| DOCKETED         |                                                          |
|------------------|----------------------------------------------------------|
| Docket Number:   | 19-IEPR-03                                               |
| Project Title:   | Electricity and Natural Gas Demand Forecast              |
| TN #:            | 229851                                                   |
| Document Title:  | Fuel Substitution Impacts - An Exploratory Study         |
| Description:     | Presentation by Mike Jaske, California Energy Commission |
| Filer:           | Raquel Kravitz                                           |
| Organization:    | California Energy Commission                             |
| Submitter Role:  | Commission Staff                                         |
| Submission Date: | 9/25/2019 3:57:26 PM                                     |
| Docketed Date:   | 9/25/2019                                                |

#### **Fuel Substitution Impacts**

#### An Exploratory Study

Michael R. Jaske, Ph.D. September 26, 2019 California Energy Commission





## **Study Objectives**

- Conduct a preliminary assessment of the relative importance of alternative assumptions for substitution of electricity for natural gas in residential and commercial buildings
- Develop a tool that can assess both annual energy and hourly electric load impacts
- Provide a starting point for assessments of the amount and type of generation resource additions needed



## Study Status

- Part 1 Complete
  - Define scenarios
  - Create annual energy impacts
  - Explore alternative hourly profiles
  - Deliver preliminary hourly results for EG impacts
- Part 2 In process, due December 2019
  - Refine scenarios and energy impacts
  - Refine hourly profiles
  - Report results



## Approach

- Start analysis from 2017 IEPR natural gas demand forecast
- Devise electrification scenarios at the sector and end-use level
- Quantify annual natural gas displaced and electric energy added at the utility, sector and end-use level
- Produce hourly electric load impacts from annual electric energy increases



## Scale of Fuel Substitution

- Policy initiatives encouraging building decarbonization:
  - 2019 Title 24 building standards eliminated a barrier
  - SB1477 explicit financing of fuel substitution
  - AB3232 study directing C/E assessment
  - CPUC relaxation of the 3-prong test
  - Local jurisdictions banning new NG hookups
- Major unknowns:
  - electrification of just natural gas or other fuels also?
  - Replacing natural gas via market forces or programs?



## **GHG** Emissions

- GHG emission sources:
  - Direct combustion burning fuels in appliances and equipment
  - Hydrofluorcarbons (HFC) refrigerants in various appliances with compressors
  - Fugitive emissions (FE) Methane leakage
    upstream in the upstream distribution system
  - Incomplete combustion (IC) methane leaks onsite



#### **SCENARIO DESIGN**



#### **PG&E NG Forecast**

|           |                           | 2017 IEPR Gas Forecast (MM Therms) |          |          |          |          |       |
|-----------|---------------------------|------------------------------------|----------|----------|----------|----------|-------|
| Sector    | End-Use                   | 1990                               | 2017     | 2020     | 2025     | 2030     | 2030% |
| Res       | central AC                | 20.94                              | 0        | 0        | 0        | 0        | 0%    |
| Res       | central space heating     | 1288.14                            | 1330.16  | 1351.26  | 1399.25  | 1452.55  | 40%   |
| Res       | clothes drying            | 28.90                              | 60.71    | 62.57    | 67.43    | 74.03    | 2%    |
| Res       | cooking                   | 78.23                              | 136.31   | 138.20   | 145.02   | 153.09   | 4%    |
| Res       | hot tub fuel              | 16.22                              | 31.70    | 32.67    | 34.36    | 35.91    | 1%    |
| Res       | hot water clothes washing | 206.49                             | 278.54   | 285.48   | 299.07   | 312.56   | 9%    |
| Res       | hot water dishwashing     | 123.14                             | 193.22   | 201.19   | 217.46   | 232.71   | 6%    |
| Res       | pool heating              | 14.06                              | 42.74    | 43.66    | 45.42    | 47.15    | 1%    |
| Res       | water heating             | 478.48                             | 565.78   | 579.74   | 610.20   | 637.81   | 17%   |
| Comm      | Heating                   | 373.39                             | 381.18   | 375.57   | 359.20   | 337.83   | 9%    |
| Comm      | Cooling                   | 17.50                              | 17.28    | 17.05    | 16.34    | 15.30    | 0%    |
| Comm      | Water Heating             | 52.02                              | 75.06    | 78.90    | 85.38    | 91.48    | 3%    |
| Comm      | Cooking                   | 40.36                              | 48.45    | 49.65    | 50.92    | 51.49    | 1%    |
| Comm      | Refrigeration             | 0.89                               | 1.42     | 1.49     | 1.59     | 1.67     | 0%    |
| Comm      | Miscellaneous             | 126.93                             | 178.79   | 186.36   | 196.84   | 205.77   | 6%    |
| R-C total |                           | 2865.69                            | 3341.342 | 3403.796 | 3528.478 | 3649.352 | 100%  |



#### SCE NG Forecast

|                |                           | 2017 IEPR Gas Forecast (MM Therms) |         |         |         |         |       |
|----------------|---------------------------|------------------------------------|---------|---------|---------|---------|-------|
| Sector         | End-Use                   | 1990                               | 2017    | 2020    | 2025    | 2030    | 2030% |
| Res            | central A/C               | 21.76                              | 0.00    | 0.00    | 0.00    | 0.00    | 0%    |
| Res            | central space heating     | 967.72                             | 959.68  | 964.74  | 979.34  | 993.63  | 28%   |
| Res            | clothes drying            | 78.78                              | 121.58  | 125.41  | 130.88  | 135.69  | 4%    |
| Res            | cooking                   | 164.43                             | 194.28  | 194.41  | 200.46  | 205.71  | 6%    |
| Res            | hot tub fuel              | 51.45                              | 58.33   | 59.23   | 60.94   | 62.39   | 2%    |
| Res            | hot water clothes washing | 190.32                             | 281.18  | 282.98  | 297.19  | 307.07  | 9%    |
| Res            | hot water dishwashing     | 120.70                             | 175.80  | 182.32  | 198.46  | 211.27  | 6%    |
| Res            | pool heating              | 66.95                              | 60.42   | 59.87   | 59.34   | 58.63   | 2%    |
| Res            | water heating             | 461.87                             | 601.97  | 607.32  | 632.86  | 652.92  | 18%   |
| Comm           | Heating                   | 171.10                             | 229.79  | 232.64  | 234.14  | 231.96  | 6%    |
| Comm           | Cooling                   | 41.09                              | 55.17   | 57.13   | 60.18   | 62.93   | 2%    |
| Comm           | Water Heating             | 53.16                              | 87.13   | 92.26   | 101.10  | 109.80  | 3%    |
| Comm           | Cooking                   | 49.15                              | 82.36   | 86.62   | 92.99   | 98.61   | 3%    |
| Comm           | Refrigeration             | 2.32                               | 4.32    | 4.54    | 4.89    | 5.19    | 0%    |
| Comm           | Miscellaneous             | 238.77                             | 388.20  | 407.06  | 437.00  | 465.23  | 13%   |
| Res-Comm Total |                           | 2679.57                            | 3300.20 | 3356.53 | 3489.78 | 3601.02 | 100%  |



#### SDG&E NG Forecast

|          |                |              | 2017 IEPR Gas Forecast (MM Therms) |        |        |        |        |       |
|----------|----------------|--------------|------------------------------------|--------|--------|--------|--------|-------|
| Sector   | End-Use        |              | 1990                               | 2017   | 2020   | 2025   | 2030   | 2030% |
| Res      | central A/C    |              | 3.24                               | 0.00   | 0.00   | 0.00   | 0.00   | 0.0%  |
| Res      | central space  | e heating    | 159.78                             | 169.44 | 170.48 | 174.15 | 179.89 | 22.2% |
| Res      | clothes drying | g            | 13.93                              | 21.98  | 22.45  | 23.70  | 24.82  | 3.1%  |
| Res      | cooking        |              | 27.34                              | 36.02  | 35.59  | 36.16  | 36.59  | 4.5%  |
| Res      | hot tub fuel   |              | 10.53                              | 14.52  | 14.73  | 15.12  | 15.44  | 1.9%  |
| Res      | hot water clot | thes washing | 51.37                              | 70.10  | 71.50  | 73.87  | 78.92  | 9.7%  |
| Res      | hot water disl | hwashing     | 31.22                              | 46.15  | 48.02  | 51.21  | 54.18  | 6.7%  |
| Res      | pool heating   |              | 4.62                               | 5.30   | 5.17   | 5.08   | 5.19   | 0.6%  |
| Res      | water heating  |              | 113.60                             | 153.24 | 155.68 | 160.42 | 167.80 | 20.7% |
| Comm     | Heating        |              | 58.80                              | 90.75  | 92.42  | 93.87  | 93.96  | 11.6% |
| Comm     | Cooling        |              | 12.56                              | 17.75  | 18.47  | 19.63  | 20.72  | 2.6%  |
| Comm     | Water Heatin   | g            | 15.49                              | 24.76  | 26.13  | 28.53  | 30.93  | 3.8%  |
| Comm     | Cooking        |              | 14.03                              | 18.50  | 19.10  | 19.94  | 20.67  | 2.6%  |
| Comm     | Refrigeration  |              | 0.13                               | 0.21   | 0.22   | 0.23   | 0.24   | 0.0%  |
| Comm     | Miscellaneou   | S            | 39.76                              | 66.23  | 69.57  | 75.06  | 80.41  | 9.9%  |
| Res-Comm | Total          |              | 556.38                             | 734.94 | 749.53 | 776.98 | 809.77 | 100%  |



#### **Forecast Summary**

- Residential space and water heating are by far the largest natural gas uses
- Utility service areas have much different space heating requirements
- Commercial miscellaneous end-use is a hodgepodge of specialized applications
- Space and water heating in both sectors are the clear focus, especially given weather sensitivity



## **New Construction Issues**

- Residential New Construction
  - Share of new SF houses 100% electric
  - Share of new MF dwellings 100% electric
- Commercial New Construction
  - Which building types can be 100% electric
  - Electric fuel share for end-uses for building types that require natural gas



## **Building Retrofit Issues**

- When heat pumps are installed for space heat and water heat, what happens with other NG end-uses?
- When heat pumps are installed in non-AC dwellings how much A/C load is added?
- What proportion of older houses and commercial buildings require expensive electric service upgrades?
- If large scale FS is to occur, should natural gas energy efficiency programs change?



#### AB3232 – Load Growth





#### AB3232 – Net or Gross?



# Fuel Substitution Scenarios

- An assessment of 2019 T24 Building Standards inducing electric space/water heating in new construction
  - starting in 2020 and rising to 15% by 2030
  - starting in 2020 and rising to 25% by 2030
- Displacement of baseline residential space and water heat by 2030
  - 10% of baseline SH and WH end-use projections
  - 25% of baseline SH and WH end-use projections
- Simplified AB 3232 40% reduction from 1990 natural gas fuel use in buildings by 2030



## **Consumption or Sales?**

- NG displacement clearly results in added electric load
- Incremental electric load can be supplied by behind the meter (BTM) PV and/or battery storage systems in some hours of the day
- This study focuses on the "gross" incremental load and defers the question of BTM supply versus grid supply to another phase

#### 2030 Energy Shift from Natural Gas to Electricity

|   |                                    | Natural Gas | Electricity |  |
|---|------------------------------------|-------------|-------------|--|
|   |                                    | Displaced   | Added       |  |
| # | Scenario                           | (MM Therms) | (GWh)       |  |
| 1 | Res New Construction - 10% by 2030 | 77          | 600         |  |
| 2 | Res New Construction - 25% by 2030 | 130         | 1000        |  |
| 3 | Res 10% Total Displacement by 2030 | 486         | 3802        |  |
| 4 | Res 25% Total Displacement by 2030 | 1216        | 9506        |  |
| 5 | Res/Comm 40% below 1990 by 2030    | 3802        | 32852       |  |



#### **FURTHER ISSUES**



- HFC emissions are from electric appliances with refrigerants and can only be reduced by changing refrigerants
- Incomplete combustion may be reduced by better burner design and maintenance practices, but is eliminated with electrification
- Fugitive emissions occur at many stages of production to distribution



## Hourly Load Profiles

- Translating annual incremental electric energy into load impacts requires a tool with sector/enduse hourly load profiles
- Three existing sources of load profiles:
  - SoCalGas study (derived from E3 IRP profiles)
  - OpenEl residential profiles
  - ADM load profiles for Res/Com end-uses
- Potential Sources:
  - New analyses using building simulation models
  - EE EM&V studies and/or customer AMI data



## Weather Influence

- Intuitively, residential space heat is more sensitive to weather than commercial space heat
- Duration and patterns of weather-induced space heat load profiles have not yet been studied to the extent of summer air conditioning load
- Are there significant climate trends affecting electric space heat energy and/or short term weather events affecting "peak" incremental electric load?



#### **Climate Trends**









#### Severity of "Peak Day" Weather



# Overview of Initial Results

- Initial hourly load assessment:
  - Winter incremental hourly load results highly sensitive to residential space heat hourly profiles
  - Each profile source used a weather selection method appropriate to its original purpose
  - Electricity projections require analysis of multiple alternative weather years to guide system planning and operations
  - Summer incremental load increases are not trivial and commercial building profiles are more important in the summer period
- Further details of energy and load impacts to be provided at December 2 IEPR workshop



## **Study Limitations**

- CO2 is not the only source of GHG emissions, others are not studied here, but those in CARB inventory seem small by comparison
- C/E analysis of specific technologies is beyond the scope of this study
- Hourly load profiles are not customized to expected heat pump performance
- The scenario projections are too uncertain to include in official CEC managed demand forecasts, but important enough to be published to enable comment and further development



## **Continuing Activity**

- Staff (EAD/SAO) is assessing electric system impact of a preliminary version of incremental loads from the simplified AB3232 scenario
- Technical support from Navigant Consulting:
  - improve impact projection capabilities
  - Begin developing performance and cost estimates
  - Identify barriers
  - Integrate analysis into AB 3232 study plans
- Coordination with CPUC SB1477 and CPUC R.19-01-011 assessments

# Questions?

