-17-092-1.pdf

TRC. 2018. City of Palo Alto 2019 Title 24 Energy Reach Code Cost-effectiveness Analysis Draft. September 2018. <u>https://cityofpaloalto.org/civicax/filebank/documents/66742</u>

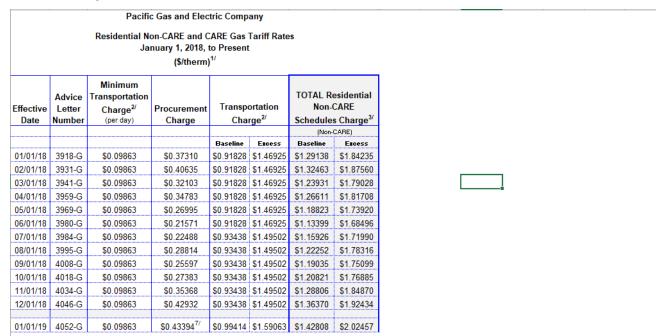
Appendix A – California Climate Zone Map

Figure 15: Map of California Climate Zones (courtesy of the California Energy Commission¹⁷)

¹⁷ <u>https://ww2.energy.ca.gov/maps/renewable/building_climate_zones.html</u>

Appendix B – Utility Tariff Details

PG&E	
SCE	
SoCalGas	
SDG&E	
Escalation Assumptions	56


<u>PG&E</u>

The following pages provide details on the PG&E electricity and natural gas tariffs applied in this study. Table 20 describes the baseline territories that were assumed for each climate zone.

Table 20:	PG&E Baseline	Territory b	y Climate Zone
-----------	---------------	-------------	----------------

	Baseline Territory
CZ01	V
CZ02	Х
CZ03	Т
CZ04	Х
CZ05	Т
CZ11	R
CZ12	S
CZ13	R
CZ16	Υ

The PG&E monthly gas rate in \$/therm was applied on a monthly basis for the 12-month period ending January 2019 according to the rates shown below.

^{1/} Unless otherwise noted

²⁷ Effective July 1, 2005, the Transportation Charge will be no less than the Minimum Transportation Charge of \$0.09863 (per day). Applicable to Rate Schedule G-1 only

and does not apply to submetered tenants of master-metered customers served under gas Rate Schedule GS and GT.

^{1/2} Schedule G-PPPS (Public Purpose Program Surcharge) needs to be added to the TOTAL Non-CARE Charge and TOTAL CARE Charge for bill calculation. See Schedule G-PPPS for details and exempt customers. ^{4/2} CARE Schedules include California Solar Initiative (CSI) Exemption in accordance with Advice Letter 3257-G-A.

^{5/} Per dwelling unit per day (Multifamily Service)

^{6/} Per installed space per day (Mobilehome Park Service)

^{7/}This procurement rate includes a charge of \$0.03686 per therm to reflect account balance amortizations in accordance with Advice Letter 3157-G.

[#]Residential bill credit of (\$29.85) per household, <u>annual bill credit occurring in the October 2018 bill cycle</u>, thereafter in the April bill cycle.

Seasons: Winter = Nov-Mar Summer = April-Oct

Electric Company®

Cancelling Revised

Revised

Cal. P.U.C. Sheet No. 43533-E Cal. P.U.C. Sheet No. 42728-E

San Francisco, California

ELECTRIC SCHEDULE E-TOU RESIDENTIAL TIME-OF-USE SERVICE Sheet 4

RATES: (Cont'd.)

OPTION B TOTAL RATES

Total Energy Rates (\$ per kWh)	PEAK	OFF-PEAK
Summer (all usage)	\$0.37188 (R)	\$0.26882 (R)
Winter (all usage)	\$0.23441 (R)	\$0.21561 (R)

\$0.32854 Delivery Minimum Bill Amount (\$ per meter per day)

California Climate Credit (per household, per semi-annual payment occurring in the April and October bill cycles) (\$39.42)

Total bundled service charges shown on customer's bills are unbundled according to the component rates shown below. Where the delivery minimum bill amount applies, the customer's bill will equal the sum of (1) the delivery minimum bill amount plus (2) for bundled service, the generation rate times the number of kWh used. For revenue accounting purposes, the revenues from the delivery minimum bill amount will be assigned to the Transmission, Transmission Rate Adjustments, Reliability Services, Public Purpose Programs, Nuclear Decommissioning, Competition Transition Charges, Energy Cost Recovery Amount, DWR Bond, and New System Generation Charges based on kWh usage times the corresponding unbundled rate component per kWh, with any residual revenue assigned to Distribution.***

UNBUNDLING OF OPTION B TOTAL RATES

Generation Summer (all usage) Winter (all usage)	PEAK \$0.21238 \$0.10554	OFF-PEA \$0.10932 \$0.08674	c
Distribution**			
Summer (all usage)	\$0.10716 (R)	\$0.10716	(R)
Winter (all usage)	\$0.07653 (R)	\$0.07653	(R)
Transmission* (all usage)	\$0.024	69 (R)	
Transmission Rate Adjustments* (all usage)	\$0.002	14	
Reliability Services* (all usage)	\$0.002	60	
Public Purpose Programs (all usage)	\$0.014	13	
Nuclear Decommissioning (all usage)	\$0.000	20	
Competition Transition Charges (all usage)	\$0.001	32	
Energy Cost Recovery Amount (all usage)	(\$0.000	005)	
DWR Bond (all usage)	\$0.005	03 (R)	
New System Generation Charge (all usage)**	\$0.002	28	

* Transmission, Transmission Rate Adjustments and Reliability Service charges are combined for presentation on customer bills.

** . Distribution and New System Generation Charges are combined for presentation on customer bills. *** This same assignment of revenues applies to direct access and community choice aggregation customers.

				(Continued)
Advice Decision	5444-E 18-08-013	Issued by Robert S. Kenney	Submitted Effective	December 18, 2018 January 1, 2019
		Vice President, Regulatory Affairs	Resolution	

Pacific Gas and Revised Cal. P.U.C. Sheet No. 34735-G Electric Company* Cal. P.U.C. Sheet No. 34691-G Cancelling Revised San Francisco, California GAS SCHEDULE G-1 Sheet 1 RESIDENTIAL SERVICE APPLICABILITY: This rate schedule¹ applies to natural gas service to Core End-Use Customers on PG&E's Transmission and/or Distribution Systems. To qualify, service must be to individually-metered single family premises for residential use, including those in a multifamily complex, and to separately-metered common areas in a multifamily complex where Schedules GM, GS, or GT are not applicable. Common area accounts that are separately metered by PG&E have an option of switching to a core commercial rate schedule. Common area accounts are those accounts that provide gas service to common use areas as defined in Rule 1. Per D.15-10-032 and D.18-03-017, transportation rates include GHG Compliance Cost for non-covered entities. Customers who are directly billed by the Air Resources Board (ARB), i.e., covered entities, are exempt from paying AB 32 GHG Compliance Costs through PG&E's rates.2 A "Cap-and-Trade Cost Exemption" credit for these costs will be shown as a line item on exempt customers' bills.3,4 TERRITORY: Schedule G-1 applies everywhere within PG&E's natural gas Service Territory. RATES: Customers on this schedule pay a Procurement Charge and a Transportation Charge, per meter, as shown below. The Transportation Charge will be no less than the Minimum Transportation Charge, as follows: Minimum Transportation Charge: 5 Per Day \$0.09863 Per Therm Baseline Excess Procurement: \$0.43394 (I) \$0.43394 (1) Transportation Charge: \$0.99414 (I) \$1.59063 (I) Total: \$2.02457 \$1,42808 (I) (II) California Natural Gas Climate Credit (\$25.45) (I) (per Household, annual payment occurring in October 2018 bill cycle, and thereafter in the April bill cycle) Public Purpose Program Surcharge: Customers served under this schedule are subject to a gas Public Purpose Program (PPP) Surcharge under Schedule G-PPPS. See Preliminary Statement, Part B for the Default Tariff Rate Components. The Procurement Charge on this schedule is equivalent to the rate shown on informational Schedule G-CP-Gas Procurement Service to Core End-Use Customers. PG&E's gas tariffs are available online at www.pge.com. ² Covered entities are not exempt from paying costs associated with LUAF Gas and Gas used by Company Facilities.

⁵ The Minimum Transportation charge does not apply to submetered tenants of master-metered customers served under gas rate Schedules GS and GT. (Continued)

		• •		
Advice	4052-G	Issued by	Submitted	December 21, 2018
Decision	97-10-065 & 98-	Robert S. Kenney	Effective	January 1, 2019
	07-025	Vice President, Regulatory Affairs	Resolution	

³ The exemption credit will be equal to the effective non-exempt AB 32 GHG Compliance Cost Rate (\$ per therm) included in Preliminary Statement – Part B, multiplied by the customer's billed volumes (therms) for each billing period.

⁴ PG&E will update its billing system annually to reflect newly exempt or newly excluded customers to conform with lists of Directly Billed Customers provided annually by the ARB.

<u>SCE</u>

The following pages provide details on are the SCE electricity tariffs applied in this study. Table 21 describes the baseline territories that were assumed for each climate zone.

Table 21:	SCE Baseline	Territory	by Climate Zone

	Baseline
	Territory
CZ06	6
CZ08	8
CZ09	9
CZ10	10
CZ14	14
CZ15	15

	· · ·						
	Delivery	Generation	Total Rate				
	•						
TOU-Default-Rate-1 (On-Peak 4:00 pm - 9:00 pm)							
Energy Charge - \$/kWh							
Summer Season - On-Peak	0.19880	0.20072	0.39952				
Mid-Peak	0.19880	0.05948	0.25828				
Off-Peak	0.15574	0.06023	0.21597				
Winter Season - Mid-Peak	0.19880	0.08308	0.28188				
Off-Peak	0.15574		0.26883				
Super-Off-Peak	0.15062		0.16406				
Basic Charge - \$/day	0.15002	0.01511	0.10100				
Single-Family Residence	0.031	0.000	0.031				
Multi-Family Residence	0.024	0.000	0.024				
Minimum Charge - \$/day							
Single Family Residence	0.338	0.000	0.338				
Multi-Family Residence	0.338	0.000	0.338				
Baseline Credit - \$/kWh	(0.06512)	0.00000	(0.06512)				

	Delivery	Generation	Total Rate
	-		
TOU-D-Rate PRIME			
Energy Charge - \$/kWh			
Summer Season - On-Peak	0.15926	0.19811	0.35737
Mid-Peak	0.15926	0.10092	0.26018
Off-Peak	0.08308	0.04687	0.12995
Winter Season - Mid-Peak	0.16268	0.16761	0.33029
Off-Peak	0.08081	0.04331	0.12412
Super-Off-Peak	0.08081	0.04331	0.12412
Customer Charge - \$/day	0.395	0.000	0.39

TOU Period	Weel	kdays	Weekends	and Holidays
TOO Fellou	Summer	Winter	Summer	Winter
On-Peak	4 p.m 9 p.m.			
Mid-Peak		4 p.m 9 p.m.	4 p.m 9 p.m.	4 p.m 9 p.m.
Off-Peak	All other hours	9 p.m 8 a.m.	All other hours	9 p.m 8 a.m.
Super-Off-Peak		8 a.m 4 p.m.		8 a.m 4 p.m.

Summ	er kWh p	er Day	Winte	r kWh pe	er Day
Baseline Region	Basic	All Electric	Baseline Region	Basic	All Electric
05	17.2	17.9	05	18.7	29.1
06	11.4	8.8	06	11.3	13.0
08	12.6	9.8	08	10.6	12.7
09	16.5	12.4	09	12.3	14.3
10	18.9	15.8	10	12.5	17.0
13	22.0	24.6	13	12.6	24.3
14	18.7	18.3	14	12.0	21.3
15	46.4	24.1	15	9.9	18.2
16	14.4	13.5	16	12.6	23.1

PROPOSED Year Average 2010-2016)

1-

<u>SoCalGas</u>

Following are the SoCalGas natural gas tariffs applied in this study. Table 22 describes the baseline territories that were assumed for each climate zone.

Table 22: SoCalGas <u>Baseline Territory by Climate Zone</u>

	Baseline
	Territory
CZ05	2
CZ06	1
CZ08	1
CZ09	1
CZ10	1
CZ14	2
CZ15	1

SOUTHERN CALIFORNIA GAS COMPANY Revised CAL P.U.C. SHEET NO. LOS ANGELES, CALIFORNIA CANCELING Revised CAL. P.U.C. SHEET NO.

55854-G 55828-G

	Schedule No. GR ESIDENTIAL SERVICE les GR. GR-C and GT-R F		Sheet 1	
APPLICABILITY				
The GR rate is applicable to natural gas	procurement service to in	dividually meter	ed residential customers	
The GR-C, cross-over rate, is a core pro transportation customers with annual co) .
The GT-R rate is applicable to Core Ag residential customers, as set forth in Sp		(CAT) service to	individually metered	
The California Alternate Rates for Ener the bill, is applicable to income-qualifie as set forth in Schedule No. G-CARE.				
TERRITORY				
Applicable throughout the service territ	ory.			
<u>RATES</u> <u>Customer Charge</u> , per meter per day:	<u>GR</u> 16.438¢	<u>GR-C</u> 16.438¢	<u>GT-R</u> 16.438¢	
For "Space Heating Only" customers, a Customer Charge applies during the wi from November 1 through April 30 ^{1/} :	nter period	33.149¢	33.149¢	
Baseline Rate, per therm (baseline usag Procurement Charge: ^{2/}	e defined in Special Condi		N/A	R
Transmission Charge:		42.676¢ 63.566¢	63.566¢	ĸ
Total Baseline Charge:	105.155¢	106.242¢	63.566¢	R
Non-Baseline Rate, per therm (usage in		:		
Procurement Charge: 2 ¹		42.676¢	N/A	R
<u>Transmission Charge</u> : Total Non-Baseline Charge:		<u>96.806e</u> 139.482¢	<u>96.806¢</u> 96.806¢	R
^{1/} For the summer period beginning M accumulated to at least 20 Ccf (100 c		with some except	tions, usage will be	
(Footnotes continue next page.)				
	(Continued)			
(TO BE INSERTED BY UTILITY)	ISSUED BY	(TO P	E INSERTED BY CAL. PUC)	
ADVICE LETTER NO. 5410	Dan Skopec		Jan 7, 2019	
DECISION NO.	Vice President	EFFECTIVE		_
105	Regulatory Affairs	RESOLUTIO	N NO. G-3351	

<u>SDG&E</u>

Following are the SDG&E electricity and natural gas tariffs applied in this study. Table 23 describes the baseline territories that were assumed for each climate zone.

Baseline

San Diego, Califi	omia	Ca							
			anceling R	evised (Cal. F	P.U.C. Sheet N	lo		31103-E
			SCHEDU						Sheet 2
		1	RESIDENTI	IAL TIME-	<u>JF-U</u>	JSE			
RATES									
Total Rates:									
Total Nates.									
Description – TOU DR	1	U	OC Total Rate	DWR-B Rate	С	EECC Rate + DWR Credit		Total Rate	
Summer: On-Peak			0.29562	R 0.0050	2 0	0.35013	R	0.65078	R
Off-Peak Super Off-Peak			0.29562	R 0.0050 R 0.0050	3 R	0.11235	R	0.41300 0.35804	R
Winter:			0.28502	K 0.0000	5 K	0.05739		0.55004	`
On-Peak Off-Peak			0.32037 0.32037	R 0.0050 R 0.0050		0.07618	R R	0.40158 0.39302	R R
Super Off-Peak			0.32037	R 0.0050	3 R	0.05812	R	0.38352	R
Summer Baseline Adjustm 130% of Baseline	ent Credit up to		(0.19921)	I				(0.19921)	I
Winter Baseline Adjustmer 130% of Baseline	nt Credit up to		(0.16853)	I				(0.16853)	I
Minimum Bill (\$/day)			0.329					0.329	
				EECC				Total	
Description – TOU DR1	UDC Total Rate		DWR-BC Rate	Rate + DWR Credit		Total Rate		Effective Care Rate	
Summer – CARE Rates:				crean					_
On-Peak	0.29494	R	0.00000	0.35013		0.64507	R	0.41628	R
Off-Peak Super Off-Peak	0.29494 0.29494	R	0.00000	0.11235 0.05739		0.40729 0.35233	R	0.26077 0.22483	R R
Winter – CARE Rates:									
On-Peak	0.31969	R	0.00000	0.07618	R	0.39587	R	0.25330	R
Off-Peak Super Off-Peak	0.31969 0.31969	R	0.00000	0.06762		0.38731 0.37781	R	0.24770 0.24149	R
	0.51606	ĸ	0.00000	0.00012	`	0.57701	~	0.24146	
Summer Baseline Adjustment Credit up to 130% of Baseline Winter Baseline	(0.19921)	I				(0.19921)	I	(0.13028)	I
Adjustment Credit up to 130% of Baseline	(0.16853)	I				(0.16853)	I	(0.11022)	I
Minimum Bill (\$/day) Note:	0.164					0.164		0.164	
 Total Rates consist (Electric Energy Co Total Rates present DWR-BC charges c As identified in the 130% of baseline to 	mmodity Cost) r ed are for custo to not apply to 0 rates tables, cu	ates, v mers f CARE stome	with the EEC that receive of customers. er bills will als	C rates refle commodity s so include li	ecting suppl ne-ite	g a DWR Credi y and delivery em summer ar	it. servic nd wint	e from Utility. ter credits for us	

SDGF				
San Diego Gas & Electric Company	Revise		heet No.	23614-G
San Diego, California	Canceling Revise	ed Cal. P.U.C. SI	heet No.	23601-G
	SCHEDU SIDENTIAL NATU udes Rates for GR	RAL GAS SERVIC		Sheet 1
APPLICABILITY				
The GR rate is applicable to natural g	as procurement se	ervice for individua	Ily metered residen	tial customers.
The GR-C, cross-over rate, is a transportation customers with annual				
The GTC/GTCA rate is applicable residential customers, as set forth in s			y services to indiv	vidually metered
Customers taking service under this (CARE) program discount, reflected a the terms and conditions of Schedule	as a separate line i			
TERRITORY				
Within the entire territory served natu	ral gas by the utility	у.		
RATES		GR	GR-C	GTC/GTCA ^{1/}
Baseline Rate, per therm (baseline us Procurement Charge: ²⁷ <u>Transmission Charge:</u> Total Baseline Charge:		ecial Conditions 3 \$0.41614		N/A <u>\$1.01230</u> \$1.01230
<u>Non-Baseline Rate</u> , per therm (usage Procurement Charge: ²⁷ <u>Transmission Charge:</u> Total Non-Baseline Charge:			\$0.41614 R <u>\$1.19980</u> \$1.61594 R	N/A <u>\$1.19980</u> \$1.19980
0105		\$0.09863 \$0.07890	\$0.09863 \$0.07890	\$0.09863 \$0.07890
 The rates for core transportation-only NGV, include any FERC Settlement Pri This charge is applicable to Utility Pro- shown in Schedule GPC which are su Effective starting May 1, 2017, the mi the number of days in the billing cy customer resulting in a minimum bill ci 	roceeds Memorandu curement Customers bject to change mon nimum bill is calculat ycle (approximately	m Account (FSPMA and includes the G thly as set forth in Sp ted as the minimum \$3 per month) with) credit adjustments. PC and GPC-A Procu pecial Condition 7. bill charge of \$0.098 n a 20% discount ap	irement Charges 83 per day times
	(Cor	itinued)		
105		ued by	Submitted	Jan 7, 201
Advice Ltr. No. 2735-G	Dan	Skopec	Effective	Jan 10, 201
	Mine I	President		

Escalation Assumptions

The average annual escalation rates in the following table were used in this study and are from E3's 2019 study Residential Building Electrification in California (Energy & Environmental Economics, 2019). These rates are applied to the 2019 rate schedules over a thirty-year period beginning in 2020. SDG&E was not covered in the E3 study. The Reach Code Team reviewed SDG&E's GRC filing and applied the same approach that E3 applied for PG&E and SoCalGas to arrive at average escalation rates between 2020 and 2022.

	Statewide Electric Residential Average Rate		al Gas Residential Core (%/yr escalation, real)	
	(%/year, real)	PG&E	<u>SoCalGas</u>	<u>SDG&E</u>
2020	2.0%	1.48%	6.37%	5.00%
2021	2.0%	5.69%	4.12%	3.14%
2022	2.0%	1.11%	4.12%	2.94%
2023	2.0%	4.0%	4.0%	4.0%
2024	2.0%	4.0%	4.0%	4.0%
2025	2.0%	4.0%	4.0%	4.0%
2026	1.0%	1.0%	1.0%	1.0%
2027	1.0%	1.0%	1.0%	1.0%
2028	1.0%	1.0%	1.0%	1.0%
2029	1.0%	1.0%	1.0%	1.0%
2030	1.0%	1.0%	1.0%	1.0%
2031	1.0%	1.0%	1.0%	1.0%
2032	1.0%	1.0%	1.0%	1.0%
2033	1.0%	1.0%	1.0%	1.0%
2034	1.0%	1.0%	1.0%	1.0%
2035	1.0%	1.0%	1.0%	1.0%
2036	1.0%	1.0%	1.0%	1.0%
2037	1.0%	1.0%	1.0%	1.0%
2038	1.0%	1.0%	1.0%	1.0%
2039	1.0%	1.0%	1.0%	1.0%
2040	1.0%	1.0%	1.0%	1.0%
2041	1.0%	1.0%	1.0%	1.0%
2042	1.0%	1.0%	1.0%	1.0%
2043	1.0%	1.0%	1.0%	1.0%
2044	1.0%	1.0%	1.0%	1.0%
2045	1.0%	1.0%	1.0%	1.0%
2046	1.0%	1.0%	1.0%	1.0%
2047	1.0%	1.0%	1.0%	1.0%
2048	1.0%	1.0%	1.0%	1.0%
2049	1.0%	1.0%	1.0%	1.0%

Table 24: Real Utility Rate Escalation Rate Assumptions

-			Tabl	e 25: Sin	gie r		y Mil	V Mixed Fuel Efficiency Package Cost-Effectiveness Results														
			<u> </u>	<u>BASECASE</u>					<u>1</u>	Non-Pree	mpted						<u>Equ</u>	<u>ipment -</u>	Preemp	oted		
cz	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per saft	PV kW	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio
1	PG&E	32.5	54.2	23	3.0	3.3	27.9	49.0	5.3	18.8%	2.5	3.2	3.4	2.8	26.0	47.3	6.9	25.1%	2.3	3.2	4.9	4.1
2	PG&E	25.0	46.0	12	2.2	2.8	22.0	42.7	3.3	16.3%	1.9	2.8	1.6	1.7	21.8	42.6	3.3	16.4%	1.9	2.8	3.8	3.6
3	PG&E	23.9	46.9	10	1.9	2.7	21.3	43.9	3.0	16.7%	1.6	2.7	1.3	1.3	20.1	42.8	4.1	22.8%	1.5	2.7	1.9	2.0
4	PG&E	23.1	44.9	8	1.9	2.7	20.8	42.4	2.5	13.9%	1.7	2.7	0.9	1.2	20.5	42.2	2.7	14.9%	1.6	2.7	2.4	2.7
5	PG&E	22.2	44.4	10	1.8	2.6	19.7	41.7	2.7	16.7%	1.6	2.5	1.1	1.2	19.7	41.7	2.6	16.2%	1.5	2.5	2.3	2.5
5	PG&E/SoCalGas	22.2	44.4	10	1.8	2.6	19.7	41.7	2.7	16.7%	1.6	2.5	0.9	1.2	19.7	41.7	2.6	16.2%	1.5	2.5	2.0	2.5
6	SCE/SoCalGas	23.3	49.9	10	1.6	2.7	21.5	47.8	2.0	12.1%	1.5	2.7	0.7	1.2	21.5	47.9	2.0	11.8%	1.4	2.7	1.6	2.0
7	SDG&E	20.3	49.1	5	1.3	2.6	20.3	49.1	0.0	0.0%	1.3	2.6	-	-	18.8	47.6	1.5	12.4%	1.2	2.6	1.5	1.4
8	SCE/SoCalGas	21.3	46.9	10	1.4	2.9	20.1	45.6	1.3	7.7%	1.3	2.9	0.6	1.4	19.7	45.3	1.6	9.4%	1.3	2.9	1.3	1.8
9	SCE/SoCalGas	24.5	47.7	13	1.5	2.9	22.3	45.1	2.6	11.7%	1.5	2.9	0.7	2.0	21.9	44.8	2.9	13.4%	1.4	2.9	1.8	3.7
10	SCE/SoCalGas	24.2	46.3	10	1.6	3.0	21.7	43.1	3.2	14.3%	1.5	3.0	0.6	1.3	21.5	43.1	3.2	14.6%	1.4	3.0	2.0	3.8
10	SDG&E	24.2	46.3	10	1.6	3.0	21.7	43.1	3.2	14.3%	1.5	3.0	0.8	1.3	21.5	43.1	3.2	14.6%	1.4	3.0	2.6	3.8
11	PG&E	24.6	44.9	11	2.1	3.6	21.3	40.6	4.3	16.4%	1.9	3.4	0.8	1.2	20.7	39.9	5.1	19.2%	1.8	3.4	2.5	3.7
12	PG&E	25.5	44.8	12	2.1	3.0	22.5	41.3	3.5	14.9%	1.9	2.9	1.2	1.8	22.5	41.4	3.4	14.4%	1.9	3.0	3.3	4.6
13	PG&E	25.7	46.5	11	2.0	3.8	22.2	41.9	4.6	16.9%	1.8	3.6	0.8	1.3	21.2	40.7	5.8	21.4%	1.7	3.6	5.3	8.4
14	SCE/SoCalGas	25.3	46.3	15	2.3	3.2	21.5	41.3	5.0	18.5%	2.1	3.0	1.6	2.5	20.8	40.4	5.8	21.7%	2.0	3.0	4.0	6.1
14	SDG&E	25.3	46.3	15	2.3	3.2	21.5	41.3	5.0	18.5%	2.1	3.0	1.9	2.5	20.8	40.4	5.8	21.7%	2.0	3.0	4.9	6.1
15	SCE/SoCalGas	22.4	49.1	11	1.7	5.4	19.7	44.3	4.8	14.8%	1.6	5.0	1.0	1.6	19.5	44.1	5.0	15.4%	1.5	5.0	>1	>1
16	PG&E	30.4	48.9	22	3.3	2.7	25.0	43.5	5.4	20.6%	2.6	2.7	1.6	1.5	24.8	42.7	6.2	23.5%	2.7	2.6	2.2	2.2

Appendix C – Single Family Detailed Results

 Table 25: Single Family Mixed Fuel Efficiency Package Cost-Effectiveness Results

">1" = indicates cases where there is both first cost savings and annual utility bill savings.

 Table 26: Single Family Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results

	1451				mierer	icy a r	/ Dutter y	•				
			BASECASE					Effici	ency & PV/I	Battery		
							Total					
		Total	CALGreen Tier 1	lbs CO2	PV	Total	EDR	% Comp	lbs CO2	PV	On-Bill B/C	TDV B/C
cz	Utility	EDR	EDR Target	per sqft	kW	EDR	Margin	Margin	per sqft	kW	Ratio	Ratio
1	PG&E	32.5	23	3.0	3.3	21.9	10.6	31.8%	2.4	3.3	0.9	1.6
2	PG&E	25.0	12	2.2	2.8	14.9	10.1	27.3%	1.8	2.9	0.5	1.6
3	PG&E	23.9	10	1.9	2.7	13.9	10.0	27.7%	1.5	2.8	0.4	1.4
4	PG&E	23.1	8	1.9	2.7	13.0	10.1	24.9%	1.5	2.8	0.3	1.5
5	PG&E	22.2	10	1.8	2.6	12.8	9.4	29.7%	1.4	2.6	0.4	1.3
5	PG&E/SoCalGas	22.2	10	1.8	2.6	12.8	9.4	29.7%	1.4	2.6	0.3	1.3
6	SCE/SoCalGas	23.3	10	1.6	2.7	13.6	9.8	20.1%	1.2	2.8	0.8	1.3
7	SDG&E	20.3	5	1.3	2.6	11.1	9.2	9.0%	1.0	2.7	0.1	1.3
8	SCE/SoCalGas	21.3	10	1.4	2.9	12.9	8.4	23.7%	1.1	3.0	0.9	1.3
9	SCE/SoCalGas	24.5	13	1.5	2.9	15.7	8.8	24.7%	1.2	3.0	1.0	1.5
10	SCE/SoCalGas	24.2	10	1.6	3.0	14.6	9.6	27.3%	1.3	3.1	1.0	1.5
10	SDG&E	24.2	10	1.6	3.0	14.6	9.6	27.3%	1.3	3.1	0.6	1.5
11	PG&E	24.6	11	2.1	3.6	15.4	9.2	29.4%	1.8	3.5	0.4	1.5
12	PG&E	25.5	12	2.1	3.0	15.9	9.6	28.9%	1.8	3.0	0.4	1.7
13	PG&E	25.7	11	2.0	3.8	16.1	9.7	28.9%	1.7	3.7	0.4	1.6
14	SCE/SoCalGas	25.3	15	2.3	3.2	16.3	9.0	30.1%	1.8	3.1	1.3	1.7
14	SDG&E	25.3	15	2.3	3.2	16.3	9.0	30.1%	1.8	3.1	1.2	1.7
15	SCE/SoCalGas	22.4	11	1.7	5.4	15.3	7.1	25.1%	1.4	5.1	1.1	1.5
16	PG&E	30.4	22	3.3	2.7	19.9	10.5	32.6%	2.4	2.8	0.9	1.4

">1" = indicates cases where there is both first cost savings and annual utility bill savings.

			BASECASE <u>Non-Preempted</u>										Equipm	ent - Preer	<u>npted</u>							
CZ	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio
1	PG&E	46.8	68.2	36	1.5	3.3	31.8	53.0	15.2	40.2%	1.0	3.3	1.8	1.7	39.9	61.3	6.9	18.3%	1.3	3.3	2.9	2.7
2	PG&E	32.8	53.7	16	1.1	2.8	27.9	48.7	4.9	20.5%	0.9	2.8	1.2	1.1	27.7	48.5	5.1	21.2%	0.9	2.8	2.3	2.1
3	PG&E	33.1	55.6	14	1.0	2.7	28.5	50.9	4.7	20.6%	0.8	2.7	2.6	2.4	28.7	51.2	4.4	19.6%	0.9	2.7	1.8	1.6
4	PG&E	31.3	52.8	12	1.0	2.7	27.9	49.4	3.4	15.5%	0.9	2.7	1.9	1.8	27.4	48.9	3.9	17.6%	0.9	2.7	1.5	1.5
5	PG&E	32.5	54.2	16	1.0	2.6	28.1	49.9	4.4	19.7%	0.9	2.6	2.6	2.3	28.0	49.8	4.4	20.3%	0.9	2.6	1.9	1.7
5	PG&E/SoCalGas	32.5	54.2	16	1.0	2.6	28.1	49.9	4.4	19.7%	0.9	2.6	2.6	2.3	28.0	49.8	4.4	20.3%	0.9	2.6	1.9	1.7
6	SCE/SoCalGas	29.7	55.8	12	0.9	2.7	27.7	53.8	2.0	10.9%	0.8	2.7	1.3	1.4	26.8	53.0	2.9	16.0%	0.8	2.7	2.2	2.3
7	SDG&E	27.1	55.3	7	0.7	2.6	27.1	55.3	0.0	0.0%	0.7	2.6	-	-	24.8	53.0	2.2	16.9%	0.7	2.6	1.6	1.7
8	SCE/SoCalGas	26.1	51.5	10	0.8	2.9	24.5	49.9	1.6	8.9%	0.8	2.9	0.6	1.2	24.4	49.7	1.8	9.7%	0.8	2.9	2.8	3.0
9	SCE/SoCalGas	28.8	51.9	13	0.9	2.9	26.0	49.1	2.8	12.5%	0.8	2.9	0.8	2.0	25.5	48.6	3.3	14.7%	0.8	2.9	2.1	3.2
10	SCE/SoCalGas	28.8	50.7	11	0.9	3.0	25.7	47.6	3.1	14.0%	0.9	3.0	0.9	1.5	25.3	47.2	3.4	15.5%	0.8	3.0	2.3	3.2
10	SDG&E	28.8	50.7	11	0.9	3.0	25.7	47.6	3.1	14.0%	0.9	3.0	1.1	1.5	25.3	47.2	3.4	15.5%	0.8	3.0	2.6	3.2
11	PG&E	30.0	50.2	12	1.1	3.6	25.4	45.6	4.6	16.2%	1.0	3.6	1.2	1.5	24.1	44.3	5.9	20.8%	0.9	3.6	3.0	3.3
12	PG&E	30.9	50.1	13	1.0	3.0	27.1	46.3	3.8	15.3%	0.9	3.0	0.8	1.1	25.8	45.0	5.1	20.4%	0.9	3.0	2.0	2.5
13	PG&E	30.7	51.5	13	1.1	3.8	25.7	46.4	5.1	17.4%	0.9	3.8	1.1	1.4	24.7	45.4	6.0	20.9%	0.9	3.8	2.9	3.3
14	SCE/SoCalGas	31.3	52.2	16	1.4	3.2	25.7	46.6	5.6	18.9%	1.2	3.2	1.0	1.5	25.3	46.2	6.0	20.5%	1.2	3.2	2.3	3.1
14	SDG&E	31.3	52.2	16	1.4	3.2	25.7	46.6	5.6	18.9%	1.2	3.2	1.3	1.5	25.3	46.2	6.0	20.5%	1.2	3.2	2.9	3.1
15	SCE/SoCalGas	26.2	52.8	8	1.3	5.4	20.6	47.2	5.6	16.8%	1.1	5.4	1.1	1.6	18.9	45.5	7.3	21.8%	1.0	5.4	3.3	4.5
16	PG&E	46.5	64.6	39	1.7	2.7	36.8	54.9	9.7	25.2%	1.4	2.7	1.7	1.7	41.6	59.7	4.9	12.7%	1.6	2.7	2.4	2.3

Table 27: Single Family All-Electric Efficiency Package Cost-Effectiveness Results

			BASECA	<u>SE</u>				Efficie	ncy & P	v	<u> </u>			ļ	Efficiency	& PV/	Battery		
cz	Utility	Total EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW	On-Bill B/C Ratio	TDV B/C Ratio
1	PG&E	46.8	36	1.5	3.3	15.4	31.4	40.2%	0.5	6.0	1.8	1.5	5.6	41.2	51.9%	0.3	6.76	1.4	1.4
2	PG&E	32.8	16	1.1	2.8	13.4	19.4	20.5%	0.5	4.9	1.8	1.4	2.7	30.1	31.5%	0.3	5.51	1.4	1.4
3	PG&E	33.1	14	1.0	2.7	14.6	18.5	20.6%	0.5	4.5	2.2	1.7	3.7	29.3	31.6%	0.2	5.10	1.5	1.6
4	PG&E	31.3	12	1.0	2.7	14.1	17.2	15.5%	0.5	4.5	2.1	1.6	2.8	28.6	26.5%	0.2	5.15	1.5	1.6
5	PG&E	32.5	16	1.0	2.6	14.3	18.2	19.7%	0.5	4.3	2.3	1.8	3.8	28.7	32.7%	0.2	4.84	1.6	1.6
5	PG&E/SoCalGas	32.5	16	1.0	2.6	14.3	18.2	19.7%	0.5	4.3	2.3	1.8	3.8	28.7	32.7%	0.2	4.84	1.6	1.6
6		29.7	12	0.9	2.7	15.5	14.3	10.9%	0.6	4.1	1.2	1.5	3.6	26.1	18.9%	0.3	4.68	1.2	1.4
7		27.1	7	0.7	2.6	15.8	11.3	0.7%	0.6	3.7	1.9	1.5	2.9	24.2	6.7%	0.3	4.21	1.3	1.5
8	SCE/SoCalGas	26.1	10	0.8	2.9	15.1	10.9	8.9%	0.6	4.0	1.0	1.5	4.5	21.6	24.9%	0.3	4.54	1.1	1.4
9	SCE/SoCalGas	28.8	13	0.9	2.9	17.3	11.5	12.5%	0.7	4.1	1.1	1.6	7.6	21.3	25.5%	0.4	4.66	1.1	1.5
10	SCE/SoCalGas	28.8	11	0.9	3.0	17.7	11.1	14.0%	0.7	4.2	1.1	1.5	7.6	21.2	27.0%	0.4	4.78	1.1	1.5
10	SDG&E	28.8	11	0.9	3.0	17.7	11.1	14.0%	0.7	4.2	1.7	1.5	7.6	21.2	27.0%	0.4	4.78	1.4	1.5
11		30.0	12	1.1	3.6	15.8	14.2	16.2%	0.6	5.4	1.8	1.6	6.8	23.2	29.2%	0.4	6.11	1.5	1.6
12	PG&E	30.9	13	1.0	3.0	15.2	15.7	15.3%	0.5	5.0	1.7	1.4	5.6	25.4	29.3%	0.3	5.62	1.3	1.5
13	PG&E	30.7	13	1.1	3.8	17.3	13.4	17.4%	0.6	5.4	1.7	1.5	8.2	22.5	29.4%	0.4	6.14	1.4	1.5
14		31.3	16	1.4	3.2	15.8	15.5	18.9%	0.9	4.8	1.2	1.6	7.4	23.9	30.9%	0.6	5.39	1.4	1.6
14	SDG&E	31.3	16	1.4	3.2	15.8	15.5	18.9%	0.9	4.8	1.8	1.6	7.4	23.9	30.9%	0.6	5.39	1.7	1.6
15		26.2	8	1.3	5.4	20.0	6.2	16.8%	1.1	5.5	1.1	1.6	12.7	13.5	27.0%	0.8	6.25	1.2	1.5
16	PG&E	46.5	39	1.7	2.7	19.6	27.0	25.2%	0.9	5.5	2.1	1.6	11.1	35.4	34.3%	0.6	6.17	1.7	1.5

Table 28: Single Family All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results

">1" = indicates cases where there is both first cost savings and annual utility bill savings.

Appendix D – Single Family Measure Summary

Table 29: Single Family Mixed Fuel Efficiency – Non-Preempted Package Measure Summary

<u>CZ</u>	Duct	Infiltratio	Wall	Attic	Roof	Glazing	Slab	DHW	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	1.0 PV scaling
8	< 12 ft ducts in attic	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
9	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
13	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
14	VLLDCS	3 ACH50	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
15	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling

Table 30: Single Family Mixed Fuel Efficiency – Equipment, Preempted Package Measure Summary
--

<u>CZ</u>	Duct	Infiltratio	Wall			Glazing	Slab	DHW	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
2	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
4	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
5	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	96 AFUE, 0.35W/cfm	1.0 PV scaling
6	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling
8	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling
9	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
10	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
11	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	18 SEER, 96 AFUE, 0.35W/cfm	1.0 PV scaling
12	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
13	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
14	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
15	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	18 SEER, 96 AFUE, 0.35W/cfm	1.0 PV scaling

LLAHU - Low Leakage Air Handling Unit

		Tubh		Sic raining		ciency a i v/	Duttery I utha	ige measure su	iiiiiai y	
<u>cz</u>	Duct	Infiltration	Wall	Attic	Roof	Glazing	Slab	DHW	HVAC	PV
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	Code Min	1.0 PV scaling + 5kWh batt
8	< 12 ft ducts in attic	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
9	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
13	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
14	VLLDCS	3 ACH50	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
15	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 5kWh batt
10	10000	ooue min	couc min	couc min	oode min	one iy oldo willdows	couc initi	basic critt sicult (017)	ondo ny chin	and a searing - skewing

Table 31: Single Family Mixed Fuel Efficiency & PV/Battery Package Measure Summary

					ceti ie Efficiency		a i achage meas		5	
<u>cz</u>	Duct	<u>Infiltratio</u>	Wall	Attic	Roof	Glazing	Slab	DHW	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Std Design PV
8	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
12	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
13	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
14	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
15	VLLDCS	Code Min	0.043 wall	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
16	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	Code Min	Code Min	0.45 W/cfm	Std Design PV

Table 32: Single Family All-Electric Efficiency – Non-Preempted Package Measure Summary

	Tuble 5515	11.61010			'		,	eempteu ruona	ge Measure Summary	
<u>CZ</u>	<u>Duct</u>	<u>Infiltratio</u>	Wall	<u>Attic</u>	Roof	Glazing	<u>Slab</u>	DHW	HVAC	<u>PV</u>
1	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
2	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
3	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
4	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
5	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
6	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
8	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV
9	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
10	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV
11	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
12	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
13	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
14	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
15	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV
16	LLAHU + 2% leakage	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV

Table 33: Single Family All-Electric Efficiency – Equipment, Preempted Package Measure Summary

LLAHU - Low Leakage Air Handling Unit

CZ	Duct	Infiltratio		U I I	Roof					PV
1				R-38 + R-30 attic						0.9 PV scaling
2			Code Min			0.24/0.23 windows				0.9 PV scaling
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
8	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
12	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
13	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
14	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
15	VLLDCS	Code Min	0.043 wall	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling
16	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling

Table 34: Single Family All-Electric Efficiency & PV Package Measure Summary

			rabie obtoingie rain	J			i denage intea		- 5	
<u>cz</u>	Duct	Infiltration	Wall	Attic	Roof	Glazing	Slab	DHW	HVAC	PV
1	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
2	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
3	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
4	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
6	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
8	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
11	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
12	VLLDCS	Code Min	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
13	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
14	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
15	VLLDCS	Code Min	0.043 wall (SF); 0.048 wall (MF)	R-38 + R-30 attic	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt
16	VLLDCS	3 ACH50	Code Min	R-38 + R-30 attic	Code Min	0.24/0.50 windows	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 5kWh batt

Appendix E – Multifamily Detailed Results

					iuiu	lanni	/ Mixe	u ruei	Efficie			e cos	St-EI	lecur	veness	s resu	1115					
			BA	SECASE					Non	-Preemp	ted						Equipm	nent - Pro	eempt	ted		
Climate Zone	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
01	PG&E	28.6	60.7	23	2.7	15.9	25.1	57.3	3.4	19.3%	2.3	16.0	1.1	1.2	26.4	58.4	2.3	12.2%	2.5	15.9	1.3	1.4
02	PG&E	25.7	56.5	12	2.4	13.9	24.2	54.7	1.8	9.9%	2.3	13.8	1.0	1.7	23.6	54.2	2.3	12.5%	2.2	13.9	1.1	1.5
03	PG&E	24.7	57.8	10	2.1	13.5	24.0	57.2	0.6	4.7%	2.1	13.5	1.0	1.1	23.1	56.2	1.6	11.2%	1.9	13.4	1.1	1.2
04	PG&E	25.5	56.8	8	2.2	13.6	24.3	55.5	1.3	7.7%	2.1	13.5	0.8	1.2	23.8	54.9	1.9	10.9%	2.0	13.5	1.1	1.7
05	PG&E	24.2	57.4	10	2.1	12.6	23.7	56.9	0.5	4.4%	2.0	12.6	1.0	1.0	22.7	55.9	1.5	10.9%	1.9	12.6	1.2	1.3
05	PG&E/SoCalGas	24.2	57.4	10	2.1	12.6	23.7	56.9	0.5	4.4%	2.0	12.6	0.8	1.0	22.7	55.9	1.5	10.9%	1.9	12.6	1.1	1.3
06	SCE/SoCalGas	26.8	63.2	10	2.2	13.9	25.8	61.9	1.3	7.0%	2.1	13.8	0.6	1.5	25.5	61.9	1.3	7.4%	2.0	13.9	1.4	1.7
07	SDG&E	26.8	64.5	5	2.1	13.2	26.1	63.6	0.9	5.3%	2.1	13.1	0.7	2.2	25.0	62.5	2.0	12.2%	2.0	13.2	1.1	1.4
08	SCE/SoCalGas	25.7	61.8	10	2.2	14.6	24.6	60.3	1.5	7.4%	2.1	14.5	0.7	1.4	24.6	60.7	1.1	5.7%	2.0	14.6	1.4	1.7
09	SCE/SoCalGas	26.4	59.7	13	2.2	14.7	25.0	57.9	1.8	8.2%	2.2	14.4	1.5	3.3	24.1	56.9	2.8	12.9%	2.1	14.4	1.7	2.9
10	SCE/SoCalGas	27.0	58.7	10	2.3	15.1	25.7	57.0	1.7	7.7%	2.2	14.9	0.8	1.7	24.7	55.8	2.9	13.0%	2.1	14.8	2.0	3.3
10	SDG&E	27.0	58.7	10	2.3	15.1	25.7	57.0	1.7	7.7%	2.2	14.9	1.1	1.7	24.7	55.8	2.9	13.0%	2.1	14.8	2.6	3.3
11	PG&E	24.5	54.5	11	2.4	16.6	22.3	51.6	2.9	11.9%	2.2	16.3	0.7	1.2	22.2	51.3	3.2	13.2%	2.2	16.1	1.8	3.3
12	PG&E	25.9	55.3	12	2.3	14.9	24.3	53.4	1.9	8.8%	2.2	14.8	1.1	2.2	23.5	52.5	2.8	12.8%	2.1	14.7	1.2	2.2
13	PG&E	26.1	55.9	11	2.3	17.5	23.7	52.8	3.1	12.1%	2.1	17.1	0.6	1.3	23.7	52.5	3.4	13.2%	2.1	16.9	2.0	3.8
14	SCE/SoCalGas	25.6	55.9	15	2.8	14.6	23.1	52.8	3.1	12.8%	2.5	14.3	0.7	1.2	23.2	52.6	3.3	13.3%	2.5	14.2	2.0	3.0
14	SDG&E	25.6	55.9	15	2.8	14.6	23.1	52.8	3.1	12.8%	2.5	14.3	0.9	1.2	23.2	52.6	3.3	13.3%	2.5	14.2	2.5	3.0
15	SCE/SoCalGas	25.0	59.2	11	2.5	21.6	22.7	55.0	4.2	12.9%	2.4	20.4	1.4	2.3	22.6	54.8	4.4	13.5%	2.3	20.4	>1	>1
16	PG&E	29.4	57.3	22	3.5	13.4	26.6	54.9	2.4	11.3%	3.0	13.7	1.1	1.2	26.9	54.4	2.9	13.1%	3.1	13.2	1.8	2.1
	(All indicates as a			In the first					A I. 11													

Table 36: Multifamily Mixed Fuel Efficiency Package Cost-Effectiveness Results

">1" = indicates cases where there is both first cost savings and annual utility bill savings.

	Table	57. Mu			Entrency		littery rac	—			ults	
			BASEC	CASE				Efficie	ncy & PV/E	Battery		
cz	Utility	Total EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
01	PG&E	28.6	23	2.7	15.9	17.1	11.5	29.3%	2.1	16.5	0.4	1.2
02	PG&E	25.7	12	2.4	13.9	14.8	10.9	16.9%	2.1	14.2	0.2	1.6
03	PG&E	24.7	10	2.1	13.5	14.4	10.3	10.7%	1.9	13.9	0.1	1.4
04	PG&E	25.5	8	2.2	13.6	14.3	11.2	15.7%	1.9	13.9	0.2	1.6
05	PG&E	24.2	10	2.1	12.6	14.3	9.9	9.4%	1.8	13.1	0.2	1.4
05	PG&E/SoCalGas	24.2	10	2.1	12.6	14.3	9.9	9.4%	1.8	13.1	0.1	1.4
06	SCE/SoCalGas	26.8	10	2.2	13.9	16.1	10.7	10.0%	1.8	14.2	0.6	1.4
07	SDG&E	26.8	5	2.1	13.2	15.8	11.0	7.3%	1.7	13.6	0.0	1.4
08	SCE/SoCalGas	25.7	10	2.2	14.6	15.8	9.9	13.4%	1.8	14.9	0.7	1.3
09	SCE/SoCalGas	26.4	13	2.2	14.7	16.7	9.7	15.2%	1.8	14.9	0.9	1.5
10	SCE/SoCalGas	27.0	10	2.3	15.1	16.6	10.4	13.7%	1.9	15.3	1.0	1.6
10	SDG&E	27.0	10	2.3	15.1	16.6	10.4	13.7%	1.9	15.3	0.2	1.6
11	PG&E	24.5	11	2.4	16.6	14.0	10.5	19.9%	2.0	16.7	0.4	1.6
12	PG&E	25.9	12	2.3	14.9	15.6	10.3	17.8%	2.0	15.2	0.3	1.7
13	PG&E	26.1	11	2.3	17.5	15.4	10.7	20.1%	2.0	17.5	0.4	1.6
14	SCE/SoCalGas	25.6	15	2.8	14.6	16.0	9.6	20.8%	2.2	14.7	1.1	1.4
14	SDG&E	25.6	15	2.8	14.6	16.0	9.6	20.8%	2.2	14.7	0.5	1.4
15	SCE/SoCalGas	25.0	11	2.5	21.6	16.2	8.8	18.9%	2.1	20.9	1.3	1.7
16	PG&E	29.4	22	3.5	13.4	19.5	9.9	19.3%	2.7	14.1	0.5	1.3

Table 37: Multifamily Mixed Fuel Efficiency & PV/Battery Package Cost-Effectiveness Results

"inf" = indicates cases where there is both first cost savings and annual utility bill savings.

		_		SECASI		<u> </u>				on-Pree		<u> </u>			Equipment - Preempted							
cz	Utility	Total EDR	Efficiency EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Efficiency EDR	Efficiency EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
01	PG&E	41.1	70.6	36	1.6	15.9	37.5	67.0	3.6	14.6%	1.5	15.9	1.6	1.4	37.1	67.3	3.3	18.4%	1.4	15.9	2.4	2.3
02	PG&E	34.3	63.4	16	1.4	13.9	32.4	61.5	1.9	9.1%	1.3	13.9	1.7	2.1	31.1	60.2	3.2	15.1%	1.3	13.9	1.6	1.6
03	PG&E	33.5	64.2	14	1.3	13.5	33.5	64.2	0.0	0.0%	1.3	13.5	-	-	30.4	61.5	2.7	19.5%	1.1	13.5	1.7	1.6
04	PG&E	32.0	61.4	12	1.3	13.6	30.5	60.0	1.4	8.0%	1.2	13.6	1.4	1.5	29.7	59.2	2.2	12.2%	1.2	13.6	1.2	1.1
05	PG&E	34.7	65.4	16	1.3	12.6	34.1	64.8	0.6	3.4%	1.3	12.6	1.1	0.9	30.6	61.8	3.6	23.5%	1.2	12.6	2.1	2.0
05	PG&E/SoCalGas	34.7	65.4	16	1.3	12.6	34.1	64.8	0.6	3.4%	1.3	12.6	1.1	0.9	30.6	61.8	3.6	23.5%	1.2	12.6	2.1	2.0
06	SCE/SoCalGas	31.9	65.9	12	1.3	13.9	30.9	64.9	1.0	5.9%	1.3	13.9	0.7	1.3	29.8	63.7	2.2	13.0%	1.2	13.9	1.6	1.9
07	SDG&E	31.7	66.6	7	1.2	13.2	31.1	66.0	0.6	4.6%	1.2	13.2	0.6	1.0	29.7	64.7	1.9	13.6%	1.1	13.2	1.6	1.7
08	SCE/SoCalGas	29.8	63.6	10	1.3	14.6	28.6	62.4	1.2	6.5%	1.2	14.6	0.9	1.7	27.9	61.7	1.9	10.3%	1.2	14.6	1.6	1.8
09	SCE/SoCalGas	30.4	61.9	13	1.3	14.7	28.7	60.3	1.6	8.1%	1.3	14.7	1.3	2.7	28.8	60.4	1.5	7.4%	1.2	14.7	1.6	1.6
10	SCE/SoCalGas	31.2	61.3	11	1.4	15.1	29.3	59.5	1.8	8.7%	1.3	15.1	1.2	2.0	29.3	59.5	1.8	8.6%	1.3	15.1	1.7	2.0
10	SDG&E	31.2	61.3	11	1.4	15.1	29.3	59.5	1.8	8.7%	1.3	15.1	1.5	2.0	29.3	59.5	1.8	8.6%	1.3	15.1	2.0	2.0
11	PG&E	31.9	60.6	12	1.4	16.6	28.5	57.1	3.5	13.1%	1.3	16.6	1.4	1.6	28.1	56.7	3.9	14.4%	1.3	16.6	2.0	2.3
12	PG&E	32.0	59.9	13	1.3	14.9	29.4	57.3	2.6	11.4%	1.2	14.9	0.9	1.1	29.0	57.0	2.9	13.0%	1.2	14.9	1.6	1.6
13	PG&E	32.1	60.5	13	1.4	17.5	28.8	57.2	3.3	12.6%	1.2	17.5	1.3	1.6	28.3	56.7	3.8	14.3%	1.2	17.5	2.0	2.3
14	SCE/SoCalGas	32.5	61.6	16	1.7	14.6	28.9	57.9	3.7	13.8%	1.6	14.6	1.2	1.6	28.7	57.8	3.8	14.3%	1.6	14.6	1.6	2.2
14	SDG&E	32.5	61.6	16	1.7	14.6	28.9	57.9	3.7	13.8%	1.6	14.6	1.5	1.6	28.7	57.8	3.8	14.3%	1.6	14.6	2.0	2.2
15	SCE/SoCalGas	28.2	61.0	8	1.8	21.6	23.9	56.6	4.4	14.2%	1.6	21.6	1.5	2.3	21.9	54.6	6.4	20.6%	1.5	21.6	1.2	1.7
16	PG&E	40.2	66.6	39	1.9	13.4	36.2	62.5	4.1	15.0%	1.7	13.4	2.1	2.1	37.1	63.4	3.2	11.4%	1.7	13.4	1.6	1.7

 Table 38: Multifamily All-Electric Efficiency Package Cost-Effectiveness Results

">1" = indicates cases where there is both first cost savings and annual utility bill savings.

	BASECASE										July Iu	51148	Efficiency & PV/Battery						
			BASEC	.ASE				ETTIC	iency 8	K PV				E	miciency	y & PV	Batter	У	
Climate Zone	Utility	Total EDR	CALGreen Tier 1 EDR Target	lbs CO2 per sqft	PV kW per Building	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio	Total EDR	Total EDR Margin	% Comp Margin	lbs CO2 per sqft	PV kW per Building	On-Bill B/C Ratio	TDV B/C Ratio
01	PG&E	41.1	36	1.6	15.9	18.6	22.5	14.6%	0.8	26.9	2.0	1.5	6.6	34.5	24.6%	0.4	30.3	1.3	1.4
02	PG&E	34.3	16	1.4	13.9	16.8	17.5	9.1%	0.7	21.9	2.4	1.8	3.4	30.9	16.1%	0.3	24.8	1.4	1.7
03	PG&E	33.5	14	1.3	13.5	17.4	16.1	2.6%	0.7	20.8	2.4	1.7	4.0	29.5	8.6%	0.3	23.6	1.3	1.6
04	PG&E	32.0	12	1.3	13.6	17.0	15.0	8.0%	0.7	20.2	2.4	1.8	3.1	28.9	16.0%	0.3	22.9	1.30	1.77
05	PG&E	34.7	16	1.3	12.6	17.6	17.1	3.4%	0.7	19.9	2.5	1.8	4.4	30.3	8.4%	0.3	22.5	1.4	1.7
05	PG&E/SoCalGas	34.7	16	1.3	12.6	17.6	17.1	3.4%	0.7	19.9	2.5	1.8	4.4	30.3	8.4%	0.3	22.5	1.4	1.7
06	SCE/SoCalGas	31.9	12	1.3	13.9	18.1	13.8	5.9%	1.0	19.5	1.2	1.7	4.4	27.5	8.9%	0.5	22.1	1.2	1.6
07	SDG&E		7	1.2	13.2	18.9	12.8	4.6%	0.9	18.1	2.1	1.8	4.6	27.1	6.6%	0.5	20.5	1.2	1.6
08	SCE/SoCalGas	29.8	10	1.3	14.6	18.2	11.6	6.5%	1.0	19.4	1.3	1.8	5.6	24.2	12.5%	0.5	22.0	1.2	1.6
09	SCE/SoCalGas	30.4	13	1.3	14.7	19.1	11.3	8.1%	1.0	19.4	1.3	1.9	7.1	23.3	15.1%	0.6	22.0	1.3	1.7
10			11	1.4	15.1	20.4	10.8	8.7%	1.1	19.9	1.3	1.8	7.9	23.3	14.7%	0.6	22.5	1.3	1.7
10			11	1.4	15.1	20.4	10.8	8.7%	1.1	19.9	2.1	1.8	7.9	23.3	14.7%	0.6	22.5	1.4	1.7
11	PG&E		12	1.4	16.6	18.5	13.4	13.1%	0.8	22.8	2.2	1.8	6.6	25.3	21.1%	0.4	25.8	1.4	1.8
12			13	1.3	14.9	17.6	14.4	11.4%	0.7	21.7	2.1	1.6	5.4	26.6	20.4%	0.4	24.5	1.3	1.7
13			13	1.4	17.5	19.9	12.2	12.6%	0.8	23.3	2.1	1.7	8.2	23.9	20.6%	0.4	26.4	1.4	1.7
14	-		16	1.7	14.6	18.5	14.0	13.8%	1.3	20.2	1.4	1.9	7.7	24.8	21.8%	0.8	22.8	1.4	1.8
14			16	1.7	14.6	18.5	14.0	13.8%	1.3	20.2	2.2	1.9	7.7	24.8	21.8%	0.8	22.8	1.7	1.8
15	SCE/SoCalGas	28.2	8	1.8	21.6	21.1	7.1	14.2%	1.5	23.6	1.4	2.1	11.3	16.9	20.2%	1.1	26.6	1.3	1.8
16	PG&E	40.2	39	1.9	13.4	20.6	19.6	15.0%	1.2	22.0	2.6	1.9	10.3	29.9	23.0%	0.8	24.8	1.6	1.7

Table 39: Multifamily All-Electric Efficiency & PV-PV/Battery Package Cost-Effectiveness Results

">1" = indicates cases where there is both first cost savings and annual utility bill savings.

Appendix F – Multifamily Measure Summary

Table 40: Multifamily Mixed Fuel Efficiency – Non-Preempted Package Measure Summary

<u>cz</u>	Duct	Infiltration	Wall	Attic	Roof	Glazing	Slab	DHW	HVAC	<u>PV</u>
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
5	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Enh CHW credit (0.6)	0.35 W/cfm	1.0 PV scaling
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling

	Table 41. Muthanny Mixed Fuel Enclency - Equipment, Freempteu Fackage Measure Summary												
<u>CZ</u>	Duct	<u>Infiltratio</u>	Wall	Attic	Roof	Glazing	Slab	DHW	HVAC	<u>PV</u>			
1	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling			
2	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling			
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.35W/cfm	1.0 PV scaling			
4	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling			
5	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	92 AFUE, 0.45W/cfm	1.0 PV scaling			
6	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	Code Min	1.0 PV scaling			
7	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling			
8	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	Code Min	1.0 PV scaling			
9	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling			
10	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling			
11	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling			
12	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling			
13	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling			
14	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling			
15	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 0.35 W/cfm	1.0 PV scaling			
16	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	95 EF, basic compact dist.	16 SEER, 92 AFUE, 0.35W/cfm	1.0 PV scaling			
	Varifiadia	Laaliaaa D			-								

Table 41: Multifamily Mixed Fuel Efficiency – Equipment, Preempted Package Measure Summary

		14		mununa	mily Mixeu I ue	I Lincichey &	I V/Dattery I a	chage measure 3	ummar y	
<u>CZ</u>	Duct	Infiltration	Wall	<u>Attic</u>	Roof	Glazing	<u>Slab</u>	DHW	<u>HVAC</u>	PV
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
5	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Enh CHW credit (0.6)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Basic CHW credit (0.7)	0.35 W/cfm	1.0 PV scaling + 22kWh batt

Table 42: Multifamily Mixed Fuel Efficiency & PV/Battery Package Measure Summary

2VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design3Code MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design4VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design5VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design6VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design7Code MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design8VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design9VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design10VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design11VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design12VLLDCS <th></th> <th>1</th> <th>abic TJ.</th> <th>ululululu</th> <th>II Y THI LIC</th> <th>curic Enterency</th> <th>Non i reempte</th> <th>u i achage meas</th> <th>Jui C Juli</th> <th>iiiiai y</th> <th></th>		1	abic TJ.	ululululu	II Y THI LIC	curic Enterency	Non i reempte	u i achage meas	Jui C Juli	iiiiai y	
2VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design3Code MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design4VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design5VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design6VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design7Code MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design8VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design9VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design10VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design11VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design12VLLDCSCode Min <th><u>cz</u></th> <th>Duct</th> <th>Infiltration</th> <th>Wall</th> <th>Attic</th> <th>Roof</th> <th>Glazing</th> <th><u>Slab</u></th> <th>DHW</th> <th>HVAC</th> <th><u>PV</u></th>	<u>cz</u>	Duct	Infiltration	Wall	Attic	Roof	Glazing	<u>Slab</u>	DHW	HVAC	<u>PV</u>
3Code MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design4VLLDCSCode MinCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design5VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinR-10 slab insulationCode MinCode MinStd Design6VLLDCSCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinStd Design7Code MinCode MinCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design8VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design9VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance <td>1</td> <td>VLLDCS</td> <td>Code Min</td> <td>Code Min</td> <td>Code Min</td> <td>Code Min</td> <td>0.24/0.50 windows</td> <td>R-10 slab insulation</td> <td>Code Min</td> <td>0.45 W/cfm</td> <td>Std Design PV</td>	1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
4VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design5VLLDCSCode MinCode MinCode MinCode MinCode MinR-10 slab insulationCode MinCode MinStd Design6VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode MinCode MinStd Design7Code MinCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design8VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design9VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 wi	2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
5VLLDCSCode MinCode MinCode MinCode MinCode MinR-10 slab insulationCode MinCode MinStd Design6VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design7Code MinCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design8VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design9VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windows	3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	Std Design PV
6VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design7Code MinCode MinCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design8VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design9VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min	4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
7Code MinCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design8VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design9VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode Min	5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	Code Min	Std Design PV
8VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design9VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design	6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
9VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinCode MinCode Min0.45 W/cfmStd Design10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design	7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
10VLLDCSCode MinCode MinCode Min0.25 solar reflectanceCode MinR-10 slab insulationCode Min0.45 W/cfmStd Design11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design	8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
11VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design	9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	Std Design PV
12VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design	10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
13VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design14VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design15VLLDCSCode MinCode MinCode Min0.25 solar reflectance0.24/0.23 windowsR-10 slab insulationCode Min0.45 W/cfmStd Design	11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
14 VLLDCS Code Min Code Min Code Min 0.25 solar reflectance 0.24/0.23 windows R-10 slab insulation Code Min 0.45 W/cfm Std Design 15 VLLDCS Code Min Code Min 0.25 solar reflectance 0.24/0.23 windows R-10 slab insulation Code Min 0.45 W/cfm Std Design	12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
15 VLLDCS Code Min Code Min Code Min 0.25 solar reflectance 0.24/0.23 windows R-10 slab insulation Code Min 0.45 W/cfm Std Design	13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
	14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
16 VLLDCS Code Min Code Min Code Min Code Min Code Min 0.24/0.50 windows R-10 slab insulation Code Min 0.45 W/cfm Std Design	15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV
	16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	Std Design PV

Table 43: Multifamily All-Electric Efficiency – Non-Preempted Package Measure Summary

			Table 44. Muthanny An Lieurie Enciency Equipment, recompted rackage Measure Summary													
Duct	<u>Infiltratio</u>	Wall	<u>Attic</u>	Roof	Glazing	<u>Slab</u>	DHW	HVAC	<u>PV</u>							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	0.45 W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	18 SEER, 10 HSPF, 0.45W/cfm	Std Design PV							
ode Min	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	NEEA Tier 3 HPWH	16 SEER, 9 HSPF, 0.45W/cfm	Std Design PV							
	ode Min ode Min	ode MinCode Minode MinCode Min	ode MinCode MinCode Minode MinCode MinCode Min	ode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode Min	ode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode Min	ode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode Minode Min <td< td=""><td>ode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode Min<</td><td>ode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode</td><td>Ode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCod</td></td<>	ode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinCode Minode MinCode MinCode MinCode MinCode MinCode MinCode Min<	ode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWHode MinCode	Ode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH16 SEER, 9 HSPF, 0.45W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCode MinCode MinNEEA Tier 3 HPWH0.45 W/cfmOde MinCode MinCode MinCode MinCod							

Table 44: Multifamily All-Electric Efficiency – Equipment, Preempted Package Measure Summary

	Tuble 15. Muthaling In Electric Enterency & TVT ackage Medsare Summary													
<u>CZ</u>	Duct	Infiltration	Wall	Attic	Roof	Glazing	Slab	DHW	HVAC	<u>PV</u>				
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	Code Min	0.9 PV scaling				
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling				
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling				
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling				
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	0.9 PV scaling				
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	0.9 PV scaling				

Table 45: Multifamily All-Electric Efficiency & PV Package Measure Summary

		Iab		untinanni	Iy III LICCUIC LI	include y a r v	/ Dattery Tackage Measure Summary					
<u>cz</u>	Duct	Infiltration	<u>Wall</u>	<u>Attic</u>	Roof	Glazing	<u>Slab</u>	DHW	HVAC	PV		
1	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
2	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
3	Code Min	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
4	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
5	VLLDCS	Code Min	Code Min	Code Min	Code Min	Code Min	R-10 slab insulation	Code Min	Code Min	1.0 PV scaling + 22kWh batt		
6	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
7	Code Min	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
8	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
9	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	Code Min	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
10	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	Code Min	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
11	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
12	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
13	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
14	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
15	VLLDCS	Code Min	Code Min	Code Min	0.25 solar reflectance	0.24/0.23 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		
16	VLLDCS	Code Min	Code Min	Code Min	Code Min	0.24/0.50 windows	R-10 slab insulation	Code Min	0.45 W/cfm	1.0 PV scaling + 22kWh batt		

Table 46: Multifamily All-Electric Efficiency & PV/Battery Package Measure Summary

VLLDCS – Verified Low-Leakage Ducts in Conditioned Space

Appendix G – Results by Climate Zone

Climate Zone 1	80
Climate Zone 2	
Climate Zone 3	
Climate Zone 4	
Climate Zone 5 PG&E	
Climate Zone 5 PG&E/SoCalGas	
Climate Zone 6	
Climate Zone 7	
Climate Zone 8	
Climate Zone 9	
Climate Zone 10 SCE/SoCalGas	100
Climate Zone 10 SDGE	102
Climate Zone 11	
Climate Zone 12	106
Climate Zone 13	108
Climate Zone 14 SCE/SoCalGas	110
Climate Zone 14 SDGE	112
Climate Zone 15	
Climate Zone 16	116

		Table	e 47: Single	e Family Cl	imate Zone	1 Results S	ummary			
Clim PG&	ate Zone 1 E	Annual		EDR Margin⁴	PV Size	CO2-Equivalent Emissions (Ibs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)	
	le Family	Net kWh			Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	581	n/a	n/a	3.00	n/a	n/a	n/a	n/a
Fue	Efficiency-Non-Preempted	(0)	480	5.0	(0.08)	2.51	0.49	\$1,355	3.38	2.82
Mixed Fuel ¹	Efficiency-Equipment	0	440	6.5	(0.07)	2.32	0.68	\$1,280	4.92	4.10
Ē	Efficiency & PV/Battery	(28)	480	10.5	0.04	2.40	0.60	\$5,311	0.87	1.61
	Code Compliant	7,079	0	n/a	n/a	1.51	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	4,461	0	15.0	0.00	1.01	0.50	\$7,642	1.79	1.66
Elect	Efficiency-Equipment	5,933	0	6.5	0.00	1.29	0.22	\$2,108	2.94	2.74
All-Electric ²	Efficiency & PV	889	0	31.0	2.67	0.52	1.00	\$18,192	1.81	1.45
	Efficiency & PV/Battery	(14)	0	41.0	3.45	0.28	1.23	\$24,770	1.45	1.40
c ³ to	Code Compliant	7,079	0	0.0	0.00	1.51	1.49	(\$5,349)	0.37	0.91
Mixed Fuel to All-Electric ³	Efficiency & PV	889	0	31.0	2.67	0.52	2.48	\$12,844	1.43	2.11
	Neutral Cost	5,270	0	8.0	1.35	1.26	1.74	\$0	0.00	1.09
All All	Min Cost Effectiveness	3,106	0	18.0	2.97	0.95	2.04	(\$6,372)	1.08	>1

Table 47. Cinale Family Climate 7ame 1 Decults Summer

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

Climate Zone 1 PG&E		Annual			PV Size		juivalent ns (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	180	n/a	n/a	2.75	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	147	3.0	0.00	2.31	0.44	\$960	1.10	1.18
Mixed	Efficiency-Equipment	(0)	159	2.0	(0.01)	2.48	0.27	\$507	1.29	1.41
Ē	Efficiency & PV/Battery	(14)	147	11.5	0.07	2.13	0.61	\$3,094	0.35	1.21
0	Code Compliant	2,624	0	n/a	n/a	1.62	n/a	n/a	n/a	n/a
All-Electric ²	Efficiency-Non-Preempted	2,328	0	3.5	0.00	1.46	0.15	\$949	1.55	1.40
llect	Efficiency-Equipment	2,278	0	3.0	0.00	1.41	0.20	\$795	2.39	2.26
AII-E	Efficiency & PV	499	0	22.5	1.37	0.75	0.86	\$5,538	2.04	1.50
	Efficiency & PV/Battery	(7)	0	34.5	1.80	0.38	1.24	\$8,919	1.33	1.43
c to	Code Compliant	2,624	0	0.0	0.00	1.62	1.13	(\$2,337)	0.38	1.01
Fuel	Efficiency & PV	62	0	22.5	1.37	0.75	2.00	\$3,202	1.63	>1
Mixed Fuel to All-Electric ³	Neutral Cost	1,693	0	9.5	0.70	1.25	1.50	\$0	0.00	1.57
All	Min Cost Effectiveness	1,273	0	14.0	1.01	1.09	1.66	(\$1,052)	1.14	3.76

Table 48: Multifamily Climate Zone 1 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

|--|

	Table 49: Single Family Climate Zone 2 Results Summary										
Clim PG&	ate Zone 2 E	Annual Net	Annual	EDR	PV Size Change	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime Incremental	Benefit to Cost Ratio (B/C)		
Sing	le Family	kWh	therms	Margin ⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV	
ار 1	Code Compliant	(0)	421	n/a	n/a	2.23	n/a	n/a	n/a	n/a	
Fuel ¹	Efficiency-Non-Preempted	0	360	3.0	(0.04)	1.94	0.30	\$1,504	1.63	1.66	
Mixed	Efficiency-Equipment	(0)	352	3.0	(0.03)	1.90	0.33	\$724	3.77	3.63	
Ξ	Efficiency & PV/Battery	(22)	360	10.0	0.06	1.82	0.41	\$5,393	0.47	1.56	
5	Code Compliant	5,014	0	n/a	n/a	1.11	n/a	n/a	n/a	n/a	
tric	Efficiency-Non-Preempted	4,079	0	4.5	0.00	0.94	0.18	\$3,943	1.21	1.07	
	Efficiency-Equipment	4,122	0	5.0	0.00	0.94	0.17	\$2,108	2.25	2.10	
All-Electric ²	Efficiency & PV	847	0	19.0	2.07	0.49	0.63	\$12,106	1.83	1.38	
	Efficiency & PV/Battery	(15)	0	30.0	2.71	0.26	0.86	\$18,132	1.37	1.43	
Mixed Fuel to All-Electric ³	Code Compliant	5,014	0	0.0	0.00	1.11	1.12	(\$5,349)	0.52	1.59	
d Fu∈ Electr	Efficiency & PV	847	0	19.0	2.07	0.49	1.75	\$6,758	1.76	39.70	
Mixe All-I	Neutral Cost	2,891	0	9.5	1.36	0.82	1.41	\$0	>1	>1	

Table 40, Single Family Climate 7 one 2 Decults Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the mixed fuel code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

-	Climate Zone 2 PG&E		Annual	Annual EDR		CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	150	n/a	n/a	2.37	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	0	142	1.5	(0.02)	2.25	0.12	\$309	0.97	1.75
Mixed	Efficiency-Equipment	(0)	134	2.0	(0.01)	2.15	0.22	\$497	1.08	1.49
Ξ	Efficiency & PV/Battery	(11)	142	10.5	0.04	2.07	0.30	\$2,413	0.17	1.60
7	Code Compliant	2,151	0	n/a	n/a	1.38	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	2,038	0	1.5	0.00	1.32	0.06	\$361	1.73	2.05
	Efficiency-Equipment	1,928	0	3.0	0.00	1.25	0.13	\$795	1.56	1.56
All-Electric	Efficiency & PV	476	0	17.5	1.00	0.72	0.67	\$3,711	2.42	1.82
	Efficiency & PV/Battery	(7)	0	30.5	1.36	0.35	1.04	\$6,833	1.38	1.74
Mixed Fuel to All-Electric ³	Code Compliant	2,151	0	0.0	0.00	1.38	0.99	(\$2,337)	0.53	1.42
ed Fu Elect	Efficiency & PV	60	0	17.5	1.00	0.72	1.65	\$1,375	3.31	>1
Mix∈ All-I	Neutral Cost	1,063	0	10.5	0.70	0.96	1.41	\$0	>1	>1

Table 50: Multifamily Climate Zone 2 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 51: Single Family Climate Zone 3 Results Summary											
Clim PG&	ate Zone 3 E	Annual Net	Annual	EDR	PV Size Change	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)			
Sing	le Family	kWh	therms	Margin ^₄	(kW) ⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV		
-	Code Compliant	(0)	348	n/a	n/a	1.88	n/a	n/a	n/a	n/a		
Fuel ¹	Efficiency-Non-Preempted	(0)	296	2.5	(0.03)	1.63	0.26	\$1,552	1.28	1.31		
Mixed	Efficiency-Equipment	(0)	273	4.0	(0.03)	1.52	0.37	\$1,448	1.91	1.97		
Ξ	Efficiency & PV/Battery	(20)	296	10.0	0.07	1.50	0.38	\$5,438	0.38	1.38		
~	Code Compliant	4,355	0	n/a	n/a	1.00	n/a	n/a	n/a	n/a		
tric	Efficiency-Non-Preempted	3,584	0	4.5	0.00	0.85	0.15	\$1,519	2.60	2.36		
	Efficiency-Equipment	3,670	0	4.0	0.00	0.86	0.14	\$2,108	1.76	1.62		
All-Electric ²	Efficiency & PV	790	0	18.0	1.77	0.46	0.54	\$8,517	2.22	1.68		
	Efficiency & PV/Battery	(12)	0	29.0	2.37	0.23	0.76	\$14,380	1.50	1.58		
el to ric ³	Code Compliant	4,355	0	0.0	0.00	1.00	0.89	(\$5,349)	0.55	1.53		
Mixed Fuel to All-Electric ³	Efficiency & PV	790	0	18.0	1.77	0.46	1.43	\$3,169	2.88	>1		
Mixed All-Ele	Neutral Cost	2,217	0	10.5	1.35	0.70	1.18	\$0	>1	>1		

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the all-electric code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

-	Climate Zone 3 PG&E		A	nnual EDR			quivalent ons (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)		
- -	Code Compliant	(0)	133	n/a	n/a	2.13	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	127	0.5	(0.00)	2.06	0.07	\$175	1.00	1.11
Mixed	Efficiency-Equipment	(0)	119	1.5	(0.00)	1.94	0.19	\$403	1.11	1.23
Ē	Efficiency & PV/Battery	(10)	127	10.0	0.05	1.86	0.27	\$2,279	0.11	1.41
5	Code Compliant	1,944	0	n/a	n/a	1.27	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,944	0	0.0	0.00	1.27	0.00	\$0	-	-
	Efficiency-Equipment	1,698	0	2.5	0.00	1.13	0.14	\$795	1.73	1.58
All-Electric	Efficiency & PV	457	0	16.0	0.92	0.69	0.58	\$3,272	2.43	1.73
	Efficiency & PV/Battery	(7)	0	29.5	1.26	0.33	0.94	\$6,344	1.32	1.64
Mixed Fuel to All-Electric ³	Code Compliant	1,944	0	0.0	0.00	1.27	0.86	(\$2,337)	0.58	1.46
ed Fu Elect	Efficiency & PV	57	0	16.0	0.92	0.69	1.43	\$936	4.18	>1
Mixe All-I	Neutral Cost	845	0	11.5	0.70	0.85	1.28	\$0	>1	>1

Table 52: Multifamily Climate Zone 3 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 53: Single Family Climate Zone 4 Results Summary											
Clim PG&	ate Zone 4 E	Annual Net	Annual	EDR	PV Size Change	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime Incremental	Benefit to Cost Ratio (B/C)			
Sing	le Family	kWh	therms	Margin ⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV		
- -	Code Compliant	0	347	n/a	n/a	1.88	n/a	n/a	n/a	n/a		
Fuel ¹	Efficiency-Non-Preempted	0	306	2.5	(0.03)	1.68	0.20	\$1,556	0.93	1.15		
Mixed I	Efficiency-Equipment	(0)	294	2.5	(0.02)	1.62	0.26	\$758	2.39	2.67		
Ϊ	Efficiency & PV/Battery	(18)	306	10.0	0.07	1.55	0.33	\$5,434	0.30	1.48		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Code Compliant	4,342	0	n/a	n/a	1.00	n/a	n/a	n/a	n/a		
tric	Efficiency-Non-Preempted	3,775	0	3.0	0.00	0.89	0.11	\$1,519	1.92	1.84		
	Efficiency-Equipment	3,747	0	3.5	0.00	0.88	0.12	\$2,108	1.52	1.52		
All-Electric ²	Efficiency & PV	814	0	17.0	1.84	0.48	0.52	\$8,786	2.13	1.62		
	Efficiency & PV/Battery	(11)	0	28.5	2.44	0.25	0.75	\$14,664	1.46	1.61		
el to ric ³	Code Compliant	4,342	0	0.0	0.00	1.00	0.88	(\$5,349)	0.55	1.59		
Mixed Fuel to All-Electric ³	Efficiency & PV	814	0	17.0	1.84	0.48	1.40	\$3,438	2.64	>1		
Mixed All-Ele	Neutral Cost	2,166	0	10.0	1.35	0.70	1.18	\$0	>1	>1		

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

-	Climate Zone 4 PG&E				PV Size Change	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)		
- -	Code Compliant	(0)	134	n/a	n/a	2.16	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	127	1.0	(0.01)	2.06	0.10	\$329	0.75	1.24
Mixed	Efficiency-Equipment	(0)	123	1.5	(0.01)	2.01	0.15	\$351	1.06	1.74
ž	Efficiency & PV/Battery	(9)	127	11.0	0.04	1.87	0.29	\$2,429	0.17	1.60
7	Code Compliant	1,887	0	n/a	n/a	1.25	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,794	0	1.0	0.00	1.21	0.05	\$361	1.38	1.54
	Efficiency-Equipment	1,712	0	2.0	0.00	1.15	0.10	\$795	1.23	1.09
All-Electric	Efficiency & PV	453	0	15.0	0.83	0.69	0.57	\$3,158	2.43	1.81
	Efficiency & PV/Battery	(7)	0	28.5	1.17	0.32	0.93	\$6,201	1.30	1.77
Mixed Fuel to All-Electric ³	Code Compliant	1,887	0	0.0	0.00	1.25	0.90	(\$2,337)	0.65	1.77
ed Fu	Efficiency & PV	57	0	15.0	0.83	0.69	1.47	\$822	4.96	>1
Mixe All-I	Neutral Cost	767	0	11.0	0.70	0.82	1.33	\$0	>1	>1

Table 54: Multifamily Climate Zone 4 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

## Climate Zone 5 PG&E

Table 55: Single Family Climate Zone 5 PG&E Results Summary

-	Climate Zone 5 PG&E		Annual	EDR	PV Size Change	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit Ratio	
Sing	le Family	Net kWh	therms	Margin ⁴	(kW) ⁵	Total	Reduction	Cost (\$)		
1	Code Compliant	0	331	n/a	n/a	1.79	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	281	2.5	(0.03)	1.55	0.24	\$1,571	1.10	1.22
Mixed	Efficiency-Equipment	(0)	279	2.5	(0.02)	1.54	0.25	\$772	2.29	2.48
Ξ	Efficiency & PV/Battery	(14)	281	9.0	0.07	1.43	0.36	\$5,433	0.37	1.32
	Code Compliant	4,452	0	n/a	n/a	1.01	n/a	n/a	n/a	n/a
tric ²	Efficiency-Non-Preempted	3,687	0	4.0	0.00	0.86	0.15	\$1,519	2.58	2.31
All-Electric	Efficiency-Equipment	3,737	0	4.0	0.00	0.87	0.14	\$2,108	1.85	1.70
AII-E	Efficiency & PV	798	0	18.0	1.72	0.46	0.55	\$8,307	2.31	1.76
	Efficiency & PV/Battery	(8)	0	28.5	2.29	0.24	0.78	\$14,047	1.59	1.63
Mixed Fuel to All-Electric ³	Code Compliant	4,452	0	0.0	0.00	1.01	0.78	(\$5,349)	0.48	1.32
ed Fu Elect	Efficiency & PV	798	0	18.0	1.72	0.46	1.33	\$2,959	2.72	>1
Mix∈ All-	Neutral Cost	2,172	0	11.0	1.35	0.70	1.10	\$0	>1	40.07

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

 $^2\mbox{All}$  reductions and incremental costs relative to the  $\mbox{all-electric}$  code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Climate Zone 5 PG&E Multifamily				PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult			Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
-	Code Compliant	0	131	n/a	n/a	2.10	n/a	n/a	n/a	n/a
Fuel¹	Efficiency-Non-Preempted	(0)	126	0.5	(0.00)	2.03	0.07	\$180	0.99	1.03
Mixed	Efficiency-Equipment	(0)	117	1.5	(0.00)	1.92	0.19	\$358	1.24	1.34
Ξ	Efficiency & PV/Battery	(7)	126	9.5	0.05	1.84	0.26	\$2,273	0.15	1.38
	Code Compliant	2,044	0	n/a	n/a	1.32	n/a	n/a	n/a	n/a
All-Electric ²	Efficiency-Non-Preempted	1,990	0	0.5	0.00	1.30	0.03	\$247	1.09	0.86
	Efficiency-Equipment	1,738	0	3.5	0.00	1.15	0.17	\$795	2.15	2.03
AII-E	Efficiency & PV	465	0	17.0	0.91	0.70	0.62	\$3,293	2.53	1.82
	Efficiency & PV/Battery	(6)	0	30.0	1.24	0.34	0.98	\$6,314	1.44	1.69
Mixed Fuel to All-Electric ³	Code Compliant	2,044	0	0.0	0.00	1.32	0.78	(\$2,337)	0.50	1.28
ed Fu Elect	Efficiency & PV	58	0	17.0	0.91	0.70	1.40	\$956	3.80	>1
Mixe All-	Neutral Cost	874	0	12.5	0.70	0.87	1.23	\$0	>1	23.44

 Table 56: Multifamily Climate Zone 5 PG&E Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

# Climate Zone 5 PG&E/SoCalGas

	Table 57. Single Failing Chinate Zone 51 G&E/Socardas Results Summary									
Climate Zone 5 PG&E/SoCalGas		Annual			PV Size		quivalent ons (lbs/sf)	NPV of Lifetime		t to Cost o (B/C)
	Single Family		Annual EDR therms Margin⁴	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On- Bill	TDV
-	Code Compliant	0	331	n/a	n/a	1.79	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	281	2.5	(0.03)	1.55	0.24	\$1,571	0.92	1.22
Mixed	Efficiency-Equipment	(0)	279	2.5	(0.02)	1.54	0.25	\$772	1.98	2.48
Ē	Efficiency & PV/Battery	(14)	281	9.0	0.07	1.43	0.36	\$5,433	0.31	1.32
~	Code Compliant	4,452	0	n/a	n/a	1.01	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	3,687	0	4.0	0.00	0.86	0.15	\$1,519	2.58	2.31
	Efficiency-Equipment	3,737	0	4.0	0.00	0.87	0.14	\$2,108	1.85	1.70
All-Electric ²	Efficiency & PV	798	0	18.0	1.72	0.46	0.55	\$8,307	2.31	1.76
	Efficiency & PV/Battery	(8)	0	28.5	2.29	0.24	0.78	\$14,047	1.59	1.63
Mixed Fuel to All-Electric ³	Code Compliant	4,452	0	0.0	0.00	1.01	0.78	(\$5,349)	0.48	1.32
ed Fu Elect	Efficiency & PV	798	0	18.0	1.72	0.46	1.33	\$2,959	2.75	>1
Mixe All-I	Neutral Cost	2,172	0	11.0	1.35	0.70	1.10	\$0	>1	40.07

# Table 57: Single Family Climate Zone 5 PG&E/SoCalGas Results Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

-	ate Zone 5 E/SoCalGas	Annual Net	Annual	EDD	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Mult	Multifamily		Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	0	131	n/a	n/a	2.10	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	126	0.5	(0.00)	2.03	0.07	\$180	0.85	1.03
Mixed	Efficiency-Equipment	(0)	117	1.5	(0.00)	1.92	0.19	\$358	1.09	1.34
Ē	Efficiency & PV/Battery	(7)	126	9.5	0.05	1.84	0.26	\$2,273	0.14	1.38
5	Code Compliant	2,044	0	n/a	n/a	1.32	n/a	n/a	n/a	n/a
tric ,	Efficiency-Non-Preempted	1,990	0	0.5	0.00	1.30	0.03	\$247	1.09	0.86
	Efficiency-Equipment	1,738	0	3.5	0.00	1.15	0.17	\$795	2.15	2.03
All-Electric	Efficiency & PV	465	0	17.0	0.91	0.70	0.62	\$3,293	2.53	1.82
	Efficiency & PV/Battery	(6)	0	30.0	1.24	0.34	0.98	\$6,314	1.44	1.69
Mixed Fuel to All-Electric ³	Code Compliant	2,044	0	0.0	0.00	1.32	0.78	(\$2,337)	0.65	1.28
ed Fu Elect	Efficiency & PV	58	0	17.0	0.91	0.70	1.40	\$956	4.98	>1
Mix∉ All-	Neutral Cost	874	0	12.5	0.70	0.87	1.23	\$0	>1	23.44

# Table 58: Multifamily Climate Zone 5 PG&E/SoCalGas Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 59: Single Family Climate Zone 6 Results Summary									
-	Climate Zone 6 SCE/SoCalGas Single Family		Annual	EDR	PV Size Change	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime Incremental	Benefit Ratio	
Sing			therms	EDR Margin⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	249	n/a	n/a	1.57	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	0	229	2.0	(0.02)	1.47	0.10	\$1,003	0.66	1.15
Mixed	Efficiency-Equipment	(0)	218	1.5	(0.01)	1.41	0.15	\$581	1.58	2.04
Ξ	Efficiency & PV/Battery	(13)	229	9.5	0.08	1.22	0.34	\$4,889	0.84	1.27
0	Code Compliant	3,099	0	n/a	n/a	0.87	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	2,885	0	2.0	0.00	0.83	0.05	\$926	1.31	1.41
	Efficiency-Equipment	2,746	0	2.5	0.00	0.80	0.08	\$846	2.20	2.29
All-Electric ²	Efficiency & PV	722	0	14.0	1.37	0.63	0.24	\$6,341	1.19	1.48
	Efficiency & PV/Battery	(6)	0	26.0	1.93	0.33	0.55	\$12,036	1.15	1.43
Mixed Fuel to All-Electric ³	Code Compliant	3,099	0	0.0	0.00	0.87	0.69	(\$5,349)	1.19	2.46
ed Fu Elect	Efficiency & PV	722	0	14.0	1.37	0.63	0.93	\$992	3.07	>1
Mixe All-l	Neutral Cost	959	0	12.0	1.36	0.67	0.89	\$0	>1	>1

#### Table 59: Single Family Climate Zone 6 Results Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Climate Zone 6 SCE/SoCalGas				PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Multifamily		Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	114	n/a	n/a	2.17	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	112	1.0	(0.01)	2.14	0.03	\$190	0.65	1.49
Mixed	Efficiency-Equipment	(0)	103	1.0	(0.00)	2.03	0.15	\$213	1.43	1.74
Ξ	Efficiency & PV/Battery	(6)	112	10.5	0.04	1.76	0.41	\$2,294	0.56	1.35
~	Code Compliant	1,558	0	n/a	n/a	1.28	n/a	n/a	n/a	n/a
tric ,	Efficiency-Non-Preempted	1,531	0	1.0	0.00	1.26	0.02	\$231	0.65	1.34
	Efficiency-Equipment	1,430	0	2.0	0.00	1.20	0.08	\$361	1.62	1.91
All-Electric ²	Efficiency & PV	427	0	13.5	0.70	0.97	0.31	\$2,580	1.24	1.71
	Efficiency & PV/Battery	(5)	0	27.5	1.02	0.49	0.79	\$5,590	1.22	1.58
Mixed Fuel to All-Electric ³	Code Compliant	1,558	0	0.0	0.00	1.28	0.90	(\$2,337)	2.59	2.38
ed Fu Elect	Efficiency & PV	53	0	13.5	0.70	0.97	1.20	\$243	9.50	>1
Mix∈ All-	Neutral Cost	459	0	12.5	0.70	0.99	1.18	\$0	>1	>1

# Table 60: Multifamily Climate Zone 6 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 61: Single Family Climate Zone 7 Results Summary									
	Climate Zone 7 SDG&E		Annual	EDR	PV Size Change (kW)⁵	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime Incremental	Benefit Ratio	
Single Family		Net kWh	Annual therms	EDR Margin⁴		Total	Reduction	Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	196	n/a	n/a	1.30	n/a	n/a	n/a	n/a
Fue	Efficiency-Non-Preempted	(0)	196	0.0	0.00	1.30	0.00	\$0	-	-
Mixed Fuel ¹	Efficiency-Equipment	0	171	1.5	(0.00)	1.18	0.12	\$606	1.50	1.40
Ξ	Efficiency & PV/Battery	(12)	189	9.0	0.10	1.04	0.26	\$4,028	0.06	1.32
~	Code Compliant	2,479	0	n/a	n/a	0.75	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	2,479	0	0.0	0.00	0.75	0.00	\$0	-	-
	Efficiency-Equipment	2,222	0	2.0	0.00	0.69	0.06	\$846	1.60	1.65
All-Electric ²	Efficiency & PV	674	0	11.0	1.10	0.58	0.17	\$4,436	1.87	1.55
	Efficiency & PV/Battery	(6)	0	24.0	1.61	0.29	0.46	\$9,936	1.25	1.47
Mixed Fuel to All-Electric ³	Code Compliant	2,479	0	0.0	0.00	0.75	0.55	(\$5,349)	1.04	2.54
ed Fu Elect	Efficiency & PV	674	0	11.0	1.10	0.58	0.72	(\$912)	>1	>1
Mixed All-Ele	Neutral Cost	267	0	13.5	1.35	0.55	0.75	\$0	>1	>1

### Table 61: Single Family Climate Zone 7 Results Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Climate Zone 7 SDG&E Multifamily				PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Mult			Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<u>-</u>	Code Compliant	(0)	110	n/a	n/a	2.11	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	108	0.5	(0.01)	2.08	0.03	\$90	0.73	2.24
Mixed	Efficiency-Equipment	(0)	99	2.0	(0.00)	1.96	0.15	\$366	1.07	1.41
Ξ	Efficiency & PV/Battery	(6)	108	11.0	0.05	1.71	0.40	\$2,188	0.03	1.40
N	Code Compliant	1,434	0	n/a	n/a	1.21	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	1,416	0	0.5	0.00	1.20	0.01	\$202	0.60	1.02
	Efficiency-Equipment	1,319	0	1.5	0.00	1.14	0.07	\$361	1.59	1.71
All-Electric ²	Efficiency & PV	412	0	12.5	0.61	0.94	0.27	\$2,261	2.08	1.76
	Efficiency & PV/Battery	(5)	0	27.0	0.92	0.47	0.74	\$5,203	1.19	1.62
Mixed Fuel to All-Electric ³	Code Compliant	1,434	0	0.0	0.00	1.21	0.90	(\$2,337)	1.12	2.47
ed Fu Elect	Efficiency & PV	51	0	12.5	0.61	0.94	1.17	(\$75)	>1	>1
Mix∈ All-	Neutral Cost	294	0	13.5	0.70	0.91	1.20	\$0	>1	>1

# Table 62: Multifamily Climate Zone 7 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 63: Single Family Climate Zone 8 Results Summary									
	Climate Zone 8 SCE/SoCalGas		Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Single Family		Net kWh	Annual therms	Margin ⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	206	n/a	n/a	1.38	n/a	n/a	n/a	n/a
Mixed Fuel ¹	Efficiency-Non-Preempted	(0)	198	1.0	(0.02)	1.34	0.05	\$581	0.57	1.41
xed	Efficiency-Equipment	0	181	1.5	(0.01)	1.27	0.12	\$586	1.30	1.82
Ξ	Efficiency & PV/Battery	(13)	198	8.0	0.08	1.11	0.27	\$4,466	0.90	1.31
7	Code Compliant	2,576	0	n/a	n/a	0.80	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	2,483	0	1.5	0.00	0.78	0.02	\$926	0.57	1.22
	Efficiency-Equipment	2,352	0	1.5	0.00	0.75	0.05	\$412	2.82	3.03
All-Electric	Efficiency & PV	703	0	10.5	1.13	0.62	0.18	\$5,373	1.00	1.48
	Efficiency & PV/Battery	(7)	0	21.5	1.67	0.32	0.48	\$11,016	1.09	1.42
Mixed Fuel to All-Electric ³	Code Compliant	2,576	0	0.0	0.00	0.80	0.58	(\$5,349)	1.83	2.99
ed Fu Elect	Efficiency & PV	703	0	10.5	1.13	0.62	0.77	\$25	107.93	>1
Mixe All-I	Neutral Cost	439	0	11.0	1.36	0.60	0.78	\$0	>1	>1

#### Table 63: Single Family Climate Zone 8 Results Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Climate Zone 8 SCE/SoCalGas Multifamily				PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Mult			Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	109	n/a	n/a	2.18	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	106	1.5	(0.02)	2.13	0.05	\$250	0.70	1.36
Mixed	Efficiency-Equipment	(0)	99	1.0	(0.00)	2.04	0.14	\$213	1.37	1.67
Ξ	Efficiency & PV/Battery	(6)	106	9.5	0.03	1.77	0.41	\$2,353	0.74	1.32
N	Code Compliant	1,409	0	n/a	n/a	1.26	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	1,373	0	1.0	0.00	1.24	0.02	\$231	0.87	1.72
	Efficiency-Equipment	1,276	0	1.5	0.00	1.18	0.08	\$361	1.63	1.75
All-Electric ²	Efficiency & PV	426	0	11.5	0.60	0.99	0.27	\$2,240	1.26	1.78
	Efficiency & PV/Battery	(5)	0	24.0	0.92	0.53	0.73	\$5,249	1.24	1.59
Mixed Fuel to All-Electric ³	Code Compliant	1,409	0	0.0	0.00	1.26	0.91	(\$2,337)	6.69	2.67
ed Fu Elect	Efficiency & PV	53	0	11.5	0.60	0.99	1.18	(\$96)	>1	>1
Mix∈ All-I	Neutral Cost	309	0	12.0	0.70	0.98	1.20	\$0	>1	>1

# Table 64: Multifamily Climate Zone 8 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 65: Single Family Climate Zone 9 Results Summary									
_	Climate Zone 9 SCE/SoCalGas Single Family		Annual	EDR	PV Size Change		quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit Ratio	
Sing			therms	EDR Margin⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<del>,</del>	Code Compliant	0	229	n/a	n/a	1.53	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	216	2.5	(0.04)	1.46	0.07	\$912	0.69	1.97
Mixed	Efficiency-Equipment	0	201	2.5	(0.04)	1.38	0.15	\$574	1.80	3.66
Ξ	Efficiency & PV/Battery	(14)	216	8.5	0.05	1.23	0.30	\$4,785	0.99	1.48
0	Code Compliant	2,801	0	n/a	n/a	0.87	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	2,645	0	2.5	0.00	0.84	0.04	\$1,180	0.78	1.96
	Efficiency-Equipment	2,460	0	3.0	0.00	0.80	0.07	\$846	2.11	3.22
All-Electric ²	Efficiency & PV	745	0	11.5	1.16	0.66	0.21	\$5,778	1.08	1.64
	Efficiency & PV/Battery	(9)	0	21.0	1.72	0.37	0.50	\$11,454	1.11	1.53
Mixed Fuel to All-Electric ³	Code Compliant	2,801	0	0.0	0.00	0.87	0.66	(\$5,349)	1.67	2.90
ed Fu Elect	Efficiency & PV	745	0	11.5	1.16	0.66	0.87	\$429	7.15	>1
Mixe All-l	Neutral Cost	594	0	10.0	1.36	0.67	0.86	\$0	>1	>1

#### Table 65: Single Family Climate Zone 9 Results Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

_	Climate Zone 9 SCE/SoCalGas Multifamily				PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit t Ratio (	
Mult			Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- <del>-</del>	Code Compliant	0	111	n/a	n/a	2.24	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	109	1.5	(0.03)	2.19	0.05	\$136	1.46	3.35
Mixed	Efficiency-Equipment	(0)	101	2.5	(0.03)	2.08	0.16	\$274	1.66	2.87
Ξ	Efficiency & PV/Battery	(7)	109	9.5	0.03	1.84	0.40	\$2,234	0.90	1.49
N	Code Compliant	1,468	0	n/a	n/a	1.33	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,414	0	1.5	0.00	1.30	0.03	\$231	1.29	2.70
	Efficiency-Equipment	1,334	0	1.5	0.00	1.25	0.08	\$361	1.63	1.58
All-Electric	Efficiency & PV	441	0	11.0	0.60	1.04	0.29	\$2,232	1.34	1.91
	Efficiency & PV/Battery	(7)	0	23.0	0.92	0.58	0.75	\$5,236	1.28	1.67
Mixed Fuel to All-Electric ³	Code Compliant	1,468	0	0.0	0.00	1.33	0.91	(\$2,337)	4.38	2.55
ed Fu Elect	Efficiency & PV	55	0	11.0	0.60	1.04	1.20	(\$104)	>1	>1
Mix∈ All-	Neutral Cost	331	0	11.0	0.70	1.03	1.21	\$0	>1	>1

# Table 66: Multifamily Climate Zone 9 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

 $^2\mbox{All}$  reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

# Climate Zone 10 SCE/SoCalGas

Table 67: Single	<b>Family Climate Zone 1</b>	0 SCE/SoCalGas Results Summary

-	ate Zone 10 /SoCalGas	Annual Net	Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Sing	le Family	kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	239	n/a	n/a	1.61	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	217	3.0	(0.07)	1.48	0.13	\$1,648	0.63	1.33
Mixed	Efficiency-Equipment	(0)	209	3.0	(0.06)	1.45	0.16	\$593	2.05	3.84
Ē	Efficiency & PV/Battery	(12)	217	9.5	0.03	1.25	0.36	\$5,522	1.00	1.48
	Code Compliant	2,981	0	n/a	n/a	0.94	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	2,673	0	3.0	0.00	0.88	0.07	\$1,773	0.92	1.52
	Efficiency-Equipment	2,563	0	3.0	0.00	0.85	0.10	\$949	2.27	3.19
All-Electric ²	Efficiency & PV	762	0	11.0	1.17	0.70	0.24	\$6,405	1.08	1.50
	Efficiency & PV/Battery	(6)	0	21.0	1.74	0.41	0.53	\$12,129	1.11	1.51
el to ric ³	Code Compliant	2,981	0	0.0	0.00	0.94	0.67	(\$5,349)	1.45	2.66
Mixed Fuel to All-Electric ³	Efficiency & PV	762	0	11.0	1.17	0.70	0.91	\$1,057	3.04	>1
Mixe All-I	Neutral Cost	770	0	9.0	1.36	0.74	0.87	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Clim	ate Zone 10					CO2-E	quivalent	NPV of	Benefit	to Cost
SCE	/SoCalGas	Annual Net	Annual	EDR	PV Size Change	Emissio	ons (lbs/sf)	Lifetime Incremental	Ratio	
Mult	ifamily	kWh	therms	Margin ⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
<del>,</del>	Code Compliant	(0)	112	n/a	n/a	2.29	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	108	1.5	(0.02)	2.23	0.06	\$278	0.81	1.69
Mixed	Efficiency-Equipment	(0)	102	2.5	(0.04)	2.13	0.16	\$250	1.96	3.27
Ë	Efficiency & PV/Battery	(6)	108	10.0	0.03	1.88	0.41	\$2,376	0.98	1.57
N	Code Compliant	1,507	0	n/a	n/a	1.39	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	1,425	0	1.5	0.00	1.34	0.05	\$361	1.16	2.00
	Efficiency-Equipment	1,369	0	1.5	0.00	1.31	0.08	\$361	1.71	1.98
All-Electric ²	Efficiency & PV	450	0	10.5	0.60	1.09	0.30	\$2,371	1.31	1.79
	Efficiency & PV/Battery	(4)	0	23.0	0.93	0.63	0.76	\$5,395	1.27	1.69
Mixed Fuel to All-Electric ³	Code Compliant	1,507	0	0.0	0.00	1.39	0.90	(\$2,337)	3.35	2.36
ed Fu Elect	Efficiency & PV	56	0	10.5	0.60	1.09	1.20	\$34	70.89	>1
Mix∈ All-	Neutral Cost	372	0	10.5	0.70	1.10	1.19	\$0	>1	>1

 Table 68: Multifamily Climate Zone 10 SCE/SoCalGas Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

## **<u>Climate Zone 10 SDGE</u>**

#### Table 69: Single Family Climate Zone 10 SDGE Results Summary

Clim SDG	ate Zone 10 &E	Annual Net	Annual	EDR	PV Size Change	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit Ratio	
Sing	le Family	kWh	therms	EDR Margin⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	239	n/a	n/a	1.61	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	217	3.0	(0.07)	1.48	0.13	\$1,648	0.80	1.33
Mixed	Efficiency-Equipment	(0)	209	3.0	(0.06)	1.45	0.16	\$593	2.64	3.84
Ξ	Efficiency & PV/Battery	(12)	217	9.5	0.03	1.25	0.36	\$5,522	0.58	1.48
	Code Compliant	2,981	0	n/a	n/a	0.94	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	2,673	0	3.0	0.00	0.88	0.07	\$1,773	1.08	1.52
	Efficiency-Equipment	2,563	0	3.0	0.00	0.85	0.10	\$949	2.62	3.19
All-Electric ²	Efficiency & PV	762	0	11.0	1.17	0.70	0.24	\$6,405	1.68	1.50
	Efficiency & PV/Battery	(6)	0	21.0	1.74	0.41	0.53	\$12,129	1.42	1.51
Mixed Fuel to All-Electric ³	Code Compliant	2,981	0	0.0	0.00	0.94	0.67	(\$5,349)	0.90	2.66
ed Fu Elect	Efficiency & PV	762	0	11.0	1.17	0.70	0.91	\$1,057	4.55	>1
Mixe All-	Neutral Cost	770	0	9.0	1.36	0.74	0.87	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Clim SDG	ate Zone 10	Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
<del>-</del>	Code Compliant	(0)	112	n/a	n/a	2.29	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	108	1.5	(0.02)	2.23	0.06	\$278	1.09	1.69
Mixed	Efficiency-Equipment	(0)	102	2.5	(0.04)	2.13	0.16	\$250	2.60	3.27
Ē	Efficiency & PV/Battery	(6)	108	10.0	0.03	1.88	0.41	\$2,376	0.23	1.57
ai.	Code Compliant	1,507	0	n/a	n/a	1.39	n/a	n/a	n/a	n/a
tric ,	Efficiency-Non-Preempted	1,425	0	1.5	0.00	1.34	0.05	\$361	1.53	2.00
	Efficiency-Equipment	1,369	0	1.5	0.00	1.31	0.08	\$361	2.05	1.98
All-Electric ²	Efficiency & PV	450	0	10.5	0.60	1.09	0.30	\$2,371	2.12	1.79
	Efficiency & PV/Battery	(4)	0	23.0	0.93	0.63	0.76	\$5,395	1.44	1.69
Mixed Fuel to All-Electric ³	Code Compliant	1,507	0	0.0	0.00	1.39	0.90	(\$2,337)	0.73	2.36
ed Fu Elect	Efficiency & PV	56	0	10.5	0.60	1.09	1.20	\$34	54.15	>1
Mix∉ All-	Neutral Cost	372	0	10.5	0.70	1.10	1.19	\$0	>1	>1

# Table 70: Multifamily Climate Zone 10 SDGE Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

		Table	/1: Single F	anny chm	ate Zone 11	Results 5	ummary			
Clim PG&	ate Zone 11 E	Annual Net	Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Sing	le Family	kWh	therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	378	n/a	n/a	2.14	n/a	n/a	n/a	n/a
Р Ц	Efficiency-Non-Preempted	(0)	333	4.0	(0.19)	1.90	0.24	\$3,143	0.78	1.20
Mixed Fuel ¹	Efficiency-Equipment	0	320	5.0	(0.21)	1.83	0.31	\$1,222	2.50	3.68
Ξ	Efficiency & PV/Battery	(18)	333	9.0	(0.09)	1.78	0.36	\$7,026	0.36	1.51
2	Code Compliant	4,585	0	n/a	n/a	1.15	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	3,815	0	4.5	0.00	0.99	0.16	\$3,735	1.24	1.47
	Efficiency-Equipment	3,533	0	5.5	0.00	0.93	0.22	\$2,108	2.97	3.33
All-Electric ²	Efficiency & PV	957	0	14.0	1.79	0.60	0.55	\$10,827	1.84	1.55
	Efficiency & PV/Battery	(13)	0	23.0	2.49	0.36	0.79	\$17,077	1.49	1.61
Mixed Fuel to All-Electric ³	Code Compliant	4,585	0	0.0	0.00	1.15	0.99	(\$5,349)	0.49	1.69
ed Fu Elect	Efficiency & PV	957	0	14.0	1.79	0.60	1.54	\$5,478	1.64	>1
Mixe All-I	Neutral Cost	2,429	0	7.0	1.36	0.85	1.29	\$0	>1	>1

Table 71, Single Family Climate 7 one 11 Decults Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Clim PG&	ate Zone 11 E	Annual	A	555	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime		to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	141	n/a	n/a	2.38	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	0	127	2.5	(0.05)	2.18	0.20	\$850	0.65	1.17
Mixed	Efficiency-Equipment	(0)	126	3.0	(0.06)	2.16	0.22	\$317	1.84	3.29
Ē	Efficiency & PV/Battery	(9)	127	10.5	0.01	2.00	0.38	\$2,950	0.39	1.60
5	Code Compliant	1,974	0	n/a	n/a	1.42	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,732	0	3.5	0.00	1.29	0.13	\$1,011	1.40	1.64
	Efficiency-Equipment	1,707	0	3.5	0.00	1.26	0.16	\$795	2.02	2.33
All-Electric	Efficiency & PV	504	0	13.0	0.77	0.81	0.61	\$3,601	2.22	1.81
	Efficiency & PV/Battery	(6)	0	25.0	1.14	0.45	0.98	\$6,759	1.42	1.81
Mixed Fuel to All-Electric ³	Code Compliant	1,974	0	0.0	0.00	1.42	0.96	(\$2,337)	0.56	1.33
ed Fu Elect	Efficiency & PV	63	0	13.0	0.77	0.81	1.56	\$1,264	3.03	>1
Mixe All-	Neutral Cost	866	0	9.0	0.70	0.99	1.38	\$0	>1	73.96

Table 72: Multifamily Climate Zone 11 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

 $^2\mbox{All}$  reductions and incremental costs relative to the  $\mbox{all-electric}$  code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 73: Single Family Climate Zone 12 Results Summary         mate Zone 12       CO2-Equivalent       NPV of       Report to Cost									
Clim PG&	ate Zone 12 E	Annual Net	Annual	EDR	PV Size Change		quivalent ons (lbs/sf)	NPV of Lifetime Incremental	Benefit Ratio	
Sing	le Family	kWh	therms	EDR Margin⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	390	n/a	n/a	2.11	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	344	3.5	(0.06)	1.88	0.23	\$1,679	1.18	1.83
Mixed	Efficiency-Equipment	0	338	3.0	(0.05)	1.85	0.26	\$654	3.31	4.65
Ë	Efficiency & PV/Battery	(23)	344	9.5	0.04	1.76	0.35	\$5,568	0.43	1.72
~	Code Compliant	4,492	0	n/a	n/a	1.05	n/a	n/a	n/a	n/a
tric.	Efficiency-Non-Preempted	3,958	0	3.5	0.00	0.94	0.10	\$3,735	0.78	1.06
	Efficiency-Equipment	3,721	0	5.0	0.00	0.90	0.15	\$2,108	2.00	2.51
All-Electric ²	Efficiency & PV	867	0	15.5	1.97	0.51	0.53	\$11,520	1.69	1.41
	Efficiency & PV/Battery	(15)	0	25.0	2.62	0.29	0.76	\$17,586	1.29	1.48
Mixed Fuel to All-Electric ³	Code Compliant	4,492	0	0.0	0.00	1.05	1.07	(\$5,349)	0.63	1.89
ed Fu Elect	Efficiency & PV	867	0	15.5	1.97	0.51	1.60	\$6,172	1.77	>1
Mixe All-I	Neutral Cost	2,374	0	8.0	1.35	0.76	1.36	\$0	>1	>1

Table 72. Single Family Climate 7ana 12 Decults Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Clim PG&	ate Zone 12 E	Annual Net		555	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Mult	- Code Compliant		Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	143	n/a	n/a	2.33	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	135	1.5	(0.02)	2.21	0.12	\$291	1.10	2.22
Mixed	Efficiency-Equipment	0	128	2.5	(0.03)	2.12	0.21	\$434	1.25	2.22
Ē	Efficiency & PV/Battery	(11)	135	10.0	0.03	2.03	0.30	\$2,394	0.30	1.75
7	Code Compliant	1,963	0	n/a	n/a	1.34	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,792	0	2.5	0.00	1.24	0.09	\$1,011	0.91	1.12
	Efficiency-Equipment	1,744	0	2.5	0.00	1.21	0.13	\$795	1.56	1.63
All-Electric	Efficiency & PV	472	0	14.0	0.84	0.73	0.60	\$3,835	2.08	1.65
	Efficiency & PV/Battery	(8)	0	26.5	1.20	0.38	0.96	\$6,943	1.26	1.68
Mixed Fuel to All-Electric ³	Code Compliant	1,963	0	0.0	0.00	1.34	1.00	(\$2,337)	0.64	1.66
ed Fu Elect	Efficiency & PV	59	0	14.0	0.84	0.73	1.60	\$1,498	2.88	>1
Mixe All-I	Neutral Cost	872	0	9.5	0.70	0.92	1.42	\$0	>1	>1

Table 74: Multifamily Climate Zone 12 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

	Table 75: Single Family Climate Zone 13 Results Summary       Date Zone 13									
Clim PG&	ate Zone 13 E	Annual	Annual	FDD	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	
Sing	le Family	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	352	n/a	n/a	2.02	n/a	n/a	n/a	n/a
Mixed Fuel ¹	Efficiency-Non-Preempted	(0)	311	4.5	(0.21)	1.80	0.22	\$3,060	0.76	1.28
xed	Efficiency-Equipment	(0)	292	5.5	(0.24)	1.70	0.32	\$611	5.26	8.40
Ë	Efficiency & PV/Battery	(19)	311	9.5	(0.11)	1.69	0.33	\$6,954	0.36	1.56
~	Code Compliant	4,180	0	n/a	n/a	1.08	n/a	n/a	n/a	n/a
tric,	Efficiency-Non-Preempted	3,428	0	5.0	0.00	0.92	0.15	\$4,154	1.12	1.40
All-Electric ²	Efficiency-Equipment	3,177	0	6.0	0.00	0.87	0.21	\$2,108	2.88	3.30
AII-E	Efficiency & PV	934	0	13.0	1.61	0.57	0.50	\$10,532	1.70	1.47
	Efficiency & PV/Battery	(11)	0	22.0	2.32	0.35	0.73	\$16,806	1.40	1.54
Mixed Fuel to All-Electric ³	Code Compliant	4,180	0	0.0	0.00	1.08	0.94	(\$5,349)	0.54	1.83
ed Fu Elect	Efficiency & PV	934	0	13.0	1.61	0.57	1.44	\$5,184	1.56	>1
Mixe All-I	Neutral Cost	2,092	0	7.0	1.36	0.79	1.23	\$0	>1	>1

Table 75. Single Femily Climate 7ano 12 Decults Summer

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the mixed fuel code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Clim PG&	ate Zone 13 E	Annual Net	A	500	PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	to Cost (B/C)
Mult	Lultifamily		Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	135	n/a	n/a	2.30	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	123	3.0	(0.05)	2.12	0.18	\$831	0.63	1.27
Mixed	Efficiency-Equipment	(0)	121	3.0	(0.07)	2.10	0.21	\$290	1.95	3.75
Ē	Efficiency & PV/Battery	(9)	123	10.5	0.00	1.95	0.35	\$2,936	0.38	1.64
5	Code Compliant	1,849	0	n/a	n/a	1.36	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,629	0	3.0	0.00	1.24	0.12	\$1,011	1.31	1.56
	Efficiency-Equipment	1,590	0	3.5	0.00	1.21	0.16	\$795	1.98	2.28
All-Electric	Efficiency & PV	501	0	12.0	0.73	0.80	0.56	\$3,462	2.12	1.71
	Efficiency & PV/Battery	(5)	0	23.5	1.11	0.44	0.92	\$6,650	1.35	1.74
Mixed Fuel to All-Electric ³	Code Compliant	1,849	0	0.0	0.00	1.36	0.94	(\$2,337)	0.63	1.54
ed Fu Elect	Efficiency & PV	63	0	12.0	0.73	0.80	1.50	\$1,125	3.22	>1
Mix∉ All-	Neutral Cost	773	0	8.5	0.70	0.94	1.36	\$0	>1	>1

 Table 76: Multifamily Climate Zone 13 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

 $^2\mbox{All}$  reductions and incremental costs relative to the  $\mbox{all-electric}$  code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

## **Climate Zone 14 SCE/SoCalGas**

	Tal	ole 77: Sin	gle Family	Climate Zo	one 14 SCE/	'SoCalGas R	esults Summ	ary		
	ate Zone 14 /SoCalGas	Annual			PV Size		quivalent ns (Ibs/sf)	NPV of Lifetime	Benefit Ratio	
	le Family	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	371	n/a	n/a	2.35	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	319	4.5	(0.17)	2.06	0.29	\$1,662	1.57	2.46
Mixed	Efficiency-Equipment	(0)	305	5.5	(0.19)	1.98	0.36	\$799	3.95	6.14
Ϊ	Efficiency & PV/Battery	(5)	319	9.0	(0.08)	1.83	0.52	\$5,526	1.31	1.74
2	Code Compliant	4,725	0	n/a	n/a	1.38	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	3,819	0	5.5	0.00	1.19	0.19	\$4,154	0.95	1.46
All-Electric	Efficiency-Equipment	3,676	0	6.0	0.00	1.16	0.22	\$2,108	2.29	3.13
AII-E	Efficiency & PV	953	0	15.5	1.60	0.93	0.45	\$10,459	1.21	1.62
	Efficiency & PV/Battery	(2)	0	23.5	2.21	0.63	0.75	\$16,394	1.35	1.59
د to د	Code Compliant	4,725	0	0.0	0.00	1.38	0.97	(\$5,349)	0.72	1.67
Fuel	Efficiency & PV	953	0	15.5	1.60	0.93	1.42	\$5,111	1.01	>1
Mixed Fuel to All-Electric ³	Neutral Cost	2,299	0	8.5	1.35	1.15	1.19	\$0	0.00	>1
AI	Min Cost Effectiveness	1,853	0	10.0	1.61	1.12	1.23	(\$1,000)	1.24	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the mixed fuel code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

-	ate Zone 14 /SoCalGas	Annual	Annual	EDR	PV Size		quivalent ons (lbs/sf)	NPV of Lifetime	Benefit Ratio	to Cost (B/C)
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	(0)	141	n/a	n/a	2.76	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	126	3.0	(0.04)	2.53	0.23	\$874	0.73	1.21
Mixed	Efficiency-Equipment	(0)	126	3.0	(0.05)	2.52	0.23	\$347	1.96	2.99
Ē	Efficiency & PV/Battery	(3)	126	9.5	0.01	2.18	0.58	\$2,957	1.09	1.39
5	Code Compliant	2,022	0	n/a	n/a	1.73	n/a	n/a	n/a	n/a
tric ,	Efficiency-Non-Preempted	1,759	0	3.5	0.00	1.58	0.15	\$1,011	1.24	1.65
	Efficiency-Equipment	1,748	0	3.5	0.00	1.56	0.16	\$795	1.59	2.20
All-Electric	Efficiency & PV	504	0	14.0	0.70	1.26	0.47	\$3,356	1.39	1.91
	Efficiency & PV/Battery	(2)	0	24.5	1.03	0.79	0.94	\$6,380	1.36	1.77
el to ric ³	Code Compliant	2,022	0	0.0	0.00	1.73	1.03	(\$2,337)	1.13	1.48
Mixed Fuel to All-Electric ³	Efficiency & PV	63	0	14.0	0.70	1.26	1.50	\$1,019	2.57	>1
Mix∉ All-	Neutral Cost	772	0	10.0	0.70	1.41	1.35	\$0	>1	>1

## Table 78: Multifamily Climate Zone 14 SCE/SoCalGas Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

## **<u>Climate Zone 14 SDGE</u>**

#### Table 79: Single Family Climate Zone 14 SDGE Results Summary

Climate Zone 14 SDG&E		Annual Net Annual kWh therms	EDR	PV Size Change	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime Incremental	Benefit to Cost Ratio (B/C)		
Single Family				Margin ⁴	(kW) ⁵	Total	Reduction	Cost (\$)	On-Bill	TDV
Mixed Fuel ¹	Code Compliant	(0)	371	n/a	n/a	2.35	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	(0)	319	4.5	(0.17)	2.06	0.29	\$1,662	1.92	2.46
	Efficiency-Equipment	(0)	305	5.5	(0.19)	1.98	0.36	\$799	4.88	6.14
	Efficiency & PV/Battery	(5)	319	9.0	(0.08)	1.83	0.52	\$5,526	1.23	1.74
All-Electric ²	Code Compliant	4,725	0	n/a	n/a	1.38	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	3,819	0	5.5	0.00	1.19	0.19	\$4,154	1.30	1.46
	Efficiency-Equipment	3,676	0	6.0	0.00	1.16	0.22	\$2,108	2.92	3.13
	Efficiency & PV	953	0	15.5	1.60	0.93	0.45	\$10,459	1.80	1.62
	Efficiency & PV/Battery	(2)	0	23.5	2.21	0.63	0.75	\$16,394	1.67	1.59
Mixed Fuel to All-Electric ³	Code Compliant	4,725	0	0.0	0.00	1.38	0.97	(\$5,349)	0.60	1.67
	Efficiency & PV	953	0	15.5	1.60	0.93	1.42	\$5,111	1.94	>1
	Neutral Cost	2,299	0	8.5	1.35	1.15	1.19	\$0	>1	>1

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Climate Zone 14 SDG&E		Annual Net Annual kWh therms	FDB	PV Size	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)		
Multifamily				EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
Mixed Fuel ¹	Code Compliant	(0)	141	n/a	n/a	2.76	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	(0)	126	3.0	(0.04)	2.53	0.23	\$874	0.93	1.21
	Efficiency-Equipment	(0)	126	3.0	(0.05)	2.52	0.23	\$347	2.48	2.99
	Efficiency & PV/Battery	(3)	126	9.5	0.01	2.18	0.58	\$2,957	0.51	1.39
All-Electric ²	Code Compliant	2,022	0	n/a	n/a	1.73	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	1,759	0	3.5	0.00	1.58	0.15	\$1,011	1.47	1.65
	Efficiency-Equipment	1,748	0	3.5	0.00	1.56	0.16	\$795	2.00	2.20
	Efficiency & PV	504	0	14.0	0.70	1.26	0.47	\$3,356	2.16	1.91
	Efficiency & PV/Battery	(2)	0	24.5	1.03	0.79	0.94	\$6,380	1.69	1.77
Mixed Fuel to All-Electric ³	Code Compliant	2,022	0	0.0	0.00	1.73	1.03	(\$2,337)	0.51	1.48
	Efficiency & PV	63	0	14.0	0.70	1.26	1.50	\$1,019	2.60	>1
	Neutral Cost	772	0	10.0	0.70	1.41	1.35	\$0	>1	>1

# Table 80: Multifamily Climate Zone 14 SDGE Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

#### **Climate Zone 15**

Table 81: Single Family Climate Zone 15 Results Summary										
Climate Zone 15 SCE/SoCalGas		Annual Net	Annual	EDR	PV Size Change	CO2-Equivalent Emissions (lbs/sf)		NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Sing	le Family	kWh	therms	EDR Margin⁴	(kW) ⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	0	149	n/a	n/a	1.69	n/a	n/a	n/a	n/a
Fue	Efficiency-Non-Preempted	0	141	4.5	(0.43)	1.56	0.13	\$2,179	1.00	1.58
Mixed Fuel ¹	Efficiency-Equipment	(0)	132	4.5	(0.45)	1.51	0.18	(\$936)	>1	>1
Ξ	Efficiency & PV/Battery	(3)	141	7.0	(0.34)	1.38	0.32	\$6,043	1.15	1.51
~	Code Compliant	2,149	0	n/a	n/a	1.32	n/a	n/a	n/a	n/a
tric	Efficiency-Non-Preempted	1,230	0	5.5	0.00	1.12	0.20	\$4,612	1.12	1.58
All-Electric ²	Efficiency-Equipment	866	0	7.0	0.00	1.04	0.28	\$2,108	3.30	4.47
AII-E	Efficiency & PV	1,030	0	6.0	0.12	1.10	0.22	\$5,085	1.12	1.57
	Efficiency & PV/Battery	(2)	0	13.0	0.83	0.84	0.48	\$11,382	1.16	1.54
Mixed Fuel to All-Electric ³	Code Compliant	2,149	0	0.0	0.00	1.32	0.37	(\$5,349)	1.73	2.21
ed Fu Elect	Efficiency & PV	1,030	0	6.0	0.12	1.10	0.59	(\$264)	>1	>1
Mixe All-I	Neutral Cost	23	0	6.0	1.36	1.13	0.57	\$0	>1	>1

#### Table 91, Single Family Climate 7 one 15 Decults Summary

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each

case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Climate Zone 15 SCE/SoCalGas		Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	0	93	n/a	n/a	2.53	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	0	92	4.0	(0.15)	2.42	0.11	\$510	1.35	2.28
Mixed	Efficiency-Equipment	0	86	4.0	(0.16)	2.33	0.20	(\$157)	>1	>1
Ē	Efficiency & PV/Battery	(3)	92	8.5	(0.10)	2.13	0.40	\$2,604	1.29	1.70
N	Code Compliant	1,243	0	n/a	n/a	1.78	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	954	0	4.0	0.00	1.61	0.17	\$1,011	1.50	2.28
	Efficiency-Equipment	764	0	6.0	0.00	1.50	0.29	\$1,954	1.24	1.72
All-Electric	Efficiency & PV	548	0	7.0	0.24	1.50	0.28	\$1,826	1.43	2.07
	Efficiency & PV/Battery	(3)	0	16.5	0.62	1.08	0.70	\$5,020	1.34	1.80
Mixed Fuel to All-Electric ³	Code Compliant	1,243	0	0.0	0.00	1.78	0.75	(\$2,337)	6.36	2.35
ed Fu Elect	Efficiency & PV	68	0	7.0	0.24	1.50	1.03	(\$511)	>1	>1
Mix∈ All-I	Neutral Cost	78	0	7.5	0.70	1.48	1.05	\$0	>1	>1

#### Table 82: Multifamily Climate Zone 15 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

Table 83: Single Family Climate Zone 16 Results Summary										
Climate Zone 16 PG&E		Annual			PV Size		quivalent ns (lbs/sf)	NPV of Lifetime	Benefit t Ratio (	
	le Family	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
-	Code Compliant	(0)	605	n/a	n/a	3.31	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	0	454	5.0	0.01	2.59	0.72	\$3,542	1.62	1.46
Mixed	Efficiency-Equipment	0	474	6.0	(0.08)	2.66	0.65	\$2,441	2.19	2.20
Ξ	Efficiency & PV/Battery	(18)	454	10.5	0.10	2.36	0.95	\$7,399	0.87	1.37
7	Code Compliant	7,694	0	n/a	n/a	1.73	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	5,696	0	9.5	0.00	1.38	0.35	\$5,731	1.72	1.69
	Efficiency-Equipment	6,760	0	4.5	0.00	1.55	0.18	\$2,108	2.36	2.32
All-Electric	Efficiency & PV	1,032	0	26.5	2.75	0.94	0.79	\$16,582	2.09	1.62
	Efficiency & PV/Battery	(11)	0	35.0	3.45	0.64	1.09	\$22,838	1.71	1.55
c [°] to	Code Compliant	7,694	0	0.0	0.00	1.73	1.58	(\$5,349)	0.31	0.68
Fuel	Efficiency & PV	1,032	0	26.5	2.75	0.94	2.37	\$11,234	1.55	2.02
Mixed Fuel to All-Electric ³	Neutral Cost	5,398	0	8.5	1.35	1.51	1.80	\$0	0.00	0.74
AIIA	Min Cost Effectiveness	3,358	0	16.0	2.56	1.32	1.99	(\$4,753)	1.24	1.40

#### **Climate Zone 16**

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

²All reductions and incremental costs relative to the **all-electric** code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, Neutral Cost, and Min Cost Effectiveness packages.

Climate Zone 16 PG&E		Annual			PV Size	CO2-E	quivalent ons (lbs/sf)	NPV of Lifetime	Benefit to Cost Ratio (B/C)	
Mult	ifamily	Net kWh	Annual therms	EDR Margin⁴	Change (kW)⁵	Total	Reduction	Incremental Cost (\$)	On-Bill	TDV
- -	Code Compliant	0	206	n/a	n/a	3.45	n/a	n/a	n/a	n/a
Fuel ¹	Efficiency-Non-Preempted	(0)	172	2.0	0.03	3.02	0.44	\$937	1.11	1.19
Mixed	Efficiency-Equipment	(0)	183	2.5	(0.02)	3.12	0.33	\$453	1.76	2.15
Ë	Efficiency & PV/Battery	(9)	172	9.5	0.08	2.65	0.80	\$3,028	0.47	1.28
5	Code Compliant	2,699	0	n/a	n/a	1.86	n/a	n/a	n/a	n/a
	Efficiency-Non-Preempted	2,329	0	4.0	0.00	1.70	0.16	\$843	2.08	2.05
	Efficiency-Equipment	2,470	0	3.0	0.00	1.74	0.13	\$795	1.59	1.70
All-Electric	Efficiency & PV	518	0	19.5	1.07	1.23	0.63	\$4,423	2.58	1.89
	Efficiency & PV/Battery	(6)	0	29.5	1.42	0.75	1.11	\$7,533	1.65	1.69
Mixed Fuel to All-Electric ³	Code Compliant	2,699	0	0.0	0.00	1.86	1.59	(\$2,337)	0.43	1.03
ed Fu Elect	Efficiency & PV	65	0	19.5	1.07	1.23	2.22	\$2,087	2.87	>1
Mix∉ All-	Neutral Cost	1,518	0	10.0	0.70	1.56	1.90	\$0	>1	2.58

## Table 84: Multifamily Climate Zone 16 Results Summary (Per Dwelling Unit)

¹All reductions and incremental costs relative to the **mixed fuel** code compliant home.

 $^2\mbox{All}$  reductions and incremental costs relative to the  $\mbox{all-electric}$  code compliant home.

³All reductions and incremental costs relative to the **mixed fuel** code compliant home except the EDR Margins are relative to the Standard Design for each case which is the **all-electric** code compliant home. Incremental costs for these packages reflect the cots used in the On-Bill cost effectiveness methodology. Costs differ for the TDV methodology due to differences in the site gas infrastructure costs (see Section 2.6).

⁴This represents the Efficiency EDR Margin for the Efficiency-Non-Preempted and Efficiency-Equipment packages and Total EDR Margin for the Efficiency & PV, Efficiency & PV/Battery, and Neutral Cost packages.

ATTACHMENT D



Title 24, Parts 6 and 11 Local Energy Efficiency Ordinances

## 2019 Nonresidential New Construction Reach Code Cost Effectiveness Study

Prepared for: Christopher Kuch Codes and Standards Program Southern California Edison Company

> Prepared by: TRC EnergySoft

Last Modified: July 25, 2019











#### LEGAL NOTICE

This report was prepared by Southern California Edison Company (SCE) and funded by the California utility customers under the auspices of the California Public Utilities Commission.

Copyright 2019, Southern California Edison Company. All rights reserved, except that this document may be used, copied, and distributed without modification.

Neither SCE nor any of its employees makes any warranty, express or implied; or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product, policy or process disclosed in this document; or represents that its use will not infringe any privately-owned rights including, but not limited to, patents, trademarks or copyrights.

## **Table of Contents**

1	Intro	oduct	ion	1
2	Met	hodo	logy and Assumptions	3
	2.1	Buil	ding Prototypes	3
	2.2	Cost	Effectiveness	5
3	Mea		Description and Cost	
	3.1	Enei	rgy Efficiency Measures	7
	3.1.1	1	Envelope	8
	3.1.2	2	HVAC and SWH	8
	3.1.3	3	Lighting	9
	3.2	Sola	r Photovoltaics and Battery Measures	13
	3.2.2	1	Solar Photovoltaics	13
	3.2.2	2	Battery Storage	15
	3.2.3	3	PV-only and PV+Battery Packages	16
	3.3	All E	lectric Measures	16
	3.3.1	1	HVAC and Water Heating	16
	3.3.2	2	Infrastructure Impacts	20
	3.4	Pree	empted High Efficiency Appliances	22
	3.5		enhouse Gas Emissions	
4	Resu	ults		23
	4.1	Cost	: Effectiveness Results – Medium Office	24
	4.2	Cost	: Effectiveness Results – Medium Retail	33
	4.3	Cost	Effectiveness Results – Small Hotel	41
	4.4	Cost	Effectiveness Results – PV-only and PV+Battery	50
5	Sum	mary	, Conclusions, and Further Considerations	55
	5.1		mary	
	5.2		clusions and Further Considerations	
6	• •		zes	
	6.1	•	o of California Climate Zones	
	6.2	•	ting Efficiency Measures	
	6.3		n Water Heat Recovery Measure Analysis	
	6.4		ty Rate Schedules	
	6.5		ed Fuel Baseline Energy Figures	
	6.6		el TDV Cost Effectiveness with Propane Baseline	
	6.7		only and PV+Battery-only Cost Effectiveness Results Details	
	6.7.1	1	Cost Effectiveness Results – Medium Office	
	6.7.2	2	Cost Effectiveness Results – Medium Retail	79
	6.7.3		Cost Effectiveness Results – Small Hotel	
	6.8		of Relevant Efficiency Measures Explored	
	6.9	Add	itional Rates Analysis - Healdsburg	102

# List of Figures

Figure 1. Measure Category and Package Overview	2
Figure 2. Prototype Characteristics Summary	4
Figure 3. Utility Tariffs used based on Climate Zone	6
Figure 4. Energy Efficiency Measures - Specification and Cost	10
Figure 5. Medium Office – Annual Percent kWh Offset with 135 kW Array	13
Figure 6. Medium Retail – Annual Percent kWh Offset with 110 kW Array	14
Figure 7. Small Hotel – Annual Percent kWh Offset with 80 kW Array	14
Figure 8. Medium Office Upfront PV Costs	
Figure 9. All-Electric HVAC and Water Heating Characteristics Summary	17
Figure 10. Medium Office HVAC System Costs	
Figure 11. Medium Retail HVAC System Costs	
Figure 12. Small Hotel HVAC and Water Heating System Costs	
Figure 13. Medium Office Electrical Infrastructure Costs for All-Electric Design	
Figure 14. Natural Gas Infrastructure Cost Savings for All-Electric Prototypes	
Figure 15. High Efficiency Appliance Assumptions	
Figure 16. Package Summary	
Figure 17. Cost Effectiveness for Medium Office Package 1A – Mixed-Fuel + EE	
Figure 18. Cost Effectiveness for Medium Office Package 1B – Mixed-Fuel + EE + PV + B	
Figure 19. Cost Effectiveness for Medium Office Package 1C – Mixed-Fuel + HE	
Figure 20. Cost Effectiveness for Medium Office Package 2 – All-Electric Federal Code Minimum	
Figure 21. Cost Effectiveness for Medium Office Package 3A – All-Electric + EE	
Figure 22. Cost Effectiveness for Medium Office Package 3B – All-Electric + EE + PV + B	
Figure 23. Cost Effectiveness for Medium Office Package 3C – All-Electric + HE	
Figure 24. Cost Effectiveness for Medium Retail Package 1A – Mixed-Fuel + EE	
Figure 25. Cost Effectiveness for Medium Retail Package 1B – Mixed-Fuel + EE + PV + B	
Figure 26. Cost Effectiveness for Medium Retail Package 1C – Mixed-Fuel + HE	
Figure 27. Cost Effectiveness for Medium Retail Package 2 – All-Electric Federal Code Minimum	
Figure 28. Cost Effectiveness for Medium Retail Package 3A – All-Electric + EE	
Figure 29. Cost Effectiveness for Medium Retail Package 3B – All-Electric + EE + PV + B	
Figure 30. Cost Effectiveness for Medium Retail Package 3C – All-Electric + HE	
Figure 31. Cost Effectiveness for Small Hotel Package 1A – Mixed-Fuel + EE	
Figure 32. Cost Effectiveness for Small Hotel Package 1B – Mixed-Fuel + EE + PV + B	
Figure 33. Cost Effectiveness for Small Hotel Package 1C – Mixed-Fuel + HE	
Figure 34. Cost Effectiveness for Small Hotel Package 2 – All-Electric Federal Code Minimum	
Figure 35. Cost Effectiveness for Small Hotel Package 3A – All-Electric + EE	
Figure 36. Cost Effectiveness for Small Hotel Package 3B – All-Electric + EE + PV + B	
Figure 37. Cost Effectiveness for Small Hotel Package 3C – All-Electric + HE	
Figure 38. Cost Effectiveness for Medium Office - PV and Battery	
Figure 39. Cost Effectiveness for Medium Retail - PV and Battery	
Figure 40. Cost Effectiveness for Small Hotel - PV and Battery	
Figure 41. Medium Office Summary of Compliance Margin and Cost Effectiveness	
Figure 42. Medium Retail Summary of Compliance Margin and Cost Effectiveness Figure 43. Small Hotel Summary of Compliance Margin and Cost Effectiveness	
Figure 44. Map of California Climate Zones	
Figure 44. Map of California Climate Zones Figure 45. Impact of Lighting Measures on Proposed LPDs by Space Function	
righte 43. Impact of Lighting measures on Froposed LPDs by Space Function	01

Figure 46. Utility Tariffs Analyzed Based on Climate Zone – Detailed View	62
Figure 47. Medium Office – Mixed Fuel Baseline	63
Figure 48. Medium Retail – Mixed Fuel Baseline	64
Figure 49. Small Hotel – Mixed Fuel Baseline	65
Figure 50. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 2 All-Electric Federal Co	ode
Minimum	
Figure 51. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 3A (All-Electric + EE)	67
Figure 52. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 3B (All-Electric + EE + P	-
Figure 53. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 3C (All Electric + HE)	
Figure 54. Cost Effectiveness for Medium Office - Mixed Fuel + 3kW PV	
Figure 55. Cost Effectiveness for Medium Office – Mixed Fuel + 3kW PV + 5 kWh Battery	
Figure 56. Cost Effectiveness for Medium Office – Mixed Fuel + 135kW PV	
Figure 57. Cost Effectiveness for Medium Office – Mixed Fuel + 135kW PV + 50 kWh Battery	
Figure 58. Cost Effectiveness for Medium Office- All-Electric + 3kW PV	
Figure 59. Cost Effectiveness for Medium Office – All-Electric + 3kW PV + 5 kWh Battery	
Figure 60. Cost Effectiveness for Medium Office – All-Electric + 135kW PV	
Figure 61. Cost Effectiveness for Medium Office – All-Electric + 135kW PV + 50 kWh Battery	
Figure 62. Cost Effectiveness for Medium Retail – Mixed-Fuel + 3kW PV	
Figure 63. Cost Effectiveness for Medium Retail – Mixed Fuel + 3kW PV + 5 kWh Battery	
Figure 64. Cost Effectiveness for Medium Retail – Mixed-Fuel + 110kW PV	
Figure 65. Cost Effectiveness for Medium Retail – Mixed-Fuel + 110 kW PV + 50 kWh Battery	
Figure 66. Cost Effectiveness for Medium Retail – All-Electric + 3kW PV	
Figure 67. Cost Effectiveness for Medium Retail – All-Electric + 3kW PV + 5 kWh Battery	
Figure 68. Cost Effectiveness for Medium Retail – All-Electric + 110kW PV	
Figure 69. Cost Effectiveness for Medium Retail – All-Electric + 110kW PV + 50 kWh Battery	
Figure 70. Cost Effectiveness for Small Hotel – Mixed Fuel + 3kW PV	
Figure 71. Cost Effectiveness for Small Hotel – Mixed Fuel + 3kW PV + 5 kWh Battery	
Figure 72. Cost Effectiveness for Small Hotel - Mixed Fuel +80kW PV	
Figure 73. Cost Effectiveness for Small Hotel – Mixed Fuel + 80kW PV + 50 kWh Battery	
Figure 74. Cost Effectiveness for Small Hotel – All-Electric + 3kW PV Figure 75. Cost Effectiveness for Small Hotel – All-Electric + 3kW PV + 5 kWh Battery	
Figure 76. Cost Effectiveness for Small Hotel – All-Electric + 80kW PV + 5 kWh Battery	
Figure 77. Cost Effectiveness for Small Hotel – All-Electric + 80kW PV + 50 kWh Battery	
Figure 78. List of Relevant Efficiency Measures Explored	
Figure 79. Healdsburg Utility Rates Analysis – Medium Office, All Packages Cost Effectiveness Summar	
Figure 80. Healdsburg Utility Rates Analysis – Medium Retail, All Packages Cost Effectiveness Summar	•
Figure 81. Healdsburg Utility Rates Analysis – Small Hotel, All Packages Cost Effectiveness Summary	
הוקמות סבר הכמוסטטורץ סנוווגי המנכז אוומויזטי – שהמו הטופו, או רמנגמצכז כטזג בהפנוויפוופזז שנוווומרי	

## **1** Introduction

The California Building Energy Efficiency Standards Title 24, Part 6 (Title 24) (CEC, 2019) is maintained and updated every three years by two state agencies: the California Energy Commission (the Energy Commission) and the Building Standards Commission (BSC). In addition to enforcing the code, local jurisdictions have the authority to adopt local energy efficiency ordinances—or reach codes—that exceed the minimum standards defined by Title 24 (as established by Public Resources Code Section 25402.1(h)2 and Section 10-106 of the Building Energy Efficiency Standards). Local jurisdictions must demonstrate that the requirements of the proposed ordinance are cost-effective and do not result in buildings consuming more energy than is permitted by Title 24. In addition, the jurisdiction must obtain approval from the Energy Commission and file the ordinance with the BSC for the ordinance to be legally enforceable. This report was developed in coordination with the California Statewide Investor Owned Utilities (IOUs) Codes and Standards Program, key consultants, and engaged cities—collectively known as the Reach Code Team.

This report documents cost-effective combinations of measures that exceed the minimum state requirements for design in newly-constructed nonresidential buildings. Buildings specifically examined include medium office, medium retail, and small hotels. Measures include energy efficiency, solar photovoltaics (PV), and battery storage. In addition, the report includes a comparison between a baseline mixed-fuel design and all-electric design for each occupancy type.

The Reach Code team analyzed the following seven packages as compared to 2019 code compliant mixed-fuel design baseline:

- Package 1A Mixed-Fuel + Energy Efficiency (EE): Mixed-fuel design with energy efficiency measures and federal minimum appliance efficiencies.
- Package 1B Mixed-Fuel + EE + PV + Battery (B): Same as Package 1A, plus solar PV and batteries.
- Package 1C Mixed-fuel + High Efficiency (HE): Baseline code-minimum building with high efficiency appliances, triggering federal preemption. The intent of this package is to assess the standalone contribution that high efficiency appliances would make toward achieving high performance thresholds.
- Package 2 All-Electric Federal Code-Minimum Reference: All-electric design with federal code minimum appliance efficiency. No solar PV or battery.
- Package 3A All-Electric + EE: Package 2 all-electric design with energy efficiency measures and federal minimum appliance efficiencies.
- Package 3B All-Electric + EE + PV + B: Same as Package 3A, plus solar PV and batteries.
- Package 3C All-Electric + HE: All-electric design with high efficiency appliances, triggering federal preemption.

Figure 1 summarizes the baseline and measure packages. Please refer to *Section 3* for more details on the measure descriptions.

		Mixed Fuel				All-Electric			
Measure	Donort	Baseline	1A	1B	1C	2	3A	3B	3C
Category	Report Section	Fed Code Minimum Efficiency	EE	EE+ PV + B	HE	Fed Code Minimum Efficiency	EE	EE+ PV + B	HE
Energy Efficiency Measures	3.1		х	x			х	x	
Solar PV + Battery	3.2			х				х	
All-Electric Measures	3.3					х	х	х	х
Preemptive Appliance Measures	3.4				х				х

Figure 1. Measure Category and Package Overview

The team separately developed cost effectiveness results for PV-only and PV+Battery packages, excluding any efficiency measures. For these packages, the PV is modeled as a "minimal" size of 3 kW and a larger size based on the available roof area and electric load of the building. PV sizes are combined with two sizes of battery storage for both mixed fuel and all electric buildings to form eight different package combinations as outlined below:

- Mixed-Fuel + 3 kW PV Only
- Mixed-Fuel + 3 kW PV + 5 kWh Battery
- **Mixed-Fuel + PV Only:** PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller
- Mixed-Fuel + PV + 50 kWh Battery: PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller, along with 50 kWh battery
- All-Electric + 3 kW PV Only
- All-Electric + 3 kW PV + 5 kWh Battery
- All-Electric + PV Only: PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller
- All-Electric + PV + 50 kWh Battery: PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller, along with 50 kWh battery.

Each of the eight packages are evaluated against a baseline model designed as per 2019 Title 24 Part 6 requirements. The Standards baseline for all occupancies in this report is a mixed-fuel design.

The Department of Energy (DOE) sets minimum efficiency standards for equipment and appliances that are federally regulated under the National Appliance Energy Conservation Act (NAECA), including heating, cooling, and water heating equipment.¹ Since state and local governments are prohibited from adopting

¹ <u>https://www.ecfr.gov/cgi-</u>

bin/retrieveECFR?gp=&SID=8de751f141aaa1c1c9833b36156faf67&mc=true&n=pt10.3.431&r=PART&ty=HTML#se10.3.431_197



higher minimum efficiencies than the federal standards require, the focus of this study is to identify and evaluate cost-effective packages that do not include high efficiency equipment. However, because high efficiency appliances are often the easiest and most affordable measures to increase energy performance, this study provides an analysis of high efficiency appliances for informational purposes. While federal preemption would limit a reach code, in practice, builders may install any package of compliant measures to achieve the performance requirements, including higher efficiency appliances that are federally regulated.

## 2 Methodology and Assumptions

With input from several stakeholders, the Reach Codes team selected three building types—medium office, medium retail, and small hotel—to represent a predominant segment of nonresidential new construction in the state.

This analysis used both on-bill and time dependent valuation of energy (TDV) based approaches to evaluate cost-effectiveness. Both methodologies require estimating and quantifying the energy savings associated with energy efficiency measures, as well as quantifying the costs associated with the measures. The main difference between the methodologies is the valuation of energy and thus the cost savings of reduced or avoided energy use. TDV was developed by the Energy Commission to reflect the time dependent value of energy including long-term projected costs of energy such as the cost of providing energy during peak periods of demand and other societal costs including projected costs for carbon emissions. With the TDV approach, electricity used (or saved) during peak periods has a much higher value than electricity used (or saved) during off-peak periods.²

The Reach Code Team performed energy simulations using EnergyPro 8.0 software for 2019 Title 24 code compliance analysis, which uses CBECC-Com 2019.1.0 for the calculation engine. The baseline prototype models in all climate zones have been designed to have compliance margins as close as possible to 0 to reflect a prescriptively-built building.³

## 2.1 Building Prototypes

The DOE provides building prototype models which, when modified to comply with 2019 Title 24 requirements, can be used to evaluate the cost effectiveness of efficiency measures. These prototypes have historically been used by the California Energy Commission to assess potential code enhancements. The Reach Code Team performed analysis on a medium office, a medium retail, and a small hotel prototype.

Water heating includes both service water heating (SWH) for office and retail buildings and domestic hot water for hotels. In this report, water heating or SWH is used to refer to both. The Standard Design HVAC and SWH systems are based on the system maps included in the 2019 Nonresidential Alternate

³ EnergySoft and TRC were able to develop most baseline prototypes to achieve a compliance margin of less than +/-1 percent except for few models that were at +/- 6 percent. This indicates these prototypes are not exactly prescriptive according to compliance software calculations. To calculate incremental impacts, TRC conservatively compared the package results to that of the proposed design of baseline prototypes (not the standard design).



² Horii, B., E. Cutter, N. Kapur, J. Arent, and D. Conotyannis. 2014. "Time Dependent Valuation of Energy for Developing Building Energy Efficiency Standards." Available at: <u>http://www.energy.ca.gov/title24/2016standards/prerulemaking/documents/2014-07-09_workshop/2017_TDV_Documents</u>

Calculation Method Reference Manual.⁴ The Standard Design is the baseline for all nonresidential projects and assumes a mixed-fuel design using natural gas as the space heating source in all cases. Baseline HVAC and SWH system characteristics are described below and in Figure 2:

- The baseline medium office HVAC design package includes two gas hot water boilers, three packaged rooftop units (one for each floor), and variable air volume (VAV) terminal boxes with hot water reheat coils. The SWH design includes one 8.75 kW electric resistance hot water heater with a 30-gallon storage tank.
- The baseline medium retail HVAC design includes five single zone packaged rooftop units (variable flow and constant flow depending on the zone) with gas furnaces for heating. The SWH design includes one 8.75 kW electric resistance hot water heater with a 30-gallon storage tank.
- The small hotel has two baseline equipment systems, one for the nonresidential spaces and one for the guest rooms.
  - The nonresidential HVAC design includes two gas hot water boilers, four packaged rooftop units and twelve VAV terminal boxes with hot water reheat coils. The SWH design include a small electric resistance water heater with 30-gallon storage tank.
  - The residential HVAC design includes one single zone air conditioner (AC) unit with gas furnace for each guest room and the water heating design includes one central gas water heater with a recirculation pump for all guest rooms.

	Medium Office	Medium Retail	Small Hotel	
Conditioned Floor Area	53,628	24,691	42,552	
Number of Stories	3	1	4	
Number of Guest Rooms	0	0	78	
Window-to-Wall Area Ratio	0.33	0.07	0.11	
Baseline HVAC System	Packaged DX VAV with gas furnaces + VAV terminal units with hot water reheat. Central gas hot water boilers	Single zone packaged DX units with gas furnaces	<u>Nonresidential</u> : Packaged DX VAV with hot water coil + VAV terminal units with hot water reheat. Central gas hot water boilers. <u>Residential:</u> Single zone DX AC unit with gas furnaces	
Baseline Water Heating System	30-gallon electric resistance water heater	30-gallon electric resistance water heater	Nonresidential: 30-gallon electric resistance water heater <u>Residential</u> : Central gas water heater with recirculation loop	

#### Figure 2. Prototype Characteristics Summary

⁴ Nonresidential Alternative Calculation Method Reference Manual For the 2019 Building Energy Efficiency Standards. Available at: https://www.energy.ca.gov/2019publications/CEC-400-2019-006/CEC-400-2019-006-CMF.pdf



## 2.2 Cost Effectiveness

The Reach Code Team analyzed the cost effectiveness of the packages by applying them to building prototypes (as applicable) using the life cycle cost methodology, which is approved and used by the Energy Commission to establish cost effective building energy standards (Title 24, Part 6).⁵

Per Energy Commission's methodology, the Reach Code Team assessed the incremental costs of the energy efficiency measure packages and compared them to the energy cost savings over the measure life of 15 years. Incremental costs represent the equipment, installation, replacements, and maintenance costs of the proposed measure relative to the 2019 Title 24 Standards minimum requirements. The energy savings benefits are estimated using both TDV of energy and typical utility rates for each building type:

- Time Dependent Valuation: TDV is a normalized monetary format developed and used by the Energy Commission for comparing electricity and natural gas savings, and it considers the cost of electricity and natural gas consumed during different times of the day and year. Simulation outputs are translated to TDV savings benefits using 2019 TDV multipliers and 15-year discounted costs for the nonresidential measure packages.
- Utility bill impacts (On-bill): Utility energy costs are estimated by applying appropriate IOU rates to estimated annual electricity and natural gas consumption. The energy bill savings are calculated as the difference in utility costs between the baseline and proposed package over a 15-year duration accounting for discount rate and energy cost escalation.

In coordination with the IOU rate team, and rate experts at a few electric publicly owned utilities (POUs), the Reach Code Team used the current nonresidential utility rates publicly available at the time of analysis to analyze the cost effectiveness for each proposed package. The utility tariffs, summarized in Figure 3, were determined based on the annual load profile of each prototype, and the most prevalent rate in each territory. For some prototypes there are multiple options for rates because of the varying load profiles of mixed-fuel buildings versus all-electric buildings. Tariffs were integrated in EnergyPro software to be applied to the hourly electricity and gas outputs. The Reach Code Team did not attempt to compare or test a variety of tariffs to determine their impact on cost effectiveness.

The currently available and applicable time-of-use (TOU) nonresidential rates are applied to both the base and proposed cases with PV systems.⁶ Any annual electricity production in excess of annual electricity consumption is credited at the applicable wholesale rate based on the approved NEM tariffs for that utility. For a more detailed breakdown of the rates selected refer to *Appendix 6.4 Utility Rate Schedules*. Note that most utility time-of-use rates will be updated in the near future, which can affect cost effectiveness results. For example, Pacific Gas and Electric Company (PG&E) will introduce new rates for new service connections in late 2019, and existing accounts will be automatically rolled over to new rates in November 2020.

⁶ Under NEM rulings by the CPUC (D-16-01-144, 1/28/16), all new PV customers shall be in an approved TOU rate structure. As of March 2016, all new PG&E net energy metering (NEM) customers are enrolled in a time-of-use rate. (<u>http://www.pge.com/en/myhome/saveenergymoney/plans/tou/index.page</u>?).



⁵ Architectural Energy Corporation (January 2011) Life-Cycle Cost Methodology. California Energy Commission. Available at: <u>http://www.energy.ca.gov/title24/2013standards/prerulemaking/documents/general_cec_documents/2011-01-</u> <u>14_LCC_Methodology_2013.pdf</u>

Climate	Electric / Gas Utility	Electricity (Time-of-use)	Natural							
Zones			Gas							
	IOUs									
1-5,11-13,16	PG&E	A-1/A-10	G-NR1							
5	PG&E / Southern California Gas Company	A-1/A-10	G-10 (GN-							
			10)							
6,8-10,14,15	SCE / Southern California Gas Company	TOU-GS-1/TOU-GS-	G-10 (GN-							
		2/TOU-GS-3	10)							
7,10,14	San Diego Gas and Electric Company	A-1/A-10	GN-3							
	(SDG&E)									
	Electric POUs									
4	City of Palo Alto (CPAU)	E-2	n/a							
12	Sacramento Municipal Utility District	GS	n/a							
	(SMUD)									
6,7,8,16	Los Angeles Department of Water and	A-2 (B)	n/a							
	Power (LADWP)									

The Reach Code Team obtained measure costs through interviews with contractors and California distributors and review of online sources, such as Home Depot and RS Means. Taxes and contractor markups were added as appropriate. Maintenance costs were not included because there is no assumed maintenance on the envelope measures. For HVAC and SWH measures the study assumes there are no additional maintenance cost for a more efficient version of the same system type as the baseline. Replacement costs for inverters were included for PV systems, but the useful life all other equipment exceeds the study period.

The Reach Code Team compared the energy benefits with incremental measure cost data to determine cost effectiveness for each measure package. The calculation is performed for a duration of 15 years for all nonresidential prototypes with a 3 percent discount rate and fuel escalation rates based on the most recent General Rate Case filings and historical escalation rates.⁷ Cost effectiveness is presented using net present value and benefit-to-cost ratio metrics.

- Net Present Value (NPV): The Reach Code Team uses net savings (NPV benefits minus NPV costs) as the cost effectiveness metric. If the net savings of a measure or package is positive, it is considered cost effective. Negative savings represent net costs. A measure that has negative energy cost benefits (energy cost increase) can still be cost effective if the costs to implement the measure are more negative (i.e., material and maintenance cost savings).
- Benefit-to-Cost Ratio (B/C): Ratio of the present value of all benefits to the present value of all costs over 15 years (NPV benefits *divided by* NPV costs). The criteria for cost effectiveness is a B/C greater than 1.0. A value of one indicates the savings over the life of the measure are equivalent to the incremental cost of that measure.

⁷ 2019 TDV Methodology Report, California Energy Commission, Docket number: 16-BSTD-06 <u>https://efiling.energy.ca.gov/GetDocument.aspx?tn=216062</u>



There are several special circumstances to consider when reviewing these results:

- Improving the efficiency of a project often requires an initial incremental investment. However, some packages result in initial construction cost savings (negative incremental cost), and either energy cost savings (positive benefits), or increased energy costs (negative benefits). Typically, utility bill savings are categorized as a 'benefit' while incremental construction costs are treated as 'costs.' In cases where both construction costs are negative and utility bill savings are negative, the construction cost savings are treated as the 'benefit' while the utility bill negative savings are the 'cost.'
- In cases where a measure package is cost effective immediately (i.e., there are upfront cost savings and lifetime energy cost savings), cost effectiveness is represented by ">1".
- The B/C ratios sometimes appear very high even though the cost numbers are not very high (for example, an upfront cost of \$1 but on-bill savings of \$200 over 30 years would equate to a B/C ratio of 200). NPV is also displayed to clarify these potentially confusing conclusions in the example, the NPV would be equal to a modest \$199.

## 3 Measure Description and Cost

Using the 2019 Title 24 code baseline as the starting point, The Reach Code Team identified potential measure packages to determine the projected energy (therm and kWh) and compliance impacts. The Reach Code Team developed an initial measure list based on experience with designers and contractors along with general knowledge of the relative acceptance and preferences of many measures, as well as their incremental costs.

The measures are categorized into energy efficiency, solar PV and battery, all-electric, and preempted high efficiency measures in subsections below.

### 3.1 Energy Efficiency Measures

This section describes all the energy efficiency measures considered for this analysis to develop a nonpreempted, cost-effective efficiency measure package. The Reach Code Team assessed the costeffectiveness of measures for all climate zones individually and found that the packages did not need to vary by climate zone, with the exception of a solar heat gain coefficient measure in hotels, as described in more detail below. The measures were developed based on reviews of proposed 2022 Title 24 codes and standards enhancement measures, as well as ASHRAE 90.1 and ASHRAE 189.1 Standards. Please refer to *Appendix Section 6.86.7* for a list of efficiency measures that were considered but not implemented. Figure 4 provides a summary of the cost of each measure and the applicability of each measure to the prototype buildings.

#### 3.1.1 Envelope

- Modify Solar Heat Gain Coefficient (SHGC) fenestration
  - Office and Retail All Climate Zones: reduce window SHGC from the prescriptive value of 0.25 to 0.22
  - Hotel
    - Climate zones 1, 2, 3, 5, and 16: Increase the SHGC for all nonresidential spaces from the prescriptive value of 0.25 to 0.45 in both common and guest room spaces.
    - Climate zones 4, and 6-15: Reduce window SHGC from the prescriptive value of 0.25 to 0.22, only for common spaces.

In all cases, the fenestration visible transmittance and U-factor remain at prescriptive values.

 Fenestration as a function of orientation: Limit the amount of fenestration area as a function of orientation. East-facing and west-facing windows are each limited to one-half of the average amount of north-facing and south-facing windows.

#### 3.1.2 HVAC and SWH

- Drain water heat recovery (DWHR): Add shower drain heat recovery in hotel guest rooms. DWHR captures waste heat from a shower drain line and uses it to preheat hot water. Note that this measure cannot currently be modeled on hotel/motel spaces, and the Reach Code Team integrated estimated savings outside of modeling software based on SWH savings in residential scenarios. Please see Appendix Section 6.3 for details on energy savings analysis.
- **VAV box minimum flow**: Reduce VAV box minimum airflows from the current T24 prescriptive requirement of 20 percent of maximum (design) airflow to the T24 zone ventilation minimums.
- Economizers on small capacity systems: Require economizers and staged fan control in units with cooling capacity ≥ 33,000 Btu/hr and ≤ 54,000 Btu/hr, which matches the requirement in the 2018 International Green Construction Code and adopts ANSI/ASHRAE/ICC/USGBC/IES Standard 189.1. This measure reduces the T24 prescriptive threshold on air handling units that are required to have economizers, which is > 54,000 Btu/hr.
- **Solar thermal hot water:** For all-electric hotel only, add solar thermal water heating to supply the following portions of the water heating load, measured in solar savings fraction (SSF):
  - 20 percent SSF in CZs 2, 3, and 5-9
  - 25 percent in CZ4
  - 35 percent SSF in CZs 1 and 10-16.

#### 3.1.3 <u>Lighting</u>

- Interior lighting reduced lighting power density (LPD): Reduce LPD by 15 percent for Medium Office, 10 percent for Medium Retail and by 10 percent for the nonresidential areas of the Small Hotel.
- **Institutional tuning**: Limit the maximum output or maximum power draw of lighting to 85 percent of full light output or full power draw.
- Daylight dimming plus off: Turn daylight-controlled lights completely off when the daylight available in the daylit zone is greater than 150 percent of the illuminance received from the general lighting system at full power. There is no associated cost with this measure, as the 2019 T24 Standards already require multilevel lighting and daylight sensors in primary and secondary daylit spaces. This measure is simply a revised control strategy and does not increase the number of sensors required or labor to install and program a sensor.
- Occupant sensing in open plan offices: In an open plan office area greater than 250 ft², control lighting based on occupant sensing controls. Two workstations per occupancy sensor.

Details on the applicability and impact of each measure by building type and by space function can be found in *Appendices 6.2*. The appendix also includes the resulting LPD that is modeled as the proposed by building type and by space function.

		Measure Applicability <ul> <li>Included in Packages 1A, 1B, 3A, 3C</li> <li>Not applicable</li> </ul>				Incremental Cost	Sources & Notes
Measure	Baseline T24 Requirement			Smal	l Hotel		
		Med Office	Med Retail	Guest rooms	Comm Spaces		
Envelope	•						
Modify SHGC Fenestration	SHGC of 0.25	•	•	•	•	\$1.60 /ft ² window for SHGC decreases, \$0/ft ² for SHGC increases	Costs from one manufacturer.
Fenestration as a Function of Orientation	Limit on total window area and west-facing window area as a function of wall area.	•	_	_	_	\$0	No additional cost associated with the measure which is a design consideration not an equipment cost.
HVAC and SHW							
Drain Water Heat Recovery	No heat recovery required	_	_	•	_	\$841 /unit	Assume 1 heat recovery unit for every 3 guestrooms. Costs from three manufacturers.
VAV Box Minimum Flow	20 percent of maximum (design) airflow	•	_	_	•	\$0	No additional cost associated with the measure which is a design consideration not an equipment cost.
Economizers on Small Capacity Systems	Economizers required for units > 54,000 Btu/hr	_	•	-	_	\$2,857 /unit	Costs from one manufacturer's representative and one mechanical contractor.

### Figure 4. Energy Efficiency Measures - Specification and Cost



			Measure Applicability Included in Packages 1A, 1B, 3A, 3C - Not applicable			Incremental Cost	Sources & Notes
Measure	Baseline T24 Requirement			Smal	l Hotel		
		Med Office	Med Retail	Guest rooms	Comm Spaces		
Solar Thermal Hot Water	For central heat pump water heaters, there is no prescriptive baseline requirement.	_	_	• (electric only)	_	\$33/therm-yr	Installed costs reported in the California Solar Initiative Thermal Program Database, 2015-present. ⁸ Costs include tank and were only available for gas backup systems. Costs are reduced by 19 percent per federal income tax credit average through 2022.
Lighting			1				1
Interior Lighting Reduced LPD	Per Area Category Method, varies by Primary Function Area. Office area 0.60 – 0.70 W/ft ² depending on area of space. Hotel function area 0.85 W/ft ² . Retail Merchandise Sales 1.00 W/ft ²	•	•	_	•	\$0	Industry report on LED pricing analysis shows that costs are not correlated with efficacy. ⁹

⁸ <u>http://www.csithermalstats.org/download.html</u>

⁹ http://calmac.org/publications/LED_Pricing_Analysis_Report_-_Revised_1.19.2018_Final.pdf

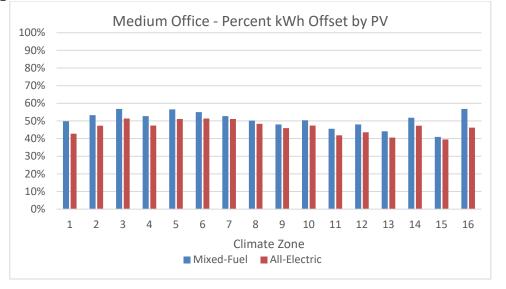
			Measure Applicability Included in Packages 1A, 1B, 3A, 3C Not applicable		Incremental Cost	Sources & Notes	
Measure	Baseline T24 Requirement	Med Office	Med Retail	Smal Guest rooms	l Hotel Comm Spaces		
Institutional Tuning	No requirement, but Power Adjustment Factor (PAF) credit of 0.10 available for luminaires in non-daylit areas and 0.05 for luminaires in daylit areas ¹⁰	•	•	-	•	\$0.06/ft ²	Industry report on institutional tuning ¹¹
Daylight Dimming Plus Off	No requirement, but PAF credit of 0.10 available.	•	_	-	_	\$0	Given the amount of lighting controls already required, this measure is no additional cost.
Occupant Sensing in Open Plan Offices	No requirement, but PAF credit of 0.30 available.	•	_	_	_	\$189 /sensor; \$74 /powered relay; \$108 /secondary relay	2 workstations per sensor; 1 fixture per workstation; 4 workstations per master relay; 120 ft ² /workstation in open office area, which is 53% of total floor area of the medium office

¹⁰ Power Adjustment Factors allow designers to tradeoff increased lighting power densities for more efficient designs. In this study, PAF-related measures assume that the more efficient design is incorporated without a tradeoff for increased lighting power density.

¹¹ <u>https://slipstreaminc.org/sites/default/files/2018-12/task-tuning-report-mndoc-2015.pdf</u>

### 3.2 Solar Photovoltaics and Battery Measures

This section describes the PV and battery measures considered for this analysis. The Reach Code Team estimated the required PV sizes for each building prototype for the efficiency measure packages and the stand alone PV and battery options.


#### 3.2.1 Solar Photovoltaics

2019 Title 24 requires nonresidential buildings to reserve at least 15 percent of the roof area as a "solar zone," but does not include any requirements or compliance credits for the installation of photovoltaic systems. The Reach Code Team analyzed a range of PV system sizes to determine cost effectiveness. To determine upper end of potential PV system size, the Reach Code Team assumed a PV generation capacity of either

- 15 W/ft² covering 50 percent of the roof area, or
- Enough to nearly offset the annual energy consumption.

The medium office and small hotel prototypes had small roof areas compared to their annual electricity demand, thus the PV system capacity at 50 percent of the roof area was less than the estimated annual usage. The medium office and small hotel had a 135 kW and 80 kW array, respectively. The medium retail building has a substantially large roof area that would accommodate a PV array that generates more than the annual electricity load of the building. The PV array for the medium retail building was sized at 110 kW to not exceed the annual electricity consumption of the building when accounting for the minimum annual energy demand across climate zones with efficiency packages.

The modeling software for nonresidential buildings does not allow auto-sizing of PV based on a desired percent offset of electricity use. Moreover, the PV size is also constrained by the availability of roof area. Hence, a common size of PV is modeled for all the packages including all electric design. Figure 5 through Figure 7 below demonstrate the percent of electricity offset by PV for both mixed fuel and all electric buildings over their respective federal minimum design package.



#### Figure 5. Medium Office - Annual Percent kWh Offset with 135 kW Array



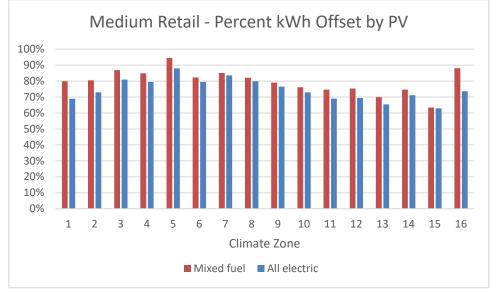
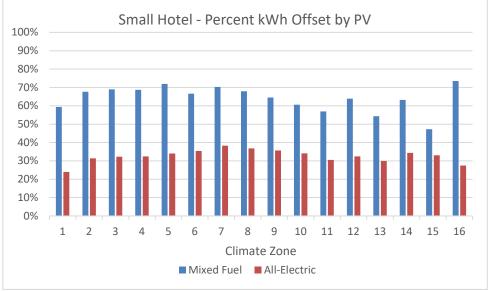




Figure 6. Medium Retail - Annual Percent kWh Offset with 110 kW Array

Figure 7. Small Hotel - Annual Percent kWh Offset with 80 kW Array



The costs for PV include first cost to purchase and install the system, inverter replacement costs, and annual maintenance costs. A summary of the medium office costs and sources is given in Figure 8. Upfront solar PV system costs are reduced by the federal income tax credit (ITC), approximately 19 percent due to a phased reduction in the credit through the year 2022.¹²

¹² The federal credit drops to 26% in 2020, and 22% in 2021 before dropping permanently to 10% for commercial projects and 0% for residential projects in 2022. More information on federal Investment Tax Credits available at: <u>https://www.seia.org/initiatives/solar-investment-tax-credit-itc</u>



8								
	Unit Cost	Cost	Useful Life (yrs.)	Source				
Solar PV System	\$2.30 / Wdc	\$310,500	30	National Renewable Energy Laboratory (NREL) Q1 2016 ¹³				
Inverter Replacement	\$0.15 / Wdc	\$20,250	10	E3 Rooftop Solar PV System Report ¹⁴				
Maintenance Costs	\$0.02 / Wdc	\$2,700	1					

**Figure 8. Medium Office Upfront PV Costs** 

PV energy output is built into CBECC-Com and is based on NREL's PVWatts calculator, which includes long term performance degradation estimates.¹⁵

#### 3.2.2 <u>Battery Storage</u>

This measure includes installation of batteries to allow energy generated through PV to be stored and used later, providing additional energy cost benefits. This report does not focus on optimizing battery sizes or controls for each prototype and climate zone, though the Reach Code Team ran test simulations to assess the impact of battery sizes on TDV savings and found diminishing returns as the battery size increased.

The team set battery control to the Time of Use Control (TOU) method, which assumes batteries are charged anytime PV generation is greater than the building load but discharges to the electric grid beginning during the highest priced hours of the day (the "First Hour of the Summer Peak"). Because there is no default hour available in CBECC-Com, the team applied the default hour available in CBECC-Res to start discharging (hour 19 in CZs 2, 4, and 8-15, and hour 20 in other CZs). This control option is most reflective of the current products on the market. While this control strategy is being used in the analysis, there would be no mandate on the control strategy used in practice.

The current simulation software has approximations of how performance characteristics change with environmental conditions, charge/discharge rates, and degradation with age and use. More information is on the software battery control capabilities and associated qualification requirements are available in the Residential Alternative Calculation Method Reference Manual and the 2019 Reference Appendices for the 2019 Title 24 Standards.^{16,17}

The Reach Code Team used costs of \$558 kWh based on a 2018 IOU Codes and Standards Program report, assuming a replacement is necessary in year 15.¹⁸ Batteries are also eligible for the ITC if they are installed at the same time as the renewable generation source and at least 75 percent of the energy used to charge

¹⁸ Available at: <u>http://localenergycodes.com/download/430/file_path/fieldList/PV%20Plus%20Battery%20Storage%20Report</u>



¹³ Available at: <u>https://www.nrel.gov/docs/fy16osti/66532.pdf</u>

¹⁴ Available at: <u>https://efiling.energy.ca.gov/getdocument.aspx?tn=221366</u>

¹⁵ More information available at: <u>https://pvwatts.nrel.gov/downloads/pvwattsv5.pdf</u>

¹⁶ Battery controls are discussed in Sections 2.1.5.4 and Appendix D of the Residential Alternative Calculation Method Reference Manual, available here: <u>https://ww2.energy.ca.gov/2019publications/CEC-400-2019-005/CEC-400-2019-005-CMF.pdf</u>

¹⁷ Qualification Requirements for Battery Storage Systems are available in JA12 of the 2019 Reference Appendices: <u>https://ww2.energy.ca.gov/2018publications/CEC-400-2018-021/CEC-400-2018-021-CMF.pdf</u>

the battery comes from a renewable source. Thus, the Reach Code Team also applied a 19 percent cost reduction to battery costs.

#### 3.2.3 <u>PV-only and PV+Battery Packages</u>

The Reach Code Team analyzed solar PV and battery storage only, without other efficiency measures in both mixed-fuel and all-electric building designs. Two different sizes of solar PV and battery storage were analyzed.

- Small PV Size: 3 kW, assumed to be the minimal PV system considered for installation in a nonresidential building.
- Large PV Size: PV capacity equal to 15 W/ft² over 50 percent of the roof area, or sized to nearly
  offset annual electricity consumption, as described in Section 3.2.1.
- Small Battery Size: 5 kWh, assumed to be the minimal battery system considered for installation in a nonresidential building, and representative of smaller products currently available on the market.
- Large Battery Size: 50 kWh, assumed to be a substantially large size for a nonresidential setting. Generally, the reach code team found diminishing on-bill and TDV benefits as the battery size increased.

As described in Section 1 and Section 4.4, each PV size was run as a standalone measure. When packaged with a battery measure, the small PV size was paired with the small battery size, and the large PV size was paired with the large battery size.

#### 3.3 All Electric Measures

The Reach Code Team investigated the cost and performance impacts and associated infrastructure costs associated with changing the baseline HVAC and water heating systems to all-electric equipment. This includes heat pump space heating, electric resistance reheat coils, electric water heater with storage tank, heat pump water heating, increasing electrical capacity, and eliminating natural gas connections that would have been present in mixed-fuel new construction. The Reach Code Team selected electric systems that would be installed instead of gas-fueled systems in each prototype.

#### 3.3.1 HVAC and Water Heating

The nonresidential standards use a mixed-fuel baseline for the Standard Design systems. In most nonresidential occupancies, the baseline is natural gas space heating. Hotel/motels and high-rise residential occupancies also assume natural gas baseline water heating systems for the guest rooms and dwelling units. In the all-electric scenario, gas equipment serving these end-uses is replaced with electric equipment, as described in Figure 9.

	Bare Still Lieu	Medium Office	Medium Retail	Small Hotel
HVAC System	Baseline	Packaged DX + VAV with HW reheat. Central <b>gas</b> boilers.	Single zone packaged DX with <b>gas</b> furnaces	<u>NonRes</u> : Packaged DX + VAV with HW reheat. Central <b>gas</b> boilers. <u>Res:</u> Single zone DX AC unit with <b>gas</b> furnaces
	Proposed All- Electric	Packaged DX + VAV with electric <b>resistance</b> reheat.	Single zone packaged <b>heat</b> <b>pumps</b>	<u>NonRes</u> : Packaged DX + VAV with electric <b>resistance</b> reheat <u>Res</u> : Single zone <b>heat pumps</b>
Water Heating	Baseline	Electric <b>resistance</b> with storage	Electric <b>resistance</b> with storage	<u>NonRes</u> : <b>Electric</b> resistance storage <u>Res</u> : Central <b>gas</b> storage with recirculation
System	Proposed All- Electric	Electric <b>resistance</b> with storage	Electric <b>resistance</b> with storage	<u>NonRes</u> : Electric <b>resistance</b> storage <u>Res</u> : Individual <b>heat pumps</b>

Eiguro O	All Electric	UVAC and	Watar	Unating	Charactoricti	cs Summary.
rigui e 🤊	AII-FIECUIC	IIVAC anu	water	neating	character isti	cs Summary.

The Reach Code Team received cost data for baseline mixed-fuel equipment as well as electric equipment from an experienced mechanical contractor in the San Francisco Bay Area. The total construction cost includes equipment and material, labor, subcontractors (for example, HVAC and SHW control systems), and contractor overhead.

#### 3.3.1.1 Medium Office

The baseline HVAC system includes two gas hot water boilers, three packaged rooftop units, and VAV hot water reheat boxes. The SHW design includes one 8.75 kW electric resistance hot water heater with a 30-gallon storage tank.

For the medium office all-electric HVAC design, the Reach Code Team investigated several potential allelectric design options, including variable refrigerant flow, packaged heat pumps, and variable volume and temperature systems. After seeking feedback from the design community, the Reach Code Team determined that the most feasible all-electric HVAC system, given the software modeling constraints is a VAV system with an electric resistance reheat instead of hot water reheat coil. A parallel fan-powered box (PFPB) implementation of electric resistance reheat would further improve efficiency due to reducing ventilation requirements, but an accurate implementation of PFPBs is not currently available in compliance software.

Note that the actual natural gas consumption for the VAV hot water reheat baseline may be higher than the current simulation results due to a combination of boiler and hot water distribution losses. A recent research study shows that the total losses can account for as high as 80 percent of the boiler energy use.¹⁹

¹⁹ Raftery, P., A. Geronazzo, H. Cheng, and G. Paliaga. 2018. Quantifying energy losses in hot water reheat systems. Energy and Buildings, 179: 183-199. November. <u>https://doi.org/10.1016/j.enbuild.2018.09.020</u>. Retrieved from <u>https://escholarship.org/uc/item/3qs8f8qx</u>



If these losses are considered savings for the electric resistance reheat (which has zero associated distribution loss) may be higher.

The all-electric SHW system remains the same electric resistance water heater as the baseline and has no associated incremental costs.

Cost data for medium office designs are presented in Figure 10. The all-electric HVAC system presents cost savings compared to the hot water reheat system from elimination of the hot water boiler and associated hot water piping distribution. CZ10 and CZ15 all-electric design costs are slightly higher because they require larger size rooftop heat pumps than the other climate zones.

ingure 10. Metulum Office HVAC System Costs						
Climate Zone	Mixed Fuel Baseline	All Electric System	Incremental cost for All-Electric			
CZ01	\$1,202,538	\$1,106,432	\$(96,106)			
CZ02	\$1,261,531	\$1,178,983	\$(82,548)			
CZ03	\$1,205,172	\$1,113,989	\$(91,183)			
CZ04	\$1,283,300	\$1,205,434	\$(77,865)			
CZ05	\$1,207,345	\$1,113,989	\$(93,356)			
CZ06	\$1,216,377	\$1,131,371	\$(85,006)			
CZ07	\$1,227,932	\$1,148,754	\$(79,178)			
CZ08	\$1,250,564	\$1,172,937	\$(77,626)			
CZ09	\$1,268,320	\$1,196,365	\$(71,955)			
CZ10	\$1,313,580	\$1,256,825	\$(56,755)			
CZ11	\$1,294,145	\$1,221,305	\$(72,840)			
CZ12	\$1,274,317	\$1,197,121	\$(77,196)			
CZ13	\$1,292,884	\$1,221,305	\$(71,579)			
CZ14	\$1,286,245	\$1,212,236	\$(74,009)			
CZ15	\$1,357,023	\$1,311,994	\$(45,029)			
CZ16	\$1,295,766	\$1,222,817	\$(72,949)			

#### Figure 10. Medium Office HVAC System Costs

#### 3.3.1.2 Medium Retail

The baseline HVAC system includes five packaged single zone rooftop ACs with gas furnaces. Based on fan control requirements in section 140.4(m), units with cooling capacity  $\geq$  65,000 Btu/h have variable air volume fans, while smaller units have constant volume fans. The SHW design includes one 8.75 kW electric resistance hot water heater with a 30-gallon storage tank.

For the medium retail all-electric HVAC design, the Reach Code Team assumed packaged heat pumps instead of the packaged ACs. The all-electric SHW system remains the same electric resistance water heater as the baseline and has no associated incremental costs.

Cost data for medium retail designs are presented in Figure 11. Costs for rooftop air-conditioning systems are very similar to rooftop heat pump systems.



Figure 11. Medium Retail HVAL System Costs						
Climate Zone	Mixed Fuel Baseline	All Electric System	Incremental cost for All-Electric			
CZ01	\$328,312	\$333,291	\$4,978			
CZ02	\$373,139	\$373,702	\$563			
CZ03	\$322,849	\$326,764	\$3,915			
CZ04	\$329,900	\$335,031	\$5,131			
CZ05	\$359 <i>,</i> 888	\$362,408	\$2,520			
CZ06	\$335,728	\$341,992	\$6,265			
CZ07	\$345,544	\$349 <i>,</i> 808	\$4,265			
CZ08	\$368,687	\$369,792	\$1,104			
CZ09	\$415,155	\$411,069	\$(4,087)			
CZ10	\$345,993	\$346,748	\$755			
CZ11	\$418,721	\$414,546	\$(4,175)			
CZ12	\$405,110	\$400,632	\$(4,477)			
CZ13	\$376,003	\$375,872	\$(131)			
CZ14	\$405,381	\$406,752	\$1,371			
CZ15	\$429,123	\$427,606	\$(1,517)			
CZ16	\$401,892	\$404,147	\$2,256			

Figure 11. Medium Retail HVAC System Costs

#### 3.3.1.3 Small Hotel

The small hotel has two different baseline equipment systems, one for the nonresidential spaces and one for the guest rooms. The nonresidential HVAC system includes two gas hot water boilers, four packaged rooftop units and twelve VAV terminal boxes with hot water reheat coil. The SHW design includes a small electric water heater with storage tank. The residential HVAC design includes one single zone AC unit with gas furnace for each guest room and the water heating design includes one central gas storage water heater with a recirculation pump for all guest rooms.

For the small hotel all-electric design, the Reach Code Team assumed the nonresidential HVAC system to be packaged heat pumps with electric resistance VAV terminal units, and the SHW system to remain a small electric resistance water heater.

For the guest room all-electric HVAC system, the analysis used a single zone (packaged terminal) heat pump and a central heat pump water heater serving all guest rooms. Central heat pump water heating with recirculation serving guest rooms cannot yet be modeled in CBECC-Com, and energy impacts were modeled by simulating individual heat pump water heaters in each guest room. The reach code team believes this is a conservative assumption, since individual heat pump water heaters will have much higher tank standby losses. The Reach Code Team attained costs for central heat pump water heating installation including storage tanks and controls and used these costs in the study.

Cost data for small hotel designs are presented in Figure 12. The all-electric design presents substantial cost savings because there is no hot water plant or piping distribution system serving the nonresidential spaces, as well as the lower cost of packaged terminal heat pumps serving the residential spaces compared to split DX/furnace systems with individual flues.

_Figure 12. Small Hotel HVAC and water Heating System Co						
Climate Zone	Mixed Fuel Baseline	All Electric System	Incremental cost for All-Electric			
CZ01	\$2,337,531	\$1,057,178	\$(1,280,353)			
CZ02	\$2,328,121	\$1,046,795	\$(1,281,326)			
CZ03	\$2,294,053	\$1,010,455	\$(1,283,598)			
CZ04	\$2,302,108	\$1,018,675	\$(1,283,433)			
CZ05	\$2,298,700	\$1,015,214	\$(1,283,486)			
CZ06	\$2,295,380	\$1,011,753	\$(1,283,627)			
CZ07	\$2,308,004	\$1,026,029	\$(1,281,975)			
CZ08	\$2,333,662	\$1,053,717	\$(1,279,946)			
CZ09	\$2,312,099	\$1,030,355	\$(1,281,744)			
CZ10	\$2,354,093	\$1,075,348	\$(1,278,745)			
CZ11	\$2,347,980	\$1,068,426	\$(1,279,554)			
CZ12	\$2,328,654	\$1,047,660	\$(1,280,994)			
CZ13	\$2,348,225	\$1,068,858	\$(1,279,367)			
CZ14	\$2,345,988	\$1,066,263	\$(1,279,725)			
CZ15	\$2,357,086	\$1,079,241	\$(1,277,845)			
CZ16	\$2,304,094	\$1,019,973	\$(1,284,121)			

Figure 12. Small Hotel HVAC and Water Heating System Costs

#### 3.3.2 Infrastructure Impacts

Electric heating appliances and equipment often require a larger electrical connection than an equivalent natural gas appliance because of the higher voltage and amperage necessary to electrically generate heat. Thus, many buildings may require larger electrical capacity than a comparable building with natural gas appliances. This includes:

- Electric resistance VAV space heating in the medium office and common area spaces of the small hotel.
- Heat pump water heating for the guest room spaces of the small hotel.

#### 3.3.2.1 Electrical Panel Sizing and Wiring

This section details the additional electrical panel sizing and wiring required for all-electric measures. In an all-electric new construction scenario, heat pumps replace packaged DX units which are paired with either a gas furnace or a hot water coil (supplied by a gas boiler). The electrical requirements of the replacement heat pump would be the same as the packaged DX unit it replaces, as the electrical requirements would be driven by the cooling capacity, which would remain the same between the two units.

VAV terminal units with hot water reheat coils that are replaced with electric resistance reheat coils require additional electrical infrastructure. In the case of electric resistance coils, the Reach Code Team assumed that on average, a VAV terminal unit serves around 900 ft² of conditioned space and has a heating capacity of 5 kW (15 kBtu/hr/ft²). The incremental electrical infrastructure costs were determined based on RS Means. Calculations for the medium office shown in Figure 13 include the cost to add electrical panels as well as the cost to add electrical lines to each VAV terminal unit electric resistance coil in the medium office prototype. Additionally, the Reach Code Team subtracted the electrical infrastructure costs associated with hot water pumps required in the mixed fuel baseline, which are not required in the all-electric measures.



The Reach Code Team calculated costs to increase electrical capacity for heat pump water heaters in the small hotel similarly.

	l + L	Total electrical infrastructure incremental cost	\$27,802
L	JxK	Total electrical line cost	\$15,402
К	-	Cost per linear foot of electrical line	\$3.62
J	-	Total electrical line length required (ft)	4,320
Ι	GxH	Total panel cost	\$12,400
Н	-	Cost per 400-amp panel	\$3,100
G	F/400	Number of 400-amp panels required	4
F	(AxB - CxD)/E	Panel ampacity required	1,366
E	-	Voltage	208
D	_	Hot water pump power (watts)	398
С	-	No. hot water pumps	2
В	-	VAV box heating capacity (watts)	4,748
А	-	No. VAV Boxes	60

Figure 13. Medium	<b>Office Electrica</b>	l Infrastructure	Costs for	All-Electric Design
i igui e 15. Meuluin	Office Licenica	i mn asti uttui t	003031017	In Liccule Design

#### 3.3.2.2 Natural Gas

This analysis assumes that in an all-electric new construction scenario natural gas would not be supplied to the site. Eliminating natural gas in new construction would save costs associated with connecting a service line from the street main to the building, piping distribution within the building, and monthly connection charges by the utility.

The Reach Code Team determined that for a new construction building with natural gas piping, there is a service line (branch connection) from the natural gas main to the building meter. In the medium office prototype, natural gas piping is routed to the boiler. The Reach Code Team assumed that the boiler is on the first floor, and that 30 feet of piping is required from the connection to the main to the boiler. The Reach Code Team assumed 1" corrugated stainless steel tubing (CSST) material is used for the plumbing distribution. The Reach Code Team included costs for a natural gas plan review, service extension, and a gas meter, as shown in Figure 14 below. The natural gas plan review cost is based on information received from the City of Palo Alto Utilities. The meter costs are from PG&E and include both material and labor. The service extension costs are based on guidance from PG&E, who noted that the cost range is highly varied and that there is no "typical" cost, with costs being highly dependent on length of extension, terrain, whether the building is in a developed or undeveloped area, and number of buildings to be served. While an actual service extension cost is highly uncertain, the team believes the costs assumed in this analysis are within a reasonable range based on a sample range of costs provided by PG&E. These costs assume development in a previously developed area.

Cost Type	Medium Office	Medium Retail	Small Hotel
Natural Gas Plan Review	\$2,316	\$2,316	\$2,316
Service Extension	\$13,000	\$13,000	\$13,000
Meter	\$3,000	\$3,000	\$3 <i>,</i> 000
Plumbing Distribution	\$633	\$9,711	\$37,704
Total Cost	\$18,949	\$28,027	\$56,020

Figure 14. Natural Gas Infrastructure Cost Savings for All-Electric Prototypes

## 3.4 Preempted High Efficiency Appliances

The Reach Code Team developed a package of high efficiency (HE) space and water heating appliances based on commonly available products for both the mixed-fuel and all-electric scenarios. This package assesses the standalone contribution that high efficiency measures would make toward achieving high performance thresholds. The Reach Code Team reviewed the Air Conditioning, Heating, and Refrigeration Institute (AHRI) certified product database to estimate appropriate efficiencies.²⁰

The Reach Code Team determined the efficiency increases to be appropriate based on equipment type, summarized in Figure 15, with cost premiums attained from a Bay Area mechanical contractor. The ranges in efficiency are indicative of varying federal standard requirements based on equipment size.

	Federal Minimum Efficiency	Preempted Efficiency	Cost Premium for HE Appliance
Gas space heating and water heating	80-82%	90-95%	10-15%
Large packaged rooftop	9.8-12 EER	10.5-13 EER	10-15%
cooling	11.4-12.9 IEER	15-15.5 IEER	
Single zone heat pump	7.7 HSPF	10 HSPF	6-15%
space heating	3.2 COP	3.5 COP	
Heat pump water heating	2.0 UEF	3.3 UEF	None (market does not carry 2.0 UEF)

Figure 15. High Efficiency Appliance Assumptions

## 3.5 Greenhouse Gas Emissions

The analysis uses the greenhouse gas (GHG) emissions estimates from Zero Code reports available in CBECC-Com.²¹ Zero Code uses 8760 hourly multipliers accounting for time dependent energy use and carbon emissions based on source emissions, including renewable portfolio standard projections. Fugitive

²¹ More information available at: <u>https://zero-code.org/wp-content/uploads/2018/11/ZERO-Code-TSD-California.pdf</u>



²⁰ Available at: <u>https://www.ahridirectory.org/Search/SearchHome?ReturnUrl=%2f</u>

emissions are not included. There are two strings of multipliers – one for Northern California climate zones, and another for Southern California climate zones.²²

## 4 Results

The Reach Code Team evaluated cost effectiveness of the following measure packages over a 2019 mixedfuel code compliant baseline for all climate zones, as detailed in Sections 4.1 -- 4.3 and reiterated in Figure 16:

- Package 1A Mixed-Fuel + EE: Mixed-fuel design with energy efficiency measures and federal minimum appliance efficiencies.
- Package 1B Mixed-Fuel + EE + PV + B: Same as Package 1A, plus solar PV and batteries.
- Package 1C Mixed-fuel + HE: Alternative design with high efficiency appliances, triggering federal preemption.
- Package 2 All-Electric Federal Code-Minimum Reference: All-electric design with federal code minimum appliance efficiency. No solar PV or battery.
- Package 3A All-Electric + EE: All-electric design with energy efficiency measures and federal minimum appliance efficiencies.
- Package 3B All-Electric + EE + PV + B: Same as Package 3A, plus solar PV and batteries.
- Package 3C All-Electric + HE: All-electric design with high efficiency appliances, triggering federal preemption.

Package		Туре	Energy Efficiency	PV & Battery	High Efficiency Appliances	
ratkage	Mixed Fuel All-Electric		Measures	(PV + B)	(HE)	
Mixed-Fuel Code Minimum Baseline	х					
1A – Mixed-Fuel + EE	Х		Х			
1B – Mixed-Fuel + EE + PV + B	Х		Х	Х		
1C – Mixed-fuel + HE	Х				Х	
2 – All-Electric Federal Code- Minimum Reference		х				
3A – All-Electric + EE		Х	Х			
3B – All-Electric + EE + PV + B		Х	Х	Х		
3C – All-Electric + HE		Х			Х	

#### Figure 16. Package Summary

²² CBECC-Com documentation does not state which climate zones fall under which region. CBECC-Res multipliers are the same for CZs 1-5 and 11-13 (presumed to be Northern California), while there is another set of multipliers for CZs 6-10 and 14-16 (assumed to be Southern California).



Section 4.4 presents the results of the PV-only and PV+Battery analysis.

The TDV and on-bill based cost effectiveness results are presented in terms of B/C ratio and NPV in this section. What constitutes a 'benefit' or a 'cost' varies with the scenarios because both energy savings and incremental construction costs may be negative depending on the package. Typically, utility bill savings are categorized as a 'benefit' while incremental construction costs are treated as 'costs.' In cases where both construction costs are negative and utility bill savings are negative, the construction cost savings are treated as the 'benefit' while the utility bill negative savings are as the 'cost.'

Overarching factors to keep in mind when reviewing the results include:

- To pass the Energy Commission's application process, local reach codes must both be cost effective and exceed the energy performance budget using TDV (i.e., have a positive compliance margin). To emphasize these two important factors, the figures in this Section highlight in green the modeling results that have **either** a positive compliance margin or are cost effective. This will allow readers to identify whether a scenario is fully or partially supportive of a reach code, and the opportunities/challenges that the scenario presents. Conversely, Section 4.4 only highlights results that **both** have a positive compliance margin and are cost effective, to allow readers to identify reach code-ready scenarios.
  - **Note:** Compliance margin represents the proportion of energy usage that is saved compared to the baseline, measured on a TDV basis.
- The Energy Commission does not currently allow compliance credit for either solar PV or battery storage. Thus, the compliance margins in Packages 1A are the same as 1B, and Package 3A is the same as 3B. However, The Reach Code Team did include the impact of solar PV and battery when calculating TDV cost-effectiveness.
- When performance modeling residential buildings, the Energy Commission allows the Standard Design to be electric if the Proposed Design is electric, which removes TDV-related penalties and associated negative compliance margins. This essentially allows for a compliance pathway for allelectric residential buildings. Nonresidential buildings are not treated in the same way and are compared to a mixed-fuel standard design.
- Results do not include an analysis and comparison of utility rates. As mentioned in Section 2.2, The Reach Code Team coordinated with utilities to select tariffs for each prototype given the annual energy demand profile and the most prevalent rates in each utility territory. The Reach Code Team did not compare a variety of tariffs to determine their impact on cost effectiveness. Note that most utility time-of-use rates are continuously updated, which can affect cost effectiveness results.
- As a point of comparison, mixed-fuel baseline energy figures are provided in *Appendix 6.5*.

### 4.1 Cost Effectiveness Results – Medium Office

Figure 17 through Figure 23 contain the cost-effectiveness findings for the Medium Office packages. Notable findings for each package include:

 1A – Mixed-Fuel + EE: Packages achieve +12 to +20 percent compliance margins depending on climate zone. All packages are cost effective in all climate zones using the TDV approach. All packages are cost effective using the On-Bill approach except for LADWP territory.



- 1B Mixed-Fuel + EE + PV + B: All packages are cost effective using the On-Bill and TDV approaches, except On-Bill in LADWP territory. When compared to 1A, the B/C ratio changes depending on the utility and climate zone (some increase while others decrease). However, NPV savings are increased across the board, suggesting that larger investments yield larger returns.
- 1C Mixed-Fuel + HE: Packages achieve +3 to +5 percent compliance margins depending on climate zone, but no packages were cost effective. The incremental costs of a high efficiency condensing boiler compared to a non-condensing boiler contributes to 26-47% of total incremental cost depending on boiler size. Benefits of condensing boiler efficiency come from resetting hot water return temperature as boiler efficiency increases at lower hot water temperature. However, hot water temperature reset control cannot currently be implemented in the software. In addition, the natural gas energy cost constitutes no more than 5% of total cost for 15 climate zones, so improving boiler efficiency has limited contribution to reduction of total energy cost.
- 2 All-Electric Federal Code-Minimum Reference:
  - Packages achieve between -27 percent and +1 percent compliance margins depending on climate zone. This is likely because the modeled system is electric resistance, and TDV values electricity consumption more heavily than natural gas. This all-electric design without other efficiency measures does not comply with the Energy Commission's TDV performance budget.
  - All incremental costs are negative due to the elimination of natural gas infrastructure.
  - Packages achieve utility cost savings and are cost effective using the On-Bill approach in CZs 6-10 and 14-15. Packages do not achieve savings and are not cost effective using the On-Bill approach in most of PG&E territory (CZs 1,2,4, 11-13, and 16). Packages achieve savings and are cost effective using TDV in all climate zones except CZ16.
- 3A All-Electric + EE: Packages achieve positive compliance margins except -15 percent in CZ16, which has a higher space heating load than other climate zones. All packages are cost effective in all climate zones except CZ16.
- 3B All-Electric + EE + PV + B: Packages achieve positive compliance margins except -15 percent in CZ16. All packages are cost-effective from a TDV perspective in all climate zones. All packages are cost effective from an On-Bill perspective in all climate zones except in CZ 2 and CZ 16 in LADWP territory.
- 3C All-Electric + HE: Packages achieve between -26 percent and +2 percent compliance margins depending on climate zone. The only packages that are cost effective and with a positive compliance margin are in CZs 7-9 and 15. As described in Package 1C results, space heating is a relatively low proportion of energy costs in most climate zones, limiting the costs gains for higher efficiency equipment.

	Figure 17. Cost Effectiveness for Medium Office Package 1A - Mixed-Filer + EE											
		Elec		GHG Reduc-	Comp-		Lifecycle		B/C	B/C		1
		Savings	Gas Savings	tions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost	Savings	Savings	(On-bill)	(TDV)	(On-bill)	(TDV)
Package	Package 1A: Mixed Fuel + EE											
CZ01	PG&E	34,421	-808	4.5	18%	\$66,649	\$125,902	\$71,307	1.9	1.1	\$59,253	\$4,658
CZ02	PG&E	40,985	-505	8.1	17%	\$66,649	\$163,655	\$99,181	2.5	1.5	\$97,005	\$32,532
CZ03	PG&E	36,266	-463	7.0	20%	\$66,649	\$141,897	\$84,051	2.1	1.3	\$75,248	\$17,401
CZ04	PG&E	40,590	-547	7.7	14%	\$66,649	\$162,139	\$95,410	2.4	1.4	\$95,489	\$28,761
CZ04-2	CPAU	40,590	-547	7.7	14%	\$66,649	\$85,537	\$95,410	1.3	1.4	\$18,887	\$28,761
CZ05	PG&E	38,888	-499	7.4	18%	\$66,649	\$154,044	\$91,115	2.3	1.4	\$87,395	\$24,465
CZ05-2	SCG	38,888	-499	7.4	18%	\$66,649	\$156,315	\$91,115	2.3	1.4	\$89,665	\$24,465
CZ06	SCE	39,579	-305	8.7	20%	\$66,649	\$86,390	\$100,469	1.3	1.5	\$19,741	\$33,820
CZ06-2	LADWP	39,579	-305	8.7	20%	\$66,649	\$51,828	\$100,469	0.8	1.5	(\$14,821)	\$33,820
CZ07	SDG&E	41,817	-6	11.3	20%	\$66,649	\$204,394	\$112,497	3.1	1.7	\$137,745	\$45,848
CZ08	SCE	41,637	-60	10.8	18%	\$66,649	\$89,783	\$113,786	1.3	1.7	\$23,134	\$47,137
CZ08-2	LADWP	41,637	-60	10.8	18%	\$66,649	\$54,876	\$113,786	0.8	1.7	(\$11,773)	\$47,137
CZ09	SCE	42,539	-210	10.1	16%	\$66,649	\$95,636	\$115,647	1.4	1.7	\$28,987	\$48,998
CZ09-2	LADWP	42,539	-210	10.1	16%	\$66,649	\$58,168	\$115,647	0.9	1.7	(\$8,481)	\$48,998
CZ10	SDG&E	41,857	-216	9.8	17%	\$66,649	\$210,303	\$108,726	3.2	1.6	\$143,654	\$42,077
CZ10-2	SCE	41,857	-216	9.8	17%	\$66,649	\$92,736	\$108,726	1.4	1.6	\$26,087	\$42,077
CZ11	PG&E	42,523	-390	9.1	13%	\$66,649	\$166,951	\$104,001	2.5	1.6	\$100,301	\$37,352
CZ12	PG&E	41,521	-466	8.4	14%	\$66,649	\$161,594	\$100,135	2.4	1.5	\$94,945	\$33,486
CZ12-2	SMUD	41,521	-466	8.4	14%	\$66,649	\$71,734	\$100,135	1.1	1.5	\$5,085	\$33,486
CZ13	PG&E	42,898	-434	9.0	13%	\$66,649	\$169,107	\$99,992	2.5	1.5	\$102,457	\$33,343
CZ14	SDG&E	42,224	-441	8.6	14%	\$66,649	\$211,529	\$106,913	3.2	1.6	\$144,880	\$40,264
CZ14-2	SCE	42,224	-441	8.6	14%	\$66,649	\$95 <i>,</i> 809	\$106,913	1.4	1.6	\$29,160	\$40,264
CZ15	SCE	45,723	-147	11.2	12%	\$66,649	\$102,714	\$118,034	1.5	1.8	\$36,065	\$51,384
CZ16	PG&E	37,758	-736	5.8	14%	\$66,649	\$145,947	\$79,755	2.2	1.2	\$79,297	\$13,106
CZ16-2	LADWP	37,758	-736	5.8	14%	\$66,649	\$40,115	\$79,755	0.6	1.2	(\$26,534)	\$13,106

Figure 17. Cost Effectiveness for Medium Office Package 1A – Mixed-Fuel + EE

	Figure 18. Cost Effectiveness for Medium Office Package 1B – Mixed-Fuel + EE + PV + B											
cz	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (mtons)	Comp- liance Margin (%)	Incremental Package Cost	Lifecycle Energy Cost Savings	\$-TDV Savings	B/C Ratio (On-bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Mixed F	Mixed Fuel + PV + Battery											
CZ01	PG&E	211,225	-808	39.9	18%	\$397,405	\$645,010	\$454,284	1.6	1.1	\$247,605	\$56,879
CZ02	PG&E	255,787	-505	50.6	17%	\$397,405	\$819,307	\$573,033	2.1	1.4	\$421,902	\$175,628
CZ03	PG&E	245,421	-463	48.8	20%	\$397,405	\$777,156	\$536,330	2.0	1.3	\$379,751	\$138,925
CZ04	PG&E	267,612	-547	52.7	14%	\$397,405	\$836,221	\$597,471	2.1	1.5	\$438,816	\$200,066
CZ04-2	CPAU	267,612	-547	52.7	14%	\$397,405	\$621,879	\$597,471	1.6	1.5	\$224,474	\$200,066
CZ05	PG&E	264,581	-499	52.5	18%	\$397,405	\$897,216	\$578,856	2.3	1.5	\$499,811	\$181,451
CZ05-2	SCG	264,581	-499	52.5	18%	\$397,405	\$899,487	\$578 <i>,</i> 856	2.3	1.5	\$502,082	\$181,451
CZ06	SCE	257,474	-305	52.1	20%	\$397,405	\$484,229	\$594,416	1.2	1.5	\$86,824	\$197,011
CZ06-2	LA	257,474	-305	52.1	20%	\$397,405	\$282,360	\$594,416	0.7	1.5	(\$115,045)	\$197,011
CZ07	SDG&E	264,530	-6	55.7	20%	\$397,405	\$817,528	\$610,548	2.1	1.5	\$420,123	\$213,143
CZ08	SCE	258,348	-60	54.0	18%	\$397,405	\$479,073	\$625,249	1.2	1.6	\$81,668	\$227,844
CZ08-2	LA	258,348	-60	54.0	18%	\$397,405	\$275,704	\$625,249	0.7	1.6	(\$121,701)	\$227,844
CZ09	SCE	262,085	-210	54.3	16%	\$397,405	\$480,241	\$622,528	1.2	1.6	\$82,836	\$225,123
CZ09-2	LA	262,085	-210	54.3	16%	\$397,405	\$282,209	\$622,528	0.7	1.6	(\$115,196)	\$225,123
CZ10	SDG&E	258,548	-216	53.4	17%	\$397,405	\$839,931	\$595,323	2.1	1.5	\$442,526	\$197,918
CZ10-2	SCE	258,548	-216	53.4	17%	\$397,405	\$485,523	\$595,323	1.2	1.5	\$88,118	\$197,918
CZ11	PG&E	253,623	-390	50.9	13%	\$397,405	\$826,076	\$585,682	2.1	1.5	\$428,671	\$188,277
CZ12	PG&E	252,868	-466	50.3	14%	\$397,405	\$802,715	\$582,866	2.0	1.5	\$405,310	\$185,461
CZ12-2	SMUD	252,868	-466	50.3	14%	\$397,405	\$415,597	\$582,866	1.0	1.5	\$18,192	\$185,461
CZ13	PG&E	250,915	-434	50.4	13%	\$397,405	\$806,401	\$573,606	2.0	1.4	\$408,996	\$176,201
CZ14	SDG&E	283,684	-441	56.4	14%	\$397,405	\$874,753	\$676,271	2.2	1.7	\$477,348	\$278,866
CZ14-2	SCE	283,684	-441	56.4	14%	\$397,405	\$493,888	\$676,271	1.2	1.7	\$96,483	\$278,866
CZ15	SCE	274,771	-147	56.0	12%	\$397,405	\$476,327	\$640,379	1.2	1.6	\$78,922	\$242,974
CZ16	PG&E	266,490	-736	51.8	14%	\$397,405	\$842,205	\$575,563	2.1	1.4	\$444,800	\$178,158
CZ16-2	LA	266,490	-736	51.8	14%	\$397,405	\$260,372	\$575,563	0.7	1.4	(\$137,033)	\$178,158

Figure 18. Cost Effectiveness for Medium Office Package 1B – Mixed-Fuel + EE + PV + B

2019-07-25

	Figure 19. Cost Effectiveness for Medium Office Package IC – Mixed-Fuel + HE											
CZ	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp- liance Margin	Incremental Package Cost	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On-bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Package	1C: Mixed	l Fuel + HE										
CZ01	PG&E	288	688	4.1	3%	\$61,253	\$18,656	\$12,314	0.3	0.2	(\$42,597)	(\$48,939)
CZ02	PG&E	3,795	550	4.3	4%	\$68,937	\$36,683	\$24,676	0.5	0.4	(\$32,254)	(\$44,261)
CZ03	PG&E	1,241	439	2.9	3%	\$57,529	\$20,150	\$11,885	0.4	0.2	(\$37,379)	(\$45,644)
CZ04	PG&E	5,599	529	4.7	5%	\$72,074	\$44,915	\$30,928	0.6	0.4	(\$27,158)	(\$41,145)
CZ04-2	CPAU	5,599	529	4.7	5%	\$72,074	\$24,175	\$30,928	0.3	0.4	(\$47,898)	(\$41,145)
CZ05	PG&E	3,470	453	3.6	4%	\$60,330	\$35,072	\$18,232	0.6	0.3	(\$25,258)	(\$42,097)
CZ05-2	SCG	3,470	453	3.6	4%	\$60,330	\$32,777	\$18,232	0.5	0.3	(\$27,553)	(\$42,097)
CZ06	SCE	3,374	298	2.6	3%	\$55,594	\$19,446	\$16,132	0.3	0.3	(\$36,148)	(\$39,462)
CZ06-2	LADWP	3,374	298	2.6	3%	\$55,594	\$13,450	\$16,132	0.2	0.3	(\$42,145)	(\$39,462)
CZ07	SDG&E	5,257	140	2.3	4%	\$54,111	\$41,086	\$19,903	0.8	0.4	(\$13,025)	(\$34,208)
CZ08	SCE	5,921	176	2.7	4%	\$60,497	\$22,210	\$24,055	0.4	0.4	(\$38,287)	(\$36,442)
CZ08-2	LADWP	5,921	176	2.7	4%	\$60,497	\$14,064	\$24,055	0.2	0.4	(\$46,434)	(\$36,442)
CZ09	SCE	7,560	224	3.5	4%	\$61,311	\$28,576	\$31,835	0.5	0.5	(\$32,735)	(\$29,476)
CZ09-2	LADWP	7,560	224	3.5	4%	\$61,311	\$18,262	\$31,835	0.3	0.5	(\$43,049)	(\$29,476)
CZ10	SDG&E	5,786	288	3.2	4%	\$62,685	\$50,717	\$24,628	0.8	0.4	(\$11,968)	(\$38,057)
CZ10-2	SCE	5,786	288	3.2	4%	\$62,685	\$24,575	\$24,628	0.4	0.4	(\$38,110)	(\$38,057)
CZ11	PG&E	8,128	441	4.9	5%	\$71,101	\$54,188	\$37,849	0.8	0.5	(\$16,912)	(\$33,252)
CZ12	PG&E	6,503	478	4.7	5%	\$68,329	\$47,329	\$34,556	0.7	0.5	(\$20,999)	(\$33,773)
CZ12-2	SMUD	6,503	478	4.7	5%	\$68,329	\$24,003	\$34,556	0.4	0.5	(\$44,325)	(\$33,773)
CZ13	PG&E	8,398	432	5.0	5%	\$69,474	\$51,347	\$37,229	0.7	0.5	(\$18,128)	(\$32,246)
CZ14	SDG&E	7,927	470	5.0	5%	\$69,463	\$62,744	\$37,133	0.9	0.5	(\$6,718)	(\$32,329)
CZ14-2	SCE	7,927	470	5.0	5%	\$69,463	\$32,517	\$37,133	0.5	0.5	(\$36,946)	(\$32,329)
CZ15	SCE	15,140	219	5.5	5%	\$66,702	\$43,773	\$52,359	0.7	0.8	(\$22,929)	(\$14,344)
CZ16	PG&E	3,111	912	6.3	5%	\$71,765	\$36,002	\$24,914	0.5	0.3	(\$35,763)	(\$46,851)
CZ16-2	LADWP	3,111	912	6.3	5%	\$71,765	\$23,057	\$24,914	0.3	0.3	(\$48,708)	(\$46,851)

Figure 19. Cost Effectiveness for Medium Office Package 1C - Mixed-Fuel + HE

	Г	igure 20.	Cost Ellec	uveness for	mealum	Unice Paci	kage 2 – All-I	electric re	ederal Co	Dae Min	imum	
cz	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp- liance Margin	Incremental Package Cost [*]	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On-bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Package	2: All-Elec	tric Federal C	ode Minimum									
CZ01	PG&E	-53,657	4967	10.1	-15%	(\$87,253)	(\$98,237)	(\$58,420)	0.9	1.5	(\$10,984)	\$28,833
CZ02	PG&E	-49,684	3868	5.0	-7%	(\$73 <i>,</i> 695)	(\$101,605)	(\$41,429)	0.7	1.8	(\$27,910)	\$32,266
CZ03	PG&E	-35,886	3142	5.6	-7%	(\$82,330)	(\$57,345)	(\$29,592)	1.4	2.8	\$24,986	\$52,738
CZ04	PG&E	-48,829	3759	4.7	-6%	(\$69,012)	(\$90,527)	(\$40,570)	0.8	1.7	(\$21,515)	\$28,443
CZ04-2	CPAU	-48,829	3759	4.7	-6%	(\$69,012)	(\$19,995)	(\$40,570)	3.5	1.7	\$49,018	\$28,443
CZ05	PG&E	-40,531	3240	4.5	-8%	(\$84,503)	(\$63,663)	(\$39,997)	1.3	2.1	\$20,840	\$44,506
CZ06	SCE	-26,174	2117	3.1	-4%	(\$76 <i>,</i> 153)	\$24,908	(\$20,571)	>1	3.7	\$101,061	\$55,581
CZ06-2	LADWP	-26,174	2117	3.1	-4%	(\$76,153)	\$26,366	(\$20,571)	>1	3.7	\$102,518	\$55,581
CZ07	SDG&E	-12,902	950	0.9	-2%	(\$70,325)	\$46,879	(\$11,407)	>1	6.2	\$117,204	\$58,918
CZ08	SCE	-15,680	1219	1.5	-2%	(\$68,774)	\$17,859	(\$12,648)	>1	5.4	\$86,633	\$56,125
CZ08-2	LADWP	-15,680	1219	1.5	-2%	(\$68,774)	\$18,603	(\$12,648)	>1	5.4	\$87,376	\$56,125
CZ09	SCE	-19,767	1605	2.4	-2%	(\$63,102)	\$20,920	(\$14,462)	>1	4.4	\$84,022	\$48,640
CZ09-2	LADWP	-19,767	1605	2.4	-2%	(\$63,102)	\$21,929	(\$14,462)	>1	4.4	\$85,030	\$48,640
CZ10	SDG&E	-27,414	2053	2.2	-4%	(\$47,902)	\$38,918	(\$23,339)	>1	2.1	\$86,820	\$24,562
CZ10-2	SCE	-27,414	2053	2.2	-4%	(\$47,902)	\$20,765	(\$23,339)	>1	2.1	\$68,666	\$24,562
CZ11	PG&E	-40,156	3062	3.6	-4%	(\$63,987)	(\$72,791)	(\$32,837)	0.9	1.9	(\$8,804)	\$31,150
CZ12	PG&E	-43,411	3327	4.1	-5%	(\$68,343)	(\$85 <i>,</i> 856)	(\$35,463)	0.8	1.9	(\$17,512)	\$32,880
CZ12-2	SMUD	-43,411	3327	4.1	-5%	(\$68,343)	(\$5,109)	(\$35,463)	13.4	1.9	\$63,234	\$32,880
CZ13	PG&E	-39,649	3063	3.8	-4%	(\$62,726)	(\$70,705)	(\$32,408)	0.9	1.9	(\$7,980)	\$30,318
CZ14	SDG&E	-44,322	3266	3.4	-5%	(\$65,156)	\$6,043	(\$38,422)	>1	1.7	\$71,199	\$26,735
CZ14-2	SCE	-44,322	3266	3.4	-5%	(\$65,156)	\$4,798	(\$38,422)	>1	1.7	\$69,954	\$26,735
CZ15	SCE	-19,917	1537	1.8	-2%	(\$36,176)	\$12,822	(\$15,464)	>1	2.3	\$48,998	\$20,711
CZ16	PG&E	-94,062	6185	5.6	-27%	(\$64,096)	(\$212,158)	(\$150,871)	0.3	0.4	(\$148,062)	(\$86,775)
CZ16-2	LADWP	-94,062	6185	5.6	-27%	(\$64,096)	\$1,493	(\$150,871)	>1	0.4	\$65,589	(\$86,775)

Figure 20. Cost Effectiveness for Medium Office Package 2 - All-Electric Federal Code Minimum

*The Incremental Package Cost is equal to the sum of the incremental HVAC and water heating equipment costs from

Figure 10, the electrical infrastructure incremental cost of \$27,802 (see section 3.3.2.1), and the natural gas infrastructure incremental costs of \$(18,949) (see section 3.3.2.2).

	Figure 21. Cost Effectiveness for Medium Office Package 3A – All-Electric + EE											
		Elec		GHG	Comp-	Incremental	Lifecycle		B/C	B/C		
		Savings	Gas Savings	Reductions	liance	Package	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Package	3A: All-Ele	ectric + EE										
CZ01	PG&E	-19,115	4967	19.4	7%	(\$20,604)	\$20,630	\$28,112	>1	>1	\$41,234	\$48,716
CZ02	PG&E	-11,811	3868	15.2	10%	(\$7,046)	\$39,260	\$58,563	>1	>1	\$46,306	\$65,609
CZ03	PG&E	2,530	3142	16.2	16%	(\$15,681)	\$85,241	\$68,682	>1	>1	\$100,922	\$84,363
CZ04	PG&E	-10,839	3759	14.8	9%	(\$2,363)	\$59,432	\$58,420	>1	>1	\$61,795	\$60,783
CZ04-2	CPAU	-10,839	3759	14.8	9%	(\$2,363)	\$70,680	\$58 <i>,</i> 420	>1	>1	\$73,043	\$60,783
CZ05	PG&E	-2,316	3240	14.6	12%	(\$17,854)	\$85,380	\$58,802	>1	>1	\$103,234	\$76,656
CZ06	SCE	15,399	2117	14.3	18%	(\$9,503)	\$114,962	\$89,921	>1	>1	\$124,466	\$99,425
CZ06-2	LADWP	15,399	2117	14.3	18%	(\$9,503)	\$82,389	\$89,921	>1	>1	\$91,893	\$99,425
CZ07	SDG&E	33,318	950	13.8	20%	(\$3,676)	\$256,704	\$111,399	>1	>1	\$260,380	\$115,076
CZ08	SCE	30,231	1219	14.2	18%	(\$2,124)	\$110,144	\$111,781	>1	>1	\$112,268	\$113,906
CZ08-2	LADWP	30,231	1219	14.2	18%	(\$2,124)	\$76,069	\$111,781	>1	>1	\$78,194	\$113,906
CZ09	SCE	24,283	1605	14.3	15%	\$3,547	\$119,824	\$108,249	33.8	30.5	\$116,277	\$104,702
CZ09-2	LADWP	24,283	1605	14.3	15%	\$3,547	\$83,549	\$108,249	23.6	30.5	\$80,001	\$104,702
CZ10	SDG&E	12,344	2053	12.6	13%	\$18,748	\$230,553	\$82,905	12.3	4.4	\$211,806	\$64,158
CZ10-2	SCE	12,344	2053	12.6	13%	\$18,748	\$105,898	\$82,905	5.6	4.4	\$87,150	\$64,158
CZ11	PG&E	929	3062	14.5	10%	\$2,662	\$85,988	\$75 <i>,</i> 030	32.3	28.2	\$83,326	\$72,368
CZ12	PG&E	-3,419	3327	14.8	10%	(\$1,694)	\$68,866	\$69,589	>1	>1	\$70,560	\$71,283
CZ12-2	SMUD	-3,419	3327	14.8	10%	(\$1,694)	\$71,761	\$69,589	>1	>1	\$73 <i>,</i> 455	\$71,283
CZ13	PG&E	1,398	3063	14.8	9%	\$3,923	\$89,799	\$71,307	22.9	18.2	\$85 <i>,</i> 875	\$67,384
CZ14	SDG&E	-5,469	3266	13.5	9%	\$1,493	\$206,840	\$69,016	138.6	46.2	\$205,347	\$67,523
CZ14-2	SCE	-5,469	3266	13.5	9%	\$1,493	\$94,143	\$69,016	63.1	46.2	\$92,650	\$67,523
CZ15	SCE	25,375	1537	13.7	10%	\$30,474	\$114,909	\$104,335	3.8	3.4	\$84,435	\$73 <i>,</i> 862
CZ16	PG&E	-65,877	6185	12.7	-15%	\$2 <i>,</i> 553	(\$91,477)	(\$85 <i>,</i> 673)	-35.8	-33.6	(\$94,030)	(\$88,226)
CZ16-2	LADWP	-65,877	6185	12.7	-15%	\$2 <i>,</i> 553	\$72,780	(\$85 <i>,</i> 673)	28.5	-33.6	\$70,227	(\$88,226)

Figure 21. Cost Effectiveness for Medium Office Package 3A - All-Electric + EE

	F1	gui e 22. v	POST FILEC	liveness	Ioi Meului	n Office Paci	rage 3D -	AII-FIELU	IC T EE	<b>T F V T</b>	D	
CZ	IOU territory	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (mtons)	Compliance Margin (%)	Incremental Package Cost	Lifecycle Energy Cost	\$-TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
-	ic + PV + B	(KVVII)	(therms)	(mtons)	Iviaigiii (76)	Package Cost	Savings	Javings	Dilly	(100)	Dilij	NPV (IDV)
CZ01	PG&E	157,733	4967	54.9	7%	\$310,152	\$518,421	\$410,946	1.7	1.3	\$208,269	\$100,794
CZ01	PG&E	203,026	3868	57.8	10%			. ,	2.1	1.5	\$368,626	\$208,563
CZ02	PG&E	203,026	3142	58.0	16%	\$323,710 \$315,075	\$692,336 \$708,235	\$532,273 \$520,866	2.1	1.0	\$393,160	\$208,505
	-	,	3142	58.0								
CZ04	PG&E CPAU	216,204	3759	59.9 59.9	9% 9%	\$328,393	\$741,382	\$560,576 \$560,576	2.3 1.8	1.7	\$412,989	\$232,183
CZ04-2	-	216,204				\$328,393	\$607,074	\$560,576		1.7	\$278,681	\$232,183
CZ05	PG&E	223,399	3240	59.8	12%	\$312,902	\$799,992	\$546,592	2.6	1.7	\$487,090	\$233,690
CZ06	SCE	233,299	2117	57.7	18%	\$321,252	\$509,969	\$583,963	1.6	1.8	\$188,716	\$262,711
CZ06-2	LA	233,299	2117	57.7	18%	\$321,252	\$311,931	\$583,963	1.0	1.8	(\$9,322)	\$262,711
CZ07	SDG&E	256,034	950	58.3	20%	\$327,079	\$870,156	\$609,498	2.7	1.9	\$543,076	\$282,419
CZ08	SCE	246,944	1219	57.4	18%	\$328,631	\$499,506	\$623,292	1.5	1.9	\$170,874	\$294,661
CZ08-2	LA	246,944	1219	57.4	18%	\$328,631	\$296,991	\$623,292	0.9	1.9	(\$31,640)	\$294,661
CZ09	SCE	243,838	1605	58.5	15%	\$334,303	\$504,498	\$615,178	1.5	1.8	\$170,195	\$280,875
CZ09-2	LA	243,838	1605	58.5	15%	\$334,303	\$307,626	\$615,178	0.9	1.8	(\$26,677)	\$280,875
CZ10	SDG&E	229,044	2053	56.2	13%	\$349,503	\$851,810	\$569,549	2.4	1.6	\$502 <i>,</i> 306	\$220,046
CZ10-2	SCE	229,044	2053	56.2	13%	\$349,503	\$491,383	\$569,549	1.4	1.6	\$141,880	\$220,046
CZ11	PG&E	212,047	3062	56.4	10%	\$333,418	\$743,403	\$556,758	2.2	1.7	\$409 <i>,</i> 985	\$223,340
CZ12	PG&E	207,955	3327	56.7	10%	\$329,062	\$713,054	\$552,415	2.2	1.7	\$383,993	\$223,353
CZ12-2	SMUD	207,955	3327	56.7	10%	\$329,062	\$414,371	\$552,415	1.3	1.7	\$85,310	\$223,353
CZ13	PG&E	209,431	3063	56.3	9%	\$334,679	\$728,822	\$544,969	2.2	1.6	\$394,143	\$210,289
CZ14	SDG&E	236,002	3266	61.3	9%	\$332,249	\$865,181	\$638,517	2.6	1.9	\$532,933	\$306,269
CZ14-2	SCE	236,002	3266	61.3	9%	\$332,249	\$488,163	\$638,517	1.5	1.9	\$155,914	\$306,269
CZ15	SCE	254,426	1537	58.5	10%	\$361,229	\$487,715	\$626,728	1.4	1.7	\$126,486	\$265,499
CZ16	PG&E	162,915	6185	58.6	-15%	\$333,309	\$580,353	\$406,746	1.7	1.2	\$247,044	\$73,437
CZ16-2	LA	162,915	6185	58.6	-15%	\$333,309	\$290,566	\$406,746	0.9	1.2	(\$42,742)	\$73,437

Figure 22. Cost Effectiveness for Medium Office Package 3B - All-Electric + EE + PV + B

		<b>_</b>	igui e 201		chess io	i Mealain O	nce Fackage			• • • • •	r	,
cz	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp- liance Margin	Incremental Package Cost	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Package	3C: All-Ele	ectric + HE										
CZ01	PG&E	-53,390	4967	10.2	-14%	(\$43,987)	(\$93,740)	(\$57,752)	0.5	0.8	(\$49,753)	(\$13,765)
CZ02	PG&E	-45,916	3868	6.1	-5%	(\$22,722)	(\$77,212)	(\$26,394)	0.3	0.9	(\$54,490)	(\$3,672)
CZ03	PG&E	-34,656	3142	6.0	-6%	(\$38,261)	(\$45,796)	(\$25,153)	0.8	1.5	(\$7,535)	\$13,108
CZ04	PG&E	-43,248	3759	6.3	-3%	(\$15,229)	(\$56,932)	(\$18,996)	0.3	0.8	(\$41,703)	(\$3,767)
CZ04-2	CPAU	-43,248	3759	6.3	-3%	(\$15,229)	(\$5,298)	(\$18,996)	2.9	0.8	\$9,932	(\$3,767)
CZ05	PG&E	-37,068	3240	5.4	-6%	(\$40,434)	(\$38,330)	(\$29,544)	1.1	1.4	\$2,104	\$10,890
CZ06	SCE	-22,805	2117	4.0	-2%	(\$30,237)	\$39,812	(\$9,594)	>1	3.2	\$70,050	\$20,644
CZ06-2	LADWP	-22,805	2117	4.0	-2%	(\$30,237)	\$35,414	(\$9,594)	>1	3.2	\$65,651	\$20,644
CZ07	SDG&E	-7,646	950	2.5	1%	(\$22,564)	\$86,159	\$6,062	>1	>1	\$108,722	\$28,625
CZ08	SCE	-9,761	1219	3.2	1%	(\$18,443)	\$37,375	\$8,305	>1	>1	\$55,818	\$26,748
CZ08-2	LADWP	-9,761	1219	3.2	1%	(\$18,443)	\$29,973	\$8,305	>1	>1	\$48,416	\$26,748
CZ09	SCE	-12,211	1605	4.5	2%	(\$10,282)	\$46,335	\$13,364	>1	>1	\$56,617	\$23,646
CZ09-2	LADWP	-12,211	1605	4.5	2%	(\$10,282)	\$37,030	\$13,364	>1	>1	\$47,313	\$23,646
CZ10	SDG&E	-21,642	2053	3.7	-1%	\$11,340	\$84,901	(\$3,818)	7.5	-0.3	\$73,561	(\$15,158)
CZ10-2	SCE	-21,642	2053	3.7	-1%	\$11,340	\$40,659	(\$3,818)	3.6	-0.3	\$29,319	(\$15,158)
CZ11	PG&E	-32,052	3062	5.9	0%	(\$8,519)	(\$29,013)	(\$3,007)	0.3	2.8	(\$20,495)	\$5,512
CZ12	PG&E	-36,926	3327	6.0	-1%	(\$15,443)	(\$48,955)	(\$9,546)	0.3	1.6	(\$33,511)	\$5,898
CZ12-2	SMUD	-36,926	3327	6.0	-1%	(\$15,443)	\$9,916	(\$9,546)	>1	1.6	\$25,359	\$5 <i>,</i> 898
CZ13	PG&E	-31,253	3063	6.3	0%	(\$7,257)	(\$27,782)	(\$3,055)	0.3	2.4	(\$20,525)	\$4,202
CZ14	SDG&E	-36,402	3266	5.7	-1%	(\$10,651)	\$61 <i>,</i> 605	(\$9,832)	>1	1.1	\$72,256	\$819
CZ14-2	SCE	-36,402	3266	5.7	-1%	(\$10,651)	\$30,625	(\$9,832)	>1	1.1	\$41,276	\$819
CZ15	SCE	-4,775	1537	6.0	3%	\$28,927	\$52 <i>,</i> 955	\$32,790	1.8	1.1	\$24,028	\$3,863
CZ16	PG&E	-90,949	6185	6.5	-26%	(\$8,467)	(\$194,115)	(\$142,041)	0.0	0.1	(\$185,648)	(\$133,574)
CZ16-2	LADWP	-90,949	6185	6.5	-26%	(\$8,467)	\$37,127	(\$142,041)	>1	0.1	\$45,594	(\$133,574)

Figure 23. Cost Effectiveness for Medium Office Package 3C – All-Electric + HE

#### 4.2 Cost Effectiveness Results – Medium Retail

Figure 24 through Figure 30 contain the cost-effectiveness findings for the Medium Retail packages. Notable findings for each package include:

- 1A Mixed-Fuel + EE:
  - Packages achieve +9% to +18% compliance margins depending on climate zone, and all packages are cost effective in all climate zones.
  - Incremental package costs vary across climate zones because of the HVAC system size in some climate zones are small enough (<54 kBtu/h) to have the economizers measure applied.</li>
  - B/C ratios are high compared to other prototypes because the measures applied are primarily low-cost lighting measures. This suggests room for the inclusion of other energy efficiency measures with lower cost-effectiveness to achieve even higher compliance margins for a cost effective package.
- 1B Mixed-Fuel + EE + PV + B: All packages are cost effective using both the On-Bill and TDV approach, except On-Bill in LADWP territory. Adding PV and battery to the efficiency packages reduces the B/C ratio but increases overall NPV savings.
- 1C Mixed-fuel + HE: Packages achieve +1 to +4% compliance margins depending on climate zone, and packages are cost effective in all climate zones except CZs 1, 3 and 5 using the TDV approach.
- 2 All-Electric Federal Code-Minimum Reference:
  - Packages achieve between -12% and +1% compliance margins depending on climate zone.
  - Packages achieve positive savings using both the On-Bill and TDV approaches in CZs 6-10 and 14-15. Packages do not achieve On-Bill or TDV savings in most of PG&E territory (CZs 1, 2, 4, 5, 12-13, and 16).
  - Packages are cost effective in all climate zones except CZ16.
  - All incremental costs are negative primarily due to elimination of natural gas infrastructure.
- **3A All-Electric** + **EE:** Packages achieve between +3% and +16% compliance margins depending on climate zone. All packages are cost effective in all climate zones.
- 3B All-Electric + EE + PV + B: All packages are cost effective using both the On-Bill and TDV approaches, except On-Bill in LADWP territory. Adding PV and Battery to the efficiency package reduces the B/C ratio but increases overall NPV savings.
- 3C All-Electric + HE: Packages achieve between -8% and +5% compliance margins depending on climate zone, and packages are cost effective using both On-Bill and TDV approaches in all CZs except CZs 1 and 16.

	Figure 24. Cost Effectiveness for Medium Retail Package IA – Mixed-Fuel + EE												
cz	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp- liance Margin	Incremental Package Cost	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On-bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)	
Package	1A: Mixed	l Fuel + EE											
CZ01	PG&E	15,210	1209	11.10	18%	\$2,712	\$68,358	\$60,189	25.2	22.2	\$65,646	\$57,478	
CZ02	PG&E	18,885	613	8.73	13%	\$5,569	\$76,260	\$59,135	13.7	10.6	\$70,691	\$53 <i>,</i> 566	
CZ03	PG&E	18,772	462	7.87	16%	\$5,569	\$66,813	\$57,135	12.0	10.3	\$61,244	\$51,566	
CZ04	PG&E	19,100	439	7.84	14%	\$5,569	\$75,989	\$58,036	13.6	10.4	\$70,420	\$52,467	
CZ04-2	CPAU	19,100	439	7.84	14%	\$5,569	\$51,556	\$58,036	9.3	10.4	\$45,987	\$52,467	
CZ05	PG&E	17,955	415	7.41	16%	\$5 <i>,</i> 569	\$63,182	\$55,003	11.3	9.9	\$57,613	\$49 <i>,</i> 435	
CZ05-2	SCG	17,955	415	7.41	16%	\$5 <i>,</i> 569	\$61,810	\$55,003	11.1	9.9	\$56,241	\$49 <i>,</i> 435	
CZ06	SCE	12,375	347	5.54	10%	\$2,712	\$31,990	\$41,401	11.8	15.3	\$29,278	\$38,689	
CZ06-2	LADWP	12,375	347	5.54	10%	\$2,712	\$21,667	\$41,401	8.0	15.3	\$18,956	\$38,689	
CZ07	SDG&E	17,170	136	5.65	13%	\$5,569	\$73,479	\$49,883	13.2	9.0	\$67,910	\$44,314	
CZ08	SCE	12,284	283	5.15	10%	\$2,712	\$30,130	\$41,115	11.1	15.2	\$27,419	\$38,403	
CZ08-2	LADWP	12,284	283	5.15	10%	\$2,712	\$20,243	\$41,115	7.5	15.2	\$17,531	\$38,403	
CZ09	SCE	13,473	302	5.51	10%	\$5,569	\$32,663	\$46,126	5.9	8.3	\$27,094	\$40,557	
CZ09-2	LADWP	13,473	302	5.51	10%	\$5,569	\$22,435	\$46,126	4.0	8.3	\$16,866	\$40,557	
CZ10	SDG&E	19,873	267	6.99	12%	\$5,569	\$83,319	\$58,322	15.0	10.5	\$77,751	\$52,753	
CZ10-2	SCE	19,873	267	6.99	12%	\$5,569	\$39,917	\$58,322	7.2	10.5	\$34,348	\$52,753	
CZ11	PG&E	21,120	578	9.14	13%	\$5,569	\$86,663	\$67,485	15.6	12.1	\$81,095	\$61,916	
CZ12	PG&E	20,370	562	8.85	13%	\$5,569	\$81,028	\$64,409	14.6	11.6	\$75,459	\$58 <i>,</i> 840	
CZ12-2	SMUD	20,370	562	8.85	13%	\$5 <i>,</i> 569	\$44,991	\$64,409	8.1	11.6	\$39,422	\$58 <i>,</i> 840	
CZ13	PG&E	22,115	620	9.98	15%	\$2,712	\$109,484	\$83,109	40.4	30.6	\$106,772	\$80,398	
CZ14	SDG&E	25,579	406	9.38	13%	\$2,712	\$116,354	\$80,055	42.9	29.5	\$113,643	\$77 <i>,</i> 343	
CZ14-2	SCE	26,327	383	9.42	13%	\$2,712	\$57,290	\$83,065	21.1	30.6	\$54,578	\$80,354	
CZ15	SCE	26,433	169	8.35	12%	\$2,712	\$57,152	\$79,506	21.1	29.3	\$54,440	\$76,794	
CZ16	PG&E	15,975	752	8.72	13%	\$2,712	\$72,427	\$55,025	26.7	20.3	\$69,715	\$52,314	
CZ16-2	LADWP	15,975	752	8.72	13%	\$2,712	\$31,906	\$55 <i>,</i> 025	11.8	20.3	\$29,194	\$52,314	

Figure 24. Cost Effectiveness for Medium Retail Package 1A - Mixed-Fuel + EE

		igui c 25	- COSt LIIC	unvenes	s loi meulu	m Retail Pac	Rage ID N	IIACU I U			,	
CZ	IOU territory	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (tons)	Compliance Margin (%)	Incremental Package Cost	Lifecycle Energy Cost Savings	\$-TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Mixed F	uel + PV + Batte	ry										
CZ01	PG&E	158,584	1209	40.79	18%	\$277 <i>,</i> 383	\$509,092	\$383,683	1.8	1.4	\$231,709	\$106,300
CZ02	PG&E	189,400	613	43.75	13%	\$280,240	\$590,043	\$465,474	2.1	1.7	\$309,803	\$185,234
CZ03	PG&E	191,016	462	43.52	16%	\$280,240	\$578,465	\$452,795	2.1	1.6	\$298,224	\$172,554
CZ04	PG&E	195,014	439	44.14	14%	\$280,240	\$605,369	\$480,989	2.2	1.7	\$325,129	\$200,748
CZ04-2	CPAU	195,014	439	44.14	14%	\$280,240	\$451,933	\$480,989	1.6	1.7	\$171,693	\$200,748
CZ05	PG&E	196,654	415	44.30	16%	\$280,240	\$589,771	\$464,749	2.1	1.7	\$309,530	\$184,509
CZ05-2	SCG	196,654	415	44.30	16%	\$280,240	\$588,407	\$464,749	2.1	1.7	\$308,167	\$184,509
CZ06	SCE	185,903	347	41.61	10%	\$277,383	\$322,495	\$456,596	1.2	1.6	\$45,111	\$179,213
CZ06-2	LA	185,903	347	41.61	10%	\$277,383	\$191,428	\$456,596	0.7	1.6	(\$85,955)	\$179,213
CZ07	SDG&E	197,650	136	43.24	13%	\$280,240	\$496,786	\$477,582	1.8	1.7	\$216,545	\$197,342
CZ08	SCE	187,869	283	41.48	10%	\$277,383	\$326,810	\$478,132	1.2	1.7	\$49,427	\$200,749
CZ08-2	LA	187,869	283	41.48	10%	\$277,383	\$190,379	\$478,132	0.7	1.7	(\$87,004)	\$200,749
CZ09	SCE	191,399	302	42.32	10%	\$280,240	\$334,869	\$472,770	1.2	1.7	\$54,629	\$192,530
CZ09-2	LA	191,399	302	42.32	10%	\$280,240	\$201,759	\$472,770	0.7	1.7	(\$78,481)	\$192,530
CZ10	SDG&E	200,033	267	44.01	12%	\$280,240	\$547,741	\$472,880	2.0	1.7	\$267,501	\$192,640
CZ10-2	SCE	200,033	267	44.01	12%	\$280,240	\$340,822	\$472,880	1.2	1.7	\$60,582	\$192,640
CZ11	PG&E	192,846	578	44.07	13%	\$280,240	\$582,969	\$490,855	2.1	1.8	\$302,728	\$210,615
CZ12	PG&E	191,720	562	43.70	13%	\$280,240	\$586,836	\$485,076	2.1	1.7	\$306,596	\$204,836
CZ12-2	SMUD	191,720	562	43.70	13%	\$280,240	\$319,513	\$485,076	1.1	1.7	\$39,273	\$204,836
CZ13	PG&E	195,031	620	45.19	15%	\$277,383	\$605,608	\$486,285	2.2	1.8	\$328,225	\$208,901
CZ14	SDG&E	217,183	406	47.86	13%	\$277,383	\$559,148	\$534,915	2.0	1.9	\$281,765	\$257,532
CZ14-2	SCE	217,927	383	47.91	14%	\$277,383	\$354,757	\$538 <i>,</i> 058	1.3	1.9	\$77,373	\$260,674
CZ15	SCE	208,662	169	44.51	12%	\$277,383	\$338,772	\$496,107	1.2	1.8	\$61,389	\$218,724
CZ16	PG&E	210,242	752	48.76	13%	\$277,383	\$608,779	\$490,262	2.2	1.8	\$331,395	\$212,879
CZ16-2	LA	210,242	752	48.76	13%	\$277,383	\$207,160	\$490,262	0.7	1.8	(\$70,223)	\$212,879

Figure 25. Cost Effectiveness for Medium Retail Package 1B – Mixed-Fuel + EE + PV + B

	Figure 26. Cost Effectiveness for Medium Retail Package 1C – Mixed-Fuel + HE												
		Elec		GHG	Comp-		Lifecycle		B/C	B/C			
		Savings	Gas Savings	Reductions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV	
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)	
Package	1C: Mixed	l Fuel + HE											
CZ01	PG&E	57	346	2.04	2%	\$9,006	\$6,301	\$6,065	0.7	0.7	(\$2,705)	(\$2,941)	
CZ02	PG&E	2,288	229	2.01	3%	\$9,726	\$23,016	\$13,998	2.4	1.4	\$13,291	\$4,273	
CZ03	PG&E	1,087	171	1.31	2%	\$9,063	\$6,782	\$7,186	0.7	0.8	(\$2,282)	(\$1,877)	
CZ04	PG&E	1,862	159	1.46	3%	\$9,004	\$17,891	\$10,878	2.0	1.2	\$8,887	\$1,874	
CZ04-2	CPAU	1,862	159	1.46	3%	\$9,004	\$7,821	\$10,878	0.9	1.2	(\$1,182)	\$1,874	
CZ05	PG&E	664	162	1.11	1%	\$9,454	\$5,119	\$4,725	0.5	0.5	(\$4,335)	(\$4,729)	
CZ05-2	SCG	664	162	1.11	1%	\$9,454	\$4,558	\$4,725	0.5	0.5	(\$4,896)	(\$4,729)	
CZ06	SCE	2,648	90	1.24	3%	\$8,943	\$11,646	\$11,427	1.3	1.3	\$2,703	\$2,484	
CZ06-2	LADWP	2,648	90	1.24	3%	\$8,943	\$7,329	\$11,427	0.8	1.3	(\$1,614)	\$2,484	
CZ07	SDG&E	2,376	49	0.95	2%	\$9,194	\$20,103	\$9,779	2.2	1.1	\$10,909	\$585	
CZ08	SCE	2,822	72	1.20	3%	\$9,645	\$11,989	\$12,877	1.2	1.3	\$2,344	\$3,233	
CZ08-2	LADWP	2,822	72	1.20	3%	\$9,645	\$7,427	\$12,877	0.8	1.3	(\$2,218)	\$3,233	
CZ09	SCE	4,206	88	1.73	4%	\$10,446	\$16,856	\$18,745	1.6	1.8	\$6,410	\$8,299	
CZ09-2	LADWP	4,206	88	1.73	4%	\$10,446	\$10,604	\$18,745	1.0	1.8	\$158	\$8,299	
CZ10	SDG&E	4,226	119	1.88	4%	\$9,514	\$36,412	\$19,008	3.8	2.0	\$26,898	\$9 <i>,</i> 494	
CZ10-2	SCE	4,226	119	1.88	4%	\$9,514	\$17,094	\$19,008	1.8	2.0	\$7,580	\$9,494	
CZ11	PG&E	4,188	225	2.56	4%	\$10,479	\$31,872	\$22,393	3.0	2.1	\$21,392	\$11,913	
CZ12	PG&E	3,675	214	2.34	4%	\$10,409	\$29,653	\$20,525	2.8	2.0	\$19,243	\$10,115	
CZ12-2	SMUD	3,675	214	2.34	4%	\$10,409	\$12,823	\$20,525	1.2	2.0	\$2,414	\$10,115	
CZ13	PG&E	4,818	180	2.46	4%	\$9,809	\$34,149	\$23,623	3.5	2.4	\$24,340	\$13,814	
CZ14	SDG&E	6,439	153	2.71	4%	\$12,103	\$44,705	\$26,348	3.7	2.2	\$32,601	\$14,245	
CZ14-2	SCE	6,439	153	2.71	4%	\$12,103	\$22,032	\$26,348	1.8	2.2	\$9,929	\$14,245	
CZ15	SCE	8,802	48	2.76	5%	\$12,534	\$25,706	\$31,402	2.1	2.5	\$13,171	\$18,868	
CZ16	PG&E	2,316	390	2.97	3%	\$11,999	\$22,663	\$13,888	1.9	1.2	\$10,665	\$1,890	
CZ16-2	LADWP	2,316	390	2.97	3%	\$11,999	\$11,921	\$13,888	1.0	1.2	(\$78)	\$1,890	

Figure 26. Cost Effectiveness for Medium Retail Package 1C - Mixed-Fuel + HE

Figure 27. Cost Effectiveness for Medium Retail Package 2 – All-Electric Federal Code Minimum											mum	
					•				-			
		Savings	Savings	Reductions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost*	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Package	2: All-Elec	tric Federal C	ode Minimum									
CZ01	PG&E	-29,155	3893	13.85	-4.1%	(\$23,048)	(\$8,333)	(\$13,910)	2.8	1.7	\$14,715	\$9,138
CZ02	PG&E	-21,786	2448	7.49	-1.0%	(\$27,464)	(\$16,476)	(\$4,483)	1.7	6.1	\$10,987	\$22,981
CZ03	PG&E	-14,583	1868	6.26	-0.4%	(\$24,111)	\$263	(\$1,450)	>1	16.6	\$24,374	\$22,661
CZ04	PG&E	-14,186	1706	5.30	-0.1%	(\$22,896)	(\$8,753)	(\$220)	2.6	104.2	\$14,143	\$22,676
CZ04-2	CPAU	-14,186	1706	5.30	-0.1%	(\$22,896)	\$12,493	(\$220)	>1	104.2	\$35,389	\$22,676
CZ05	PG&E	-14,334	1746	5.47	-1.2%	(\$25,507)	(\$1,567)	(\$4 <i>,</i> 197)	16.3	6.1	\$23,940	\$21,309
CZ06	SCE	-7,527	1002	3.32	0.5%	(\$21,762)	\$18,590	\$1,868	>1	>1	\$40,351	\$23,630
CZ06-2	LADWP	-7,527	1002	3.32	0.5%	(\$21,762)	\$19,309	\$1,868	>1	>1	\$41,071	\$23,630
CZ07	SDG&E	-3,812	522	1.76	0.3%	(\$23,762)	\$54,345	\$1,318	>1	>1	\$78,107	\$25,080
CZ08	SCE	-5,805	793	2.70	0.4%	(\$26,922)	\$16,735	\$1,846	>1	>1	\$43,658	\$28,768
CZ08-2	LADWP	-5,805	793	2.70	0.4%	(\$26,922)	\$17,130	\$1,846	>1	>1	\$44,052	\$28,768
CZ09	SCE	-7,241	970	3.32	0.4%	(\$32,113)	\$18,582	\$1,978	>1	>1	\$50,695	\$34,091
CZ09-2	LADWP	-7,241	970	3.32	0.4%	(\$32,113)	\$19,089	\$1,978	>1	>1	\$51,202	\$34,091
CZ10	SDG&E	-10,336	1262	3.99	0.1%	(\$27,272)	\$54,453	\$505	>1	>1	\$81,724	\$27,777
CZ10-2	SCE	-10,336	1262	3.99	0.1%	(\$27,272)	\$20,996	\$505	>1	>1	\$48,268	\$27,777
CZ11	PG&E	-19,251	2415	7.95	0.5%	(\$32,202)	(\$7,951)	\$2,615	4.1	>1	\$24,251	\$34,817
CZ12	PG&E	-19,471	2309	7.28	-0.1%	(\$32,504)	(\$14,153)	(\$461)	2.3	70.4	\$18,351	\$32,042
CZ12-2	SMUD	-19,471	2309	7.28	-0.1%	(\$32,504)	\$12,939	(\$461)	>1	70.4	\$45,443	\$32,042
CZ13	PG&E	-16,819	1983	6.15	-0.4%	(\$28,158)	(\$10,575)	(\$2,022)	2.7	13.9	\$17,582	\$26,136
CZ14	SDG&E	-13,208	1672	5.44	0.7%	(\$26,656)	\$41,117	\$4,461	>1	>1	\$67,772	\$31,117
CZ14-2	SCE	-13,208	1672	5.44	0.7%	(\$26,656)	\$18,467	\$4,461	>1	>1	\$45,123	\$31,117
CZ15	SCE	-2,463	518	2.14	0.9%	(\$29,544)	\$16,796	\$5,823	>1	>1	\$46,339	\$35,367
CZ16	PG&E	-41,418	4304	13.23	-12.2%	(\$25,771)	(\$49,862)	(\$52,542)	0.5	0.5	(\$24,091)	(\$26,771)
CZ16-2	LADWP	-41,418	4304	13.23	-12.2%	(\$25,771)	\$39,319	(\$52,542)	>1	0.5	\$65,090	(\$26,771)

Figure 27. Cost Effectiveness for Medium Retail Package 2 – All-Electric Federal Code Minimum

* The Incremental Package Cost is the addition of the incremental HVAC and water heating equipment costs from Figure 11 and the natural gas infrastructure incremental cost savings of \$28,027 (see section 3.3.2.2).

Figure 28. Cost Effectiveness for Medium Retail Package 3A – All-Electric + EE       Elec     GHG     Comp-     Lifecycle     B/C     B/C												
		Elec		GHG	Comp-		Lifecycle		B/C	B/C		
		Savings	Gas Savings	Reductions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Package	3A: All-Ele	ectric + EE										
CZ01	PG&E	-5,478	3893	20.64	15%	(\$20,336)	\$63,593	\$51,224	>1	>1	\$83,929	\$71,560
CZ02	PG&E	2,843	2448	14.58	13%	(\$21,895)	\$74,997	\$56,893	>1	>1	\$96,892	\$78,788
CZ03	PG&E	7,791	1868	12.73	16%	(\$18,542)	\$68,968	\$56,586	>1	>1	\$87,511	\$75,128
CZ04	PG&E	8,572	1706	11.89	14%	(\$17,327)	\$81,957	\$57,904	>1	>1	\$99,284	\$75,231
CZ04-2	CPAU	8,572	1706	11.89	14%	(\$17,327)	\$63,082	\$57 <i>,</i> 904	>1	>1	\$80,408	\$75,231
CZ05	PG&E	6,973	1746	11.68	15%	(\$19,938)	\$63,677	\$51 <i>,</i> 949	>1	>1	\$83,615	\$71,887
CZ06	SCE	7,431	1002	7.72	11%	(\$19,050)	\$47,072	\$42,610	>1	>1	\$66,122	\$61,660
CZ06-2	LADWP	7,431	1002	7.72	11%	(\$19,050)	\$37,078	\$42,610	>1	>1	\$56,128	\$61,660
CZ07	SDG&E	14,350	522	6.98	13%	(\$18,193)	\$127,461	\$50,828	>1	>1	\$145,654	\$69,021
CZ08	SCE	8,524	793	6.90	10%	(\$24,210)	\$43,679	\$42,258	>1	>1	\$67,890	\$66,468
CZ08-2	LADWP	8,524	793	6.90	10%	(\$24,210)	\$34,038	\$42,258	>1	>1	\$58,248	\$66,468
CZ09	SCE	8,403	970	7.81	10%	(\$26,545)	\$47,819	\$47,356	>1	>1	\$74,364	\$73,901
CZ09-2	LADWP	8,403	970	7.81	10%	(\$26,545)	\$37,934	\$47,356	>1	>1	\$64,478	\$73,901
CZ10	SDG&E	11,737	1262	10.23	12%	(\$21,703)	\$137,436	\$58,761	>1	>1	\$159,139	\$80,464
CZ10-2	SCE	11,737	1262	10.23	12%	(\$21,703)	\$58,257	\$58,761	>1	>1	\$79,959	\$80,464
CZ11	PG&E	5,892	2415	15.13	12%	(\$26,633)	\$85,256	\$65 <i>,</i> 859	>1	>1	\$111,889	\$92,492
CZ12	PG&E	5,548	2309	14.46	12%	(\$26,935)	\$80,631	\$63,903	>1	>1	\$107,566	\$90,838
CZ12-2	SMUD	5,548	2309	14.46	12%	(\$26,935)	\$59,311	\$63,903	>1	>1	\$86,246	\$90,838
CZ13	PG&E	10,184	1983	14.15	14%	(\$25,446)	\$110,105	\$80,604	>1	>1	\$135,551	\$106,050
CZ14	SDG&E	16,583	1672	13.83	15%	(\$23,944)	\$171,200	\$88,471	>1	>1	\$195,145	\$112,415
CZ14-2	SCE	16,583	1672	13.83	15%	(\$23,944)	\$656,178	\$159,604	>1	>1	\$680,122	\$183,548
CZ15	SCE	23,642	518	9.44	12%	(\$26,832)	\$65,573	\$76,781	>1	>1	\$92,404	\$103,612
CZ16	PG&E	-18,232	4304	19.80	3%	(\$23,059)	\$38,796	\$14,152	>1	>1	\$61,855	\$37,211
CZ16-2	LADWP	-18,232	4304	19.80	3%	(\$23,059)	\$67,793	\$14,152	>1	>1	\$90,852	\$37,211

Figure 28. Cost Effectiveness for Medium Retail Package 3A - All-Electric + EE

	1	igui c 27	- COSt LIIC	unvenes	s loi meulu	m Retail Pat	Rage JD P	m-Bietu		IIVIL		
cz	IOU territory	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (tons)	Compliance Margin (%)	Incremental Package Cost	Lifecycle Energy Cost Savings	\$-TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
All-Elect	ric + PV + B											
CZ01	PG&E	137,956	3893	50.51	15%	\$254,335	\$510,831	\$374,432	2.0	1.5	\$256,496	\$120,097
CZ02	PG&E	173,387	2448	49.87	13%	\$252,777	\$590,112	\$463,431	2.3	1.8	\$337,336	\$210,654
CZ03	PG&E	180,055	1868	48.55	16%	\$256,129	\$585,861	\$452 <i>,</i> 399	2.3	1.8	\$329,732	\$196,270
CZ04	PG&E	184,499	1706	48.38	14%	\$257,345	\$608,814	\$481,011	2.4	1.9	\$351,470	\$223,666
CZ04-2	CPAU	184,499	1706	48.38	14%	\$257,345	\$465,690	\$481,011	1.8	1.9	\$208,345	\$223,666
CZ05	PG&E	185,690	1746	48.84	15%	\$254,734	\$600,933	\$461,804	2.4	1.8	\$346,199	\$207,071
CZ06	SCE	180,968	1002	43.91	11%	\$255,621	\$335,909	\$457 <i>,</i> 959	1.3	1.8	\$80,288	\$202,337
CZ06-2	LADWP	180,968	1002	43.91	11%	\$255,621	\$206,021	\$457 <i>,</i> 959	0.8	1.8	(\$49,601)	\$202,337
CZ07	SDG&E	194,837	522	44.67	13%	\$256,478	\$550,714	\$478,637	2.1	1.9	\$294,236	\$222,159
CZ08	SCE	184,120	793	43.32	10%	\$250,461	\$340,301	\$479,406	1.4	1.9	\$89,840	\$228,945
CZ08-2	LADWP	184,120	793	43.32	10%	\$250,461	\$203,813	\$479,406	0.8	1.9	(\$46,648)	\$228,945
CZ09	SCE	186,346	970	44.77	10%	\$248,127	\$349,524	\$474,176	1.4	1.9	\$101,397	\$226,049
CZ09-2	LADWP	186,346	970	44.77	10%	\$248,127	\$216,654	\$474,176	0.9	1.9	(\$31,473)	\$226,049
CZ10	SDG&E	191,923	1262	47.46	12%	\$252,969	\$593,514	\$473,605	2.3	1.9	\$340,545	\$220,636
CZ10-2	SCE	191,923	1262	47.46	12%	\$252,969	\$356,958	\$473,605	1.4	1.9	\$103,989	\$220,636
CZ11	PG&E	177,639	2415	50.26	12%	\$248,039	\$585,689	\$489,317	2.4	2.0	\$337,650	\$241,278
CZ12	PG&E	176,919	2309	49.46	12%	\$247,736	\$591,104	\$484,702	2.4	2.0	\$343,368	\$236,966
CZ12-2	SMUD	176,919	2309	49.46	12%	\$247,736	\$335,286	\$484,702	1.4	2.0	\$87,550	\$236,966
CZ13	PG&E	183,129	1983	49.48	14%	\$249,226	\$608,560	\$483,670	2.4	1.9	\$359,334	\$234,444
CZ14	SDG&E	208,183	1672	52.54	15%	\$250,727	\$593,232	\$544,079	2.4	2.2	\$342,505	\$293,351
CZ14-2	SCE	264,589	1672	80.97	15%	\$250,727	\$656,178	\$580,403	2.6	2.3	\$405,450	\$329,676
CZ15	SCE	205,869	518	45.67	12%	\$247,840	\$347,125	\$493,339	1.4	2.0	\$99,285	\$245,499
CZ16	PG&E	176,114	4304	60.13	3%	\$251,612	\$567,822	\$446,795	2.3	1.8	\$316,210	\$195,183
CZ16-2	LADWP	176,114	4304	60.13	3%	\$251,612	\$241,757	\$446,795	1.0	1.8	(\$9,856)	\$195,183

Figure 29. Cost Effectiveness for Medium Retail Package 3B - All-Electric + EE + PV + B

	Figure 30. Lost Effectiveness for Medium Retail Package 3L – All-Electric + HE											
		Elec	Gas	GHG	Comp-		Lifecycle		B/C	B/C		
		Savings	Savings	Reductions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Package	3C: All-Ele	ectric + HE										
CZ01	PG&E	-26,199	3893	14.76	-2%	(\$587)	\$369	(\$5 <i>,</i> 757)	>1	0.1	\$956	(\$5 <i>,</i> 170)
CZ02	PG&E	-16,989	2448	8.95	3%	(\$4,211)	\$12,323	\$11,251	>1	>1	\$16,534	\$15,463
CZ03	PG&E	-11,703	1868	7.15	2%	(\$2,213)	\$9,159	\$6,944	>1	>1	\$11,372	\$9,157
CZ04	PG&E	-10,675	1706	6.37	3%	(\$316)	\$14,317	\$11,383	>1	>1	\$14,633	\$11,700
CZ04-2	CPAU	-10,675	1706	6.37	3%	(\$316)	\$20,599	\$11,383	>1	>1	\$20,915	\$11,700
CZ05	PG&E	-11,969	1746	6.19	1%	(\$2,298)	\$5,592	\$1,824	>1	>1	\$7,890	\$4,122
CZ06	SCE	-3,919	1002	4.35	3%	\$1,418	\$29,751	\$13,734	21.0	9.7	\$28,333	\$12,316
CZ06-2	LADWP	-3,919	1002	4.35	3%	\$1,418	\$25,891	\$13,734	18.3	9.7	\$24,473	\$12,316
CZ07	SDG&E	-955	522	2.59	3%	(\$710)	\$74,518	\$11,229	>1	>1	\$75,227	\$11,939
CZ08	SCE	-2,224	793	3.74	4%	(\$3,719)	\$28,067	\$15,075	>1	>1	\$31,785	\$18,793
CZ08-2	LADWP	-2,224	793	3.74	4%	(\$3,719)	\$23,848	\$15,075	>1	>1	\$27,566	\$18,793
CZ09	SCE	-2,089	970	4.84	4%	(\$8,268)	\$34,648	\$21,162	>1	>1	\$42,916	\$29,430
CZ09-2	LADWP	-2,089	970	4.84	4%	(\$8,268)	\$28,837	\$21,162	>1	>1	\$37,105	\$29,430
CZ10	SDG&E	-4,868	1262	5.58	4%	(\$5,222)	\$91,136	\$20,041	>1	>1	\$96 <i>,</i> 358	\$25,263
CZ10-2	SCE	-4,868	1262	5.58	4%	(\$5,222)	\$37,200	\$20,041	>1	>1	\$42,422	\$25,263
CZ11	PG&E	-12,651	2415	9.95	5%	(\$8,217)	\$29,015	\$26,172	>1	>1	\$37,232	\$34,389
CZ12	PG&E	-13,479	2309	9.10	4%	(\$9,239)	\$20,839	\$21,228	>1	>1	\$30,078	\$30,466
CZ12-2	SMUD	-13,479	2309	9.10	4%	(\$9,239)	\$26,507	\$21,228	>1	>1	\$35,746	\$30,466
CZ13	PG&E	-9,935	1983	8.23	4%	(\$4,975)	\$30,123	\$24,063	>1	>1	\$35,097	\$29,037
CZ14	SDG&E	-5,407	1672	7.71	5%	\$121	\$88,669	\$31,029	732.5	256.3	\$88,547	\$30,908
CZ14-2	SCE	-5,407	1672	7.71	5%	\$121	\$40,709	\$31,029	336.3	256.3	\$40,588	\$30,908
CZ15	SCE	6,782	518	4.77	6%	(\$2,508)	\$42,238	\$37 <i>,</i> 379	>1	>1	\$44,745	\$39,887
CZ16	PG&E	-35,297	4304	15.03	-8%	\$1,102	(\$21,384)	(\$33 <i>,</i> 754)	-19.4	-30.6	(\$22,486)	(\$34,856)
CZ16-2	LADWP	-35,297	4304	15.03	-8%	\$1,102	\$48,625	(\$33,754)	44.1	-30.6	\$47,523	(\$34,856)

Figure 30. Cost Effectiveness for Medium Retail Package 3C - All-Electric + HE

#### 4.3 Cost Effectiveness Results – Small Hotel

The following issues must be considered when reviewing the Small Hotel results:

- The Small Hotel is a mix of residential and nonresidential space types, which results in different occupancy and load profiles than the office and retail prototypes.
- A potential laundry load has not been examined for the Small Hotel. The Reach Code Team attempted to characterize and apply the energy use intensity of laundry loads in hotels but did not find readily available data for use. Thus, cost effectiveness including laundry systems has not been examined.
- Contrary to the office and retail prototypes, the Small Hotel baseline water heater is a central gas storage type. Current compliance software cannot model central heat pump water heater systems with recirculation serving guest rooms.²³ The only modeling option for heat pump water heating is individual water heaters at each guest room even though this is a very uncommon configuration. TRC modeled individual heat pump water heaters but as a proxy for central heat pump water heating performance, but integrated costs associated with tank and controls for central heat pump water heating into cost effectiveness calculations.
- Assuming central heat pump water heating also enabled the inclusion of a solar hot water thermal collection system, which was a key efficiency measure to achieving compliance in nearly all climate zones.

Figure 31 through Figure 37 contain the cost-effectiveness findings for the Small Hotel packages. Notable findings for each package include:

- 1A Mixed-Fuel + EE:
  - Packages achieve +3 to +10% compliance margins depending on climate zone.
  - Packages are cost effective using either the On-Bill or TDV approach in all CZs except 12 (using SMUD rates), 14 (using SCE rates), and 15 (with SCE rates).
  - The hotel is primarily guest rooms with a smaller proportion of nonresidential space. Thus, the inexpensive VAV minimum flow measure and lighting measures that have been applied to the entirety of the Medium Office and Medium Retail prototypes have a relatively small impact in the Small Hotel.²⁴
- 1B Mixed-Fuel + EE + PV + B: Packages are cost effective using either the On-Bill or TDV approach in all CZs. Solar PV generally increases cost effectiveness compared to efficiency-only, particularly when using an NPV metric.
- 1C Mixed-Fuel + HE: Packages achieve +2 to +5% compliance margins depending on climate zone. The package is cost effective using the On-Bill approach in a minority of climate zones, and cost effective using TDV approach only in CZ15.

²⁴ Title 24 requires that hotel/motel guest room lighting design comply with the residential lighting standards, which are all mandatory and are not awarded compliance credit for improved efficacy.



²³ The IOUs and CEC are actively working on including central heat pump water heater modeling with recirculation systems in early 2020.

- 2 All-Electric Federal Code-Minimum Reference:
  - This all-electric design does not comply with the Energy Commission's TDV performance budget. Packages achieve between -50% and -4% compliance margins depending on climate zone. This may be because the modeled HW system is constrained to having an artificially low efficiency to avoid triggering federal pre-emption, and the heat pump space heating systems must operate overnight when operation is less efficient.
  - All packages are cost effective in all climate zones.
- 3A All-Electric + EE: Packages achieve positive compliance margins in all CZs ranging from 0% to +17%, except CZ16 which had a -18% compliance margin. All packages are cost effective in all climate zones. The improved degree of cost effectiveness outcomes in Package 3A compared to Package 1A appear to be due to the significant incremental package cost savings.
- 3B All-Electric + EE + PV + B: All packages are cost effective. Packages improve in B/C ratio when compared to 3A and increase in magnitude of overall NPV savings. PV appears to be more costeffective with higher building electricity loads.
- 3C All-Electric + HE:
  - Packages do not comply with Title 24 in all CZs except CZ15 which resulted in a +0.04% compliance margin.
  - All packages are cost effective.

			i igui e Ji.		CIIC33 101	Sinali notei	0	ПЛСС				
		Elec		GHG	Comp-		Lifecycle		B/C	B/C		
		Savings	Gas Savings	Reductions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Package	1A: Mixed	I Fuel + EE										
CZ01	PG&E	3,855	1288	5.65	9%	\$20,971	\$34,339	\$36,874	1.6	1.8	\$13,368	\$15,903
CZ02	PG&E	3,802	976	3.91	7%	\$20,971	\$26,312	\$29,353	1.3	1.4	\$5,341	\$8,381
CZ03	PG&E	4,153	1046	4.48	10%	\$20,971	\$31,172	\$35,915	1.5	1.7	\$10,201	\$14,944
CZ04	PG&E	5,007	395	0.85	6%	\$21,824	\$24,449	\$24,270	1.1	1.1	\$2,625	\$2,446
CZ04-2	CPAU	4,916	422	0.98	6%	\$21,824	\$18,713	\$24,306	0.9	1.1	(\$3,111)	\$2,483
CZ05	PG&E	3,530	1018	4.13	9%	\$20,971	\$28,782	\$34,448	1.4	1.6	\$7,810	\$13,477
CZ05-2	SCG	3,530	1018	4.13	9%	\$20,971	\$23,028	\$34,448	1.1	1.6	\$2,057	\$13,477
CZ06	SCE	5,137	418	1.16	8%	\$21,824	\$16,001	\$26,934	0.7	1.2	(\$5,823)	\$5,110
CZ06-2	LADWP	5,137	418	1.16	8%	\$21,824	\$11,706	\$26,934	0.5	1.2	(\$10,118)	\$5,110
CZ07	SDG&E	5,352	424	1.31	8%	\$21,824	\$26,699	\$27,975	1.2	1.3	\$4,876	\$6,152
CZ08	SCE	5,151	419	1.21	7%	\$21,824	\$15,931	\$23,576	0.7	1.1	(\$5 <i>,</i> 893)	\$1,752
CZ08-2	LADWP	5,151	419	1.21	7%	\$21,824	\$11,643	\$23,576	0.5	1.1	(\$10,180)	\$1,752
CZ09	SCE	5,229	406	1.16	6%	\$21,824	\$15,837	\$22,365	0.7	1.0	(\$5 <i>,</i> 987)	\$541
CZ09-2	LADWP	5,229	406	1.16	6%	\$21,824	\$11,632	\$22,365	0.5	1.0	(\$10,192)	\$541
CZ10	SDG&E	4,607	342	0.92	5%	\$21,824	\$25,506	\$22,219	1.2	1.0	\$3,683	\$396
CZ10-2	SCE	4,607	342	0.92	5%	\$21,824	\$13,868	\$22,219	0.6	1.0	(\$7,956)	\$396
CZ11	PG&E	4,801	325	0.87	4%	\$21,824	\$22,936	\$19,503	1.1	0.9	\$1,112	(\$2,321)
CZ12	PG&E	5,276	327	0.90	5%	\$21,824	\$22,356	\$21,305	1.0	0.98	\$532	(\$519)
CZ12-2	SMUD	5,276	327	0.90	5%	\$21,824	\$15,106	\$21,305	0.7	0.98	(\$6,717)	(\$519)
CZ13	PG&E	4,975	310	0.87	4%	\$21,824	\$23,594	\$19,378	1.1	0.9	\$1,770	(\$2,445)
CZ14	SDG&E	4,884	370	0.82	4%	\$21,824	\$24,894	\$21,035	1.1	0.96	\$3,070	(\$789)
CZ14-2	SCE	4,884	370	0.82	4%	\$21,824	\$14,351	\$21,035	0.7	0.96	(\$7,473)	(\$789)
CZ15	SCE	5,187	278	1.23	3%	\$21,824	\$13,645	\$18,089	0.6	0.8	(\$8,178)	(\$3,735)
CZ16	PG&E	2,992	1197	4.95	6%	\$20,971	\$27,813	\$30,869	1.3	1.5	\$6,842	\$9 <i>,</i> 898
CZ16-2	LADWP	2,992	1197	4.95	6%	\$20,971	\$19,782	\$30,869	0.9	1.5	(\$1,190)	\$9 <i>,</i> 898

Figure 31. Cost Effectiveness for Small Hotel Package 1A – Mixed-Fuel + EE

		гigu	re 32. cos	t Enectivene	ess 101, 211	all Hotel Pac	:Kage 1B - M	пхеи-гие	<u>+ CC + CC + </u>	PV + D		
		Elec	Gas	GHG	Comp-		Lifecycle		B/C	B/C		
		Savings	Savings	Reductions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Package	1B: Mixed	Fuel + EE + P	V + B	-								
CZ01	PG&E	107,694	1288	28.73	9%	\$228,341	\$366,509	\$295,731	1.6	1.3	\$138,168	\$67,390
CZ02	PG&E	130,144	976	31.14	7%	\$228,341	\$359,248	\$336,575	1.6	1.5	\$130,907	\$108,233
CZ03	PG&E	129,107	1046	31.57	10%	\$228,341	\$430,737	\$335,758	1.9	1.5	\$202,396	\$107,416
CZ04	PG&E	132,648	395	28.46	6%	\$229,194	\$355,406	\$338 <i>,</i> 455	1.6	1.5	\$126,212	\$109,262
CZ04-2	CPAU	132,556	422	28.59	6%	\$229,194	\$322,698	\$338,492	1.4	1.5	\$93,504	\$109,298
CZ05	PG&E	136,318	1018	32.73	9%	\$228,341	\$452,611	\$352,342	2.0	1.5	\$224,269	\$124,001
CZ05-2	SCG	136,318	1018	32.73	9%	\$228,341	\$446,858	\$352,342	2.0	1.5	\$218,516	\$124,001
CZ06	SCE	131,051	418	28.47	8%	\$229,194	\$217,728	\$336,843	0.9	1.5	(\$11 <i>,</i> 466)	\$107,649
CZ06-2	LADWP	131,051	418	28.47	8%	\$229,194	\$131,052	\$336,843	0.6	1.5	(\$98,142)	\$107,649
CZ07	SDG&E	136,359	424	29.63	8%	\$229,194	\$306,088	\$345,378	1.3	1.5	\$76,894	\$116,184
CZ08	SCE	132,539	419	28.85	7%	\$229,194	\$227,297	\$353,013	1.0	1.5	(\$1,897)	\$123,819
CZ08-2	LADWP	132,539	419	28.85	7%	\$229,194	\$134,739	\$353,013	0.6	1.5	(\$94,455)	\$123,819
CZ09	SCE	131,422	406	28.82	6%	\$229,194	\$230,791	\$343,665	1.0	1.5	\$1,597	\$114,471
CZ09-2	LADWP	131,422	406	28.82	6%	\$229,194	\$136,024	\$343,665	0.6	1.5	(\$93 <i>,</i> 170)	\$114,471
CZ10	SDG&E	134,146	342	29.05	5%	\$229,194	\$339,612	\$342,574	1.5	1.5	\$110,418	\$113,380
CZ10-2	SCE	134,146	342	29.05	5%	\$229,194	\$226,244	\$342,574	1.0	1.5	(\$2,949)	\$113,380
CZ11	PG&E	128,916	325	27.62	4%	\$229,194	\$352,831	\$337,208	1.5	1.5	\$123,637	\$108,014
CZ12	PG&E	131,226	327	28.04	5%	\$229,194	\$425,029	\$338,026	1.9	1.5	\$195,835	\$108,832
CZ12-2	SMUD	131,226	327	28.04	5%	\$229,194	\$213,176	\$338,026	0.9	1.5	(\$16,018)	\$108,832
CZ13	PG&E	127,258	310	27.33	4%	\$229,194	\$351,244	\$324,217	1.5	1.4	\$122,050	\$95,023
CZ14	SDG&E	147,017	370	30.96	4%	\$229,194	\$861,445	\$217,675	3.8	0.9	\$632,251	(\$11,518)
CZ14-2	SCE	147,017	370	30.96	4%	\$229,194	\$244,100	\$381,164	1.1	1.7	\$14,906	\$151,970
CZ15	SCE	137,180	278	29.12	3%	\$229,194	\$225,054	\$348,320	1.0	1.5	(\$4,140)	\$119,127
CZ16	PG&E	141,478	1197	34.60	6%	\$228,341	\$377,465	\$357,241	1.7	1.6	\$149,124	\$128,899
CZ16-2	LADWP	141,478	1197	34.60	6%	\$228,341	\$136,563	\$357,241	0.6	1.6	(\$91,778)	\$128,899

Figure 32. Cost Effectiveness for Small Hotel Package 1B - Mixed-Fuel + EE + PV + B

			liguit JJ.			r Small Hotel	0					,,
		Elec		GHG	Comp-		Lifecycle		B/C	B/C		
		Savings	Gas Savings	Reductions	liance	Incremental	Utility Cost	\$TDV	Ratio	Ratio	NPV (On-	NPV
CZ	Utility	(kWh)	(therms)	(mtons)	Margin	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Package	1C: Mixed	Fuel + HE										
CZ01	PG&E	10	632	3.76	2%	\$22,839	\$11,015	\$10,218	0.5	0.4	(\$11,823)	(\$12,621)
CZ02	PG&E	981	402	2.69	3%	\$23,092	\$16,255	\$11,808	0.7	0.5	(\$6,837)	(\$11,284)
CZ03	PG&E	81	383	2.30	2%	\$20,510	\$7,066	\$6,850	0.3	0.3	(\$13,444)	(\$13,660)
CZ04	PG&E	161	373	2.26	2%	\$22,164	\$8,593	\$7 <i>,</i> 645	0.4	0.3	(\$13,571)	(\$14,519)
CZ04-2	CPAU	161	373	2.26	2%	\$22,164	\$7,097	\$7,645	0.3	0.3	(\$15,067)	(\$14,519)
CZ05	PG&E	154	361	2.19	2%	\$21,418	\$6,897	\$6,585	0.3	0.3	(\$14,521)	(\$14,833)
CZ05-2	SCG	154	361	2.19	2%	\$21,418	\$4,786	\$6,585	0.2	0.3	(\$16,632)	(\$14,833)
CZ06	SCE	237	201	1.27	2%	\$20,941	\$3,789	\$4,882	0.2	0.2	(\$17,152)	(\$16,059)
CZ06-2	LADWP	237	201	1.27	2%	\$20,941	\$3,219	\$4,882	0.2	0.2	(\$17,722)	(\$16,059)
CZ07	SDG&E	1,117	158	1.28	2%	\$19,625	\$13,771	\$7,342	0.7	0.4	(\$5,854)	(\$12,283)
CZ08	SCE	1,302	169	1.39	2%	\$20,678	\$8,378	\$8,591	0.4	0.4	(\$12,300)	(\$12,088)
CZ08-2	LADWP	1,302	169	1.39	2%	\$20,678	\$5,802	\$8,591	0.3	0.4	(\$14,877)	(\$12,088)
CZ09	SCE	1,733	178	1.56	3%	\$20,052	\$10,489	\$11,164	0.5	0.6	(\$9,563)	(\$8,888)
CZ09-2	LADWP	1,733	178	1.56	3%	\$20,052	\$7,307	\$11,164	0.4	0.6	(\$12,745)	(\$8,888)
CZ10	SDG&E	3,170	220	2.29	4%	\$22,682	\$35,195	\$19,149	1.6	0.8	\$12,513	(\$3,533)
CZ10-2	SCE	3,170	220	2.29	4%	\$22,682	\$16,701	\$19,149	0.7	0.8	(\$5,981)	(\$3,533)
CZ11	PG&E	3,343	323	2.96	4%	\$23,344	\$27,633	\$20,966	1.2	0.9	\$4,288	(\$2,379)
CZ12	PG&E	1,724	320	2.44	4%	\$22,302	\$11,597	\$15,592	0.5	0.7	(\$10,705)	(\$6,710)
CZ12-2	SMUD	1,724	320	2.44	4%	\$22,302	\$11,156	\$15,592	0.5	0.7	(\$11,146)	(\$6,710)
CZ13	PG&E	3,083	316	2.81	3%	\$22,882	\$23,950	\$17,068	1.0	0.7	\$1,068	(\$5,814)
CZ14	SDG&E	3,714	312	2.99	4%	\$23,299	\$35,301	\$21,155	1.5	0.9	\$12,002	(\$2,144)
CZ14-2	SCE	3,714	312	2.99	4%	\$23,299	\$18,460	\$21,155	0.8	0.9	(\$4,839)	(\$2,144)
CZ15	SCE	8,684	97	3.21	5%	\$20,945	\$26,738	\$31,600	1.3	1.5	\$5,792	\$10,655
CZ16	PG&E	836	700	4.42	3%	\$24,616	\$18,608	\$14,494	0.8	0.6	(\$6,007)	(\$10,121)
CZ16-2	LADWP	836	700	4.42	3%	\$24,616	\$15,237	\$14,494	0.6	0.6	(\$9,378)	(\$10,121)

Figure 33. Cost Effectiveness for Small Hotel Package 1C – Mixed-Fuel + HE

		rigule 54	4. COSI EII	ectiveness i	or Sman	Пнотеї Раска	ige 2 - All-El	lectric red	leral Co	ae mini	mum	
cz	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp- liance Margin	Incremental Package Cost [*]	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Package	2: All-Eleo	ctric Federal C	ode Minimum	•								
CZ01	PG&E	-159,802	16917	53.92	-28%	(\$1,296,784)	(\$582,762)	(\$115,161)	2.2	11.3	\$714,022	\$1,181,623
CZ02	PG&E	-118,739	12677	40.00	-12%	(\$1,297,757)	(\$245,434)	(\$51,620)	5.3	25.1	\$1,052,322	\$1,246,137
CZ03	PG&E	-110,595	12322	40.48	-14%	(\$1,300,029)	(\$326,633)	(\$51,166)	4.0	25.4	\$973,396	\$1,248,863
CZ04	PG&E	-113,404	11927	36.59	-13%	(\$1,299,864)	(\$225,307)	(\$53,134)	5.8	24.5	\$1,074,556	\$1,246,730
CZ04-2	CPAU	-113,404	11927	36.59	-13%	(\$1,299,864)	(\$17,768)	(\$53,134)	73.2	24.5	\$1,282,096	\$1,246,730
CZ05	PG&E	-108,605	11960	38.34	-15%	(\$1,299,917)	(\$350,585)	(\$54,685)	3.7	23.8	\$949,332	\$1,245,232
CZ06	SCE	-78,293	8912	29.36	-5%	(\$1,300,058)	(\$61,534)	(\$28,043)	21.1	46.4	\$1,238,524	\$1,272,015
CZ06-2	LA	-78,293	8912	29.36	-5%	(\$1,300,058)	\$43,200	(\$28,043)	>1	46.4	\$1,343,258	\$1,272,015
CZ07	SDG&E	-69,819	8188	28.04	-7%	(\$1,298,406)	(\$137,638)	(\$23,199)	9.4	56.0	\$1,160,768	\$1,275,207
CZ08	SCE	-71,914	8353	28.21	-6%	(\$1,296,376)	(\$53 <i>,</i> 524)	(\$22,820)	24.2	56.8	\$1,242,852	\$1,273,556
CZ08-2	LA	-71,914	8353	28.21	-6%	(\$1,296,376)	\$42,841	(\$22,820)	>1	56.8	\$1,339,217	\$1,273,556
CZ09	SCE	-72,262	8402	28.38	-6%	(\$1,298,174)	(\$44,979)	(\$21,950)	28.9	59.1	\$1,253,196	\$1,276,224
CZ09-2	LA	-72,262	8402	28.38	-6%	(\$1,298,174)	\$46,679	(\$21,950)	>1	59.1	\$1,344,853	\$1,276,224
CZ10	SDG&E	-80,062	8418	26.22	-8%	(\$1,295,176)	(\$172,513)	(\$36,179)	7.5	35.8	\$1,122,663	\$1,258,997
CZ10-2	SCE	-80,062	8418	26.22	-8%	(\$1,295,176)	(\$63,974)	(\$36,179)	20.2	35.8	\$1,231,202	\$1,258,997
CZ11	PG&E	-99,484	10252	30.99	-10%	(\$1,295,985)	(\$186,037)	(\$49,387)	7.0	26.2	\$1,109,948	\$1,246,598
CZ12	PG&E	-99,472	10403	32.08	-10%	(\$1,297,425)	(\$340,801)	(\$45,565)	3.8	28.5	\$956,624	\$1,251,860
CZ12-2	SMUD	-99,067	10403	32.21	-10%	(\$1,297,425)	\$5,794	(\$44,354)	>1	29.3	\$1,303,219	\$1,253,071
CZ13	PG&E	-96,829	10029	30.60	-10%	(\$1,295,797)	(\$184,332)	(\$50,333)	7.0	25.7	\$1,111,465	\$1,245,464
CZ14	SDG&E	-101,398	10056	29.68	-11%	(\$1,296,156)	(\$325,928)	(\$56,578)	4.0	22.9	\$970,228	\$1,239,578
CZ14-2	SCE	-101,398	10056	29.68	-11%	(\$1,296,156)	(\$121,662)	(\$56,578)	10.7	22.9	\$1,174,494	\$1,239,578
CZ15	SCE	-49,853	5579	18.07	-4%	(\$1,294,276)	\$209	(\$21,420)	>1	60.4	\$1,294,485	\$1,272,856
CZ16	PG&E	-216,708	17599	41.89	-50%	(\$1,300,552)	(\$645,705)	(\$239,178)	2.0	5.4	\$654,847	\$1,061,374
CZ16-2	LA	-216,708	17599	41.89	-50%	(\$1,300,552)	\$30,974	(\$239,178)	>1	5.4	\$1,331,526	\$1,061,374

Figure 34. Cost Effectiveness for Small Hotel Package 2 – All-Electric Federal Code Minimum
---------------------------------------------------------------------------------------------

* The Incremental Package Cost is the addition of the incremental HVAC and water heating equipment costs from Figure 12, the electrical infrastructure incremental cost of \$26,800 (see section 3.3.2.1), and the natural gas infrastructure incremental cost savings of \$56,020 (see section 3.3.2.2).

			Figure 5.	D. COST EIIe	cuveness ic	DI SIIIAII HUU	еї Раскаде	<u> 5A - All-E</u>	iecuiic +	ЕС		
CZ	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp-liance Margin	Incremental Package Cost	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On-bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Package	3A: All-Ele	ectric + EE										
CZ01	PG&E	-113,259	16917	62.38	1.3%	(\$1,251,544)	(\$200,367)	\$5,460	6.2	>1	\$1,051,177	\$1,257,005
CZ02	PG&E	-90,033	12677	45.46	4%	(\$1,265,064)	(\$108,075)	\$15,685	11.7	>1	\$1,156,989	\$1,280,749
CZ03	PG&E	-83,892	12322	45.93	6%	(\$1,267,509)	(\$198 <i>,</i> 234)	\$20,729	6.4	>1	\$1,069,274	\$1,288,237
CZ04	PG&E	-91,197	11927	40.36	0.2%	(\$1,263,932)	(\$112 <i>,</i> 892)	\$703	11.2	>1	\$1,151,041	\$1,264,635
CZ04-2	CPAU	-90,981	11927	40.42	0.2%	(\$1,263,932)	\$32,557	\$918	>1	>1	\$1,296,489	\$1,264,850
CZ05	PG&E	-82,491	11960	43.62	5%	(\$1,267,355)	(\$221 <i>,</i> 492)	\$18,488	5.7	>1	\$1,045,863	\$1,285,843
CZ06	SCE	-61,523	8912	32.45	7%	(\$1,267,916)	(\$33 <i>,</i> 475)	\$15,142	37.9	>1	\$1,234,441	\$1,283,057
CZ06-2	LADWP	-61,523	8912	32.45	7%	(\$1,267,916)	\$57,215	\$15,142	>1	>1	\$1,325,130	\$1,283,057
CZ07	SDG&E	-53,308	8188	31.22	7%	(\$1,266,354)	(\$81,338)	\$22,516	15.6	>1	\$1,185,015	\$1,288,870
CZ08	SCE	-55,452	8353	31.33	3%	(\$1,264,408)	(\$23,893)	\$9,391	52.9	>1	\$1,240,515	\$1,273,800
CZ08-2	LADWP	-55,452	8353	31.33	3%	(\$1,264,408)	\$57,058	\$9,391	>1	>1	\$1,321,466	\$1,273,800
CZ09	SCE	-55,887	8402	31.40	2%	(\$1,266,302)	(\$19,887)	\$9,110	63.7	>1	\$1,246,415	\$1,275,412
CZ09-2	LADWP	-55,887	8402	31.40	2%	(\$1,266,302)	\$60,441	\$9,110	>1	>1	\$1,326,743	\$1,275,412
CZ10	SDG&E	-60,239	8418	29.96	2%	(\$1,256,002)	(\$126,072)	\$7,365	10.0	>1	\$1,129,930	\$1,263,367
CZ10-2	SCE	-60,239	8418	29.96	2%	(\$1,256,002)	(\$33,061)	\$7,365	38.0	>1	\$1,222,940	\$1,263,367
CZ11	PG&E	-77,307	10252	35.12	1%	(\$1,256,149)	(\$80,187)	\$3,114	15.7	>1	\$1,175,962	\$1,259,263
CZ12	PG&E	-75,098	10403	36.73	2%	(\$1,256,824)	(\$234,275)	\$9,048	5.4	>1	\$1,022,550	\$1,265,872
CZ12-2	SMUD	-75,098	10403	36.73	2%	(\$1,256,824)	\$54,941	\$9,048	>1	>1	\$1,311,765	\$1,265,872
CZ13	PG&E	-75,052	10029	34.72	0.3%	(\$1,256,109)	(\$79,378)	\$1,260	15.8	>1	\$1,176,731	\$1,257,369
CZ14	SDG&E	-76,375	10056	34.28	0.1%	(\$1,255,704)	(\$170,975)	\$543	7.3	>1	\$1,084,729	\$1,256,247
CZ14-2	SCE	-76,375	10056	34.28	0.1%	(\$1,255,704)	(\$34,418)	\$543	36.5	>1	\$1,221,286	\$1,256,247
CZ15	SCE	-33,722	5579	21.43	2%	(\$1,257,835)	\$26,030	\$12,262	>1	>1	\$1,283,864	\$1,270,097
CZ16	PG&E	-139,676	17599	55.25	-14%	(\$1,255,364)	(\$197,174)	(\$66,650)	6.4	18.8	\$1,058,190	\$1,188,714
CZ16-2	LADWP	-139,676	17599	55.25	-14%	(\$1,255,364)	\$165,789	(\$66,650)	>1	18.8	\$1,421,153	\$1,188,714

Figure 35. Cost Effectiveness for Small Hotel Package 3A – All-Electric + EE

		1 15	ui C 50. C	USt LIICCHV	CIIC33 10		i i achage		<u>ACCUIC</u>	+ <u>EE</u> + PV + I	,	
cz	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp- liance Margin	Incremental Package Cost	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Package	3B: All-Ele	ectric + EE +	PV + B									
CZ01	PG&E	-8,900	16917	87.15	1%	(\$1,044,174)	\$90,964	\$324,376	>1	>1	\$1,135,139	\$1,368,551
CZ02	PG&E	36,491	12677	73.03	4%	(\$1,057,694)	\$242,514	\$313,711	>1	>1	\$1,300,208	\$1,371,405
CZ03	PG&E	41,239	12322	73.43	6%	(\$1,060,139)	\$155,868	\$308,385	>1	>1	\$1,216,007	\$1,368,524
CZ04	PG&E	36,628	11927	69.70	0.2%	(\$1,056,562)	\$240,799	\$308,682	>1	>1	\$1,297,361	\$1,365,244
CZ04-2	CPAU	36,844	11927	69.76	0.2%	(\$1,056,562)	\$336,813	\$418,836	>1	>1	\$1,393,375	\$1,475,398
CZ05	PG&E	36,365	11960	73.11	5%	(\$1,059,985)	\$119,173	\$317,952	>1	>1	\$1,179,158	\$1,377,937
CZ06	SCE	64,476	8912	60.47	7%	(\$1,060,545)	\$156,327	\$311,730	>1	>1	\$1,216,872	\$1,372,275
CZ06-2	LADWP	64,476	8912	60.47	7%	(\$1,060,545)	\$180,648	\$311,730	>1	>1	\$1,241,193	\$1,372,275
CZ07	SDG&E	77,715	8188	60.45	7%	(\$1,058,983)	\$197,711	\$330,458	>1	>1	\$1,256,694	\$1,389,441
CZ08	SCE	71,990	8353	59.49	3%	(\$1,057,038)	\$165,393	\$320,814	>1	>1	\$1,222,432	\$1,377,852
CZ08-2	LADWP	71,990	8353	60.24	3%	(\$1,057,038)	\$180,367	\$443,809	>1	>1	\$1,237,405	\$1,500,847
CZ09	SCE	70,465	8402	59.29	2%	(\$1,058,932)	\$175,602	\$301,459	>1	>1	\$1,234,534	\$1,360,391
CZ09-2	LADWP	70,465	8402	59.29	2%	(\$1,058,932)	\$183,220	\$301,459	>1	>1	\$1,242,152	\$1,360,391
CZ10	SDG&E	69,581	8418	58.04	2%	(\$1,048,632)	\$161,513	\$294,530	>1	>1	\$1,210,145	\$1,343,162
CZ10-2	SCE	69,581	8418	58.04	2%	(\$1,048,632)	\$164,837	\$294,530	>1	>1	\$1,213,469	\$1,343,162
CZ11	PG&E	47,260	10252	61.57	1%	(\$1,048,779)	\$253,717	\$286,797	>1	>1	\$1,302,496	\$1,335,576
CZ12	PG&E	51,115	10403	64.07	2%	(\$1,049,454)	\$104,523	\$305,446	>1	>1	\$1,153,977	\$1,354,900
CZ12-2	SMUD	51,115	10403	64.99	2%	(\$1,049,454)	\$253,197	\$430,977	>1	>1	\$1,302,651	\$1,480,431
CZ13	PG&E	47,757	10029	60.77	0.3%	(\$1,048,739)	\$251,663	\$281,877	>1	>1	\$1,300,402	\$1,330,616
CZ14	SDG&E	66,084	10056	64.54	0.1%	(\$1,048,334)	\$148,510	\$334,938	>1	>1	\$1,196,844	\$1,383,272
CZ14-2	SCE	66,084	10056	64.54	0.1%	(\$1,048,334)	\$185,018	\$334,938	>1	>1	\$1,233,352	\$1,383,272
CZ15	SCE	98,755	5579	49.04	2.1%	(\$1,050,465)	\$233,308	\$311,121	>1	>1	\$1,283,772	\$1,361,585
CZ16	PG&E	-873	17599	84.99	-14%	(\$1,047,994)	\$191,994	\$240,724	>1	>1	\$1,239,987	\$1,288,718
CZ16-2	LADWP	-873	17599	84.99	-14%	(\$1,047,994)	\$291,279	\$240,724	>1	>1	\$1,339,273	\$1,288,718

Figure 36. Cost Effectiveness for Small Hotel Package 3B – All-Electric + EE + PV + B

			inguic 57	. dost miett	IV CHESS I	UI SIIIAII IIU	ter i uchage					· · · · · · · · · · · · · · · · · · ·
CZ	Utility	Elec Savings (kWh)	Gas Savings (therms)	GHG Reductions (mtons)	Comp- liance Margin	Incremental Package Cost	Lifecycle Utility Cost Savings	\$TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Package	3C: All-Ele	ectric + HE				-	-				-	
CZ01	PG&E	-154,840	16917	56.24	-24%	(\$1,281,338)	(\$606,619)	(\$101,272)	2.1	12.7	\$674,719	\$1,180,066
CZ02	PG&E	-118,284	12677	41.18	-11%	(\$1,283,243)	(\$395,641)	(\$44,505)	3.2	28.8	\$887,602	\$1,238,738
CZ03	PG&E	-113,413	12322	40.80	-14%	(\$1,288,782)	(\$522,458)	(\$51,582)	2.5	25.0	\$766,324	\$1,237,200
CZ04	PG&E	-115,928	11927	37.09	-13%	(\$1,287,878)	(\$383,177)	(\$53,285)	3.4	24.2	\$904,701	\$1,234,593
CZ04-2	CPAU	-115,928	11927	37.09	-13%	(\$1,287,878)	(\$24,170)	(\$53,285)	53.3	24.2	\$1,263,708	\$1,234,593
CZ05	PG&E	-111,075	11960	38.75	-15%	(\$1,288,242)	(\$530,740)	(\$56,124)	2.4	23.0	\$757,502	\$1,232,119
CZ06	SCE	-83,000	8912	29.41	-15%	(\$1,288,695)	(\$154,625)	(\$32,244)	8.3	40.0	\$1,134,069	\$1,256,451
CZ06-2	LADWP	-83,000	8912	29.41	-15%	(\$1,288,695)	(\$17,626)	(\$32,244)	73.1	40.0	\$1,271,068	\$1,256,451
CZ07	SDG&E	-73,823	8188	28.32	-7%	(\$1,285,759)	(\$268,207)	(\$24,069)	4.8	53.4	\$1,017,552	\$1,261,690
CZ08	SCE	-75,573	8353	28.56	-6%	(\$1,281,241)	(\$157,393)	(\$21,912)	8.1	58.5	\$1,123,848	\$1,259,329
CZ08-2	LADWP	-75,573	8353	28.56	-6%	(\$1,281,241)	(\$18,502)	(\$21,912)	69.2	58.5	\$1,262,739	\$1,259,329
CZ09	SCE	-74,790	8402	29.04	-4%	(\$1,285,139)	(\$138,746)	(\$16,992)	9.3	75.6	\$1,146,393	\$1,268,147
CZ09-2	LADWP	-74,790	8402	29.04	-4%	(\$1,285,139)	(\$6,344)	(\$16,992)	202.6	75.6	\$1,278,794	\$1,268,147
CZ10	SDG&E	-80,248	8418	27.57	-5%	(\$1,278,097)	(\$235,479)	(\$24,107)	5.4	53.0	\$1,042,617	\$1,253,990
CZ10-2	SCE	-80,248	8418	27.57	-5%	(\$1,278,097)	(\$123,371)	(\$24,107)	10.4	53.0	\$1,154,726	\$1,253,990
CZ11	PG&E	-98,041	10252	32.73	-7%	(\$1,279,528)	(\$278,242)	(\$35,158)	4.6	36.4	\$1,001,286	\$1,244,370
CZ12	PG&E	-100,080	10403	33.24	-9%	(\$1,282,834)	(\$480,347)	(\$38,715)	2.7	33.1	\$802,487	\$1,244,119
CZ12-2	SMUD	-100,080	10403	33.24	-9%	(\$1,282,834)	(\$23,362)	(\$38,715)	54.9	33.1	\$1,259,472	\$1,244,119
CZ13	PG&E	-94,607	10029	32.47	-7%	(\$1,279,301)	(\$276,944)	\$244,552	4.6	>1	\$1,002,357	\$1,523,853
CZ14	SDG&E	-97,959	10056	31.91	-7%	(\$1,279,893)	(\$302,123)	(\$37,769)	4.2	33.9	\$977,770	\$1,242,124
CZ14-2	SCE	-97,959	10056	31.91	-7%	(\$1,279,893)	(\$129,082)	(\$37,769)	9.9	33.9	\$1,150,811	\$1,242,124
CZ15	SCE	-45,226	5579	20.17	0.04%	(\$1,276,847)	(\$6,533)	\$227	195.4	>1	\$1,270,314	\$1,277,074
CZ16	PG&E	-198,840	17599	47.73	-39%	(\$1,288,450)	(\$605,601)	(\$185,438)	2.1	6.9	\$682,848	\$1,103,011
CZ16-2	LADWP	-198,840	17599	47.73	-39%	(\$1,288,450)	\$40,268	(\$185,438)	>1	6.9	\$1,328,718	\$1,103,011

Figure 37. Cost Effectiveness for Small Hotel Package 3C – All-Electric + HE

### 4.4 Cost Effectiveness Results – PV-only and PV+Battery

The Reach Code Team ran packages of PV-only and PV+Battery measures, without any additional efficiency measures, to assess cost effectiveness on top of the mixed-fuel baseline building and the all-electric federal code minimum reference (Package 2 in Sections 4.1 - 4.3).

Jurisdictions interested in adopting PV-only reach codes should reference the mixed-fuel cost effectiveness results because a mixed-fuel building is the baseline for the nonresidential prototypes analyzed in this study. PV or PV+Battery packages are added to all-electric federal code minimum reference which (in many scenarios) do not have a positive compliance margin compared to the mixed-fuel baseline model, and are solely provided for informational purposes. Jurisdictions interested in reach codes requiring all-electric+PV or all-electric+PV+battery should reference package 3B results in Sections 4.1 - 4.3.²⁵

Each of the following eight packages were evaluated against a mixed fuel baseline designed as per 2019 Title 24 Part 6 requirements.

- Mixed-Fuel + 3 kW PV Only:
- Mixed-Fuel + 3 kW PV + 5 kWh battery
- Mixed-Fuel + PV Only: PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller
- Mixed-Fuel + PV + 50 kWh Battery: PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller, along with 50 kWh battery
- All-Electric + 3 kW PV Only
- All-Electric + 3 kW PV + 5 kWh Battery
- All-Electric + PV Only: PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller
- All-Electric + PV + 50 kWh Battery: PV sized per the roof size of the building, or to offset the annual electricity consumption, whichever is smaller, along with 50 kWh battery

Figure 38 through Figure 40 summarize the on-bill and TDV B/C ratios for each prototype for the two PV only packages and the two PV plus battery packages. Compliance margins are 0 percent for all mixed-fuel packages. For all-electric packages, compliance margins are equal to those found in Package 2 for each prototype in Sections 4.1 - 4.3. The compliance margins are not impacted by renewables and battery storage measures and hence not shown in the tables. These figures are formatted in the following way:

- Cells highlighted in green have a B/C ratio greater than 1 and are cost-effective. The shade of green gets darker as cost effectiveness increases.
- Cells not highlighted have a B/C ratio less than one and are not cost effective.

²⁵ Because this study shows that the addition of battery generally reduces cost effectiveness, removing a battery measure would only increase cost effectiveness. Thus, a jurisdiction can apply the EE+PV+Battery cost effectiveness findings to support EE+PV reach codes, because EE+PV would still remain cost effective without a battery.



Please see Appendix 6.7 for results in full detail. Generally, for mixed-fuel packages across all prototypes, all climate zones were proven to have cost effective outcomes using TDV except in CZ1 with a 3 kW PV + 5 kWh Battery scenario. Most climate zones also had On-Bill cost effectiveness. The addition of a battery slightly reduces cost effectiveness.

In all-electric packages, the results for most climate zones were found cost effective using both TDV and On-Bill approaches with larger PV systems or PV+Battery systems. Most 3 kW PV systems were also found to be cost effective except in some scenarios analyzing the Medium Office using the On-Bill method. CZ16 results continue to show challenges being cost effective with all electric buildings, likely due to the high heating loads in this climate. The addition of a battery slightly reduces the cost effectiveness for all-electric buildings with PV.



						d Fuel						u Butte	0	ectric			
	PV	3k	W	3k	W	135	kW	135	kW	3k	w	3k	w	135	kW	135	kW
	Battery	C	)	5k\	Vh	C	)	50k	Wh	(	)	5k\	₩h	0	)	50k	Wh
CZ	Utility	On-Bill	TDV														
CZ01	PG&E	2.8	1.5	1.7	0.9	1.7	1.3	1.6	1.2	0.9	1.6	0.9	1.6	2.5	2.0	2.1	1.7
CZ02	PG&E	3.7	1.9	2.1	1.1	2.2	1.6	2.0	1.4	0.8	2.2	0.9	2.6	3.2	2.4	2.7	2.1
CZ03	PG&E	3.7	1.8	2.2	1.0	2.1	1.5	1.9	1.4	1.9	3.9	2.0	4.0	3.4	2.5	2.9	2.2
CZ04	PG&E	3.6	2.0	2.1	1.2	2.3	1.6	2.1	1.5	0.9	2.1	1.1	2.7	3.3	2.5	2.9	2.2
CZ04-2	CPAU	2.1	2.0	1.3	1.2	1.8	1.6	1.6	1.5	7.7	2.1	9.8	2.7	2.9	2.5	2.5	2.2
CZ05	PG&E	4.2	1.9	2.4	1.1	2.5	1.6	2.3	1.5	1.8	2.7	1.9	2.7	4.0	2.7	3.4	2.3
CZ05-2	SCG	4.2	1.9	2.4	1.1	2.5	1.6	2.3	1.5	>1	>1	>1	>1	>1	3.0	9.4	2.6
CZ06	SCE	2.0	2.0	1.2	1.1	1.3	1.6	1.2	1.5	>1	7.2	>1	8.2	2.4	2.7	2.1	2.3
CZ06-2	LA	1.2	2.0	0.7	1.1	0.8	1.6	0.7	1.5	>1	7.2	>1	8.2	1.5	2.7	1.3	2.3
CZ07	SDG&E	3.2	2.0	1.9	1.2	2.1	1.6	1.9	1.5	>1	>1	>1	>1	3.7	2.7	3.2	2.3
CZ08	SCE	1.9	2.0	1.1	1.2	1.3	1.7	1.2	1.5	>1	>1	>1	>1	2.2	2.7	1.9	2.4
CZ08-2	LA	1.2	2.0	0.7	1.2	0.7	1.7	0.7	1.5	>1	>1	>1	>1	1.3	2.7	1.1	2.4
CZ09	SCE	1.9	2.0	1.1	1.2	1.3	1.7	1.2	1.5	>1	>1	>1	>1	2.2	2.6	1.9	2.3
CZ09-2	LA	1.1	2.0	0.7	1.2	0.7	1.7	0.7	1.5	>1	>1	>1	>1	1.3	2.6	1.2	2.3
CZ10	SDG&E	3.8	1.9	2.2	1.1	2.1	1.6	1.9	1.5	>1	3.3	>1	6.3	3.3	2.3	2.9	2.0
CZ10-2	SCE	2.1	1.9	1.2	1.1	1.3	1.6	1.2	1.5	>1	3.3	>1	6.3	2.0	2.3	1.8	2.0
CZ11	PG&E	3.6	1.9	2.1	1.1	2.2	1.6	2.0	1.5	1.1	2.6	1.5	3.6	3.2	2.4	2.8	2.1
CZ12	PG&E	3.5	1.9	2.1	1.1	2.2	1.6	2.0	1.5	0.9	2.5	1.2	3.2	3.1	2.4	2.7	2.1
CZ12-2	SMUD	1.4	1.9	0.8	1.1	1.1	1.6	1.04	1.5	>1	2.5	>1	3.2	1.9	2.4	1.6	2.1
CZ13	PG&E	3.5	1.8	2.0	1.1	2.2	1.5	2.0	1.4	1.1	2.5	1.5	3.6	3.1	2.3	2.7	2.0
CZ14	SDG&E	3.4	2.3	2.0	1.3	2.2	1.9	2.0	1.7	>1	2.3	>1	3.1	3.6	2.8	3.2	2.5
CZ14-2	SCE	1.9	2.3	1.1	1.3	1.3	1.9	1.2	1.7	>1	2.3	>1	3.1	2.2	2.8	1.9	2.5
CZ15	SCE	1.8	2.1	1.1	1.2	1.2	1.7	1.1	1.6	>1	7.5	>1	>1	1.8	2.4	1.6	2.1
CZ16	PG&E	3.9	2.0	2.3	1.1	2.3	1.6	2.1	1.5	0.3	0.4	0.4	0.6	2.5	1.8	2.2	1.6
CZ16-2	LA	1.2	2.0	0.7	1.1	0.7	1.6	0.7	1.5	>1	0.4	>1	0.6	1.3	1.8	1.2	1.6

Figure 38. Cost Effectiveness for Medium Office - PV and Battery

				Inguit		d Fuel								ectric			
	PV	3k	W	3k	W	90	kW	90	٨W	3k	W	3k	w	90	kW	90	kW
	Battery	(	)	5k\	Nh	0	)	50k	Wh	(	)	5k\	Nh	(	)	50k	Wh
CZ	Utility	On-Bill	TDV														
CZ01	PG&E	2.3	1.5	1.3	0.9	1.8	1.3	1.6	1.2	>1	3.0	>1	2.7	2.5	1.6	2.2	1.5
CZ02	PG&E	3.2	1.8	1.9	1.1	1.9	1.5	1.8	1.5	>1	>1	>1	>1	2.7	2.1	2.3	1.9
CZ03	PG&E	2.7	1.8	1.6	1.1	2.2	1.5	2.0	1.4	>1	>1	>1	>1	3.0	2.1	2.6	1.9
CZ04	PG&E	3.3	1.9	1.9	1.1	2.0	1.6	1.9	1.5	>1	>1	>1	>1	2.7	2.1	2.5	2.0
CZ04-2	CPAU	2.1	1.9	1.2	1.1	1.7	1.6	1.5	1.5	>1	>1	>1	>1	2.4	2.1	2.1	2.0
CZ05	PG&E	2.8	1.9	1.6	1.1	2.3	1.6	2.0	1.5	>1	>1	>1	>1	3.2	2.1	2.7	2.0
CZ05-2	SCG	2.8	1.9	1.6	1.1	2.3	1.6	2.0	1.5	>1	>1	>1	>1	3.7	1.9	3.2	1.6
CZ06	SCE	2.0	1.9	1.2	1.1	1.2	1.6	1.1	1.5	>1	>1	>1	>1	1.7	2.2	1.5	2.0
CZ06-2	LA	1.3	1.9	0.7	1.1	0.7	1.6	0.6	1.5	>1	>1	>1	>1	1.01	2.2	0.9	2.0
CZ07	SDG&E	4.0	2.0	2.4	1.2	1.5	1.6	1.6	1.6	>1	>1	>1	>1	2.4	2.3	2.3	2.1
CZ08	SCE	2.1	2.0	1.2	1.2	1.2	1.7	1.1	1.6	>1	>1	>1	>1	1.7	2.4	1.5	2.1
CZ08-2	LA	1.3	2.0	0.8	1.2	0.7	1.7	0.6	1.6	>1	>1	>1	>1	1.01	2.4	0.9	2.1
CZ09	SCE	2.0	2.0	1.2	1.2	1.2	1.7	1.1	1.5	>1	>1	>1	>1	1.8	2.4	1.6	2.1
CZ09-2	LA	1.2	2.0	0.7	1.2	0.7	1.7	0.7	1.5	>1	>1	>1	>1	1.1	2.4	0.99	2.1
CZ10	SDG&E	3.8	2.0	2.2	1.2	1.7	1.6	1.7	1.5	>1	>1	>1	>1	2.6	2.3	2.5	2.0
CZ10-2	SCE	2.0	2.0	1.2	1.2	1.2	1.6	1.1	1.5	>1	>1	>1	>1	1.8	2.3	1.6	2.0
CZ11	PG&E	2.8	1.9	1.6	1.1	1.9	1.6	1.8	1.5	>1	>1	>1	>1	2.7	2.3	2.5	2.1
CZ12	PG&E	3.0	1.9	1.7	1.1	1.9	1.6	1.8	1.5	>1	>1	>1	>1	2.7	2.3	2.5	2.1
CZ12-2	SMUD	1.5	1.9	0.9	1.1	1.1	1.6	0.997	1.5	>1	>1	>1	>1	1.7	2.3	1.4	2.1
CZ13	PG&E	3.0	1.9	1.7	1.1	1.9	1.6	1.8	1.4	>1	>1	>1	>1	2.7	2.2	2.4	1.9
CZ14	SDG&E	3.5	2.2	2.1	1.3	1.6	1.8	1.5	1.6	>1	>1	>1	>1	2.5	2.6	2.2	2.2
CZ14-2	SCE	1.8	2.2	1.1	1.3	1.2	1.8	1.1	1.6	>1	>1	>1	>1	1.7	2.6	1.5	2.2
CZ15	SCE	1.9	2.0	1.1	1.2	1.1	1.7	1.02	1.5	>1	>1	>1	>1	1.7	2.4	1.5	2.1
CZ16	PG&E	3.7	2.0	2.1	1.2	2.1	1.7	1.9	1.6	0.6	0.5	0.5	0.4	2.7	2.0	2.3	1.8
CZ16-2	LA	1.3	2.0	0.7	1.2	0.7	1.7	0.6	1.6	>1	0.5	>1	0.4	1.2	2.0	1.0	1.8

Figure 39. Cost Effectiveness for Medium Retail - PV and Battery

				8*		ed Fuel							All-Eleo	tric			
	PV	3k	W	3k\	N	80k	W	80	kW	3k	W	3k	W	80k	W	80k	W
	Battery	(	נ	5kW	/h	0		50	‹Wh	(	)	5k\	Wh	C	)	50k	Wh
cz	Utility	On-Bill	TDV	On-Bill	TDV	On-Bill	TDV	On-Bill	TDV	On-Bill	TDV	On-Bill	TDV	On-Bill	TDV	On-Bill	TDV
CZ01	PG&E	2.3	1.5	1.3	0.9	1.9	1.2	1.6	1.1	2.3	>1	2.3	>1	4.8	>1	4.7	>1
CZ02	PG&E	2.3	1.9	1.3	1.1	1.8	1.5	1.6	1.4	5.6	>1	5.6	>1	>1	>1	>1	>1
CZ03	PG&E	2.7	1.8	1.6	1.05	2.3	1.5	1.9	1.4	4.2	>1	4.2	>1	>1	>1	>1	>1
CZ04	PG&E	2.4	1.9	1.4	1.1	1.8	1.6	1.6	1.5	6.2	>1	6.2	>1	>1	>1	>1	>1
CZ04-2	CPAU	2.1	1.9	1.2	1.1	1.7	1.6	1.5	1.5	>1	>1	>1	>1	>1	>1	>1	>1
CZ05	PG&E	2.9	1.9	1.7	1.1	2.4	1.6	2.0	1.5	3.9	>1	3.9	>1	>1	>1	>1	>1
CZ05-2	SCG	2.9	1.9	1.7	1.1	2.4	1.6	2.0	1.5	>1	>1	>1	>1	>1	>1	>1	>1
CZ06	SCE	1.8	1.9	1.1	1.1	1.1	1.6	0.9	1.4	>1	>1	>1	>1	>1	>1	>1	>1
CZ06-2	LA	1.1	1.9	0.7	1.1	0.7	1.6	0.6	1.4	>1	>1	>1	>1	>1	>1	>1	>1
CZ07	SDG&E	2.6	2.0	1.5	1.1	1.4	1.6	1.3	1.5	>1	>1	>1	>1	>1	>1	>1	>1
CZ08	SCE	1.9	2.0	1.1	1.2	1.2	1.7	1.0	1.5	>1	>1	>1	>1	>1	>1	>1	>1
CZ08-2	LA	1.2	2.0	0.7	1.2	0.7	1.7	0.6	1.5	>1	>1	>1	>1	>1	>1	>1	>1
CZ09	SCE	1.9	1.9	1.1	1.1	1.2	1.6	0.997	1.4	>1	>1	>1	>1	>1	>1	>1	>1
CZ09-2	LA	1.1	1.9	0.7	1.1	0.7	1.6	0.6	1.4	>1	>1	>1	>1	>1	>1	>1	>1
CZ10	SDG&E	2.9	1.9	1.7	1.1	1.5	1.6	1.4	1.4	8.2	>1	8.2	>1	>1	>1	>1	>1
CZ10-2	SCE	1.7	1.9	0.99	1.1	1.2	1.6	0.99	1.4	>1	>1	>1	>1	>1	>1	>1	>1
CZ11	PG&E	2.6	1.9	1.5	1.1	1.8	1.6	1.5	1.4	7.6	>1	7.6	>1	>1	>1	>1	>1
CZ12	PG&E	2.7	1.9	1.6	1.1	2.3	1.6	1.9	1.4	4.0	>1	4.0	>1	>1	>1	>1	>1
CZ12-2	SMUD	1.4	1.9	0.8	1.1	1.1	1.6	0.95	1.4	>1	>1	>1	>1	>1	>1	>1	>1
CZ13	PG&E	2.6	1.8	1.5	1.1	1.8	1.5	1.5	1.4	7.7	>1	7.7	>1	>1	>1	>1	>1
CZ14	SDG&E	3.0	2.2	1.7	1.3	1.7	1.8	1.5	1.6	4.2	>1	4.2	>1	>1	>1	>1	>1
CZ14-2	SCE	1.8	2.2	1.1	1.3	1.3	1.8	1.1	1.6	>1	>1	>1	>1	>1	>1	>1	>1
CZ15	SCE	1.7	2.0	1.002	1.2	1.2	1.7	1.003	1.4	>1	>1	>1	>1	>1	>1	>1	>1
CZ16	PG&E	2.7	2.0	1.6	1.2	1.9	1.6	1.7	1.5	2.1	5.7	2.1	5.6	5.8	>1	5.8	>1
CZ16-2	LA	1.02	2.0	0.6	1.2	0.6	1.6	0.6	1.5	>1	5.7	>1	5.6	>1	>1	>1	>1

Figure 40. Cost Effectiveness for Small Hotel - PV and Battery

## 5 Summary, Conclusions, and Further Considerations

The Reach Codes Team developed packages of energy efficiency measures as well as packages combining energy efficiency with PV generation and battery storage systems, simulated them in building modeling software, and gathered costs to determine the cost effectiveness of multiple scenarios. The Reach Codes team coordinated assumptions with multiple utilities, cities, and building community experts to develop a set of assumptions considered reasonable in the current market. Changing assumptions, such as the period of analysis, measure selection, cost assumptions, energy escalation rates, or utility tariffs are likely to change results.

#### 5.1 Summary

Figure 41 through Figure 43 summarize results for each prototype and depict the compliance margins achieved for each climate zone and package. Because local reach codes must both exceed the Energy Commission performance budget (i.e., have a positive compliance margin) and be cost-effective, the Reach Code Team highlighted cells meeting these two requirements to help clarify the upper boundary for potential reach code policies:

- Cells highlighted in green depict a positive compliance margin <u>and</u> cost-effective results using <u>both</u> On-Bill and TDV approaches.
- Cells highlighted in yellow depict a positive compliance <u>and</u> cost-effective results using <u>either</u> the On-Bill or TDV approach.
- Cells not highlighted either depict a negative compliance margin <u>or</u> a package that was not cost effective using <u>either</u> the On-Bill or TDV approach.

For more detail on the results in the Figures, please refer to *Section 4 Results*. As described in Section 4.4, PV-only and PV+Battery packages in the mixed-fuel building were found to be cost effective across all prototypes, climate zones, and packages using the TDV approach, and results are not reiterated in the following figures.

			Mixed Fuel	•		All Ele		
CZ	Utility	EE	EE + PV + B	HE	Fed Code	EE	EE + PV + B	HE
CZ01	PG&E	18%	18%	3%	-15%	7%	7%	-14%
CZ02	PG&E	17%	17%	4%	-7%	10%	10%	-5%
CZ03	PG&E	20%	20%	3%	-7%	16%	16%	-6%
CZ04	PG&E	14%	14%	5%	-6%	9%	9%	-3%
CZ04-2	CPAU	14%	14%	5%	-6%	9%	9%	-3%
CZ05	PG&E	18%	18%	4%	-8%	12%	12%	-6%
CZ05-2	SCG	18%	18%	4%	NA	NA	NA	NA
CZ06	SCE	20%	20%	3%	-4%	18%	18%	-2%
CZ06-2	LADWP	20%	20%	3%	-4%	18%	18%	-2%
CZ07	SDG&E	20%	20%	4%	-2%	20%	20%	1%
CZ08	SCE	18%	18%	4%	-2%	18%	18%	1%
CZ08-2	LADWP	18%	18%	4%	-2%	18%	18%	1%
CZ09	SCE	16%	16%	4%	-2%	15%	15%	2%
CZ09-2	LADWP	16%	16%	4%	-2%	15%	15%	2%
CZ10	SDG&E	17%	17%	4%	-4%	13%	13%	-1%
CZ10-2	SCE	17%	17%	4%	-4%	13%	13%	-1%
CZ11	PG&E	13%	13%	5%	-4%	10%	10%	0%
CZ12	PG&E	14%	14%	5%	-5%	10%	10%	-1%
CZ12-2	SMUD	14%	14%	5%	-5%	10%	10%	-1%
CZ13	PG&E	13%	13%	5%	-4%	9%	9%	0%
CZ14	SDG&E	14%	14%	5%	-5%	9%	9%	-1%
CZ14-2	SCE	14%	14%	5%	-5%	9%	9%	-1%
CZ15	SCE	12%	12%	5%	-2%	10%	10%	3%
CZ16	PG&E	14%	14%	5%	-27%	-15%	-15%	-26%
CZ16-2	LADWP	14%	14%	5%	-27%	-15%	-15%	-26%

#### Figure 41. Medium Office Summary of Compliance Margin and Cost Effectiveness

CZ	Utility	Mixed Fuel			All Electric			
		EE	EE + PV + B	HE	Fed Code	EE	EE + PV + B	HE
CZ01	PG&E	18%	18%	2%	-4.1%	15%	15%	-2%
CZ02	PG&E	13%	13%	3%	-1.0%	13%	13%	3%
CZ03	PG&E	16%	16%	2%	-0.4%	16%	16%	2%
CZ04	PG&E	14%	14%	3%	-0.1%	14%	14%	3%
CZ04-2	CPAU	14%	14%	3%	-0.1%	14%	14%	3%
CZ05	PG&E	16%	16%	1%	-1.2%	15%	15%	1%
CZ05-2	SCG	16%	16%	1%	NA	NA	NA	NA
CZ06	SCE	10%	10%	3%	0.5%	11%	11%	3%
CZ06-2	LADWP	10%	10%	3%	0.5%	11%	11%	3%
CZ07	SDG&E	13%	13%	2%	0.3%	13%	13%	3%
CZ08	SCE	10%	10%	3%	0.4%	10%	10%	4%
CZ08-2	LADWP	10%	10%	3%	0.4%	10%	10%	4%
CZ09	SCE	10%	10%	4%	0.4%	10%	10%	4%
CZ09-2	LADWP	10%	10%	4%	0.4%	10%	10%	4%
CZ10	SDG&E	12%	12%	4%	0.1%	12%	12%	4%
CZ10-2	SCE	12%	12%	4%	0.1%	12%	12%	4%
CZ11	PG&E	13%	13%	4%	0.5%	12%	12%	5%
CZ12	PG&E	13%	13%	4%	-0.1%	12%	12%	4%
CZ12-2	SMUD	13%	13%	4%	-0.1%	12%	12%	4%
CZ13	PG&E	15%	15%	4%	-0.4%	14%	14%	4%
CZ14	SDG&E	13%	13%	4%	0.7%	15%	15%	5%
CZ14-2	SCE	13%	13%	4%	0.7%	15%	15%	5%
CZ15	SCE	12%	12%	5%	0.9%	12%	12%	6%
CZ16	PG&E	13%	13%	3%	-12.2%	3%	3%	-8%
CZ16-2	LADWP	13%	13%	3%	-12.2%	3%	3%	-8%

## Figure 42. Medium Retail Summary of Compliance Margin and Cost Effectiveness

Ingui		Mixed Fuel			All Electric			
CZ	Utility	EE	EE + PV + B	HE	Fed Code	EE	EE + PV + B	HE
CZ01	PG&E	9%	9%	2%	-28%	1%	1%	-24%
CZ02	PG&E	7%	7%	3%	-12%	4%	4%	-11%
CZ02	PG&E	10%	10%	2%	-12%	4 <i>%</i> 6%	6%	-11%
CZ03	PG&E		1					
		6%	6%	2%	-13%	0.2%	0.2%	-13%
CZ04-2	CPAU	<mark>6%</mark>	6%	2%	-13%	0.2%	0.2%	-13%
CZ05	PG&E	9%	9%	2%	-15%	5%	5%	-15%
CZ05-2	SCG	9%	9%	2%	NA	NA	NA	NA
CZ06	SCE	8%	8%	2%	-5%	7%	7%	-15%
CZ06-2	LADWP	8%	8%	2%	-5%	7%	7%	-15%
CZ07	SDG&E	8%	8%	2%	-7%	7%	7%	-7%
CZ08	SCE	7%	7%	2%	-6%	3%	3%	-6%
CZ08-2	LADWP	7%	7%	2%	-6%	3%	3%	-6%
CZ09	SCE	<mark>6%</mark>	6%	3%	-6%	2%	2%	-4%
CZ09-2	LADWP	6%	6%	3%	-6%	2%	2%	-4%
CZ10	SDG&E	5%	5%	4%	-8%	2%	2%	-5%
CZ10-2	SCE	<mark>5%</mark>	5%	4%	-8%	2%	2%	-5%
CZ11	PG&E	4%	4%	4%	-10%	1%	1%	-7%
CZ12	PG&E	<mark>5%</mark>	5%	4%	-10%	2%	2%	-9%
CZ12-2	SMUD	5%	5%	4%	-10%	2%	2%	-9%
CZ13	PG&E	4%	4%	3%	-10%	0.3%	0.3%	-7%
CZ14	SDG&E	<mark>4%</mark>	4%	4%	-11%	0.1%	0.1%	-7%
CZ14-2	SCE	4%	4%	4%	-11%	0.1%	0.1%	-7%
CZ15	SCE	3%	3%	5%	-4%	2%	2%	0.04%
CZ16	PG&E	6%	6%	3%	-50%	-14%	-14%	-39%
CZ16-2	LADWP	<mark>6%</mark>	6%	3%	-50%	-14%	-14%	-39%

#### Figure 43. Small Hotel Summary of Compliance Margin and Cost Effectiveness

## 5.2 Conclusions and Further Considerations

Findings are specific to the scenarios analyzed under this specific methodology, and largely pertain to office, retail, and hotel-type occupancies. Nonresidential buildings constitute a wide variety of occupancy profiles and process loads, making findings challenging to generalize across multiple building types.

Findings indicate the following overall conclusions:

- 1. This study assumed that electrifying space heating and service water heating could eliminate natural gas infrastructure alone, because these were the only gas end-uses included the prototypes. Avoiding the installation of natural gas infrastructure results in significant cost savings and is a primary factor toward cost-effective outcomes in all-electric designs, even with necessary increases in electrical capacity.
- There is ample opportunity for cost effective energy efficiency improvements, as demonstrated by the compliance margins achieved in many of the efficiency-only and efficiency + PV packages. Though much of the energy savings are attributable to lighting measures, efficiency measures selected for these prototypes are confined to the building systems that can be modeled. There is



likely further opportunity for energy savings through measures that cannot be currently demonstrated in compliance software, such as high-performance control sequences or variable speed parallel fan powered boxes.

- 3. High efficiency appliances triggering federal preemption do not achieve as high compliance margins as the other efficiency measures analyzed in this study. Cost effectiveness appears to be dependent on the system type and building type. Nonetheless, specifying high efficiency equipment will always be a key feature in integrated design.
- 4. Regarding the Small Hotel prototype:
  - a. The Small Hotel presents a challenging prototype to cost-effectively exceed the state's energy performance budget without efficiency measures. The Reach Code Team is uncertain of the precision of the results due to the inability to directly model either drain water heat recovery or a central heat pump water heater with a recirculation loop.
  - b. Hotel results may be applicable to high-rise (4 or more stories) multifamily buildings. Both hotel and multifamily buildings have the same or similar mandatory and prescriptive compliance options for hot water systems, lighting, and envelope. Furthermore, the Alternate Calculation Method Reference Manual specifies the same baseline HVAC system for both building types.
  - c. Hotel compliance margins were the lowest among the three building types analyzed, and thus the most conservative performance thresholds applicable to other nonresidential buildings not analyzed in this study. As stated previously, the varying occupancy and energy profiles of nonresidential buildings makes challenging to directly apply these results across all buildings.
- 5. Many all-electric and solar PV packages demonstrated greater GHG reductions than their mixedfuel counterparts, contrary to TDV-based performance, suggesting a misalignment among the TDV metric and California's long-term GHG-reduction goals. The Energy Commission has indicated that they are aware of this issue and are seeking to address it.
- 6. Changes to the Nonresidential Alternative Calculation Method (ACM) Reference Manual can drastically impact results. Two examples include:
  - a. When performance modeling residential buildings, the Standard Design is electric if the Proposed Design is electric, which removes TDV-related penalties and associated negative compliance margins. This essentially allows for a compliance pathway for all-electric residential buildings. If nonresidential buildings were treated in the same way, all-electric cost effectiveness using the TDV approach would improve.
  - b. The baseline mixed-fuel system for a hotel includes a furnace in each guest room, which carries substantial plumbing costs and labor costs for assembly. A change in the baseline system would lead to different base case costs and different cost effectiveness outcomes.
- 7. All-electric federal code-minimum packages appear to be cost effective, largely due to avoided natural gas infrastructure, but in most cases do not comply with the Energy Commission's minimum performance budget (as described in item 7a above). For most cases it appears that adding cost-effective efficiency measures achieves compliance. All-electric nonresidential projects can leverage the initial cost savings of avoiding natural gas infrastructure by adding energy efficiency measures that would not be cost effective independently.




# 6 Appendices

## 6.1 Map of California Climate Zones

Climate zone geographical boundaries are depicted in Figure 44. The map in Figure 44 along with a zipcode search directory is available at:

https://ww2.energy.ca.gov/maps/renewable/building_climate_zones.html





## 6.2 Lighting Efficiency Measures

Figure 45 details the applicability and impact of each lighting efficiency measure by prototype and space function and includes the resulting LPD that is modeled as the proposed by building type and by space function.

rigure 45. Impact of			•	2	•	Modeled
	Baseline		Proposed			
		Interior			Occupant	
		Lighting		Daylight	Sensing in	
	LPD	Reduced	Institutional	Dimming	Open Office	LPD
Space Function	(W/ft2)	LPD	Tuning	Plus OFF	Plan	(W/ft²)
Medium Office						
Office Area (Open plan office) -						
Interior	0.65	15%	10%	-	17%	0.429
Office Area (Open plan office) -						
Perimeter	0.65	15%	5%	10%	30%	0.368
Medium Retail						
Commercial/Industrial Storage						
(Warehouse)	0.45	10%	5%	-	-	0.386
Main Entry Lobby	0.85	10%	5%	-	-	0.729
Retail Sales Area (Retail						
Merchandise Sales)	0.95	5%	5%	-	-	0.857
Small Hotel						
Commercial/Industrial Storage						
(Warehouse)	0.45	10%	5%	-	-	0.386
Convention, Conference,						
Multipurpose, and Meeting	0.85	10%	5%	-	-	0.729
Corridor Area	0.60	10%	5%	-	-	0.514
Exercise/Fitness Center and						
Gymnasium Areas	0.50	10%	-	-	-	0.450
Laundry Area	0.45	10%	-	-	-	0.405
Lounge, Breakroom, or Waiting						
Area	0.65	10%	5%	-	-	0.557
Mechanical	0.40	10%	-	-	-	0.360
Office Area (>250 ft ² )	0.65	10%	5%	-	-	0.557

Figure 45. Impact of Lighting Measures on Proposed LPDs by Space Function

## 6.3 Drain Water Heat Recovery Measure Analysis

To support potential DWHR savings in the Small Hotel prototype, the Reach Code Team modeled the drain water heat recovery measure in CBECC-Res 2019 in the all-electric and mixed fuel 6,960 ft2 prototype residential buildings. The Reach Code Team assumed one heat recovery device for every three showers assuming unequal flow to the shower. Based on specifications from three different drain water heat recovery device manufacturers for device effectiveness in hotel applications, the team assumed a heat recovery efficiency of 50 percent.

The Reach Code Team modeled mixed fuel and all-electric residential prototype buildings both with and without heat recovery in each climate zone. Based on these model results, the Reach Code Team determined the percentage savings of domestic water heating energy in terms of gas, electricity, and TDV for mixed fuel and all-electric, in each climate zone. The Reach Code Team then applied the savings



percentages to the Small Hotel prototype domestic water heating energy in both the mixed-fuel and allelectric to determine energy savings for the drain water heat recovery measure in the Small Hotel. The Reach Code Team applied volumetric energy rates to estimate on-bill cost impacts from this measure.

#### 6.4 Utility Rate Schedules

The Reach Codes Team used the IOU and POU rates depicted in Figure 46 to determine the On-Bill savings for each prototype.

Climate	Electric /	<u> </u>	Natural Gas		
Zones	Gas Utility	Medium Office	Medium Retail	Small Hotel	All Prototypes
CZ01	PG&E	A-10	A-1	A-1 or A-10	G-NR1
CZ02	PG&E	A-10	A-10	A-1 or A-10	G-NR1
CZ03	PG&E	A-10	A-1 or A-10	A-1 or A-10	G-NR1
CZ04	PG&E	A-10	A-10	A-1 or A-10	G-NR1
CZ04-2	CPAU/PG&E	E-2	E-2	E-2	G-NR1
CZ05	PG&E	A-10	A-1	A-1 or A-10	G-NR1
CZ05-2	PG&E/SCG	A-10	A-1	A-1 or A-10	G-10 (GN-10)
CZ06	SCE/SCG	TOU-GS-2	TOU-GS-2	TOU-GS-2 or TOU-GS-3	G-10 (GN-10)
CZ06	LADWP/SCG	TOU-GS-2	TOU-GS-2	TOU-GS-2 or TOU-GS-3	G-10 (GN-10)
CZ07	SDG&E	AL-TOU+EECC (AL-TOU)	AL-TOU+EECC (AL-TOU)	AL-TOU+EECC (AL-TOU)	GN-3
CZ08	SCE/SCG	TOU-GS-2	TOU-GS-2	TOU-GS-2 or TOU-GS-3	G-10 (GN-10)
CZ08-2	LADWP/SCG	A-2 (B)	A-2 (B)	A-2 (B)	G-10 (GN-10)
CZ09	SCE/SCG	TOU-GS-2	TOU-GS-2	TOU-GS-2 or TOU-GS-3	G-10 (GN-10)
CZ09-2	LADWP/SCG	A-2 (B)	A-2 (B)	A-2 (B)	G-10 (GN-10)
CZ10	SCE/SCG	TOU-GS-2	TOU-GS-2	TOU-GS-2	G-10 (GN-10)
CZ10-2	SDG&E	AL-TOU+EECC (AL-TOU)	AL-TOU+EECC (AL-TOU)	AL-TOU+EECC (AL-TOU)	GN-3
CZ11	PG&E	A-10	A-10	A-10	G-NR1
CZ12	PG&E	A-10	A-10	A-1 or A-10	G-NR1
CZ12-2	SMUD/PG&E	GS	GS	GS	G-NR1
CZ13	PG&E	A-10	A-10	A-10	G-NR1
CZ14	SCE/SCG	TOU-GS-3	TOU-GS-3	TOU-GS-3	G-10 (GN-10)
CZ14-2	SDG&E	AL-TOU+EECC (AL-TOU)	AL-TOU+EECC (AL-TOU)	AL-TOU+EECC (AL-TOU)	GN-3
CZ15	SCE/SCG	TOU-GS-3	TOU-GS-2	TOU-GS-2	G-10 (GN-10)
CZ16	PG&E	A-10	A-10	A-1 or A-10	G-NR1
CZ16-2	LADWP/SCG	A-2 (B)	A-2 (B)	A-2 (B)	G-10 (GN-10)

Figure 46. Utility Tariffs Analyzed Based on Climate Zone – Detailed View

#### 6.5 Mixed Fuel Baseline Energy Figures

Figures 47 to 49 show the annual electricity and natural gas consumption and cost, compliance TDV, and GHG emissions for each prototype under the mixed fuel design baseline.

Climate Zone	Utility	Electricity Consumption (kWh)	Natural Gas Consumption (Therms)	Electricity Cost	Natural Gas Cost	Compliance TDV	GHG Emissions (lbs)	
Medium Office Mixed Fuel Baseline								
CZ01	PG&E	358,455	4,967	\$109,507	\$6,506	84	266,893	
CZ02	PG&E	404,865	3,868	\$130,575	\$5,256	122	282,762	
CZ03	PG&E	370,147	3,142	\$116,478	\$4,349	88	251,759	
CZ04	PG&E	431,722	3,759	\$140,916	\$5,144	141	299,993	
CZ04-2	CPAU	431,722	3,759	\$75,363	\$5,144	141	299,993	
CZ05	PG&E	400,750	3,240	\$131,277	\$4,481	106	269,768	
CZ05-2	SCG	400,750	3,240	\$131,277	\$3 <i>,</i> 683	106	269,768	
CZ06	SCE	397,441	2,117	\$74,516	\$2,718	105	253,571	
CZ06-2	LA	397,441	2,117	\$44,311	\$2,718	105	253,571	
CZ07	SDG&E	422,130	950	\$164,991	\$4,429	118	257,324	
CZ08	SCE	431,207	1,219	\$79,181	\$1,820	132	265,179	
CZ08-2	LA	431,207	1,219	\$46,750	\$1,820	132	265,179	
CZ09	SCE	456,487	1,605	\$86,190	\$2,196	155	287,269	
CZ09-2	LA	456,487	1,605	\$51,111	\$2,196	155	287,269	
CZ10	SDG&E	431,337	2,053	\$173,713	\$5,390	130	272,289	
CZ10-2	SCE	431,337	2,053	\$80,636	\$2,603	130	272,289	
CZ11	PG&E	464,676	3,062	\$150,520	\$4,333	163	310,307	
CZ12	PG&E	441,720	3,327	\$142,902	\$4,647	152	299,824	
CZ12-2	SMUD	441,720	3,327	\$65,707	\$4,647	152	299,824	
CZ13	PG&E	471,540	3,063	\$150,919	\$4,345	161	316,228	
CZ14	SDG&E	467,320	3,266	\$185,812	\$6,448	165	314,258	
CZ14-2	SCE	467,320	3,266	\$92,071	\$3,579	165	314,258	
CZ15	SCE	559,655	1,537	\$105,388	\$2,058	211	347,545	
CZ16	PG&E	405,269	6,185	\$127,201	\$8,056	116	312,684	
CZ16-2	LA	405,269	6,185	\$43,115	\$8,056	116	312,684	

Figure 47. Medium Office - Mixed Fuel Baseline

Climate Zone	Utility	Electricity Consumption (kWh)	Natural Gas Consumption (Therms)	Electricity Cost	Natural Gas Cost	Compliance TDV	GHG Emissions (lbs)
	1	Fuel Baseline			[		
CZ01	PG&E	184,234	3,893	\$43,188	\$5,247	155	156,972
CZ02	PG&E	214,022	2,448	\$70,420	\$3,572	202	157,236
CZ03	PG&E	199,827	1,868	\$47,032	\$2,871	165	140,558
CZ04	PG&E	208,704	1,706	\$66,980	\$2,681	187	143,966
CZ04-2	CPAU	208,704	1,706	\$36,037	\$2,681	187	143,966
CZ05	PG&E	195,864	1,746	\$45,983	\$2,697	155	135,849
CZ05-2	SCG	195,864	1,746	\$45,983	\$2,342	155	135,849
CZ06	SCE	211,123	1,002	\$36,585	\$1,591	183	135,557
CZ06-2	LA	211,123	1,002	\$21,341	\$1,591	183	135,557
CZ07	SDG&E	211,808	522	\$75,486	\$4,055	178	130,436
CZ08	SCE	212,141	793	\$36,758	\$1,373	190	133,999
CZ08-2	LA	212,141	793	\$21,436	\$1,373	190	133,999
CZ09	SCE	227,340	970	\$40,083	\$1,560	218	146,680
CZ09-2	LA	227,340	970	\$23,487	\$1,560	218	146,680
CZ10	SDG&E	235,465	1,262	\$87,730	\$4,700	228	154,572
CZ10-2	SCE	235,465	1,262	\$41,000	\$1,853	228	154,572
CZ11	PG&E	234,560	2,415	\$76,670	\$3,547	244	170,232
CZ12	PG&E	228,958	2,309	\$75,084	\$3,426	234	165,133
CZ12-2	SMUD	228,958	2,309	\$32,300	\$3,426	234	165,133
CZ13	PG&E	242,927	1,983	\$81,995	\$3,034	258	170,345
CZ14	SDG&E	264,589	1,672	\$97,581	\$5,059	277	178,507
CZ14-2	SCE	264,589	1,672	\$46,217	\$2,172	277	178,507
CZ15	SCE	290,060	518	\$50,299	\$1,083	300	179,423
CZ16	PG&E	212,204	4,304	\$67,684	\$5,815	197	180,630
CZ16-2	LA	212,204	4,304	\$20,783	\$5,815	197	180,630

Figure 48. Medium Retail – Mixed Fuel Baseline

			5. Sman noter	- Finica Fac	I Daseini		1
Climate Zone	Utility	Electricity Consumption (kWh)	Natural Gas Consumption (Therms)	Electricity Cost	Natural Gas Cost	Compliance TDV	GHG Emissions (lbs)
Small Hote	el Mixed Fue	l Baseline					
CZ01	PG&E	177,734	16,936	40,778	20,465	110	340,491
CZ02	PG&E	189,319	12,696	53,396	15,664	110	293,056
CZ03	PG&E	183,772	12,341	42,325	15,210	98	284,217
CZ04	PG&E	187,482	11,945	52,118	14,806	106	281,851
CZ04-2	CPAU	187,482	11,945	32,176	14,806	106	281,851
CZ05	PG&E	187,150	11,979	43,182	14,733	98	281,183
CZ05-2	SCG	187,150	11,979	43,182	10,869	98	281,183
CZ06	SCE	191,764	8,931	28,036	8,437	98	244,664
CZ06-2	LA	191,764	8,931	16,636	8,437	98	244,664
CZ07	SDG&E	189,174	8,207	58,203	10,752	90	233,884
CZ08	SCE	190,503	8,372	27,823	7,991	94	236,544
CZ08-2	LA	190,503	8,372	16,555	7,991	94	236,544
CZ09	SCE	198,204	8,421	30,262	8,030	103	242,296
CZ09-2	LA	198,204	8,421	17,951	8,030	103	242,296
CZ10	SDG&E	215,364	8,437	71,713	10,926	122	255,622
CZ10-2	SCE	215,364	8,437	33,736	8,043	122	255,622
CZ11	PG&E	219,852	10,271	63,724	12,882	131	282,232
CZ12	PG&E	199,499	10,422	46,245	13,022	115	270,262
CZ12-2	SMUD	199,499	10,422	26,872	13,022	115	270,262
CZ13	PG&E	226,925	10,048	65,559	12,629	132	284,007
CZ14	SDG&E	226,104	10,075	73,621	12,167	134	283,287
CZ14-2	SCE	226,104	10,075	35,187	9,350	134	283,287
CZ15	SCE	280,595	5,598	42,852	5,777	152	260,378
CZ16	PG&E	191,231	17,618	51,644	21,581	127	358,590
CZ16-2	LA	191,231	17,618	16,029	21,581	127	358,590

Figure 49. Small Hotel - Mixed Fuel Baseline

# 6.6 Hotel TDV Cost Effectiveness with Propane Baseline

The Reach Codes Team further analyzed TDV cost effectiveness of the all-electric packages with a mixedfuel design baseline using propane instead of natural gas. Results for each package are shown in Figure 50. through Figure 53. below.

All electric models compared to a propane baseline have positive compliance margins in all climate zones when compared to results using a natural gas baseline. Compliance margin improvement is roughly 30 percent, which also leads to improved cost effectiveness for the all-electric packages. These outcomes are likely due to the TDV penalty associated with propane when compared to natural gas.

Across packages, TDV cost effectiveness with a propane baseline follows similar trends as the natural gas baseline. Adding efficiency measures increased compliance margins by 3 to 10 percent depending on climate zone, while adding high efficiency HVAC and SHW equipment alone increased compliance margins by smaller margins of about 2 to 4 percent compared to the All-Electric package.

Figure 50. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 2 All-
Electric Federal Code Minimum

	Complianc e				
Climate Zone	Margin (%)	Incremental Package Cost	\$-TDV Savings	B/C Ratio (TDV)	NPV (TDV)
CZ01	-4%	(\$1,271,869)	(\$28,346)	44.9	\$1,243,523
CZ02	27%	(\$1,272,841)	\$170,263	>1	\$1,443,104
CZ03	-3%	(\$1,275,114)	(\$16,425)	77.6	\$1,258,689
CZ04	26%	(\$1,274,949)	\$155,466	>1	\$1,430,414
CZ05	27%	(\$1,275,002)	\$154,709	>1	\$1,429,710
CZ06	17%	(\$1,275,143)	\$126,212	>1	\$1,401,355
CZ07	25%	(\$1,273,490)	\$117,621	>1	\$1,391,111
CZ08	24%	(\$1,271,461)	\$122,087	>1	\$1,393,548
CZ09	23%	(\$1,273,259)	\$123,525	>1	\$1,396,784
CZ10	18%	(\$1,270,261)	\$109,522	>1	\$1,379,783
CZ11	19%	(\$1,271,070)	\$129,428	>1	\$1,400,498
CZ12	-4%	(\$1,272,510)	(\$26,302)	48.4	\$1,246,208
CZ13	18%	(\$1,270,882)	\$124,357	>1	\$1,395,239
CZ14	17%	(\$1,271,241)	\$117,621	>1	\$1,388,861
CZ15	-7%	(\$1,269,361)	(\$45,338)	28.0	\$1,224,023
CZ16	9%	(\$1,275,637)	\$68,272	>1	\$1,343,908

Electric + EE)												
Climate	Compliance	Incremental		B/C Ratio								
Zone	Margin (%)	Package Cost	\$-TDV Savings	(TDV)	NPV (TDV)							
CZ01	35%	(\$1,250,898)	\$252,831	>1	\$1,503,729							
CZ02	34%	(\$1,251,870)	\$217,238	>1	\$1,469,108							
CZ03	37%	(\$1,254,142)	\$218,642	>1	\$1,472,784							
CZ04	31%	(\$1,250,769)	\$191,393	>1	\$1,442,162							
CZ05	36%	(\$1,254,031)	\$208,773	>1	\$1,462,804							
CZ06	25%	(\$1,250,964)	\$159,714	>1	\$1,410,677							
CZ07	32%	(\$1,249,311)	\$154,111	>1	\$1,403,422							
CZ08	29%	(\$1,247,282)	\$146,536	>1	\$1,393,818							
CZ09	27%	(\$1,249,080)	\$146,671	>1	\$1,395,751							
CZ10	22%	(\$1,246,081)	\$134,477	>1	\$1,380,559							
CZ11	23%	(\$1,246,891)	\$157,138	>1	\$1,404,029							
CZ12	27%	(\$1,248,330)	\$167,945	>1	\$1,416,276							
CZ13	22%	(\$1,246,703)	\$149,270	>1	\$1,395,973							
CZ14	21%	(\$1,247,061)	\$145,269	>1	\$1,392,331							
CZ15	14%	(\$1,245,182)	\$93,647	>1	\$1,338,829							
CZ16	20%	(\$1,254,665)	\$154,035	>1	\$1,408,701							

Figure 51. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 3A (All-Electric + EE)

Figure 52. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 3B (All-Electric + EE + PV)

			<u></u> 11)		1
Climate	Compliance	Incremental			
Zone	Margin (%)	Package Cost	\$-TDV Savings	B/C Ratio (TDV)	NPV (TDV)
CZ01	35%	(\$1,043,528)	\$511,688	>1	\$1,555,215
CZ02	34%	(\$1,044,500)	\$524,460	>1	\$1,568,960
CZ03	37%	(\$1,046,772)	\$518,485	>1	\$1,565,257
CZ04	31%	(\$1,043,399)	\$505,579	>1	\$1,548,978
CZ05	36%	(\$1,046,660)	\$526,668	>1	\$1,573,328
CZ06	25%	(\$1,043,594)	\$469,623	>1	\$1,513,216
CZ07	32%	(\$1,041,941)	\$471,513	>1	\$1,513,454
CZ08	29%	(\$1,039,912)	\$475,973	>1	\$1,515,885
CZ09	27%	(\$1,041,710)	\$467,971	>1	\$1,509,681
CZ10	22%	(\$1,038,711)	\$454,832	>1	\$1,493,543
CZ11	23%	(\$1,039,521)	\$474,844	>1	\$1,514,364
CZ12	27%	(\$1,040,960)	\$484,667	>1	\$1,525,627
CZ13	22%	(\$1,039,333)	\$454,108	>1	\$1,493,441
CZ14	21%	(\$1,039,691)	\$505,398	>1	\$1,545,090
CZ15	14%	(\$1,037,811)	\$423,879	>1	\$1,461,691
CZ16	20%	(\$1,047,295)	\$480,407	>1	\$1,527,702

Climate	Compliance	Incremental	<u> </u>		
Zone	Margin (%)	Package Cost	\$-TDV Savings	B/C Ratio (TDV)	NPV (TDV)
CZ01	27%	(\$1,256,423)	\$194,975	>1	\$1,451,398
CZ02	28%	(\$1,258,328)	\$177,378	>1	\$1,435,706
CZ03	28%	(\$1,263,867)	\$164,094	>1	\$1,427,961
CZ04	26%	(\$1,262,963)	\$155,314	>1	\$1,418,277
CZ05	26%	(\$1,263,327)	\$153,271	>1	\$1,416,598
CZ06	17%	(\$1,263,779)	\$122,011	>1	\$1,385,790
CZ07	24%	(\$1,260,844)	\$116,751	>1	\$1,377,594
CZ08	25%	(\$1,256,326)	\$122,995	>1	\$1,379,321
CZ09	24%	(\$1,260,223)	\$128,482	>1	\$1,388,706
CZ10	20%	(\$1,253,181)	\$121,595	>1	\$1,374,776
CZ11	21%	(\$1,254,613)	\$143,658	>1	\$1,398,271
CZ12	23%	(\$1,257,919)	\$142,901	>1	\$1,400,820
CZ13	21%	(\$1,254,386)	\$138,625	>1	\$1,393,011
CZ14	20%	(\$1,254,978)	\$136,430	>1	\$1,391,407
CZ15	14%	(\$1,251,932)	\$96,087	>1	\$1,348,019
CZ16	15%	(\$1,263,534)	\$122,011	>1	\$1,385,545

## Figure 53. TDV Cost Effectiveness for Small Hotel, Propane Baseline – Package 3C (All Electric + HE)

## 6.7 PV-only and PV+Battery-only Cost Effectiveness Results Details

The Reach Code Tea evaluated cost effectiveness of installing a PV system and battery storage in six different measure combinations over a 2019 code-compliant baseline for all climate zones. The baseline for all nonresidential buildings is a mixed-fuel design.

All mixed fuel models are compliant with 2019 Title24, whereas all electric models can show negative compliance. The compliance margin is the same as that of their respective federal minimum design and is not affected by addition of solar PV or battery. These scenarios evaluate the cost effectiveness of PV and/or battery measure individually. The climate zones where all-electric design is not compliant will have the flexibility to ramp up the efficiency of appliance or add another measure to be code compliant, as per package 1B and 3B in main body of the report. The large negative lifecycle costs in all electric packages are due to lower all-electric HVAC system costs and avoided natural gas infrastructure costs. This is commonly applied across all climate zones and packages over any additional costs for PV and battery.

#### 6.7.1 <u>Cost Effectiveness Results – Medium Office</u>

Figure 54 through Figure 61 contain the cost-effectiveness findings for the Medium Office packages. Notable findings for each package include:

- Mixed-Fuel + 3 kW PV Only: All packages are cost effective using the On-Bill and TDV approaches.
- Mixed-Fuel + 3 kW PV + 5 kWh Battery: The packages are mostly cost effective on a TDV basis except in CZ1. As compared to the 3 kW PV only package, battery reduces cost effectiveness. This package is not cost effective for LADWP and SMUD territories using an On-Bill approach.
- **Mixed-Fuel + PV only:** The packages are less cost effective as compared to 3 kW PV packages in most climate zones. In areas served by LADWP, the B/C ratio is narrowly less than 1 and not cost effective.
- Mixed-Fuel + PV + 50 kWh Battery: The packages are cost effective in all climate zones except for in the areas served by LADWP. On-Bill and TDV B/C ratios are slightly lower compared to the PV only package.
- All-Electric + 3 kW PV: Packages are on-bill cost effective in ten of sixteen climate zones. Climate zones 1,2,4,12, and 16 were not found to be cost-effective from an on-bill perspective. These zones are within PG&E's service area. Packages are cost effective using TDV in all climate zones except CZ16.
- All-Electric + 3 kW PV + 5 kWh Battery: Packages are slightly more cost effective than the previous minimal PV only package. Packages are on-bill cost effective in most climate zones except for 1,2 and 16 from an on-bill perspective. These zones are within PG&E's service area. Packages are cost effective using TDV in all climate zones except CZ16.
- All-Electric + PV only: All packages are cost effective and achieve savings using the On-Bill and TDV approaches.

 All-Electric + PV + 50 kWh Battery: All packages are cost effective and achieve savings using the On-Bill and TDV approaches. On-Bill and TDV B/C ratios are slightly lower compared to the PV only package.

	rigure 54. cost Effectiveness for Meurum Office - Mixeu ruer + 5kw rv											
		Elec	Gas	GHG		Lifecycle		B/C	B/C			
		Savings	Savings	savings	Incremental	Energy Cost	Lifecycle \$-	Ratio	Ratio	NPV	NPV	
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	<b>TDV Savings</b>	(On-bill)	(TDV)	(On-bill)	(TDV)	
Mixed F	uel + 3kW PV											
CZ01	PG&E	3,941	0	0.8	\$5,566	\$15,743	\$8,448	2.8	1.5	\$10,177	\$2,882	
CZ02	PG&E	4,785	0	0.9	\$5,566	\$20,372	\$10,500	3.7	1.9	\$14,806	\$4,934	
CZ03	PG&E	4,660	0	0.9	\$5,566	\$20,603	\$9,975	3.7	1.8	\$15,037	\$4,409	
CZ04	PG&E	5,056	0	1.0	\$5,566	\$20,235	\$11,073	3.6	2.0	\$14,669	\$5,507	
CZ04-2	CPAU	5,056	0	1.0	\$5 <i>,</i> 566	\$11,945	\$11,073	2.1	2.0	\$6,379	\$5,507	
CZ05	PG&E	5,027	0	1.0	\$5,566	\$23,159	\$10,834	4.2	1.9	\$17,593	\$5,268	
CZ06	SCE	4,853	0	0.9	\$5,566	\$10,968	\$10,930	2.0	2.0	\$5,402	\$5,364	
CZ06-2	LADWP	4,853	0	0.9	\$5 <i>,</i> 566	\$6,575	\$10,930	1.2	2.0	\$1,009	\$5,364	
CZ07	SDG&E	4,960	0	1.0	\$5 <i>,</i> 566	\$17,904	\$11,025	3.2	2.0	\$12,338	\$5,459	
CZ08	SCE	4,826	0	0.9	\$5 <i>,</i> 566	\$10,768	\$11,359	1.9	2.0	\$5,202	\$5,793	
CZ08-2	LADWP	4,826	0	0.9	\$5 <i>,</i> 566	\$6,503	\$11,359	1.2	2.0	\$937	\$5,793	
CZ09	SCE	4,889	0	1.0	\$5 <i>,</i> 566	\$10,622	\$11,216	1.9	2.0	\$5,056	\$5,650	
CZ09-2	LADWP	4,889	0	1.0	\$5 <i>,</i> 566	\$6,217	\$11,216	1.1	2.0	\$651	\$5,650	
CZ10	SDG&E	4,826	0	0.9	\$5,566	\$21,280	\$10,787	3.8	1.9	\$15,714	\$5,221	
CZ10-2	SCE	4,826	0	0.9	\$5 <i>,</i> 566	\$11,598	\$10,787	2.1	1.9	\$6,032	\$5,221	
CZ11	PG&E	4,701	0	0.9	\$5 <i>,</i> 566	\$19,869	\$10,644	3.6	1.9	\$14,303	\$5,078	
CZ12	PG&E	4,707	0	0.9	\$5 <i>,</i> 566	\$19,643	\$10,644	3.5	1.9	\$14,077	\$5,078	
CZ12-2	SMUD	4,707	0	0.9	\$5 <i>,</i> 566	\$8,005	\$10,644	1.4	1.9	\$2,439	\$5,078	
CZ13	PG&E	4,633	0	0.9	\$5 <i>,</i> 566	\$19,231	\$10,262	3.5	1.8	\$13,665	\$4,696	
CZ14	SDG&E	5,377	0	1.0	\$5,566	\$18,789	\$12,600	3.4	2.3	\$13,223	\$7,034	
CZ14-2	SCE	5,377	0	1.0	\$5,566	\$10,512	\$12,600	1.9	2.3	\$4,946	\$7,034	
CZ15	SCE	5,099	0	1.0	\$5,566	\$10,109	\$11,550	1.8	2.1	\$4,543	\$5,984	
CZ16	PG&E	5,096	0	1.0	\$5,566	\$21,836	\$10,882	3.9	2.0	\$16,270	\$5,316	
CZ16-2	LADWP	5,096	0	1.0	\$5,566	\$6,501	\$10,882	1.2	2.0	\$935	\$5,316	

Figure 54. Cost Effectiveness for Medium Office - Mixed Fuel + 3kW PV

	Figure 55. Cost Effectiveness for Medium Office – Mixed Fuel + 3KW PV + 5 KWh Battery										
		Elec		GHG		Lifecycle		B/C	B/C		I
		Savings	Gas Savings	savings	Incremental	Energy Cost	\$-TDV	Ratio	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Mixed F	uel + 3kW PV +	5kWh Batter	y								
CZ01	PG&E	3,941	0	0.8	\$9,520	\$15,743	\$8,448	1.7	0.9	\$6,223	(\$1,072)
CZ02	PG&E	4,785	0	0.9	\$9,520	\$20,372	\$10,500	2.1	1.1	\$10,852	\$980
CZ03	PG&E	4,660	0	0.9	\$9,520	\$20,603	\$9,975	2.2	1.0	\$11,083	\$455
CZ04	PG&E	5,056	0	1.0	\$9,520	\$20,235	\$11,073	2.1	1.2	\$10,714	\$1,553
CZ04-2	CPAU	5,056	0	1.0	\$9,520	\$11,945	\$11,073	1.3	1.2	\$2,425	\$1,553
CZ05	PG&E	5,027	0	1.0	\$9,520	\$23,159	\$10,834	2.4	1.1	\$13,639	\$1,314
CZ06	SCE	4,853	0	0.9	\$9,520	\$10,968	\$10,930	1.2	1.1	\$1,448	\$1,410
CZ06-2	LADWP	4,853	0	0.9	\$9,520	\$6,575	\$10,930	0.7	1.1	(\$2 <i>,</i> 945)	\$1,410
CZ07	SDG&E	4,960	0	1.0	\$9,520	\$17,904	\$11,025	1.9	1.2	\$8,384	\$1,505
CZ08	SCE	4,826	0	0.9	\$9,520	\$10,768	\$11,359	1.1	1.2	\$1,248	\$1,839
CZ08-2	LADWP	4,826	0	0.9	\$9,520	\$6,503	\$11,359	0.7	1.2	(\$3,017)	\$1,839
CZ09	SCE	4,889	0	1.0	\$9,520	\$10,622	\$11,216	1.1	1.2	\$1,102	\$1,696
CZ09-2	LADWP	4,889	0	1.0	\$9,520	\$6,217	\$11,216	0.7	1.2	(\$3 <i>,</i> 303)	\$1,696
CZ10	SDG&E	4,826	0	0.9	\$9,520	\$21,280	\$10,787	2.2	1.1	\$11,760	\$1,267
CZ10-2	SCE	4,826	0	0.9	\$9,520	\$11,598	\$10,787	1.2	1.1	\$2,078	\$1,267
CZ11	PG&E	4,701	0	0.9	\$9,520	\$19,869	\$10,644	2.1	1.1	\$10,349	\$1,123
CZ12	PG&E	4,707	0	0.9	\$9,520	\$19,643	\$10,644	2.1	1.1	\$10,123	\$1,123
CZ12-2	SMUD	4,707	0	0.9	\$9,520	\$8,005	\$10,644	0.8	1.1	(\$1,515)	\$1,123
CZ13	PG&E	4,633	0	0.9	\$9,520	\$19,231	\$10,262	2.0	1.1	\$9,711	\$742
CZ14	SDG&E	5,377	0	1.0	\$9,520	\$18,789	\$12,600	2.0	1.3	\$9,269	\$3,080
CZ14-2	SCE	5,377	0	1.0	\$9,520	\$10,512	\$12,600	1.1	1.3	\$992	\$3,080
CZ15	SCE	5,099	0	1.0	\$9,520	\$10,109	\$11,550	1.1	1.2	\$589	\$2,030
CZ16	PG&E	5,096	0	1.0	\$9,520	\$21,836	\$10,882	2.3	1.1	\$12,316	\$1,362
CZ16-2	LADWP	5,096	0	1.0	\$9,520	\$6,501	\$10,882	0.7	1.1	(\$3,019)	\$1,362

Figure 55. Cost Effectiveness for Medium Office – Mixed Fuel + 3kW PV + 5 kWh Battery

-		8			ess for Meuru						
								B/C	- /-		
		Elec	Gas	GHG		Lifecycle	Lifecycle	Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
Mixed F	uel +135kW PV										
CZ01	PG&E	177,340	0	34.3	\$302,856	\$526,352	\$380,399	1.7	1.3	\$223 <i>,</i> 497	\$77,544
CZ02	PG&E	215,311	0	41.5	\$302,856	\$666,050	\$471,705	2.2	1.6	\$363,194	\$168,849
CZ03	PG&E	209,717	0	40.7	\$302,856	\$645,010	\$449,797	2.1	1.5	\$342,154	\$146,942
CZ04	PG&E	227,535	0	44.0	\$302,856	\$686,434	\$497,431	2.3	1.6	\$383,578	\$194,575
CZ04-2	CPAU	227,535	0	44.0	\$302,856	\$537,521	\$497,431	1.8	1.6	\$234,665	\$194,575
CZ05	PG&E	226,195	0	44.1	\$302,856	\$753,230	\$486,596	2.5	1.6	\$450,374	\$183,741
CZ06	SCE	218,387	0	42.3	\$302,856	\$401,645	\$492,515	1.3	1.6	\$98,789	\$189,659
CZ06-2	LADWP	218,387	0	42.3	\$302,856	\$233,909	\$492,515	0.8	1.6	(\$68,947)	\$189,659
CZ07	SDG&E	223,185	0	43.3	\$302,856	\$623,078	\$496,667	2.1	1.6	\$320,223	\$193,811
CZ08	SCE	217,171	0	42.0	\$302,856	\$389,435	\$510,270	1.3	1.7	\$86,579	\$207,414
CZ08-2	LADWP	217,171	0	42.0	\$302,856	\$222,066	\$510,270	0.7	1.7	(\$80,790)	\$207,414
CZ09	SCE	220,010	0	43.2	\$302,856	\$387,977	\$505,783	1.3	1.7	\$85,122	\$202,928
CZ09-2	LADWP	220,010	0	43.2	\$302,856	\$226,516	\$505,783	0.7	1.7	(\$76,340)	\$202,928
CZ10	SDG&E	217,148	0	42.5	\$302,856	\$632,726	\$485,451	2.1	1.6	\$329,870	\$182,595
CZ10-2	SCE	217,148	0	42.5	\$302,856	\$394,884	\$485,451	1.3	1.6	\$92,028	\$182,595
CZ11	PG&E	211,556	0	40.9	\$302,856	\$671,691	\$478,912	2.2	1.6	\$368,835	\$176,056
CZ12	PG&E	211,824	0	40.9	\$302,856	\$653,242	\$478,101	2.2	1.6	\$350 <i>,</i> 386	\$175,245
CZ12-2	SMUD	211,824	0	40.9	\$302,856	\$345,255	\$478,101	1.1	1.6	\$42,399	\$175,245
CZ13	PG&E	208,465	0	40.5	\$302,856	\$651,952	\$462,732	2.2	1.5	\$349,096	\$159,876
CZ14	SDG&E	241,965	0	46.7	\$302,856	\$659,487	\$566,351	2.2	1.9	\$356,632	\$263,496
CZ14-2	SCE	241,965	0	46.7	\$302,856	\$401,712	\$566,351	1.3	1.9	\$98,856	\$263,496
CZ15	SCE	229,456	0	43.9	\$302,856	\$378,095	\$520,102	1.2	1.7	\$75,239	\$217,246
CZ16	PG&E	229,317	0	44.8	\$302,856	\$707,095	\$489,508	2.3	1.6	\$404,239	\$186,652
CZ16-2	LADWP	229,317	0	44.8	\$302,856	\$223,057	\$489,508	0.7	1.6	(\$79,799)	\$186,652

Figure 56. Cost Effectiveness for Medium Office – Mixed Fuel + 135kW PV

	Ŭ							B/C			
		Elec	Gas	GHG		Lifecycle	Lifecycle	Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	, bill)	(TDV)	bill)	(TDV)
Mixed F	uel + 135kW PV	+ 50 kWh Ba			U					-	
CZ01	PG&E	176,903	0	35.3	\$330,756	\$525,948	\$381,450	1.6	1.2	\$195,192	\$50,694
CZ02	PG&E	214,861	0	42.6	\$330,756	\$665,864	\$472,898	2.0	1.4	\$335,108	\$142,142
CZ03	PG&E	209,255	0	41.8	\$330,756	\$644,170	\$451,611	1.9	1.4	\$313,414	\$120,855
CZ04	PG&E	227,076	0	45.0	\$330,756	\$685,605	\$502,108	2.1	1.5	\$354,849	\$171,352
CZ04-2	CPAU	227,076	0	45.0	\$330,756	\$536,463	\$502,108	1.6	1.5	\$205,707	\$171,352
CZ05	PG&E	225,752	0	45.1	\$330,756	\$753,558	\$487,742	2.3	1.5	\$422,803	\$156,986
CZ06	SCE	217,939	0	43.4	\$330,756	\$401,356	\$494,042	1.2	1.5	\$70,601	\$163,286
CZ06-2	LADWP	217,939	0	43.4	\$330,756	\$233,673	\$494,042	0.7	1.5	(\$97,083)	\$163,286
CZ07	SDG&E	222,746	0	44.4	\$330,756	\$628,383	\$498,147	1.9	1.5	\$297,627	\$167,391
CZ08	SCE	216,724	0	43.1	\$330,756	\$389,184	\$511,511	1.2	1.5	\$58,428	\$180,755
CZ08-2	LADWP	216,724	0	43.1	\$330,756	\$221,839	\$511,511	0.7	1.5	(\$108,917)	\$180,755
CZ09	SCE	219,563	0	44.2	\$330,756	\$387,728	\$506,929	1.2	1.5	\$56,972	\$176,173
CZ09-2	LADWP	219,563	0	44.2	\$330,756	\$226,303	\$506,929	0.7	1.5	(\$104,453)	\$176,173
CZ10	SDG&E	216,700	0	43.5	\$330,756	\$638,040	\$486,644	1.9	1.5	\$307,284	\$155,888
CZ10-2	SCE	216,700	0	43.5	\$330,756	\$394,633	\$486,644	1.2	1.5	\$63,877	\$155,888
CZ11	PG&E	211,129	0	41.9	\$330,756	\$670,932	\$481,298	2.0	1.5	\$340,177	\$150,543
CZ12	PG&E	211,386	0	41.9	\$330,756	\$652,465	\$482,826	2.0	1.5	\$321,709	\$152,070
CZ12-2	SMUD	211,386	0	41.9	\$330,756	\$344,668	\$482,826	1.0	1.5	\$13,913	\$152,070
CZ13	PG&E	208,045	0	41.5	\$330,756	\$651,191	\$473,280	2.0	1.4	\$320,435	\$142,524
CZ14	SDG&E	241,502	0	47.7	\$330,756	\$672,601	\$569 <i>,</i> 454	2.0	1.7	\$341,846	\$238,698
CZ14-2	SCE	241,502	0	47.7	\$330,756	\$401,450	\$569,454	1.2	1.7	\$70,694	\$238,698
CZ15	SCE	229,062	0	44.8	\$330,756	\$377,827	\$521,963	1.1	1.6	\$47,071	\$191,208
CZ16	PG&E	228,825	0	45.9	\$330,756	\$706,201	\$496,190	2.1	1.5	\$375,445	\$165,434
CZ16-2	LADWP	228,825	0	45.9	\$330,756	\$222,802	\$496,190	0.7	1.5	(\$107,953)	\$165,434

## Figure 57. Cost Effectiveness for Medium Office – Mixed Fuel + 135kW PV + 50 kWh Battery

cz	IOU territory	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (tons)	Incremental Package Cost	Lifecycle Energy Cost Savings	Lifecycle TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On-bill)	NPV (TDV)
All-Elect	tric + 3kW PV										
CZ01	PG&E	-49,716	4967	10.9	(\$80,523)	(\$84,765)	(\$49,972)	0.9	1.6	(\$4,242)	\$30,551
CZ02	PG&E	-44,899	3868	6.0	(\$66,965)	(\$83,115)	(\$30,928)	0.8	2.2	(\$16,150)	\$36,037
CZ03	PG&E	-31,226	3142	6.5	(\$75,600)	(\$39,441)	(\$19,617)	1.9	3.9	\$36,159	\$55,983
CZ04	PG&E	-43,772	3759	5.7	(\$62,282)	(\$70,999)	(\$29,496)	0.9	2.1	(\$8,717)	\$32,786
CZ04-2	CPAU	-43,772	3759	5.7	(\$62,282)	(\$8 <i>,</i> 050)	(\$29,496)	7.7	2.1	\$54,232	\$32,786
CZ05	PG&E	-35,504	3240	5.5	(\$77,773)	(\$42,559)	(\$29,162)	1.8	2.7	\$35,214	\$48,611
CZ06	SCE	-21,321	2117	4.0	(\$69,422)	\$35,862	(\$9,641)	>1	7.2	\$105,284	\$59,781
CZ06-2	LADWP	-21,321	2117	4.0	(\$69,422)	\$32,936	(\$9,641)	>1	7.2	\$102,358	\$59,781
CZ07	SDG&E	-7,943	950	1.9	(\$63,595)	\$64,781	(\$382)	>1	166.6	\$128,376	\$63,214
CZ08	SCE	-10,854	1219	2.5	(\$62,043)	\$28,651	(\$1,289)	>1	48.1	\$90,694	\$60,755
CZ08-2	LADWP	-10,854	1219	2.5	(\$62,043)	\$25,122	(\$1,289)	>1	48.1	\$87,165	\$60,755
CZ09	SCE	-14,878	1605	3.3	(\$56,372)	\$31,542	(\$3,246)	>1	17.4	\$87,913	\$53,126
CZ09-2	LADWP	-14,878	1605	3.3	(\$56,372)	\$28,145	(\$3,246)	>1	17.4	\$84,517	\$53,126
CZ10	SDG&E	-22,588	2053	3.1	(\$41,171)	\$59,752	(\$12,553)	>1	3.3	\$100,924	\$28,619
CZ10-2	SCE	-22,588	2053	3.1	(\$41,171)	\$32,039	(\$12,553)	>1	3.3	\$73,211	\$28,619
CZ11	PG&E	-35,455	3062	4.5	(\$57,257)	(\$53,776)	(\$22,194)	1.1	2.6	\$3,481	\$35,063
CZ12	PG&E	-38,704	3327	5.0	(\$61,613)	(\$66,808)	(\$24,819)	0.9	2.5	(\$5 <i>,</i> 195)	\$36,794
CZ12-2	SMUD	-38,704	3327	5.0	(\$61,613)	\$2,897	(\$24,819)	>1	2.5	\$64,510	\$36,794
CZ13	PG&E	-35,016	3063	4.7	(\$55,996)	(\$52,159)	(\$22,146)	1.1	2.5	\$3,836	\$33,849
CZ14	SDG&E	-38,945	3266	4.5	(\$58,426)	\$24,867	(\$25,821)	>1	2.3	\$83,293	\$32,605
CZ14-2	SCE	-38,945	3266	4.5	(\$58,426)	\$15,338	(\$25,821)	>1	2.3	\$73,764	\$32,605
CZ15	SCE	-14,818	1537	2.8	(\$29,445)	\$22,852	(\$3,914)	>1	7.5	\$52,298	\$25,532
CZ16	PG&E	-88,966	6185	6.6	(\$57,366)	(\$193,368)	(\$139,989)	0.3	0.4	(\$136,002)	(\$82,623)
CZ16-2	LADWP	-88,966	6185	6.6	(\$57,366)	\$36,354	(\$139,989)	>1	0.4	\$93,720	(\$82,623)

# Figure 58. Cost Effectiveness for Medium Office- All-Electric + 3kW PV



	1 18	5ur c 57. c	JSt Ellettiv	CIIC35 101	Medium Om	te - All-Blett	IIC + JKW	IVTJN	wii Dati	.ery	
		Elec Savings	Gas Savings	GHG savings	Incremental	Lifecycle Energy Cost	\$-TDV	B/C Ratio (On-	B/C Ratio	NPV (On-	NPV
cz		-	-	-		•.	-	•		•	
	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
	tric + 3kW PV + !		,								
CZ01	PG&E	-49,716	4967	10.9	(\$78,897)	(\$84,765)	(\$49,972)	0.9	1.6	(\$5 <i>,</i> 868)	\$28,925
CZ02	PG&E	-44,899	3868	6.0	(\$78,897)	(\$83,115)	(\$30,928)	0.9	2.6	(\$4,218)	\$47,969
CZ03	PG&E	-31,226	3142	6.5	(\$78,897)	(\$39,441)	(\$19,617)	2.0	4.0	\$39 <i>,</i> 456	\$59,280
CZ04	PG&E	-43,772	3759	5.7	(\$78,897)	(\$70,999)	(\$29,496)	1.1	2.7	\$7,898	\$49,400
CZ04-2	CPAU	-43,772	3759	5.7	(\$78,897)	(\$8,050)	(\$29,496)	9.8	2.7	\$70,847	\$49,400
CZ05	PG&E	-35,504	3240	5.5	(\$78,897)	(\$42 <i>,</i> 559)	(\$29,162)	1.9	2.7	\$36,338	\$49,735
CZ06	SCE	-21,321	2117	4.0	(\$78,897)	\$35,862	(\$9,641)	>1	8.2	\$114,759	\$69,256
CZ06-2	LADWP	-21,321	2117	4.0	(\$78,897)	\$32,936	(\$9,641)	>1	8.2	\$111,833	\$69,256
CZ07	SDG&E	-7,943	950	1.9	(\$78,897)	\$64,781	(\$382)	>1	206.6	\$143,678	\$78,515
CZ08	SCE	-10,854	1219	2.5	(\$78,897)	\$28,651	(\$1,289)	>1	61.2	\$107,548	\$77,608
CZ08-2	LADWP	-10,854	1219	2.5	(\$78 <i>,</i> 897)	\$25,122	(\$1,289)	>1	61.2	\$104,019	\$77,608
CZ09	SCE	-14,878	1605	3.3	(\$78,897)	\$31,542	(\$3,246)	>1	24.3	\$110,439	\$75,651
CZ09-2	LADWP	-14,878	1605	3.3	(\$78 <i>,</i> 897)	\$28,145	(\$3,246)	>1	24.3	\$107,042	\$75,651
CZ10	SDG&E	-22,588	2053	3.1	(\$78 <i>,</i> 897)	\$59,752	(\$12,553)	>1	6.3	\$138,649	\$66,344
CZ10-2	SCE	-22,588	2053	3.1	(\$78 <i>,</i> 897)	\$32,039	(\$12,553)	>1	6.3	\$110,936	\$66,344
CZ11	PG&E	-35,455	3062	4.5	(\$78,897)	(\$53,776)	(\$22,194)	1.5	3.6	\$25,121	\$56,703
CZ12	PG&E	-38,704	3327	5.0	(\$78,897)	(\$66,808)	(\$24,819)	1.2	3.2	\$12,089	\$54,078
CZ12-2	SMUD	-38,704	3327	5.0	(\$78,897)	\$2,897	(\$24,819)	>1	3.2	\$81,794	\$54,078
CZ13	PG&E	-35,016	3063	4.7	(\$78,897)	(\$52,159)	(\$22,146)	1.5	3.6	\$26,738	\$56,751
CZ14	SDG&E	-38,945	3266	4.5	(\$78,897)	\$24,867	(\$25,821)	>1	3.1	\$103,764	\$53,076
CZ14-2	SCE	-38,945	3266	4.5	(\$78,897)	\$15,338	(\$25,821)	>1	3.1	\$94,235	\$53,076
CZ15	SCE	-14,818	1537	2.8	(\$78,897)	\$22,852	(\$3,914)	>1	20.2	\$101,749	\$74,983
CZ16	PG&E	-88,966	6185	6.6	(\$78,897)	(\$193,368)	(\$139,989)	0.4	0.6	(\$114,472)	(\$61,092)
CZ16-2	LADWP	-88,966	6185	6.6	(\$78,897)	\$36,354	(\$139,989)	>1	0.6	\$115,250	(\$61,092)

Figure 59. Cost Effectiveness for Medium Office – All-Electric + 3kW PV + 5 kWh Battery

		8			ess for meuru						
								B/C			
		Elec	Gas	GHG		Lifecycle	Lifecycle	Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
All-Elect	ric + 135kW PV										
CZ01	PG&E	123,683	4967	44.5	\$163,217	\$405,731	\$321,979	2.5	2.0	\$242,514	\$158,762
CZ02	PG&E	165,627	3868	46.6	\$176,775	\$562,528	\$430,276	3.2	2.4	\$385,753	\$253,501
CZ03	PG&E	173,831	3142	46.3	\$168,140	\$575,864	\$420,205	3.4	2.5	\$407,725	\$252,066
CZ04	PG&E	178,706	3759	48.7	\$181,458	\$601,431	\$456,861	3.3	2.5	\$419,973	\$275,403
CZ04-2	CPAU	178,706	3759	48.7	\$181,458	\$517,526	\$456,861	2.9	2.5	\$336,069	\$275,403
CZ05	PG&E	185,664	3240	48.6	\$165,967	\$664,842	\$446,600	4.0	2.7	\$498,875	\$280,633
CZ06	SCE	192,214	2117	45.3	\$174,317	\$423,657	\$471,944	2.4	2.7	\$249,340	\$297,626
CZ06-2	LADWP	192,214	2117	45.3	\$174,317	\$259,270	\$471,944	1.5	2.7	\$84,953	\$297,626
CZ07	SDG&E	210,282	950	44.3	\$180,145	\$669,979	\$485,260	3.7	2.7	\$489,834	\$305,115
CZ08	SCE	201,491	1219	43.5	\$181,696	\$407,277	\$497,622	2.2	2.7	\$225,580	\$315,925
CZ08-2	LADWP	201,491	1219	43.5	\$181,696	\$240,657	\$497,622	1.3	2.7	\$58,960	\$315,925
CZ09	SCE	200,242	1605	45.6	\$187,368	\$408,922	\$491,322	2.2	2.6	\$221,554	\$303,953
CZ09-2	LADWP	200,242	1605	45.6	\$187,368	\$248,452	\$491,322	1.3	2.6	\$61,084	\$303,953
CZ10	SDG&E	189,734	2053	44.7	\$202,568	\$667,551	\$462,111	3.3	2.3	\$464,982	\$259,543
CZ10-2	SCE	189,734	2053	44.7	\$202,568	\$412,659	\$462,111	2.0	2.3	\$210,091	\$259,543
CZ11	PG&E	171,399	3062	44.5	\$186,483	\$597,807	\$446,074	3.2	2.4	\$411,324	\$259,592
CZ12	PG&E	168,413	3327	45.0	\$182,127	\$571,758	\$442,638	3.1	2.4	\$389,632	\$260,511
CZ12-2	SMUD	168,413	3327	45.0	\$182,127	\$343,602	\$442,638	1.9	2.4	\$161,475	\$260,511
CZ13	PG&E	168,817	3063	44.3	\$187,744	\$581,964	\$430,324	3.1	2.3	\$394,220	\$242,580
CZ14	SDG&E	197,643	3266	50.1	\$185,314	\$667,762	\$527,930	3.6	2.8	\$482,449	\$342,616
CZ14-2	SCE	197,643	3266	50.1	\$185,314	\$408,424	\$527,930	2.2	2.8	\$223,110	\$342,616
CZ15	SCE	209,539	1537	45.7	\$214,294	\$390,267	\$504,638	1.8	2.4	\$175,972	\$290,343
CZ16	PG&E	135,255	6185	50.4	\$186,374	\$470,199	\$338,637	2.5	1.8	\$283,825	\$152,263
CZ16-2	LADWP	135,255	6185	50.4	\$186,374	\$250,807	\$338,637	1.3	1.8	\$64,433	\$152,263

# Figure 60. Cost Effectiveness for Medium Office – All-Electric + 135kW PV

	Ŭ							D/C		<b>v</b>	
		-1		<u></u>				B/C	D / 0		
		Elec	Gas	GHG		Lifecycle	Lifecycle	Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
-	ric + 135kW PV	+ 50 kWh Ba	-								
CZ01	PG&E	123,280	4967	45.4	\$191,117	\$404,994	\$323,077	2.1	1.7	\$213,877	\$131,960
CZ02	PG&E	165,200	3868	47.7	\$204,675	\$561,747	\$431,469	2.7	2.1	\$357,072	\$226,795
CZ03	PG&E	173,384	3142	47.4	\$196,040	\$575,043	\$422,019	2.9	2.2	\$379,003	\$225,979
CZ04	PG&E	178,259	3759	49.8	\$209,358	\$600,621	\$461,634	2.9	2.2	\$391,263	\$252,276
CZ04-2	CPAU	178,259	3759	49.8	\$209,358	\$516,495	\$461,634	2.5	2.2	\$307,137	\$252,276
CZ05	PG&E	185,229	3240	49.7	\$193,867	\$664,046	\$447,793	3.4	2.3	\$470,179	\$253,926
CZ06	SCE	191,767	2117	46.5	\$202,217	\$423,369	\$473,519	2.1	2.3	\$221,152	\$271,301
CZ06-2	LADWP	191,767	2117	46.5	\$202,217	\$259,033	\$473,519	1.3	2.3	\$56,816	\$271,301
CZ07	SDG&E	209,848	950	45.4	\$208,045	\$675,307	\$486,787	3.2	2.3	\$467,262	\$278,743
CZ08	SCE	201,047	1219	44.7	\$209,596	\$407,027	\$498,910	1.9	2.4	\$197,430	\$289,314
CZ08-2	LADWP	201,047	1219	44.7	\$209,596	\$240,432	\$498,910	1.1	2.4	\$30,835	\$289,314
CZ09	SCE	199,802	1605	46.6	\$215,268	\$408,676	\$492,515	1.9	2.3	\$193,408	\$277,246
CZ09-2	LADWP	199,802	1605	46.6	\$215,268	\$248,242	\$492,515	1.2	2.3	\$32,974	\$277,246
CZ10	SDG&E	189,293	2053	45.7	\$230,468	\$672,867	\$463,352	2.9	2.0	\$442,399	\$232,884
CZ10-2	SCE	189,293	2053	45.7	\$230,468	\$412,412	\$463,352	1.8	2.0	\$181,944	\$232,884
CZ11	PG&E	170,987	3062	45.5	\$214,383	\$597,062	\$448,509	2.8	2.1	\$382,680	\$234,126
CZ12	PG&E	167,995	3327	46.0	\$210,027	\$571,002	\$447,411	2.7	2.1	\$360,975	\$237,384
CZ12-2	SMUD	167,995	3327	46.0	\$210,027	\$343,043	\$447,411	1.6	2.1	\$133,017	\$237,384
CZ13	PG&E	168,408	3063	45.3	\$215,644	\$581,225	\$440,920	2.7	2.0	\$365,580	\$225,275
CZ14	SDG&E	197,188	3266	51.2	\$213,214	\$680,893	\$531,080	3.2	2.5	\$467,679	\$317,866
CZ14-2	SCE	197,188	3266	51.2	\$213,214	\$408,166	\$531,080	1.9	2.5	\$194,952	\$317,866
CZ15	SCE	209,148	1537	46.6	\$242,194	\$390,000	\$506,499	1.6	2.1	\$147,806	\$264,305
CZ16	PG&E	134,809	6185	51.4	\$214,274	\$469,378	\$341,978	2.2	1.6	\$255,105	\$127,704
CZ16-2	LADWP	134,809	6185	51.4	\$214,274	\$250,580	\$341,978	1.2	1.6	\$36,306	\$127,704

# Figure 61. Cost Effectiveness for Medium Office – All-Electric + 135kW PV + 50 kWh Battery

#### 6.7.2 Cost Effectiveness Results - Medium Retail

Figure 62 through Figure 69 contain the cost-effectiveness findings for the Medium Retail packages. Notable findings for each package include:

- Mixed-Fuel + 3 kW PV: Packages are cost effective and achieve savings for all climate zones using the On-Bill and TDV approaches.
- Mixed-Fuel + 3 kW PV + 5 kWh Battery: The packages are less cost effective as compared to the 3 kW PV only package and not cost effective for LADWP and SMUD service area.
- Mixed-Fuel + PV only: Packages achieve positive energy cost savings and are cost effective using the On-Bill approach for all climate zones except for LADWP territory (CZs 6, 8, 9 and 16). Packages achieve positive savings and are cost effective using the TDV approach for all climate zones.
- **Mixed Fuel + PV + 5 kWh Battery:** Adding battery slightly reduces On-Bill B/C ratios but is still cost effective for all climate zones except for LADWP territory. Packages achieve savings and cost effective using the TDV approach for all climate zones.
- All-Electric + 3 kW PV: Packages are cost effective using the On-Bill and TDV approach for all climate zones except for CZ16 under PG&E service.
- All-Electric + 3 kW PV + 5 kWh Battery: Similar to minimal PV only package, adding battery is cost effective as well using the On-Bill and TDV approach for all climate zones except for CZ16 under PG&E service.
- All-Electric + PV only: Packages are cost effective and achieve savings in all climate zones for both the On-Bill and TDV approaches
- All-Electric + PV + 50 kWh Battery: Adding battery slightly reduces B/C ratios for both the On-Bill and TDV approaches. Packages are not cost effective for all climate zones except CZ6, CZ8 and CZ9 under LADWP service area.

		1 154	10 02. 0050	LIICCUVCI	less for mean	m Ketun M	Incu I uci	JKWIV			
		Elec		GHG		Lifecycle	Lifecycle	B/C	B/C		
		Savings	Gas Savings	savings	Incremental	Energy Cost	TDV	Ratio	Ratio	NPV	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	(On-bill)	(TDV)	(On-bill)	(TDV)
Mixed F	uel + 3kW PV										
CZ01	PG&E	3,941	0	0.76	\$5 <i>,</i> 566	\$12,616	\$8,460	2.3	1.5	\$7,050	\$2,894
CZ02	PG&E	4,685	0	0.91	\$5 <i>,</i> 566	\$17,635	\$10,262	3.2	1.8	\$12,069	\$4,696
CZ03	PG&E	4,733	0	0.92	\$5 <i>,</i> 566	\$15,146	\$10,152	2.7	1.8	\$9 <i>,</i> 580	\$4,586
CZ04	PG&E	4,834	0	0.94	\$5 <i>,</i> 566	\$18,519	\$10,614	3.3	1.9	\$12,953	\$5,048
CZ04-2	CPAU	4,834	0	0.94	\$5 <i>,</i> 566	\$11,507	\$10,614	2.1	1.9	\$5,941	\$5,048
CZ05	PG&E	4,910	0	0.95	\$5 <i>,</i> 566	\$15,641	\$10,548	2.8	1.9	\$10,075	\$4,982
CZ06	SCE	4,769	0	0.93	\$5 <i>,</i> 566	\$11,374	\$10,724	2.0	1.9	\$5,808	\$5,158
CZ06-2	LA	4,769	0	0.93	\$5 <i>,</i> 566	\$7,069	\$10,724	1.3	1.9	\$1,503	\$5,158
CZ07	SDG&E	4,960	0	0.96	\$5 <i>,</i> 566	\$22,452	\$11,031	4.0	2.0	\$16,886	\$5,465
CZ08	SCE	4,826	0	0.93	\$5 <i>,</i> 566	\$11,838	\$11,339	2.1	2.0	\$6,272	\$5,773
CZ08-2	LA	4,826	0	0.93	\$5 <i>,</i> 566	\$7,342	\$11,339	1.3	2.0	\$1,776	\$5,773
CZ09	SCE	4,889	0	0.96	\$5 <i>,</i> 566	\$11,187	\$11,229	2.0	2.0	\$5,621	\$5,663
CZ09-2	LA	4,889	0	0.96	\$5 <i>,</i> 566	\$6,728	\$11,229	1.2	2.0	\$1,162	\$5,663
CZ10	SDG&E	4,948	0	0.97	\$5 <i>,</i> 566	\$20,999	\$10,987	3.8	2.0	\$15,433	\$5,421
CZ10-2	SCE	4,948	0	0.97	\$5 <i>,</i> 566	\$11,384	\$10,987	2.0	2.0	\$5,818	\$5,421
CZ11	PG&E	4,718	0	0.91	\$5 <i>,</i> 566	\$15,381	\$10,680	2.8	1.9	\$9,815	\$5,114
CZ12	PG&E	4,707	0	0.91	\$5 <i>,</i> 566	\$16,442	\$10,614	3.0	1.9	\$10,876	\$5,048
CZ12-2	SMUD	4,707	0	0.91	\$5 <i>,</i> 566	\$8,247	\$10,614	1.5	1.9	\$2,681	\$5,048
CZ13	PG&E	4,750	0	0.92	\$5 <i>,</i> 566	\$16,638	\$10,592	3.0	1.9	\$11,072	\$5,026
CZ14	SDG&E	5,258	0	1.01	\$5,566	\$19,576	\$12,218	3.5	2.2	\$14,010	\$6,652
CZ14-2	SCE	5,258	0	1.01	\$5,566	\$10,227	\$12,218	1.8	2.2	\$4,661	\$6,652
CZ15	SCE	4,997	0	0.96	\$5,566	\$10,476	\$11,339	1.9	2.0	\$4,910	\$5,773
CZ16	PG&E	5,336	0	1.04	\$5,566	\$20,418	\$11,361	3.7	2.0	\$14,852	\$5,795
CZ16-2	LA	5,336	0	1.04	\$5 <i>,</i> 566	\$6,987	\$11,361	1.3	2.0	\$1,421	\$5,795

Figure 62. Cost Effectiveness for Medium Retail – Mixed-Fuel + 3kW PV

	Fig	gure 63. CC	ost enective	eness for N	Aedium Retail	- Mixea Fue	I + 3KW P	<u> </u>	n Batter	ſy	
		Elec		GHG		Lifecycle		B/C	B/C		
		Savings	Gas Savings	savings	Incremental	Energy Cost	\$-TDV	Ratio	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Mixed F	uel + 3kW PV +	5 kWh Batter	у								
CZ01	PG&E	3,941	0	0.76	\$9,520	\$12,616	\$8,460	1.3	0.9	\$3,096	(\$1,060)
CZ02	PG&E	4,685	0	0.91	\$9,520	\$17,635	\$10,262	1.9	1.1	\$8,115	\$742
CZ03	PG&E	4,733	0	0.92	\$9,520	\$15,146	\$10,152	1.6	1.1	\$5,626	\$632
CZ04	PG&E	4,834	0	0.94	\$9,520	\$18,519	\$10,614	1.9	1.1	\$8,999	\$1,094
CZ04-2	CPAU	4,834	0	0.94	\$9,520	\$11,507	\$10,614	1.2	1.1	\$1,987	\$1,094
CZ05	PG&E	4,910	0	0.95	\$9,520	\$15,641	\$10,548	1.6	1.1	\$6,120	\$1,028
CZ05-2	SCG	4,910	0	0.95	\$9,520	\$15,641	\$10,548	1.6	1.1	\$6,120	\$1,028
CZ06	SCE	4,769	0	0.93	\$9,520	\$11,374	\$10,724	1.2	1.1	\$1,854	\$1,204
CZ06-2	LA	4,769	0	0.93	\$9,520	\$7,069	\$10,724	0.7	1.1	(\$2,452)	\$1,204
CZ07	SDG&E	4,960	0	0.96	\$9,520	\$22,452	\$11,031	2.4	1.2	\$12,932	\$1,511
CZ08	SCE	4,826	0	0.93	\$9,520	\$11,838	\$11,339	1.2	1.2	\$2,317	\$1,819
CZ08-2	LA	4,826	0	0.93	\$9,520	\$7,342	\$11,339	0.8	1.2	(\$2,178)	\$1,819
CZ09	SCE	4,889	0	0.96	\$9,520	\$11,187	\$11,229	1.2	1.2	\$1,667	\$1,709
CZ09-2	LA	4,889	0	0.96	\$9,520	\$6,728	\$11,229	0.7	1.2	(\$2,792)	\$1,709
CZ10	SDG&E	4,948	0	0.97	\$9,520	\$20,999	\$10,987	2.2	1.2	\$11,479	\$1,467
CZ10-2	SCE	4,948	0	0.97	\$9,520	\$11,384	\$10,987	1.2	1.2	\$1,863	\$1,467
CZ11	PG&E	4,718	0	0.91	\$9,520	\$15,381	\$10,680	1.6	1.1	\$5,861	\$1,160
CZ12	PG&E	4,707	0	0.91	\$9,520	\$16,442	\$10,614	1.7	1.1	\$6,922	\$1,094
CZ12-2	SMUD	4,707	0	0.91	\$9,520	\$8,247	\$10,614	0.9	1.1	(\$1,273)	\$1,094
CZ13	PG&E	4,750	0	0.92	\$9,520	\$16,638	\$10,592	1.7	1.1	\$7,117	\$1,072
CZ14	SDG&E	5,258	0	1.01	\$9,520	\$19,576	\$12,218	2.1	1.3	\$10,056	\$2,698
CZ14-2	SCE	5,258	0	1.01	\$9,520	\$10,227	\$12,218	1.1	1.3	\$707	\$2,698
CZ15	SCE	4,997	0	0.96	\$9,520	\$10,476	\$11,339	1.1	1.2	\$956	\$1,819
CZ16	PG&E	5,336	0	1.04	\$9,520	\$20,418	\$11,361	2.1	1.2	\$10,898	\$1,841
CZ16-2	LA	5,336	0	1.04	\$9,520	\$6,987	\$11,361	0.7	1.2	(\$2,533)	\$1,841

Figure 63. Cost Effectiveness for Medium Retail – Mixed Fuel + 3kW PV + 5 kWh Battery

		Ingui		meenven	ess for meatur	in Retain 1911				1	
		Elec	Gas	GHG		Lifecycle	Lifecycle	B/C	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	Ratio	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Mixed F	uel + 110kW PV										
CZ01	PG&E	144,499	0	27.97	\$201,904	\$454,462	\$309,935	2.3	1.5	\$252,558	\$108,031
CZ02	PG&E	171,790	0	33.31	\$201,904	\$477,584	\$376,300	2.4	1.9	\$275,681	\$174,396
CZ03	PG&E	173,534	0	33.55	\$201,904	\$538,530	\$372,146	2.7	1.8	\$336,626	\$170,243
CZ04	PG&E	177,229	0	34.42	\$201,904	\$489,934	\$389 <i>,</i> 067	2.4	1.9	\$288,030	\$187,163
CZ04-2	CPAU	177,229	0	34.42	\$201,904	\$418,173	\$389 <i>,</i> 067	2.1	1.9	\$216,269	\$187,163
CZ05	PG&E	180,044	0	34.84	\$201,904	\$556,787	\$386,958	2.8	1.9	\$354,883	\$185,054
CZ06	SCE	174,855	0	33.92	\$201,904	\$288,188	\$393,198	1.4	1.9	\$86,284	\$191,295
CZ06-2	LA	174,855	0	33.92	\$201,904	\$165,538	\$393,198	0.8	1.9	(\$36,366)	\$191,295
CZ07	SDG&E	181,854	0	35.32	\$201,904	\$373,974	\$404,713	1.9	2.0	\$172,070	\$202,809
CZ08	SCE	176,954	0	34.23	\$201,904	\$284,481	\$415 <i>,</i> 789	1.4	2.1	\$82,577	\$213,885
CZ08-2	LA	176,954	0	34.23	\$201,904	\$161,366	\$415,789	0.8	2.1	(\$40,538)	\$213,885
CZ09	SCE	179,267	0	35.18	\$201,904	\$289,050	\$412,097	1.4	2.0	\$87,146	\$210,193
CZ09-2	LA	179,267	0	35.18	\$201,904	\$168,822	\$412,097	0.8	2.0	(\$33,082)	\$210,193
CZ10	SDG&E	181,443	0	35.41	\$201,904	\$410,310	\$402,999	2.0	2.0	\$208,406	\$201,095
CZ10-2	SCE	181,443	0	35.41	\$201,904	\$291,236	\$402,999	1.4	2.0	\$89,332	\$201,095
CZ11	PG&E	172,983	0	33.46	\$201,904	\$464,776	\$391,550	2.3	1.9	\$262,872	\$189,646
CZ12	PG&E	172,597	0	33.33	\$201,904	\$467,870	\$389,573	2.3	1.9	\$265,966	\$187,669
CZ12-2	SMUD	172,597	0	33.33	\$201,904	\$267,086	\$389,573	1.3	1.9	\$65,182	\$187,669
CZ13	PG&E	174,151	0	33.81	\$201,904	\$478,857	\$387,968	2.4	1.9	\$276,953	\$186,065
CZ14	SDG&E	192,789	0	36.97	\$201,904	\$396,181	\$448,268	2.0	2.2	\$194,277	\$246,364
CZ14-2	SCE	192,789	0	36.97	\$201,904	\$288,782	\$448,268	1.4	2.2	\$86,878	\$246,364
CZ15	SCE	183,214	0	35.12	\$201,904	\$277,867	\$415,789	1.4	2.1	\$75,963	\$213,885
CZ16	PG&E	195,665	0	37.97	\$201,904	\$522,352	\$416,558	2.6	2.1	\$320,448	\$214,654
CZ16-2	LA	195,665	0	37.97	\$201,904	\$171,802	\$416,558	0.9	2.1	(\$30,101)	\$214,654

Figure 64. Cost Effectiveness for Medium Retail – Mixed-Fuel + 110kW PV

	Figui	e 05. COSI	Enectiven	ess 101 me	eaium Retail -	- Mixeu-ruei	+ 110 KW	FV + 50	K W II Da	littery	
		Elec	Gas	GHG		Lifecycle	Lifecycle	B/C	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	Ratio	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Mixed F	uel + 110kW PV	+ 50 kWh Ba	ttery								
CZ01	PG&E	143,423	0	29.48	\$229,804	\$452,119	\$324,373	2.0	1.4	\$222,315	\$94,569
CZ02	PG&E	170,542	0	35.14	\$229,804	\$486,704	\$398,363	2.1	1.7	\$256,900	\$168,559
CZ03	PG&E	172,266	0	35.66	\$229,804	\$535,974	\$395,374	2.3	1.7	\$306,170	\$165,570
CZ04	PG&E	175,940	0	36.32	\$229,804	\$525,788	\$422,579	2.3	1.8	\$295,984	\$192,775
CZ04-2	CPAU	175,940	0	36.32	\$229,804	\$416,019	\$422,579	1.8	1.8	\$186,216	\$192,775
CZ05	PG&E	178,728	0	36.91	\$229,804	\$554,968	\$409,086	2.4	1.8	\$325,164	\$179,283
CZ06	SCE	173,567	0	35.99	\$229,804	\$290,599	\$412,690	1.3	1.8	\$60,795	\$182,886
CZ06-2	LA	173,567	0	35.99	\$229,804	\$169,786	\$412,690	0.7	1.8	(\$60,018)	\$182,886
CZ07	SDG&E	180,508	0	37.61	\$229,804	\$425,793	\$427,040	1.9	1.9	\$195,989	\$197,236
CZ08	SCE	175,616	0	36.29	\$229,804	\$296,318	\$434,687	1.3	1.9	\$66,514	\$204,883
CZ08-2	LA	175,616	0	36.29	\$229,804	\$170,489	\$434,687	0.7	1.9	(\$59,315)	\$204,883
CZ09	SCE	177,966	0	36.74	\$229,804	\$300,540	\$421,195	1.3	1.8	\$70,736	\$191,391
CZ09-2	LA	177,966	0	36.74	\$229,804	\$178,852	\$421,195	0.8	1.8	(\$50,952)	\$191,391
CZ10	SDG&E	180,248	0	36.91	\$229,804	\$459,486	\$410,537	2.0	1.8	\$229,683	\$180,733
CZ10-2	SCE	180,248	0	36.91	\$229,804	\$301,219	\$410,537	1.3	1.8	\$71,415	\$180,733
CZ11	PG&E	171,779	0	34.85	\$229,804	\$490,245	\$417,679	2.1	1.8	\$260,442	\$187,875
CZ12	PG&E	171,392	0	34.77	\$229,804	\$497,363	\$417,371	2.2	1.8	\$267,559	\$187,567
CZ12-2	SMUD	171,392	0	34.77	\$229,804	\$273,783	\$417,371	1.2	1.8	\$43,979	\$187,567
CZ13	PG&E	173,052	0	34.97	\$229,804	\$488,196	\$397,791	2.1	1.7	\$258,392	\$167,987
CZ14	SDG&E	191,703	0	38.31	\$229,804	\$420,241	\$452,641	1.8	2.0	\$190,437	\$222,837
CZ14-2	SCE	191,703	0	38.31	\$229,804	\$294,010	\$452,641	1.3	2.0	\$64,206	\$222,837
CZ15	SCE	182,299	0	36.01	\$229,804	\$279,036	\$416,382	1.2	1.8	\$49,232	\$186,578
CZ16	PG&E	194,293	0	40.00	\$229,804	\$535,137	\$432,951	2.3	1.9	\$305 <i>,</i> 333	\$203,147
CZ16-2	LA	194,293	0	40.00	\$229,804	\$175,573	\$432,951	0.8	1.9	(\$54,231)	\$203,147

Figure 65. Cost Effectiveness for Medium Retail – Mixed-Fuel + 110 kW PV + 50 kWh Battery

		8-			iless for mea			B/C			
		Elec	Gas	GHG		Lifecycle	Lifecycle	Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
All-Elect	ric + 3kW PV			. ,			0				
CZ01	PG&E	-25,214	3893	14.61	(\$16,318)	\$4,288	(\$5,450)	>1	3.0	\$20,606	\$10,868
CZ02	PG&E	-17,101	2448	8.40	(\$20,734)	\$859	\$5,779	>1	>1	\$21,593	\$26,513
CZ03	PG&E	-9,851	1868	7.18	(\$17,381)	\$15,418	\$8,702	>1	>1	\$32,799	\$26,083
CZ04	PG&E	-9,353	1706	6.24	(\$16,166)	\$9,110	\$10,394	>1	>1	\$25,276	\$26,560
CZ04-2	CPAU	-9,353	1706	6.24	(\$16,166)	\$24,000	\$10,394	>1	>1	\$40,166	\$26,560
CZ05	PG&E	-9,423	1746	6.42	(\$18,776)	\$14,076	\$6,351	>1	>1	\$32,852	\$25,127
CZ06	SCE	-2,759	1002	4.24	(\$15,032)	\$29,710	\$12,592	>1	>1	\$44,741	\$27,623
CZ06-2	LA	-2,759	1002	4.24	(\$15,032)	\$26,292	\$12,592	>1	>1	\$41,324	\$27,623
CZ07	SDG&E	1,148	522	2.72	(\$17,032)	\$76,810	\$12,350	>1	>1	\$93,842	\$29,382
CZ08	SCE	-979	793	3.64	(\$20,192)	\$28,576	\$13,185	>1	>1	\$48,768	\$33,377
CZ08-2	LA	-979	793	3.64	(\$20,192)	\$24,475	\$13,185	>1	>1	\$44,667	\$33,377
CZ09	SCE	-2,352	970	4.28	(\$25,383)	\$29,776	\$13,207	>1	>1	\$55,159	\$38,590
CZ09-2	LA	-2,352	970	4.28	(\$25,383)	\$25,823	\$13,207	>1	>1	\$51,207	\$38,590
CZ10	SDG&E	-5,388	1262	4.95	(\$20,541)	\$75 <i>,</i> 458	\$11,493	>1	>1	\$95,999	\$32,034
CZ10-2	SCE	-5,388	1262	4.95	(\$20,541)	\$32,394	\$11,493	>1	>1	\$52,936	\$32,034
CZ11	PG&E	-14,533	2415	8.86	(\$25,471)	\$7,618	\$13,295	>1	>1	\$33,090	\$38,766
CZ12	PG&E	-14,764	2309	8.19	(\$25,774)	\$2,210	\$10,152	>1	>1	\$27,984	\$35,926
CZ12-2	SMUD	-14,764	2309	8.19	(\$25,774)	\$21,215	\$10,152	>1	>1	\$46,988	\$35,926
CZ13	PG&E	-12,069	1983	7.08	(\$21,428)	\$5 <i>,</i> 647	\$8,570	>1	>1	\$27,075	\$29,998
CZ14	SDG&E	-7,950	1672	6.45	(\$19,926)	\$60,412	\$16,679	>1	>1	\$80,338	\$36,605
CZ14-2	SCE	-7,950	1672	6.45	(\$19,926)	\$28,631	\$16,679	>1	>1	\$48,557	\$36,605
CZ15	SCE	2,534	518	3.10	(\$22,813)	\$27,271	\$17,162	>1	>1	\$50,084	\$39,976
CZ16	PG&E	-36,081	4304	14.26	(\$19,041)	(\$30,111)	(\$41,181)	0.6	0.5	(\$11,070)	(\$22,140)
CZ16-2	LA	-36,081	4304	14.26	(\$19,041)	\$45,706	(\$41,181)	>1	0.5	\$64,747	(\$22,140)

Figure 66. Cost Effectiveness for Medium Retail – All-Electric + 3kW PV
-------------------------------------------------------------------------

								B/C			
		Elec	Gas	GHG		Lifecycle		Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	\$-TDV	(On-	Ratio	NPV (On-	NPV
cz	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
-	ric + 3kW PV + 5			(0010)				<b>,</b>	()	<b>,</b>	(/
CZ01	PG&E	-25,214	3893	14.61	(\$14,692)	\$4,288	(\$5,450)	>1	2.7	\$18,980	\$9,242
CZ02	PG&E	-17,101	2448	8.40	(\$14,692)	\$859	\$5,779	>1	>1	\$15,551	\$20,472
CZ03	PG&E	-9,851	1868	7.18	(\$14,692)	\$15,418	\$8,702	>1	>1	\$30,110	\$23,394
CZ04	PG&E	-9,353	1706	6.24	(\$14,692)	\$9,110	\$10,394	>1	>1	\$23,802	\$25,086
CZ04-2	CPAU	-9,353	1706	6.24	(\$14,692)	\$24,000	\$10,394	>1	>1	\$38,693	\$25,086
CZ05	PG&E	-9,423	1746	6.42	(\$14,692)	\$14,076	\$6,351	>1	>1	\$28,768	\$21,043
CZ06	SCE	-2,759	1002	4.24	(\$14,692)	\$29,710	\$12,592	>1	>1	\$44,402	\$27,284
CZ06-2	LA	-2,759	1002	4.24	(\$14,692)	\$26,292	\$12,592	>1	>1	\$40,984	\$27,284
CZ07	SDG&E	1,148	522	2.72	(\$14,692)	\$76,810	\$12,350	>1	>1	\$91,502	\$27,042
CZ08	SCE	-979	793	3.64	(\$14,692)	\$28,576	\$13,185	>1	>1	\$43,268	\$27,877
CZ08-2	LA	-979	793	3.64	(\$14,692)	\$24,475	\$13,185	>1	>1	\$39,167	\$27,877
CZ09	SCE	-2,352	970	4.28	(\$14,692)	\$29,776	\$13,207	>1	>1	\$44,468	\$27,899
CZ09-2	LA	-2,352	970	4.28	(\$14,692)	\$25,823	\$13,207	>1	>1	\$40,516	\$27,899
CZ10	SDG&E	-5,388	1262	4.95	(\$14,692)	\$75,458	\$11,493	>1	>1	\$90,150	\$26,185
CZ10-2	SCE	-5,388	1262	4.95	(\$14,692)	\$32,394	\$11,493	>1	>1	\$47,086	\$26,185
CZ11	PG&E	-14,533	2415	8.86	(\$14,692)	\$7,618	\$13,295	>1	>1	\$22,310	\$27,987
CZ12	PG&E	-14,764	2309	8.19	(\$14,692)	\$2,210	\$10,152	>1	>1	\$16,902	\$24,845
CZ12-2	SMUD	-14,764	2309	8.19	(\$14,692)	\$21,215	\$10,152	>1	>1	\$35,907	\$24,845
CZ13	PG&E	-12,069	1983	7.08	(\$14,692)	\$5,647	\$8,570	>1	>1	\$20,339	\$23,262
CZ14	SDG&E	-7,950	1672	6.45	(\$14,692)	\$60,412	\$16,679	>1	>1	\$75,104	\$31,371
CZ14-2	SCE	-7,950	1672	6.45	(\$14,692)	\$28,631	\$16,679	>1	>1	\$43,323	\$31,371
CZ15	SCE	2,534	518	3.10	(\$14,692)	\$27,271	\$17,162	>1	>1	\$41,963	\$31,855
CZ16	PG&E	-36,081	4304	14.26	(\$14,692)	(\$30,111)	(\$41,181)	0.5	0.4	(\$15,419)	(\$26,489)
CZ16-2	LA	-36,081	4304	14.26	(\$14,692)	\$45,706	(\$41,181)	>1	0.4	\$60,398	(\$26,489)

#### Figure 67. Cost Effectiveness for Medium Retail – All-Electric + 3kW PV + 5 kWh Battery

		8	00.00002		ess for meuru						
								B/C	-		
		Elec	Gas	GHG		Lifecycle	Lifecycle	Ratio	B/C	_	
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
All-Elect	ric + 110kW PV										
CZ01	PG&E	115,344	3893	41.82	\$143,932	\$454,277	\$296,025	3.2	2.1	\$310,345	\$152,093
CZ02	PG&E	150,004	2448	40.80	\$139,516	\$470,236	\$371,817	3.4	2.7	\$330,720	\$232,301
CZ03	PG&E	158,951	1868	39.82	\$142,869	\$544,095	\$370,696	3.8	2.6	\$401,226	\$227,827
CZ04	PG&E	163,043	1706	39.73	\$144,084	\$488,619	\$388,847	3.4	2.7	\$344,534	\$244,763
CZ04-2	CPAU	163,043	1706	39.73	\$144,084	\$432,905	\$388,847	3.0	2.7	\$288,821	\$244,763
CZ05	PG&E	165,711	1746	40.30	\$141,473	\$565,525	\$382,760	4.0	2.7	\$424,051	\$241,287
CZ06	SCE	167,328	1002	37.24	\$145,218	\$306,670	\$395,066	2.1	2.7	\$161,452	\$249,848
CZ06-2	LA	167,328	1002	37.24	\$145,218	\$184,797	\$395,066	1.3	2.7	\$39,579	\$249,848
CZ07	SDG&E	178,042	522	37.07	\$143,218	\$428,332	\$406,032	3.0	2.8	\$285,114	\$262,814
CZ08	SCE	171,149	793	36.94	\$140,058	\$301,219	\$417,635	2.2	3.0	\$161,161	\$277,577
CZ08-2	LA	171,149	793	36.94	\$140,058	\$178,419	\$417,635	1.3	3.0	\$38,361	\$277,577
CZ09	SCE	172,027	970	38.50	\$134,867	\$307,640	\$414,075	2.3	3.1	\$172,773	\$279,208
CZ09-2	LA	172,027	970	38.50	\$134,867	\$187,813	\$414,075	1.4	3.1	\$52,946	\$279,208
CZ10	SDG&E	171,107	1262	39.40	\$139,708	\$463,692	\$403,505	3.3	2.9	\$323,984	\$263,796
CZ10-2	SCE	171,107	1262	39.40	\$139,708	\$311,464	\$403,505	2.2	2.9	\$171,755	\$263,796
CZ11	PG&E	153,732	2415	41.41	\$134,778	\$467,356	\$394,165	3.5	2.9	\$332,578	\$259,387
CZ12	PG&E	153,126	2309	40.61	\$134,476	\$467,106	\$389,111	3.5	2.9	\$332,630	\$254,635
CZ12-2	SMUD	153,126	2309	40.61	\$134,476	\$283,343	\$389,111	2.1	2.9	\$148,867	\$254,635
CZ13	PG&E	157,332	1983	39.97	\$138,822	\$477,831	\$385,947	3.4	2.8	\$339,008	\$247,124
CZ14	SDG&E	179,582	1672	42.42	\$140,324	\$437,575	\$452,729	3.1	3.2	\$297,251	\$312,405
CZ14-2	SCE	179,582	1672	42.42	\$140,324	\$309,064	\$452,729	2.2	3.2	\$168,740	\$312,405
CZ15	SCE	180,751	518	37.26	\$137,436	\$294,877	\$421,612	2.1	3.1	\$157,440	\$284,176
CZ16	PG&E	154,248	4304	51.20	\$141,209	\$473,892	\$364,016	3.4	2.6	\$332,682	\$222,807
CZ16-2	LA	154,248	4304	51.20	\$141,209	\$211,677	\$364,016	1.5	2.6	\$70,467	\$222,807

# Figure 68. Cost Effectiveness for Medium Retail – All-Electric + 110kW PV

	0							D/C		<i>v</i>	
			-					B/C	- /-		
		Elec	Gas	GHG		Lifecycle	Lifecycle	Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
All-Elect	ric + 90kW PV +										
CZ01	PG&E	114,356	3893	43.52	\$171,832	\$451,043	\$310,265	2.6	1.8	\$279,211	\$138,433
CZ02	PG&E	148,793	2448	42.89	\$167,416	\$475,081	\$394,099	2.8	2.4	\$307,664	\$226,683
CZ03	PG&E	157,707	1868	42.12	\$170,769	\$541,418	\$394,034	3.2	2.3	\$370,649	\$223,265
CZ04	PG&E	161,769	1706	41.82	\$171,984	\$523,603	\$422,535	3.0	2.5	\$351,618	\$250,551
CZ04-2	CPAU	161,769	1706	41.82	\$171,984	\$430,567	\$422,535	2.5	2.5	\$258,582	\$250,551
CZ05	PG&E	164,408	1746	42.68	\$169,373	\$561,966	\$405,087	3.3	2.4	\$392,592	\$235,714
CZ06	SCE	166,052	1002	39.48	\$173,118	\$306,697	\$414,756	1.8	2.4	\$133,579	\$241,638
CZ06-2	LA	166,052	1002	39.48	\$173,118	\$187,941	\$414,756	1.1	2.4	\$14,823	\$241,638
CZ07	SDG&E	176,705	522	39.47	\$171,118	\$479,038	\$428,490	2.8	2.5	\$307,920	\$257,372
CZ08	SCE	169,825	793	39.14	\$167,958	\$312,602	\$436,709	1.9	2.6	\$144,645	\$268,751
CZ08-2	LA	169,825	793	39.14	\$167,958	\$187,142	\$436,709	1.1	2.6	\$19,185	\$268,751
CZ09	SCE	170,747	970	40.23	\$162,767	\$318,113	\$423,370	2.0	2.6	\$155,346	\$260,604
CZ09-2	LA	170,747	970	40.23	\$162,767	\$197,006	\$423,370	1.2	2.6	\$34,240	\$260,604
CZ10	SDG&E	169,935	1262	41.08	\$167,608	\$503,504	\$411,284	3.0	2.5	\$335,896	\$243,675
CZ10-2	SCE	169,935	1262	41.08	\$167,608	\$317,927	\$411,284	1.9	2.5	\$150,319	\$243,675
CZ11	PG&E	152,559	2415	42.99	\$162,678	\$491,775	\$420,667	3.0	2.6	\$329,096	\$257,989
CZ12	PG&E	151,956	2309	42.21	\$162,376	\$494,703	\$417,063	3.0	2.6	\$332,327	\$254,687
CZ12-2	SMUD	151,956	2309	42.21	\$162,376	\$288,950	\$417,063	1.8	2.6	\$126,573	\$254,687
CZ13	PG&E	156,271	1983	41.25	\$166,722	\$485,422	\$395,770	2.9	2.4	\$318,699	\$229,047
CZ14	SDG&E	178,505	1672	43.94	\$168,224	\$452,456	\$457,387	2.7	2.7	\$284,232	\$289,163
CZ14-2	SCE	178,505	1672	43.94	\$168,224	\$311,520	\$457,387	1.9	2.7	\$143,296	\$289,163
CZ15	SCE	179,840	518	38.23	\$165,336	\$296,004	\$422,293	1.8	2.6	\$130,668	\$256,957
CZ16	PG&E	152,965	4304	53.53	\$169,109	\$483,205	\$378,299	2.9	2.2	\$314,096	\$209,190
CZ16-2	LA	152,965	4304	53.53	\$169,109	\$215,341	\$378,299	1.3	2.2	\$46,231	\$209,190

## Figure 69. Cost Effectiveness for Medium Retail – All-Electric + 110kW PV + 50 kWh Battery

#### 6.7.3 <u>Cost Effectiveness Results – Small Hotel</u>

Figure 70 through Figure 77 contain the cost-effectiveness findings for the Small Hotel packages. Notable findings for each package include:

- Mixed-Fuel + 3 kW PV: Packages are cost effective and achieve savings for all climate zones for both the On-Bill and TDV approaches.
- **Mixed-Fuel + 3 kW PV + 5 kWh Battery:** The packages are less cost effective as compared to the previous minimal PV only package and not cost effective for LADWP and SMUD service area. The addition of battery reduces the cost effectiveness of packages.
- **Mixed-Fuel + PV only:** Packages are cost effective and achieve savings for the On-Bill approach for all climate zones except for LADWP territory. Packages are cost effective and achieve savings for the TDV approach for all climate zones.
- Mixed-Fuel + PV + 50 kWh Battery: Adding battery slightly reduces On-Bill B/C ratios. Packages are not cost effective for LADWP territory, SMUD territory as well as for climate zones 6,8,9 under PG&E service area.
- All-Electric + 3 kW PV: All packages are cost effective using the On-Bill approach. All packages are cost effective using the TDV approach but do not achieve positive energy cost savings.
- All-Electric + 3 kW PV + 5 kWh Battery: Similar to minimal PV only package, all packages are cost effective using the On-Bill approach. All packages are cost effective using the TDV approach but do not achieve positive energy cost savings.
- All-Electric + PV only: All packages are cost effective for both On-Bill and TDV approaches. Packages achieve on-bill savings for all climate zones.
- All-Electric + PV + 50 kWh Battery: Adding battery slightly reduces On-Bill B/C ratios but is still cost effective for all climate zones.



	rigure 70. Cost Ellectiveness for Sinan Hotel – Mixed Fuel + SKW FV										
		Elec	Gas	GHG		Lifecycle		B/C	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	Lifecycle \$-	Ratio	Ratio	NPV	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	<b>TDV Savings</b>	(On-bill)	(TDV)	(On-bill)	(TDV)
Mixed F	uel + 3kW PV										
CZ01	PG&E	3,941	0	0.8	\$5,566	\$12,616	\$8,326	2.3	1.5	\$7,050	\$2,760
CZ02	PG&E	4,785	0	0.9	\$5,566	\$12,639	\$10,332	2.3	1.9	\$7,073	\$4,766
CZ03	PG&E	4,733	0	0.9	\$5,566	\$15,146	\$9,991	2.7	1.8	\$9,580	\$4,425
CZ04	PG&E	4,834	0	1.0	\$5,566	\$13,266	\$10,445	2.4	1.9	\$7,700	\$4,879
CZ04-2	CPAU	4,834	0	1.0	\$5,566	\$11,507	\$10,445	2.1	1.9	\$5,941	\$4,879
CZ05	PG&E	5,027	0	1.0	\$5,566	\$16,048	\$10,634	2.9	1.9	\$10,482	\$5,068
CZ06	SCE	4,769	0	0.9	\$5,566	\$10,276	\$10,559	1.8	1.9	\$4,710	\$4,993
CZ06-2	LA	4,769	0	0.9	\$5,566	\$6,307	\$10,559	1.1	1.9	\$741	\$4,993
CZ07	SDG&E	4,960	0	1.0	\$5,566	\$14,576	\$10,861	2.6	2.0	\$9,010	\$5,295
CZ08	SCE	4,824	0	0.9	\$5,566	\$10,837	\$11,202	1.9	2.0	\$5,271	\$5,636
CZ08-2	LA	4,824	0	0.9	\$5,566	\$6,505	\$11,202	1.2	2.0	\$939	\$5,636
CZ09	SCE	4,779	0	0.9	\$5,566	\$10,298	\$10,824	1.9	1.9	\$4,732	\$5,258
CZ09-2	LA	4,779	0	0.9	\$5,566	\$6,201	\$10,824	1.1	1.9	\$635	\$5,258
CZ10	SDG&E	4,905	0	1.0	\$5,566	\$16,302	\$10,710	2.9	1.9	\$10,736	\$5,144
CZ10-2	SCE	4,905	0	1.0	\$5,566	\$9,468	\$10,710	1.7	1.9	\$3,902	\$5,144
CZ11	PG&E	4,701	0	0.9	\$5,566	\$14,193	\$10,483	2.6	1.9	\$8,627	\$4,917
CZ12	PG&E	4,770	0	0.9	\$5,566	\$15,262	\$10,596	2.7	1.9	\$9,696	\$5,030
CZ12-2	SMUD	4,770	0	0.9	\$5,566	\$7,848	\$10,596	1.4	1.9	\$2,282	\$5,030
CZ13	PG&E	4,633	0	0.9	\$5,566	\$14,674	\$10,105	2.6	1.8	\$9,108	\$4,539
CZ14	SDG&E	5,377	0	1.1	\$5,566	\$16,615	\$12,375	3.0	2.2	\$11,049	\$6,809
CZ14-2	SCE	5,377	0	1.1	\$5 <i>,</i> 566	\$10,021	\$12,375	1.8	2.2	\$4,455	\$6,809
CZ15	SCE	4,997	0	1.0	\$5,566	\$9,542	\$11,164	1.7	2.0	\$3,976	\$5,598
CZ16	PG&E	5,240	0	1.0	\$5,566	\$14,961	\$10,975	2.7	2.0	\$9 <i>,</i> 395	\$5,409
CZ16-2	LA	5,240	0	1.0	\$5 <i>,</i> 566	\$5,670	\$10,975	1.0	2.0	\$104	\$5,409

Figure 70. Cost Effectiveness for Small Hotel – Mixed Fuel + 3kW PV

	Г	igure / I.	LOSI EHECH	veness ioi	- Small Hotel –	Mixeu ruei -	F SKW PV	+ 5 KWII	Battery		
		Elec		GHG		Lifecycle		B/C	B/C		
		Savings	Gas Savings	savings	Incremental	Energy Cost	\$-TDV	Ratio	Ratio	NPV (On-	NPV
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	(On-bill)	(TDV)	bill)	(TDV)
Mixed F	uel + 3kW PV +	5kWh Batter	y								
CZ01	PG&E	3,941	0	0.8	\$9,520	\$12,616	\$8,326	1.3	0.9	\$3,096	(\$1,194)
CZ02	PG&E	4,785	0	0.9	\$9,520	\$12,639	\$10,332	1.3	1.1	\$3,119	\$811
CZ03	PG&E	4,733	0	0.9	\$9,520	\$15,146	\$9,991	1.6	1.0	\$5,626	\$471
CZ04	PG&E	4,834	0	1.0	\$9,520	\$13,266	\$10,445	1.4	1.1	\$3,746	\$925
CZ04-2	CPAU	4,834	0	1.0	\$9,520	\$11,507	\$10,445	1.2	1.1	\$1,987	\$925
CZ05	PG&E	5,027	0	1.0	\$9,520	\$16,048	\$10,634	1.7	1.1	\$6,528	\$1,114
CZ05-2	SCG	5,027	0	1.0	\$9,520	\$16,048	\$10,634	1.7	1.1	\$6,528	\$1,114
CZ06	SCE	4,769	0	0.9	\$9,520	\$10,276	\$10,559	1.1	1.1	\$756	\$1,039
CZ06-2	LA	4,769	0	0.9	\$9,520	\$6,307	\$10,559	0.7	1.1	(\$3,213)	\$1,039
CZ07	SDG&E	4,960	0	1.0	\$9,520	\$14,576	\$10,861	1.5	1.1	\$5,056	\$1,341
CZ08	SCE	4,824	0	0.9	\$9,520	\$10,837	\$11,202	1.1	1.2	\$1,317	\$1,682
CZ08-2	LA	4,824	0	0.9	\$9,520	\$6,505	\$11,202	0.7	1.2	(\$3,015)	\$1,682
CZ09	SCE	4,779	0	0.9	\$9,520	\$10,298	\$10,824	1.1	1.1	\$778	\$1,303
CZ09-2	LA	4,779	0	0.9	\$9,520	\$6,201	\$10,824	0.7	1.1	(\$3,319)	\$1,303
CZ10	SDG&E	4,905	0	1.0	\$9,520	\$16,302	\$10,710	1.7	1.1	\$6,782	\$1,190
CZ10-2	SCE	4,905	0	1.0	\$9,520	\$9,468	\$10,710	0.99	1.1	(\$52)	\$1,190
CZ11	PG&E	4,701	0	0.9	\$9,520	\$14,193	\$10,483	1.5	1.1	\$4,673	\$963
CZ12	PG&E	4,770	0	0.9	\$9,520	\$15,262	\$10,596	1.6	1.1	\$5,742	\$1,076
CZ12-2	SMUD	4,770	0	0.9	\$9,520	\$7,848	\$10,596	0.8	1.1	(\$1,672)	\$1,076
CZ13	PG&E	4,633	0	0.9	\$9,520	\$14,674	\$10,105	1.5	1.1	\$5,154	\$584
CZ14	SDG&E	5,377	0	1.1	\$9,520	\$16,615	\$12,375	1.7	1.3	\$7,095	\$2,855
CZ14-2	SCE	5,377	0	1.1	\$9,520	\$10,021	\$12,375	1.1	1.3	\$501	\$2,855
CZ15	SCE	4,997	0	1.0	\$9,520	\$9,542	\$11,164	1.0	1.2	\$22	\$1,644
CZ16	PG&E	5,240	0	1.0	\$9,520	\$14,961	\$10,975	1.6	1.2	\$5,441	\$1,455
CZ16-2	LA	5,240	0	1.0	\$9,520	\$5,670	\$10,975	0.6	1.2	(\$3,851)	\$1,455

Figure 71. Cost Effectiveness for Small Hotel – Mixed Fuel + 3kW PV + 5 kWh Battery

		Elec	Gas	GHG		Lifecycle	Lifecycle	B/C Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	TDV	(On-	Ratio	NPV (On-	NPV
cz	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	(TDV)
Mixed F	uel + 80kW PV										
CZ01	PG&E	105,090	0	20.6	\$179,470	\$336,440	\$221,883	1.9	1.2	\$156,970	\$42,413
CZ02	PG&E	127,592	0	25.0	\$179,470	\$320,009	\$275,130	1.8	1.5	\$140,539	\$95,660
CZ03	PG&E	126,206	0	24.8	\$179,470	\$403,900	\$266,426	2.3	1.5	\$224,430	\$86,956
CZ04	PG&E	128,894	0	25.4	\$179,470	\$322,782	\$278,536	1.8	1.6	\$143,312	\$99,066
CZ04-2	CPAU	128,894	0	25.4	\$179,470	\$306,862	\$278,536	1.7	1.6	\$127,392	\$99,066
CZ05	PG&E	134,041	0	26.5	\$179,470	\$427,935	\$283 <i>,</i> 834	2.4	1.6	\$248,465	\$104,364
CZ06	SCE	127,168	0	25.0	\$179,470	\$200,425	\$281,488	1.1	1.6	\$20,955	\$102,018
CZ06-2	LA	127,168	0	25.0	\$179,470	\$119,357	\$281,488	0.7	1.6	(\$60,113)	\$102,018
CZ07	SDG&E	132,258	0	26.1	\$179,470	\$247,646	\$289,700	1.4	1.6	\$68,176	\$110,230
CZ08	SCE	128,641	0	25.3	\$179,470	\$207,993	\$298,594	1.2	1.7	\$28,523	\$119,124
CZ08-2	LA	128,641	0	25.3	\$179,470	\$122,591	\$298,594	0.7	1.7	(\$56 <i>,</i> 879)	\$119,124
CZ09	SCE	127,447	0	25.3	\$179,470	\$211,567	\$288,830	1.2	1.6	\$32,096	\$109,360
CZ09-2	LA	127,447	0	25.3	\$179,470	\$123,486	\$288,830	0.7	1.6	(\$55 <i>,</i> 984)	\$109,360
CZ10	SDG&E	130,792	0	25.8	\$179,470	\$274,832	\$285,386	1.5	1.6	\$95,361	\$105,916
CZ10-2	SCE	130,792	0	25.8	\$179,470	\$206,865	\$285 <i>,</i> 386	1.2	1.6	\$27,395	\$105,916
CZ11	PG&E	125,366	0	24.6	\$179,470	\$316,781	\$279,331	1.8	1.6	\$137,311	\$99,861
CZ12	PG&E	127,203	0	25.0	\$179,470	\$406,977	\$282,358	2.3	1.6	\$227,507	\$102,888
CZ12-2	SMUD	127,203	0	25.0	\$179,470	\$198,254	\$282,358	1.1	1.6	\$18,784	\$102,888
CZ13	PG&E	123,535	0	24.4	\$179,470	\$317,261	\$269,908	1.8	1.5	\$137,791	\$90,437
CZ14	SDG&E	143,387	0	28.1	\$179,470	\$309,521	\$330,345	1.7	1.8	\$130,051	\$150,875
CZ14-2	SCE	143,387	0	28.1	\$179,470	\$225,083	\$330,345	1.3	1.8	\$45,612	\$150,875
CZ15	SCE	133,246	0	25.9	\$179,470	\$207,277	\$297,648	1.2	1.7	\$27,807	\$118,177
CZ16	PG&E	139,738	0	27.3	\$179,470	\$341,724	\$292,728	1.9	1.6	\$162,254	\$113,258
CZ16-2	LA	139,738	0	27.3	\$179,470	\$114,215	\$292,728	0.6	1.6	(\$65,255)	\$113,258

Figure 72. Cost Effectiveness for Small Hotel - Mixed Fuel +80kW PV

CZ	IOU territory	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (tons)	Incremental Package Cost	Lifecycle Energy Cost Savings	Lifecycle TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
Mixed F	uel + 80kW PV +	- 50kWh Batt	ery								
CZ01	PG&E	104,026	0	23.2	\$207,370	\$332,596	\$237,740	1.6	1.1	\$125,226	\$30,370
CZ02	PG&E	126,332	0	28.1	\$207,370	\$336,179	\$296,058	1.6	1.4	\$128,809	\$88,688
CZ03	PG&E	124,934	0	28.0	\$207,370	\$399,220	\$289,360	1.9	1.4	\$191,850	\$81,990
CZ04	PG&E	127,602	0	28.5	\$207,370	\$332,161	\$308,887	1.6	1.5	\$124,790	\$101,517
CZ04-2	CPAU	127,602	0	28.5	\$207,370	\$303,828	\$308,887	1.5	1.5	\$96,458	\$101,517
CZ05	PG&E	132,725	0	29.8	\$207,370	\$423,129	\$303,627	2.0	1.5	\$215,758	\$96,257
CZ06	SCE	125,880	0	28.4	\$207,370	\$193,814	\$297,950	0.9	1.4	(\$13,556)	\$90,580
CZ06-2	LA	125,880	0	28.4	\$207,370	\$123,083	\$297,950	0.6	1.4	(\$84,287)	\$90,580
CZ07	SDG&E	130,940	0	29.5	\$207,370	\$274,313	\$309,682	1.3	1.5	\$66 <i>,</i> 943	\$102,312
CZ08	SCE	127,332	0	28.5	\$207,370	\$199,786	\$312,899	1.0	1.5	(\$7,584)	\$105,529
CZ08-2	LA	127,332	0	28.5	\$207,370	\$124,651	\$312,899	0.6	1.5	(\$82,719)	\$105,529
CZ09	SCE	126,232	0	28.2	\$207,370	\$206,706	\$292,804	1.0	1.4	(\$664)	\$85,433
CZ09-2	LA	126,232	0	28.2	\$207,370	\$126,710	\$292,804	0.6	1.4	(\$80,660)	\$85,433
CZ10	SDG&E	129,683	0	28.4	\$207,370	\$292,202	\$287,278	1.4	1.4	\$84,832	\$79 <i>,</i> 908
CZ10-2	SCE	129,683	0	28.4	\$207,370	\$206,171	\$287,278	1.0	1.4	(\$1,199)	\$79,908
CZ11	PG&E	124,337	0	26.9	\$207,370	\$315,330	\$283,683	1.5	1.4	\$107,960	\$76,313
CZ12	PG&E	126,013	0	27.8	\$207,370	\$403,127	\$297,118	1.9	1.4	\$195,757	\$89,748
CZ12-2	SMUD	126,013	0	27.8	\$207,370	\$198,007	\$297,118	1.0	1.4	(\$9,363)	\$89,748
CZ13	PG&E	122,591	0	26.5	\$207,370	\$315,541	\$280,996	1.5	1.4	\$108,171	\$73,626
CZ14	SDG&E	142,257	0	30.7	\$207,370	\$317,565	\$334,697	1.5	1.6	\$110,195	\$127,327
CZ14-2	SCE	142,257	0	30.7	\$207,370	\$224,195	\$334,697	1.1	1.6	\$16,824	\$127,327
CZ15	SCE	132,418	0	27.8	\$207,370	\$208,044	\$299,199	1.0	1.4	\$674	\$91,829
CZ16	PG&E	138,402	0	30.7	\$207,370	\$358,582	\$315,699	1.7	1.5	\$151,212	\$108,329
CZ16-2	LA	138,402	0	30.7	\$207,370	\$118,770	\$315,699	0.6	1.5	(\$88,600)	\$108,329

#### Figure 73. Cost Effectiveness for Small Hotel – Mixed Fuel + 80kW PV + 50 kWh Battery

	1	2	<u>, ai e / ii e</u> e	Joe Lineee					•	1	
								B/C			
		Elec	Gas	GHG		Lifecycle		Ratio	B/C	_	
		Savings	Savings	savings	Incremental	Energy Cost	Lifecycle	(On-	Ratio	NPV (On-	
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost*	Savings	TDV Savings	bill)	(TDV)	bill)	NPV (TDV)
All-Elect	ric + 3kW PV										
CZ01	PG&E	-155,861	16917	54.7	(\$1,265,139)	(\$568,892)	(\$106,835)	2.2	11.8	\$696,246	\$1,158,304
CZ02	PG&E	-113,954	12677	40.9	(\$1,266,111)	(\$229,433)	(\$41,288)	5.5	30.7	\$1,036,679	\$1,224,823
CZ03	PG&E	-105,862	12322	41.4	(\$1,268,383)	(\$309,874)	(\$41,175)	4.1	30.8	\$958,510	\$1,227,208
CZ04	PG&E	-108,570	11927	37.5	(\$1,268,218)	(\$208,239)	(\$42,689)	6.1	29.7	\$1,059,980	\$1,225,530
CZ04-2	CPAU	-108,570	11927	37.5	(\$1,268,218)	(\$6,261)	(\$42,689)	202.6	29.7	\$1,261,958	\$1,225,530
CZ05	PG&E	-103,579	11960	39.3	(\$1,268,272)	(\$332 <i>,</i> 879)	(\$44,051)	3.8	28.8	\$935,393	\$1,224,221
CZ06	SCE	-73,524	8912	30.3	(\$1,268,413)	\$48,898	(\$17,484)	>1	72.5	\$1,317,311	\$1,250,929
CZ06-2	LA	-64,859	8188	29.0	(\$1,266,760)	(\$120,842)	(\$12,337)	10.5	102.7	\$1,145,918	\$1,254,423
CZ07	SDG&E	-67,090	8353	29.2	(\$1,264,731)	(\$43,964)	(\$11,618)	28.8	108.9	\$1,220,767	\$1,253,113
CZ08	SCE	-67,090	8353	29.2	(\$1,264,731)	\$48,736	(\$11,618)	>1	108.9	\$1,313,467	\$1,253,113
CZ08-2	LA	-67,483	8402	29.3	(\$1,266,529)	(\$35,547)	(\$11,126)	35.6	113.8	\$1,230,982	\$1,255,403
CZ09	SCE	-67,483	8402	29.3	(\$1,266,529)	\$52,410	(\$11,126)	>1	113.8	\$1,318,939	\$1,255,403
CZ09-2	LA	-75,157	8418	27.2	(\$1,263,531)	(\$156,973)	(\$25,469)	8.0	49.6	\$1,106,558	\$1,238,061
CZ10	SDG&E	-75,157	8418	27.2	(\$1,263,531)	(\$54,711)	(\$25,469)	23.1	49.6	\$1,208,820	\$1,238,061
CZ10-2	SCE	-94,783	10252	31.9	(\$1,264,340)	(\$169,847)	(\$38,904)	7.4	32.5	\$1,094,493	\$1,225,436
CZ11	PG&E	-94,702	10403	33.0	(\$1,265,779)	(\$324,908)	(\$34,968)	3.9	36.2	\$940,872	\$1,230,811
CZ12	PG&E	-94,297	10403	33.1	(\$1,265,779)	\$13,603	(\$33,757)	>1	37.5	\$1,279,382	\$1,232,022
CZ12-2	SMUD	-92,196	10029	31.5	(\$1,264,152)	(\$168,358)	(\$40,229)	7.5	31.4	\$1,095,794	\$1,223,923
CZ13	PG&E	-96,021	10056	30.7	(\$1,264,510)	(\$308,542)	(\$44,202)	4.1	28.6	\$955,969	\$1,220,308
CZ14	SDG&E	-96,021	10056	30.7	(\$1,264,510)	(\$110,730)	(\$44,202)	11.4	28.6	\$1,153,780	\$1,220,308
CZ14-2	SCE	-44,856	5579	19.0	(\$1,262,631)	\$8,996	(\$10,256)	>1	123.1	\$1,271,627	\$1,252,375
CZ15	SCE	-211,468	17599	42.9	(\$1,268,907)	(\$625,671)	(\$228,203)	2.0	5.6	\$643,236	\$1,040,704
CZ16	PG&E	-211,468	17599	42.9	(\$1,268,907)	\$37,142	(\$228,203)	>1	5.6	\$1,306,049	\$1,040,704
CZ16-2	LA	-155,861	16917	54.7	(\$1,265,139)	(\$568,892)	(\$106,835)	2.2	11.8	\$696,246	\$1,158,304

## Figure 74. Cost Effectiveness for Small Hotel – All-Electric + 3kW PV

	Figure 75. Cost Effectiveness for Small Hotel – All-Effectric + 3kw PV + 5 kwill Battery										
		Elec	Gas	GHG		Lifecycle	4	B/C Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	\$-TDV	(On-	Ratio	NPV (On-	
CZ	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	NPV (TDV)
All-Elect	ric + 3kW PV + 5	5kWh Battery	,								
CZ01	PG&E	-155,861	16917	54.7	(\$1,288,428)	(\$568,892)	(\$106,835)	2.3	12.1	\$719,536	\$1,181,593
CZ02	PG&E	-113,954	12677	40.9	(\$1,288,428)	(\$229,433)	(\$41,288)	5.6	31.2	\$1,058,996	\$1,247,140
CZ03	PG&E	-105,862	12322	41.4	(\$1,288,428)	(\$309,874)	(\$41,175)	4.2	31.3	\$978,554	\$1,247,253
CZ04	PG&E	-108,570	11927	37.5	(\$1,288,428)	(\$208,239)	(\$42,689)	6.2	30.2	\$1,080,190	\$1,245,740
CZ04-2	CPAU	-108,570	11927	37.5	(\$1,288,428)	(\$6,261)	(\$42,689)	205.8	30.2	\$1,282,167	\$1,245,740
CZ05	PG&E	-103,579	11960	39.3	(\$1,288,428)	(\$332,879)	(\$44,051)	3.9	29.2	\$955,549	\$1,244,377
CZ06	SCE	-73,524	8912	30.3	(\$1,288,428)	(\$52,341)	(\$17,484)	24.6	73.7	\$1,236,087	\$1,270,944
CZ06-2	LA	-73,524	8912	30.3	(\$1,288,428)	\$48,898	(\$17,484)	>1	73.7	\$1,337,326	\$1,270,944
CZ07	SDG&E	-64,859	8188	29.0	(\$1,288,428)	(\$120,842)	(\$12,337)	10.7	104.4	\$1,167,586	\$1,276,091
CZ08	SCE	-67,090	8353	29.2	(\$1,288,428)	(\$43,964)	(\$11,618)	29.3	110.9	\$1,244,464	\$1,276,810
CZ08-2	LA	-67,090	8353	29.2	(\$1,288,428)	\$48,736	(\$11,618)	>1	110.9	\$1,337,164	\$1,276,810
CZ09	SCE	-67,483	8402	29.3	(\$1,288,428)	(\$35,547)	(\$11,126)	36.2	115.8	\$1,252,881	\$1,277,302
CZ09-2	LA	-67,483	8402	29.3	(\$1,288,428)	\$52,410	(\$11,126)	>1	115.8	\$1,340,838	\$1,277,302
CZ10	SDG&E	-75,157	8418	27.2	(\$1,288,428)	(\$156,973)	(\$25,469)	8.2	50.6	\$1,131,455	\$1,262,959
CZ10-2	SCE	-75,157	8418	27.2	(\$1,288,428)	(\$54,711)	(\$25,469)	23.5	50.6	\$1,233,718	\$1,262,959
CZ11	PG&E	-94,783	10252	31.9	(\$1,288,428)	(\$169,847)	(\$38,904)	7.6	33.1	\$1,118,582	\$1,249,524
CZ12	PG&E	-94,702	10403	33.0	(\$1,288,428)	(\$324,908)	(\$34,968)	4.0	36.8	\$963,520	\$1,253,460
CZ12-2	SMUD	-94,297	10403	33.1	(\$1,288,428)	\$13,603	(\$33,757)	>1	38.2	\$1,302,031	\$1,254,671
CZ13	PG&E	-92,196	10029	31.5	(\$1,288,428)	(\$168,358)	(\$40,229)	7.7	32.0	\$1,120,071	\$1,248,199
CZ14	SDG&E	-96,021	10056	30.7	(\$1,288,428)	(\$308,542)	(\$44,202)	4.2	29.1	\$979,887	\$1,244,226
CZ14-2	SCE	-96,021	10056	30.7	(\$1,288,428)	(\$110,730)	(\$44,202)	11.6	29.1	\$1,177,698	\$1,244,226
CZ15	SCE	-44,856	5579	19.0	(\$1,288,428)	\$8,996	(\$10,256)	>1	125.6	\$1,297,425	\$1,278,172
CZ16	PG&E	-211,468	17599	42.9	(\$1,288,428)	(\$625,671)	(\$228,203)	2.1	5.6	\$662,757	\$1,060,225
CZ16-2	LA	-211,468	17599	42.9	(\$1,288,428)	\$37,142	(\$228,203)	>1	5.6	\$1,325,570	\$1,060,225

#### Figure 75. Cost Effectiveness for Small Hotel – All-Electric + 3kW PV + 5 kWh Battery



		Elec	Gas	GHG		Lifecycle		B/C Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	\$-TDV	(On-	Ratio	NPV (On-	
cz	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	NPV (TDV)
All-Elect	ric + 80kW PV			. ,		U		,			, ,
CZ01	PG&E	-54,712	16917	74.6	(\$1,123,442)	(\$240,170)	\$106,722	4.7	>1	\$883,272	\$1,230,164
CZ02	PG&E	8,853	12677	65.0	(\$1,124,415)	\$128,649	\$223,510	>1	>1	\$1,253,063	\$1,347,925
CZ03	PG&E	15,612	12322	65.3	(\$1,126,687)	\$44,532	\$215,260	>1	>1	\$1,171,219	\$1,341,947
CZ04	PG&E	15,490	11927	62.0	(\$1,126,522)	\$145,778	\$225,402	>1	>1	\$1,272,300	\$1,351,924
CZ04-2	CPAU	15,490	11927	62.0	(\$1,126,522)	\$289,094	\$225,402	>1	>1	\$1,415,616	\$1,351,924
CZ05	PG&E	25,436	11960	64.8	(\$1,126,575)	\$56,019	\$229,149	>1	>1	\$1,182,594	\$1,355,724
CZ06	SCE	48,875	8912	54.4	(\$1,126,716)	\$163,343	\$253,445	>1	>1	\$1,290,060	\$1,380,161
CZ06-2	LA	62,439	8188	54.1	(\$1,125,064)	\$115,822	\$266,502	>1	>1	\$1,240,886	\$1,391,565
CZ07	SDG&E	56,727	8353	53.5	(\$1,123,034)	\$147,987	\$275,773	>1	>1	\$1,271,022	\$1,398,808
CZ08	SCE	56,727	8353	53.5	(\$1,123,034)	\$163,971	\$275,773	>1	>1	\$1,287,005	\$1,398,808
CZ08-2	LA	55,185	8402	53.7	(\$1,124,832)	\$155,101	\$266,880	>1	>1	\$1,279,933	\$1,391,712
CZ09	SCE	55,185	8402	53.7	(\$1,124,832)	\$169,010	\$266,880	>1	>1	\$1,293,843	\$1,391,712
CZ09-2	LA	50,731	8418	52.0	(\$1,121,834)	\$113,936	\$249,207	>1	>1	\$1,235,770	\$1,371,041
CZ10	SDG&E	50,731	8418	52.0	(\$1,121,834)	\$138,265	\$249,207	>1	>1	\$1,260,099	\$1,371,041
CZ10-2	SCE	25,882	10252	55.6	(\$1,122,643)	\$162,626	\$229,944	>1	>1	\$1,285,269	\$1,352,587
CZ11	PG&E	27,731	10403	57.1	(\$1,124,083)	\$12,954	\$236,794	>1	>1	\$1,137,037	\$1,360,876
CZ12	PG&E	28,136	10403	57.2	(\$1,124,083)	\$206,756	\$238,005	>1	>1	\$1,330,839	\$1,362,087
CZ12-2	SMUD	26,706	10029	55.0	(\$1,122,455)	\$165,991	\$219,574	>1	>1	\$1,288,446	\$1,342,030
CZ13	PG&E	41,989	10056	57.8	(\$1,122,814)	\$22,333	\$273,768	>1	>1	\$1,145,147	\$1,396,582
CZ14	SDG&E	41,989	10056	57.8	(\$1,122,814)	\$120,943	\$273,768	>1	>1	\$1,243,757	\$1,396,582
CZ14-2	SCE	83,393	5579	44.0	(\$1,120,934)	\$210,511	\$276,228	>1	>1	\$1,331,445	\$1,397,162
CZ15	SCE	-76,971	17599	69.2	(\$1,127,210)	(\$199,308)	\$53 <i>,</i> 550	5.7	>1	\$927,902	\$1,180,760
CZ16	PG&E	-76,971	17599	69.2	(\$1,127,210)	\$172,787	\$53 <i>,</i> 550	>1	>1	\$1,299,997	\$1,180,760
CZ16-2	LA	-54,712	16917	74.6	(\$1,123,442)	(\$240,170)	\$106,722	4.7	>1	\$883,272	\$1,230,164

Figure 76. Cost Effectiveness for Small Hotel – All-Electric + 80kW PV

		Elec	Gas	GHG		Lifecycle		B/C Ratio	B/C		
		Savings	Savings	savings	Incremental	Energy Cost	\$-TDV	(On-	Ratio	NPV (On-	
cz	IOU territory	(kWh)	(therms)	(tons)	Package Cost	Savings	Savings	bill)	(TDV)	bill)	NPV (TDV)
All-Elect	ric + 80kW PV +	50kWh Batt							• •		
CZ01	PG&E	-55,323	16917	75.7	(\$1,095,542)	(\$238,351)	\$118,605	4.6	>1	\$857,191	\$1,214,147
CZ02	PG&E	7,849	12677	67.4	(\$1,096,515)	\$129,794	\$239,632	>1	>1	\$1,226,309	\$1,336,146
CZ03	PG&E	14,594	12322	67.7	(\$1,098,787)	\$43,166	\$235,280	>1	>1	\$1,141,953	\$1,334,067
CZ04	PG&E	14,459	11927	64.4	(\$1,098,622)	\$148,698	\$249,244	>1	>1	\$1,247,320	\$1,347,866
CZ04-2	CPAU	14,459	11927	64.4	(\$1,098,622)	\$286,573	\$249,244	>1	>1	\$1,385,195	\$1,347,866
CZ05	PG&E	24,292	11960	67.6	(\$1,098,675)	\$53,719	\$244,514	>1	>1	\$1,152,394	\$1,343,189
CZ06	SCE	47,762	8912	57.2	(\$1,098,816)	\$165,763	\$267,221	>1	>1	\$1,264,579	\$1,366,037
CZ06-2	LA	61,252	8188	57.1	(\$1,097,164)	\$138,060	\$283,797	>1	>1	\$1,235,223	\$1,380,960
CZ07	SDG&E	55,588	8353	56.2	(\$1,095,134)	\$138,718	\$286,483	>1	>1	\$1,233,852	\$1,381,618
CZ08	SCE	55,588	8353	56.2	(\$1,095,134)	\$165,932	\$286,483	>1	>1	\$1,261,066	\$1,381,618
CZ08-2	LA	54,162	8402	56.1	(\$1,096,932)	\$149,615	\$269,453	>1	>1	\$1,246,548	\$1,366,386
CZ09	SCE	54,162	8402	56.1	(\$1,096,932)	\$171,168	\$269,453	>1	>1	\$1,268,101	\$1,366,386
CZ09-2	LA	49,832	8418	54.1	(\$1,093,934)	\$120,627	\$250,720	>1	>1	\$1,214,561	\$1,344,654
CZ10	SDG&E	49,832	8418	54.1	(\$1,093,934)	\$136,144	\$250,720	>1	>1	\$1,230,078	\$1,344,654
CZ10-2	SCE	25,148	10252	57.3	(\$1,094,743)	\$160,744	\$233,842	>1	>1	\$1,255,487	\$1,328,585
CZ11	PG&E	26,813	10403	59.2	(\$1,096,183)	\$10,314	\$247,504	>1	>1	\$1,106,497	\$1,343,686
CZ12	PG&E	27,217	10403	59.3	(\$1,096,183)	\$206,749	\$248,790	>1	>1	\$1,302,931	\$1,344,973
CZ12-2	SMUD	26,027	10029	56.5	(\$1,094,555)	\$164,506	\$229,300	>1	>1	\$1,259,061	\$1,323,856
CZ13	PG&E	41,123	10056	59.7	(\$1,094,914)	\$25,707	\$276,947	>1	>1	\$1,120,621	\$1,371,860
CZ14	SDG&E	41,123	10056	59.7	(\$1,094,914)	\$119,382	\$276,947	>1	>1	\$1,214,296	\$1,371,860
CZ14-2	SCE	82,697	5579	45.5	(\$1,093,034)	\$209,837	\$277,287	>1	>1	\$1,302,871	\$1,370,321
CZ15	SCE	-77,815	17599	71.1	(\$1,099,310)	(\$193,758)	\$65 <i>,</i> 850	5.7	>1	\$905,552	\$1,165,160
CZ16	PG&E	-77,815	17599	71.1	(\$1,099,310)	\$175,872	\$65 <i>,</i> 850	>1	>1	\$1,275,182	\$1,165,160
CZ16-2	LA	-55,323	16917	75.7	(\$1,095,542)	(\$238,351)	\$118,605	4.6	>1	\$857,191	\$1,214,147

Figure 77. Cost Effectiveness for Small Hotel - All-Electric + 80kW PV + 50 kWh Battery

## 6.8 List of Relevant Efficiency Measures Explored

The Reach Code Team started with a potential list of energy efficiency measures proposed for 2022 Title 24 codes and standards enhancement measures, as well as measures from the 2018 International Green Construction Code, which is based on ASHRAE Standard 189.1-2017. The team also developed new measures based on their experience. This original list was over 100 measures long. The measures were filtered based on applicability to the prototypes in this study, ability to model in simulation software, previously demonstrated energy savings potential, and market readiness. The list of 28 measures below represent the list of efficiency measures that meet these criteria and were investigated to some degree. The column to the far right indicates whether the measure was ultimately included in analysis or not.

Building Component	Measure Name	Measure Description	Notes	Include?
Water Heating	Drain water Heat Recovery	Add drain water heat recovery in hotel prototype	Requires calculations outside of modeling software.	Y
Envelope	High performance fenestration	Improved fenestration SHGC (reduce to 0.22).		Y
Envelope	High SHGC for cold climates	Raise prescriptive fenestration SHGC (to 0.45) in cold climates where additional heat is beneficial.		Y
Envelope	Allowable fenestration by orientation	Limit amount of fenestration as a function of orientation		Y
Envelope	High Thermal Mass Buildings	Increase building thermal mass. Thermal mass slows the change in internal temperature of buildings with respect to the outdoor temperature, allowing the peak cooling load during summer to be pushed to the evening, resulting in lower overall cooling loads.	Initial energy modeling results showed marginal cooling savings, negative heating savings.	N
Envelope	Opaque Insulation	Increases the insulation requirement for opaque envelopes (i.e., roof and above-grade wall).	Initial energy modeling results showed marginal energy savings at significant costs which would not meet c/e criteria.	N
Envelope	Triple pane windows	U-factor of 0.20 for all windows	Initial energy modeling results showed only marginal energy savings and, in some cases, increased energy use.	N

#### Figure 78. List of Relevant Efficiency Measures Explored

Building Component	Measure Name	Measure Description	Notes	Include?
Envelope	Duct Leakage Testing	Expand duct leakage testing requirements based on ASHRAE Standard 215-2018: Method of Test to Determine Leakage of Operating HVAC Air Distribution Systems (ANSI Approved).	More research needs to be done on current duct leakage and how it can be addressed.	N
Envelope	Fenestration area	Reduce maximum allowable fenestration area to 30%.	Instead of this measure, analyzed measure which looked at limiting fenestration based on wall orientation.	N
Envelope	Skinny triple pane windows	U-factor of 0.20 for all windows, with no changes to existing framing or building structure.	Market not ready. No commercially-available products for commercial buildings.	N
Envelope	Permanent projections	Detailed prescriptive requirements for shading based on ASHRAE 189. PF >0.50 for first story and >0.25 for other floors. Many exceptions. Corresponding SHGC multipliers to be used.	Title 24 already allows owner to trade off SHGC with permanent projections. Also, adding requirements for permanent projections would raise concerns.	N
Envelope	Reduced infiltration	Reduce infiltration rates by improving building sealing.	Infiltration rates are a fixed ACM input and cannot be changed. A workaround attempt would not be precise, and the practicality of implementation by developers is low given the modeling capabilities and the fact that in-field verification is challenging. Benefits would predominantly be for air quality rather than energy.	N

Building Component	Measure Name	Measure Description	Notes	Include?
HVAC	Heat recovery ventilation	For the hotel, recover and transfer heat from exhausted air to ventilation air.	<ul> <li>For small hotels, the ventilation requirement could be met by various approaches, and the most common ones are:</li> <li>a. Exhaust only system, and ventilation is met by infiltration or window operation.</li> <li>b. Through a Z-duct that connects the zone AC unit's intake to an outside air intake louver.</li> <li>c. Centralized ventilation system (DOAS)</li> <li>The prototype developed for the small hotel is using Type 2 above. The major consideration is that currently, HRV + PTACs cannot be modeled at each guest room, only at the rooftop system. Option 1 would require the same type of HRV implementation as Option 2. Option 3 may be pursuable, but would require a significant redesign of the system, with questionable impacts. Previous studies have found heat recovery as cost effective in California only in buildings with high loads or high air exchange rates,</li> </ul>	N
нуас	Require Economizers in Smaller Capacity Systems	Lower the capacity trigger for air economizers. Previous studies have shown cost effectiveness for systems as low as 3 tons.	given the relatively mild climate.	Y
нуас	Reduce VAV minimum flow limit	Current T24 and 90.1 requirements limit VAV minimum flow rates to no more than 20% of maximum flow. Proposal based on ASHRAE Guideline 36 which includes sequences that remove technical barriers that previously existed. Also, most new DDC controllers are now capable of lower limits. The new limit may be as low as the required ventilation rate. A non-energy benefit of this measure is a reduction in over-cooling, thus improving comfort.		Y

Building Component	Measure Name	Measure Description	Notes	Include?	
HVAC	Building Automation System (BAS) improvements	With adoption of ASHRAE Guideline 36 (GDL-36), there is now a national consensus standard for the description of high-performance sequences of operation. This measure will update BAS control requirements to improve usability and enforcement and to increase energy efficiency. BAS control requirement language will be improved either by adoption of similar language to GDL- 36, or reference to GDL-36. Specific T24 BAS control topics that will be addressed include at a minimum: DCV, demand-based reset of SAT, demand-based reset of SP, dual-maximum zone sequences, and zone groups for scheduling.	In order to realize any savings in the difference, we would need a very detailed energy model with space- by-space load/occupant diversity, etc. We would also need more modeling capability than is currently available in CBECC-Com.	N	
HVAC	Fault Detection Devices (FDD)	Expand FDD requirements to a wider range of AHU faults beyond the economizer. Fault requirements will be based on NIST field research, which has consequently been integrated into ASHRAE Guideline 36 Best in Class Sequences of Operations. Costs are solely to develop the sequences, which is likely minimal, and much of the hardware required for economizer FDD is also used to detect other faults.	Market not ready.	Ν	
HVAC	Small circulator pumps ECM, trim to flow rate	Circulator pumps for industry and commercial.	Hot water pump energy use is small already (<1% building electricity usage) so not much savings potential. More savings for CHW pumps. Modeling limitations as well.	N	
HVAC	High Performance Ducts to Reduce Static Pressure	Revise requirements for duct sizing to reduce static pressure.	Preliminary energy modeling results showed only marginal energy savings compared to measure cost.	N	
HVAC	Parallel fan-powered boxes	Use of parallel fan-powered boxes	Unable to model PFPB with variable speed fans in modeling software.	N	
Lighting	Daylight Dimming Plus OFF	Automatic daylight dimming controls requirements include the OFF step.		Y	
Lighting	Occupant Sensing in Open Plan Offices	Take the PAF without allowing for increased design wattage		Y	
Lighting	Institutional tuning	Take the PAF without allowing for increased design wattage		Y	



Building Component	Measure Name	Measure Description	Notes	Include?
Lighting	Reduced Interior Lighting Power Density	Reduced interior LPD values.		Y
Lighting	Shift from general to task illumination	Low levels of general illumination with task and accent lighting added to locations where higher light levels are required. The shift from general to task illumination measure is based on the assumption that proper lighting of a desk surface with high efficacy lighting can allow for the significant reduction of ambient general lighting.	This is a tough measure to require as the LPDs decrease.	N
Lighting	Future-proof lighting controls	Fill any holes in the current code that could lead to the situations where TLEDS or LED fixtures that are not dimmable or upgradable in the future, or any other issues with code that make it hard to transition to ALCS/IoT lighting in the future	Major lighting controls already covered in other measures being considered	N
Lighting	Integrated control of lighting and HVAC systems	Formalize the definition of "lighting and HVAC control integration" by defining the level of data sharing required between systems and the mechanism needed to share such data. The highest savings potential would likely be generated from VAV HVAC systems by closing the damper in unoccupied zones based on the occupancy sensor information from the lighting systems.	Not market ready enough.	N
Other	NR Plug Load Controls	Energy savings opportunities for plug loads, which may include: energy efficient equipment, equipment power management, occupancy sensor control, and occupant awareness programs. The proposal could be extending controlled receptacles requirements in Section 130.5(d) to more occupancy types. It would also consider circuit- level controls.	Office equipment now all have their own standby power modes that use very little power, making plug load controls very difficult to be cost-effective.	N

### 6.9 Additional Rates Analysis - Healdsburg

After the final version of the report was released, the Reach Code Team provided additional cost effectiveness analysis in Climate Zone 2 using City of Healdsburg electric utility rates and PG&E gas rates. All aspects of the methodology remain the same, and the results for each package and prototype are aggregated below in Figure 79 through Figure 81. Results generally indicate:

- Mixed fuel prototypes achieve positive compliance margins for EE packages and are cost effective.
- All-electric prototypes achieve slightly lower compliance margins than mixed fuel for EE packages and are cost effective.
- All PV and PV+Battery packages are cost effective both using an on-bill and TDV approach.



Prototype	Package	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (tons)	Comp- liance Margin (%)	Incremental Package Cost	Lifecycle Energy Cost Savings	\$-TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
	Mixed Fuel + EE	40,985	-505	8.1	17%	\$66,649	\$89,645	\$99,181	1.3	1.5	\$22,996	\$32,532
	Mixed Fuel + EE + PVB	255,787	-505	50.6	17%	\$359,648	\$510,922	\$573,033	1.4	1.6	\$151,274	\$213,385
	Mixed Fuel + HE	3,795	550	4.3	4%	\$68,937	\$24,204	\$24,676	0.4	0.4	-\$44,733	-\$44,261
	All-Electric	-49,684	3,868	5.0	-7%	-\$73,695	-\$7,042	-\$41,429	10.5	1.8	\$66,653	\$32,266
	All-Electric + EE	-11,811	3,868	15.2	10%	-\$7,046	\$83,285	\$58,563	>1	>1	\$90,331	\$65,609
	All-Electric + EE + PVB	203,026	3,868	57.8	10%	\$285,953	\$511,954	\$532,273	1.8	1.9	\$226,001	\$246,320
	All-Electric + HE	-45,916	3,868	6.1	-5%	-\$22,722	\$6,983	-\$26,394	>1	0.9	\$29,705	-\$3,672
	Mixed Fuel + 3kW	4,785	0	0.9	n/a	\$5,566	\$10,430	\$10,500	1.9	1.9	\$4,864	\$4,934
Medium Office	Mixed Fuel + 3kW + 5kWh	4,785	0	0.9	n/a	\$8,356	\$10,430	\$10,500	1.2	1.3	\$2,074	\$2,144
Office	Mixed Fuel + 135kW	215,311	0	41.5	n/a	\$250,470	\$424,452	\$471,705	1.7	1.9	\$173,982	\$221,235
	Mixed Fuel + 135kW + 50kWh	214,861	0	42.6	n/a	\$278,370	\$423,721	\$472,898	1.5	1.7	\$145,351	\$194,528
	All-Electric + 3kW	-44,899	3,868	6.0	n/a	-\$68,129	\$3,299	-\$30,928	>1	2.2	\$71,429	\$37,201
	All-Electric + 3kW + 5kWh	-44,899	3,868	6.0	n/a	-\$65,339	\$3,299	-\$30,928	>1	2.1	\$68,639	\$34,411
	All-Electric + 135kW	165,627	3,868	46.6	n/a	\$176,775	\$424,146	\$430,276	2.4	2.4	\$247,371	\$253,501
	All-Electric + 135kW + 50kWh	165,200	3,868	47.7	n/a	\$204,675	\$423,466	\$431,469	2.1	2.1	\$218,792	\$226,795
	All-Electric + 80kW + 50kWh	40,985	-505	8.1	17%	\$66,649	\$89,645	\$99,181	1.3	1.5	\$22,996	\$32,532

Figure 79. Healdsburg Utility Rates Analysis – Medium Office, All Packages Cost Effectiveness Summary

	Figure 80. nealusbu		y Nates I					iges cos	LEnect		s Summar	y
Prototype	Package	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (tons)	Comp- liance Margin (%)	Incremental Package Cost	Lifecycle Energy Cost Savings	\$-TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
	Mixed Fuel + EE	18,885	613	8.7	13%	\$5,569	\$49,546	\$59,135	8.9	10.6	\$43,977	\$53,566
	Mixed Fuel + EE + PVB	189,400	613	43.8	13%	\$249,475	\$376,219	\$465,474	1.5	1.9	\$126,744	\$215,999
	Mixed Fuel + HE	2,288	229	2.0	3%	\$9,726	\$13,143	\$13,998	1.4	1.4	\$3,417	\$4,273
	All-Electric	-21,786	2,448	7.5	-1%	-\$27,464	\$9,228	-\$4,483	>1	6.1	\$36,692	\$22,981
	All-Electric + EE	2,843	2,448	14.6	13%	-\$21,895	\$61,918	\$56,893	>1	>1	\$83,813	\$78,788
	All-Electric + EE + PVB	173,387	2,448	49.9	13%	\$222,012	\$391,257	\$463,431	1.8	2.1	\$169,245	\$241,419
	All-Electric + HE	-16,989	2,448	8.9	3%	-\$4,211	\$23,567	\$11,251	>1	>1	\$27,779	\$15,463
Medium	Mixed Fuel + 3kW	4,685	0	0.9	n/a	\$5,566	\$10,256	\$10,262	1.8	1.8	\$4,690	\$4,696
Retail	Mixed Fuel + 3kW + 5kWh	4,685	0	0.9	n/a	\$8,356	\$10,256	\$10,262	1.2	1.2	\$1,900	\$1,906
	Mixed Fuel + 110kW	171,790	0	33.3	n/a	\$204,087	\$316,293	\$376,300	1.5	1.8	\$112,206	\$172,213
	Mixed Fuel + 110kW + 50kWh	170,542	0	35.1	n/a	\$231,987	\$320,349	\$398,363	1.4	1.7	\$88,363	\$166,376
	All-Electric + 3kW	-17,101	2,448	8.4	n/a	-\$21,898	\$19,523	\$5,779	>1	>1	\$41,421	\$27,677
	All-Electric + 3kW + 5kWh	-17,101	2,448	8.4	n/a	-\$19,108	\$19,523	\$5,779	>1	>1	\$38,631	\$24,887
	All-Electric + 110kW	150,004	2,448	40.8	n/a	\$176,623	\$332,213	\$371,817	1.9	2.1	\$155,591	\$195,194
	All-Electric + 110kW + 50kWh	148,793	2,448	42.9	n/a	\$204,523	\$335,043	\$394,099	1.6	1.9	\$130,520	\$189,577

Figure 80. Healdsburg Utility Rates Analysis – Medium Retail, All Packages Cost Effectiveness Summary	Figure 80. Healdsburg	Utility Rates Analysis - M	ledium Retail, All Packages Co	st Effectiveness Summary
-------------------------------------------------------------------------------------------------------	-----------------------	----------------------------	--------------------------------	--------------------------

	Figure of. nealusp	<u>ui 5 0 ui</u>	ny nate	5 milary.	<u>515 5</u> 111	all liotel, h	III I achag		meen	/cnc33	<u>Summary</u>	
Prototype	Package	Elec Savings (kWh)	Gas Savings (therms)	GHG savings (tons)	Comp- liance Margin (%)	Incremental Package Cost	Lifecycle Energy Cost Savings	\$-TDV Savings	B/C Ratio (On- bill)	B/C Ratio (TDV)	NPV (On- bill)	NPV (TDV)
	Mixed Fuel + EE	3,802	976	3.9	7%	\$20,971	\$22,829	\$29,353	1.1	1.4	\$1,857	\$8,381
	Mixed Fuel + EE + PVB	130,144	976	31.1	7%	\$205,967	\$254,577	\$336,575	1.2	1.6	\$48,610	\$130,608
	Mixed Fuel + HE	981	402	2.7	3%	\$23,092	\$12,291	\$11,808	0.5	0.5	-\$10,801	-\$11,284
	All-Electric	- 118,739	12,677	40.0	-12%	-\$1,297,757	-\$24,318	-\$51,620	53.4	25.1	\$1,273,439	\$1,246,137
	All-Electric + EE	-88,410	12,677	45.9	5%	-\$1,265,064	\$45,918	\$20,860	>1	>1	\$1,310,982	\$1,285,924
	All-Electric + EE + PVB	38,115	12,677	73.5	5%	-\$1,080,068	\$296,233	\$317,296	>1	>1	\$1,376,301	\$1,397,365
	All-Electric + HE	- 118,284	12,677	41.2	-11%	-\$1,283,243	-\$83,994	-\$44,505	15.3	28.8	\$1,199,249	\$1,238,738
Small	Mixed Fuel + 3kW	4,785	0	0.9	n/a	\$5,566	\$8,927	\$10,332	1.6	1.9	\$3,361	\$4,766
Hotel	Mixed Fuel + 3kW + 5kWh	4,785	0	0.9	n/a	\$8,356	\$8,927	\$10,332	1.1	1.2	\$571	\$1,976
	Mixed Fuel + 80kW	127,592	0	25.0	n/a	\$148,427	\$229,794	\$275,130	1.5	1.9	\$81,367	\$126,703
	Mixed Fuel + 80kW + 50kWh	126,332	0	28.1	n/a	\$176,327	\$236,570	\$296,058	1.3	1.7	\$60,243	\$119,731
	All-Electric + 3kW	- 113,954	12,677	40.9	n/a	-\$1,292,191	-\$14,447	-\$41,288	89.4	31.3	\$1,277,744	\$1,250,902
	All-Electric + 3kW + 5kWh	- 113,954	12,677	40.9	n/a	-\$1,289,401	-\$14,447	-\$41,288	89.3	31.2	\$1,274,954	\$1,248,112
	All-Electric + 80kW	8,853	12,677	65.0	n/a	-\$1,149,330	\$222,070	\$223,510	>1	>1	\$1,371,400	\$1,372,840
	All-Electric + 80kW + 50kWh	7,849	12,677	67.4	n/a	-\$1,121,430	\$223,812	\$239,632	>1	>1	\$1,345,241	\$1,361,062

#### Figure 81. Healdsburg Utility Rates Analysis – Small Hotel, All Packages Cost Effectiveness Summary

# ATTACHMENT E

August 13, 2019



# MEMORANDUM

To: Gabriel Taylor, Peter Strait (California Energy Commission)

From: Farhad Farahmand, Abhijeet Pande (TRC), Rafael Reyes (Peninsula Clean Energy)

Re: Interpretation of Cost Effectiveness Analysis as it Relates to Menlo Park Reach Code Proposal

As part of an amendment to the California Building Standards Code, the City of Menlo Park is seeking a requirement for all new construction buildings to be all-electric but allows for several exceptions. For residential buildings, the City is proposing to allow natural gas to be used for cooking and decorative fireplaces. For nonresidential buildings, certain categories of buildings such as public safety buildings, designated emergency centers as well as commercial buildings containing scientific laboratories that require natural gas for operational and process reasons are proposed to be exempted.

This memo serves to clarify the cost-effectiveness justification of these proposals as required by California Code of Regulations (CCR), Title 24, Part 1, §10-106 and request the Energy Commission's preliminary approval of this justification. If approved, an updated version of this interpretation will be included with Menlo Park's application to the Energy Commission.

The statewide investor owned utility codes and standards program developed a new construction cost effectiveness analysis for all California climate zones which included all-electric measures as part of multiple packages. These analyses have been attached, and:

- Were performed for both residential and nonresidential buildings
  - The residential prototypes included 4 end-uses in analysis: space heating, water heating, cooking, and clothes drying. These assumed savings from avoided natural gas infrastructure to and within the residence.
  - The nonresidential prototypes included 2 end-uses in analysis: space heating and water heating.
- Found that it is cost-effective to construct all-electric buildings compared to the 2019 Standards ACM baseline, including all end-uses analyzed, partially due to upfront cost savings associated with foregoing a natural gas connection to the building.

Menlo Park's code proposal would allow the construction of all-electric buildings which has been shown to be cost-effective using the TDV cost-effectiveness metric.

We seek your preliminary confirmation that the existing cost effectiveness studies completed are sufficient to support Menlo Park's proposal, considering further that:

 In residential buildings, a proposed building with electric space- or water-heating is already compared to a standard building with these electric end-uses. Thus, no cost effectiveness criteria are explicitly required for the electrification of these end-uses. The exemption for gas to be allowed for cooking or decorative fireplaces is a voluntary choice to be made by a homeowner/builder and as such does not need to be shown to be cost-effective. Additionally, the cost to add pre-wiring for cooktops/ovens is minimal at the time of new construction since there is an electrical outlet present even for gas cooktops since they are electronic/electric ignition and have other electronic components like fans and lights that need electricity supply. So, the pre-wiring for future induction cooktops only requires upsizing the wire gauge (a minimal cost at time of construction) and a different outlet (also a minimal upgrade cost). A recent cost-estimate provided by Scott Shell at EHDD Architects (based on data provided by tbd consultants) estimates this cost to be \$280 at the time of new construction. Retrofitting an existing electrical line with an upsized one that can power induction would cost \$930. So, it is inherently cost-effective for the lesser expense be done at time of construction as opposed to spending more year or more later to add the capability.

- The cost-effectiveness study conducted by TRC for the Statewide Codes and Standards Team at the Investor Owned Utilities (IOU) used a hotel prototype for establishing cost-effectiveness for both hotel as well as high-rise residential applications. This is partly because there was no high-rise residential prototype available and the Title 24 compliance tools lack modeling of central water heating systems. Since the Title 24, part 6 requirements for hotel/motel guestrooms are the same as those of high-rise residential dwelling units, and because the prototype was modeled with individual space and water heaters, we believe the use of the hotel prototype is appropriate to represent high-rise residential as well. Further, any nonresidential spaces modeled for the hotel prototype would have to be modeled with same/similar systems if those same end uses exist in a high-rise residential building. Thus, we are confident that the hotel prototype is sufficient for high-rise residential applications.
- In nonresidential buildings, the prototypes examined in the cost effectiveness analysis only included space heating and water heating electrification. Other end uses targeted in the Menlo Park ordinance are unregulated appliances such as cooking, clothes drying which are not explicitly modeled in Title 24 compliance calculations. Adding requirements for these end uses to be electric does not impact the TDV budget for the building or compliance with Title 24. These will however impact the overall fist cost of the all-electric building as well as operational impacts. These impacts however are not likely to be significant compared with the overall cost savings of around \$25,000 for offices and retail and almost \$1M for hotel occupancies. Electric cooking and clothes drying first cost difference compared to natural gas versions are between \$800-\$2000 per appliance. Operational cost increases are around \$2,000 per appliance over the building's lifetime. Thus, the added first and operation costs for electric appliances are unlikely to be greater than the significant cost savings resulting from eliminating natural gas infrastructure.

We thus propose that existing cost-effectiveness studies should be sufficient to justify Menlo Park requirements. Any guidance on this approach and/or code language format is much appreciated.



# ATTACHMENT F City Manager's Office



FILING REQUESTED BY AND WHEN FILED RETURN TO:

Lead Agency: City of Menlo Park Contact Person: Rebecca Lucky, Sustainability Manager, City of Menlo Park Area Code/Telephone/Extension: 650-330-6765

October 2, 2019

County Clerk County of San Mateo 555 County Center Redwood City, CA 94063

#### **RE: CEQA Notice of Exemption**

Project Title: City of Menlo Park Local Ordinance No. 1057

**Project Location – City:** City of Menlo Park

Project Location - County: San Mateo

#### Description of Nature, Purpose and Beneficiaries of Project:

On September 24, 2019, the City of Menlo Park adopted Ordinance No. 1057. This ordinance requires new residential buildings to be fueled largely by electricity with the exception of cooktops and fireplaces and requires new nonresidential and high-rise multifamily buildings to be fueled only by electricity with a few exceptions. Life science buildings and public agency owned and operated emergency operations centers may use natural gas fuel for some appliances, but the applicants must submit a third party analysis to provide evidence that electricity is not cost effective to fuel their operations. Nonresidential kitchens may appeal to a City Council advisory body in order to use natural gas fueled cooktops. In addition to the electrically fueled requirement, nonresidential buildings must install a minimum amount of on-site solar production based on square footage.

Buildings that use natural gas fuel will be required to be electric-ready. The Reach Codes align with the City's climate action plan, the general plan and the climate and sustainability resolution. The purpose of the project is to maximize the City's renewable energy and reduce greenhouse gas emissions. It also encourages green building best practices and is a transition towards building electrification. This ordinance is complimentary to Menlo Park's power provider goal to supply 100 percent greenhouse gas free energy to the community and Senate Bill 100. It also pushes the market to produce more efficient electric household appliances and design all-electric buildings.

Pursuant to Public Resources Code (PRC) Section 25402.1(h)(2) and Section 10-106 of Title 24 of the California Code of Regulations, the City of Menlo Park has applied to the California Energy Commission for a determination that its locally adopted energy efficiency standard, enacted in Local Ordinance No. 1057 (the Ordinance), will require buildings to be designed to consume no more energy than permitted by the *2019 Building Energy Efficiency Standards* (2019 Energy Standards) adopted by the Energy Commission. The Energy Commission's Building Standards are set forth in Title 24, Part 6 of the California Code of Regulations.

#### Name of Public Agency Approving Project: City of Menlo Park

#### Name of Person or Agency Carrying Out Project: City of Menlo Park

#### Exempt Status: (check one):

- ____ Ministerial (Sec. 21080(b)(1); 15268);
- ____ Declared Emergency (Sec. 210808(b)(4); 15269(a));
- ____ Emergency Project (Sec. 210808(b)(4); 15269(b)(c));
- X Categorical Exemption. State type and section number:
- California Code of Regulations, Title 14, § 15061(b)(3)
- ____ Statutory Exemptions. State code number:

#### Reasons why project is exempt:

The City Council determined that the activity is covered by the general rule that California Environmental Quality Act (CEQA) applies only to projects which have the potential for causing a significant effect on the environment. (14 CCR § 15061(b)(3)). Where it can be seen with certainty that there is no possibility that the activity in question may have a significant effect on the environment, the activity is not subject to CEQA. In making this determination the City found that the amendments would decrease the levels of greenhouse gas emissions and other adverse environmental impacts associated with use of gas without causing additional impacts. The City also relied on the Energy Commission previous finding that its adoption of the California Green Building Code was exempt from CEQA pursuant to Title 14, Section 15061(b)(3). Additionally, a negative declaration was previously adopted for the California Building Energy Efficiency Standards as a whole. These standards are more protective of the environment than the state standards, and there are no reasonably foreseeable adverse impacts, and so there is no possibility that the activity in guestion may have a significant effect on the environment. See Ordinance No. 1057.

Lead Agency Contact Person:

Rebecca Lucky Sustainability Manager City of Menlo Park Telephone: (650) 330-6765

## **Notice of Exemption**

To: Office of Planning and Research P.O. Box 3044, Room 113 Sacramento, CA 95812-3044 From: (Public Agency): California Energy Commission 1516 Ninth Street Sacrament, CA 95814-5512

Project Title: City of Menlo Park Local Ordinance No. 1057

Project Applicant: N/A

Project Location – Specific: Menlo Park

Project Location – City: Menlo Park

Project Location – County: San Mateo

#### Description of Nature, Purpose and Beneficiaries of Project:

Pursuant to Public Resources Code (PRC) Section 25402.1(h)(2) and Section 10-106 of Title 24 of the California Code of Regulations, the City of Menlo Park has applied to the California Energy Commission for a determination that its locally adopted energy efficiency standard, enacted in Local Ordinance No. 1057 (the Ordinance), will require buildings to be designed to consume no more energy than permitted by the *2019 Building Energy Efficiency Standards* (2019 Energy Standards) adopted by the Energy Commission. The Energy Commission's Building Standards are set forth in Title 24, Part 6 of the California Code of Regulations.

This ordinance requires new residential buildings to be fueled largely by electricity with the exception of cooktops and fireplaces and requires new nonresidential and high-rise multifamily buildings to be fueled only by electricity with a few exceptions. Life science buildings and public agency owned and operated emergency operations centers may use natural gas fuel for some appliances, but the applicants must submit a third party analysis to provide evidence that electricity is not cost effective to fuel their operations. Nonresidential kitchens may appeal to a City Council advisory body in order to use natural gas fueled cooktops. In addition to the electrically fueled requirement, nonresidential buildings must install a minimum amount of on-site solar production based on square footage.

Buildings that use natural gas fuel will be required to be electric-ready. The Reach Codes align with the City's climate action plan, the general plan and the climate and sustainability resolution. The purpose of the project is to maximize the City's renewable energy and reduce greenhouse gas emissions. It also encourages green building best practices and is a transition towards building electrification. This ordinance is complimentary to Menlo Park's power provider goal to supply 100 percent greenhouse gas free energy to the community and Senate Bill 100. It also pushes the market to produce more efficient electric household appliances and design all-electric buildings.

Consistent with PRC Section 25402.1(h)(2), the Energy Commission found that the City of Menlo Park's Ordinance will require the diminution of energy consumption levels permitted by the 2019 Energy Standards.

#### Name of Public Agency Approving Project:

City of Menlo Park (Lead Agency) California Energy Commission (Responsible Agency)

#### Name of Person or Agency Carrying Out Project: City of Menlo Park

#### Exempt Status: (check one):

- ____ Ministerial (Sec. 21080(b)(1); 15268);
- ____ Declared Emergency (Sec. 210808(b)(4); 15269(a));
- ____ Emergency Project (Sec. 210808(b)(4); 15269(b)(c));
- <u>X</u> Categorical Exemption. State type and section number:
- California Code of Regulations, Title 14, § 15061(b)(3)
- ____ Statutory Exemptions. State code number:

#### Reasons why project is exempt:

The finding by the Energy Commission required by PRC Section 25402.1(h)(2), that City of Menlo Park ordinance will require the diminution of energy consumption levels permitted by the 2019 Energy Standards. involves the comparison of the energy savings of the ordinance pursuant to an objective fixed standard, and does not require the exercise of judgment or deliberation on the part of the Energy Commission. It is therefore a ministerial act consistent with Section 15369 of Title 14 of the California Code of Regulations, and is exempt from CEQA pursuant to Public Resources Code section 21080(b)(1) and section 15268 of Title 14 of the California Code of Regulations.

The Energy Commission also determined that the activity is covered by the general rule that California Environmental Quality Act (CEQA) applies only to projects which have the potential for causing a significant effect on the environment. (14 CCR § 15061(b)(3)). Where it can be seen with certainty that there is no possibility that the activity in question may have a significant effect on the environment, the activity is not subject to CEQA. The Energy Commission previously found that its adoption of the California Green Building Code was exempt from CEQA pursuant to Title 14, Section 15061(b)(3). Additionally, a negative declaration was previously adopted for the California Building Energy Efficiency Standards as a whole. These standards are more protective of the environment than the state standards, and there are no reasonably foreseeable adverse impacts, and so there is no possibility that the activity in question may have a significant effect on the environment. See Ordinance No. 1057. As the lead agency, the City of Menlo Park also stated in its application to the Energy Commission that this activity is exempt from CEQA under Section 15061(b)(3) and 15308 of Title 14 of the California Code of Regulations.

Lead Agency Contact Person: Rebecca L. Lucky, Sustainability Manager, City of Menlo Park Area Code/Telephone/Extension: 650-330-6765

#### **Responsible Agency**

Contact Person: Gabriel Taylor, Building Standards Office, California Energy Commission Area Code/Telephone/Extension: (916) 654-4482

#### If filed by applicant:

Attach certified document of exemption finding.
 Has a Notice of Exemption been filed by the public agency approving the project? ____ Yes ____ No

Signature:	Date:	Title:	
------------	-------	--------	--

Signed by Lead Agency

Signed by Applicant Signed by Responsible Agency