DOCKETED	
Docket Number:	19-IEPR-07
Project Title:	Electricity Sector
TN #:	229904
Document Title:	Floating Offshore Wind Energy Technology and Cost Trends
Description:	Presentation by Walter Musial, National Renewable Energy Laboratory
Filer:	Raquel Kravitz
Organization:	National Renewable Energy Laboratory
Submitter Role:	Public Agency
Submission Date:	10/1/2019 3:58:23 PM
Docketed Date:	10/1/2019

Floating Offshore Wind Energy Technology and Cost Trends

Walt Musial

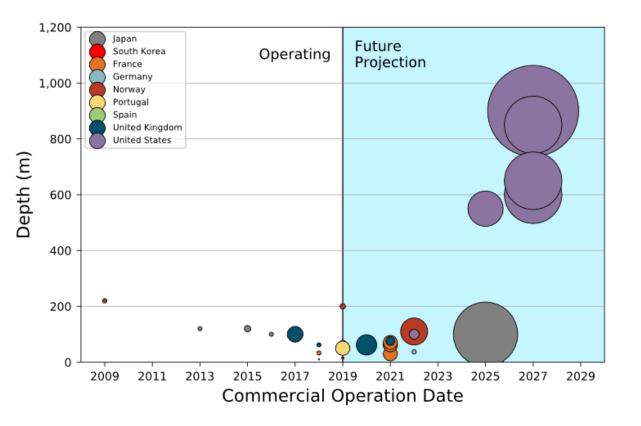
Principal Engineer - Offshore Wind Platform Lead National Renewable Energy Laboratory Golden, Colorado

IEPR Workshop - Offshore Wind Thursday, October 3, 2019 – 10:00 AM California Public Utilities Commission 505 Van Ness Avenue, San Francisco, CA 94102

Business Case for Floating Offshore Wind

- **Resource Abundance:** 58% of U.S. OSW resource is > 60 meters
- **Reduce Siting Conflicts:** Major siting conflicts are likely to be reduced in deeper water, which tends to be farther from shore
- Wind Vision: Floating technology may be needed to achieve targets for 86 GW OSW per DOE/DOI strategy (e.g. Pacific)
- **Cost Reduction Potential:** Cost models have shown that floating wind technology has the potential to achieve the same cost (or lower) as fixed bottom OSW by 2030
- **Rapid Global Industry Pace:** The pace of floating technology advancement has been accelerating world-wide
- **Consistent Policy:** Floating OSW, expected to be commercialized within the next decade, can support an "all of the above" U.S. energy policy
- **National Leadership:** There is a significant economic opportunity in establishing national leadership in floating OSW technology

2015


http://energy.gov/eere/wind/downloads/wind-visionnew-era-wind-power-united-states

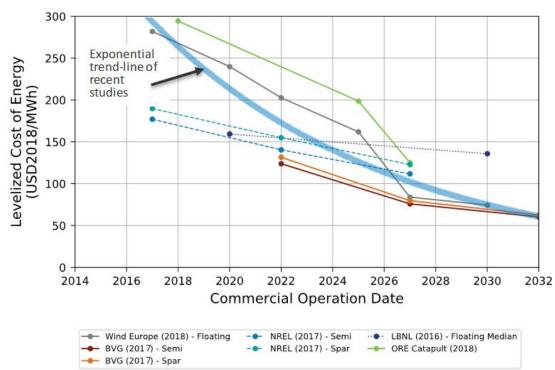
http://energy.gov/sites/prod/files/2016/09/f33/ National-Offshore-Wind-Strategy-report-09082016.pdf

Floating Offshore Wind Pipeline

- 8 floating offshore wind projects globally represent 46 MW of installed capacity.
- 5 projects (37 MW) are in Europe and 3 projects (9 MW) are in Asia.
- 14 projects with approximately 200 MW under construction, have achieved financial close or regulatory approval.
- In 2018 the global pipeline for floating offshore wind reached 4,883 MW

Commercialization Path for Floating Wind Energy

Photo: Equinor Scotland 30 MW 5 Turbines – Credit: Walt Musial


Proof of Concept Phase 2009 to 2016 6 full-scale prototypes totaling about 20-MW 2 - 7 MW turbines

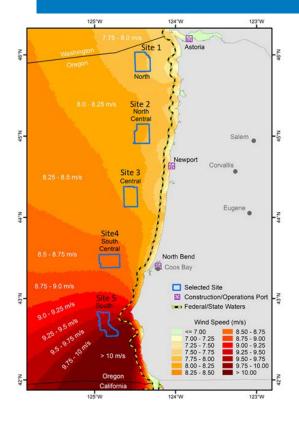
Pre-commercial Phase 2017 to 2023 Multi-turbine commercial arrays 14 projects totaling over 200-MW

Commercial Floating Arrays 2024 and beyond 400 MW+ arrays proposed Principle Power – Hawaii/California Progression - Hawaii

Equinor - TBD Trident Wind - California Dyfed/Kantanes – United Kingdom

Current Floating Offshore Costs

Selected Floating Offshore Wind LCOE Trajectories


- Floating cost estimates are declining rapidly as new information is obtained
- NREL (2016) study for CA estimated
 \$100/MWh by 2030
- BVG and Wind Europe (2018)
 estimate costs near \$70/MWh by
 2030
- New NREL modeling will deliver similar estimates
 - Primary cost drivers:


)

- -Larger turbines 12MW to 15 MW
- -Lower turbine prices
- -Lower finance costs
- -Integrated stable substructures
- -Quayside commissioning
- Reduced cable costs

Musial, W; Beiter, P., Spitsen, p., Nunemaker, J., Gevorgian, V. 2019. "2018 Offshore Wind Technologies Market Report", U.S. Department of Energy Report, August 2019. <u>https://www.energy.gov/eere/wind/2018-wind-market-reports#offshore</u>

Oregon Cost Study Results – Sept 2019

- Funded by the Bureau of Ocean Energy Management
- Hypothetical sites have not been vetted by ocean user communities
- Only cost and geo-spatial factors were considered
- By 2032 costs may drop below \$60/MWh in some locations

Musial W., Beiter P., Nunemaker J., Heimiller D., Ahmann J., and Busch J. "Oregon Offshore Wind Site Feasibility and Cost Study" NREL September 2019

Thank you for listening – questions?

Trip to Block Island Wind Farm – Oct 1, 2016

Walt Musial Offshore Wind Platform Lead

walter.musial@nrel.gov National Renewable Energy Laboratory https://www.nrel.gov/aboty/hwwc.html

Photo Credit : Dennis Sanroeder-NRE