DOCKETED	
Docket Number:	19-SPPE-01
Project Title:	Laurelwood Data Center (MECP I Santa Clara I, LLC)
TN #:	229160
Document Title:	Laurelwood Data Center Data Response, Set 5
Description:	DR Set 5 regarding thermal plumes
Filer:	Sarah Madams
Organization:	Jacobs
Submitter Role:	Applicant Consultant
Submission Date:	7/31/2019 2:28:29 PM
Docketed Date:	7/31/2019

Laurelwood Data Center (19-SPPE-01)

Data Response Set 5

Submitted to California Energy Commission

Prepared by MECP1 Santa Clara 1, LLC

with technical assistance from

July 2019

Contents

Introduction	1
Transportation and Hazards and Hazardous Materials: Thermal Plume Analysis	2

Attachments DR-5-1 LDC HVAC Condenser Thermal Plume Calculations

Introduction

On July 16, 2019, California Energy Commission (CEC) Staff submitted a Second *Motion for Leave to File Additional Data Requests* (Motion), which included an appendix with additional data requests in the subject areas of Transportation and Hazards and Hazardous Materials: Thermal Plume Analysis regarding the Laurelwood Data Center (LDC) (19-SPPE-01) Small Power Plant Exemption (SPPE). (Transaction Number [TN] 228999). For ease of reference, these data requests appended to the Motion are referred to collectively as CEC Staff Data Request, Set 5.

As acknowledged in Staff's Motion, the period for discovery and issuance of data requests has ended. Without waiving its rights to object to the issuance of any other data requests, MECP1 Santa Clara 1, LLC's (MECP or the Applicant) provides the attached responses to CEC Staff Data Request, Set 5. The responses are grouped by individual discipline or topic area. Within each discipline area, the responses are presented in the same order as presented by CEC Staff and are keyed to the Data Request numbers.

New or revised graphics or tables are numbered in reference to the Data Request number. For example, the first table used in response to Data Request 28 would be numbered Table DR28-1. The first figure used in response to Data Request 28 would be Figure DR28-1, and so on. Figures or tables from the LDC SPPE that have been revised have "R1" following the original number, indicating revision 1.

Additional tables, figures, or documents submitted in response to a data request (for example, supporting data, stand-alone documents such as plans, folding graphics, etc.) are found at the end of each discipline-specific section and are not sequentially page-numbered consistently with the remainder of the document, though they may have their own internal page numbering system.

JACOBS

Transportation and Hazards and Hazardous Materials: Thermal Plume Analysis

Jacquelyn Record and Gerry Bemis

BACKGROUND

In the updated project description (TN 228823) docketed on June 21, 2019, water demand was reduced from 640 gallons per minute (336 million gallons per year¹) to 5.4 million gallons per year. This significant reduction in cooling water demand suggests the potential for thermal plumes with different characteristics from the higher water demand in the original project description. This could potentially be a hazard for local aircraft.

The updated project description added details about the building cooling system, specifically on page 2-19, it states: "Building cooling will be accomplished using cooling towers with adiabatic cooling technology installed. The adiabatic cooling technology uses a radiator-style cooling system with wetted pre-cooling pads installed upstream of the cooling tube bundle. During lower ambient conditions, the tower operates without using water on the wetted pads. However, during higher ambient temperatures, the precooling pads are wetted to reduce the incoming air temperature, resulting in greater heat rejection. The expected project water demand drops significantly to approximately 5. 4 million gallons per year, excluding negligible landscaping and other maintenance uses."

On page 2-2 of this updated project description, the applicant states: "Heating/ventilation and airconditioning equipment, including chiller units, will be located on the roof of each building and screened using perforated corrugated steel panels."

In light of the change in the cooling system, staff took a closer look at the original application (TN 227273-1), specifically Figure 2-2c and Figure 2-3c. The cooling system in Figure 2-2c shows what appears to be a row of four large individual stacks. Figure, 2-3c appears to include five (or ten) large stacks. McLaren's cooling system included 72 individual chillers, which is not directly comparable to that shown on LDCs Figures 2-2c and 2-3c.

In addition, Figure 2-2c only includes building 1 and not building 2; both of which are part of the proposed project. Therefore, staff requests the following information in order to complete its evaluation of thermal plumes from the currently proposed building/server cooling system to ensure air traffic safety and analyze any potentially significant impacts from such plumes.

Data Requests

1. Please describe in detail the HVAC equipment, including adiabatic cooling towers and chiller units, with enough detail to conduct thermal plume modeling.

Response: The heating, ventilation, and air conditioning (HVAC) equipment proposed for LDC will use a refrigerant (R-134A) to cool the electronic equipment housed in the two buildings. The HVAC system will include 72, 4-cell adiabatic condensers installed on the roof of each LDC building (for a total of 144) to condense the refrigerant. The adiabatic condenser uses both evaporative and aircooling to remove heat from the refrigerant. Exhibit 1 provides a schematic of the proposed adiabatic condenser. The wetted adiabatic pads are used when ambient conditions require additional cooling to condense the refrigerant. This cooling technology is the reason for the significant reduction in water use noted by Staff.

¹ Energy Commission Staff estimate

Exhibit 1 Schematic Drawing of Proposed Adiabatic Condenser

With the exception of the wetted adiabatic pads, the proposed LDC condensers function identical to HVAC systems commonly used in residential and commercial installations. Each adiabatic condenser consists of four "cells", each with a 10-horsepower fan (for a total of 40 horsepower per condenser) and a stack exit velocity of 9.76 meters per second (for a total air flow of 178,423 cubic feet per minute per condenser) at 105 degrees Fahrenheit (314 Kelvin). As shown in Exhibit 2a, condensers typically employed for these systems are approximately 9 feet wide, 24 feet long, and 9.5 feet high. The cell fan openings are typically approximately 5 feet and 5-1/4 inches in diameter and, in this application at LDC, will be 117.5 feet above grade (35.81 meters), as shown in Exhibit 2b.²

Exhibit 2a Schematic Dimensions of Proposed Condenser

FACE C

FACE D

FACE A

² Per the CEC's typical process, detailed design will occur post-Exemption. The exact HVAC equipment will be selected based on the then available equipment that meets -- or performs better than -- the specifications set forth in these Data Responses.

JACOBS[®]

Exhibit 2b Schematic Dimensions of Proposed Condenser

2. Please perform thermal plume modeling of the equipment used to chill the building and data servers.

Response: Based on the thermal plume modeling methodology used in the CEC's previous data center case, the Applicant assessed the thermal plume velocities for the LDC. Attachment DR 5-1 presents the thermal plume calculations based on the "Aviation Safety and Buoyant Plumes," prepared by Peter Best, et. al., which was used in the McLaren Backup Generating Facility Commission Decision (TN# 225970).

The LDC calculations of the thermal plume velocities presented in Attachment DR 5-1 show that the condenser exhaust velocity is below the 10.6³ meters per second peak rate used in the McLaren Final Commission Decision at 135.5 feet above grade, or 18 feet above the condenser fan outlet. Aircraft will not be operating 18 feet above the condenser fan outlet. Furthermore, LDC calculations of the thermal plume velocities shows that the condenser exhaust velocity is below the 5.3 meters per second average rate at 161.5 feet above grade, or 44 feet above the condenser fan outlet. Aircraft are not expected to operate within 44 feet above either LDC building.

3. Please confirm the number of stacks on each building and update Figure 2-2c and Figure 2-3c, accordingly.

Response: Each building will have 72 condenser fan exhausts for a total of 144 condenser fan exhausts.

4. Please provide a figure for building 2, showing all mechanical equipment and the number of stacks.

Response: Figure DR 5-1 presents a plan view of Building 2's roof showing the 72 condenser fan exhausts. Each condenser has four circular fan outlets and are shown in pairs, with each pair of condensers having 8 fan outlets.

³ Noted that the Australian Civil Aviation Safety Authority has issued a new Advisory Circular (AC 139-05v3.0) in January 2019 with a new critical plume velocity of 6.1 meters per second.

- 5. Please provide at least the following to support the thermal plume analysis (provide equivalent data if necessary):
 - a. Stack (or cooling tower fan cowl) Height (m)

Response: Each cell fan exit is approximately 35.81 meters above grade.

b. Exhaust Temp (K)

Response: The fan exhaust is expected to be approximately 314 Kelvin.

c. Exit Velocity (m/s)

Response: The fan exhaust velocity is expected to be approximately 9.76 meters per second.

d. Stack Diameter (m)

Response: The fan exhaust diameter is expected to be approximately 1.66 meters.

e. Number of Stacks

Response: The number of fan exhausts are 72 per building or a total of 144.

f. Distance Between Stacks (m)

Response: The distance between fan center points is approximately 2.27 meters.

Figures

1/16" - 1'-0"

Figure DR5--1 Building 2 Roof Plan Laurelwood Data Center Santa Clara, California

Attachment DR5-1 LDC HVAC Condenser Thermal Plume Calculations

Plume Averaged Vertical Velocities:

PETER BEST PAPER ILLUSTRATIVE EXAMPLE - SINGLE TURBINE - Assumes Heights in Table 2 are meters above ground

"Aviation Safety and Buoyant Plumes ," Peter Best, et. al.

Ambient Conditions:			Constants:		
Ambient Potential Temp, θ_a	272 Kelvins	30 °F	Assume neutral conditions (d θ /dz=0)		
Plume Exit Conditions:			Gravity, g	9.81 m/s ²	
Stack Height, h _s	35.81 meters	117.5 feet	λ	1.11	
Stack Diameter, D	1.66 meters	5.4 feet		0.3048 meters/feet	
Stack Velocity, V _{exit}	9.76 m/s	32.0 ft/sec	Back-Calc'd from Vo	olumetric Flow	
Volumetric Flow	21 cu.m/sec	44,606 ACFM	$\pi V_{exit} D^2/4$		Sect.2/¶1
Stack Potential Temp, θ_s	314 Kelvins	105.0 °F	Back-Calc'd from Bu	uoyancy Flux	
Initial Stack Buoyancy Flux, F _o	$9 \text{ m}^4/\text{s}^3$		$gV_{exit}D^2(1-\theta_a/\theta_s)/4$	= Vol.Flow(g/ π)(1- θ_a/θ_s)	Sect.2/¶1
Plume Buoyancy Flux, F	N/A m^4/s^3		$\lambda^2 g Va^2 (1 - \theta_a / \theta_p)$ for	a,V, θ_p at plume height (not used here)	
Conditions at End (Top) of Jet Phase:					
Height above Stack, z	10.375 meters*	34.0 feet*	6.25D, meters*=meters above stack top		Sect.3/¶1
Height above Ground, z+h _s	46.189 meters	151.5 feet	h _s + 6.25D		н
Vertical Velocity, V _{plume}	4.879 m/s	16.01 ft/sec	0.5V _{exit}	V _{exit} /2	u.
Plume Top-Hat Diameter, 2a	3.320 meters	10.9 feet	2D	Conservation of momentum	п
Spillane Methodology - Analytical Solutions for	Calm Conditions for Plume Heights abov	e Jet Phase			
Plume Top-Hat Radius, a	Solutions in Table Below		0.16(z-z _v), or linear	increase with height	Sect.2/Eq.6
Virtual Source Height, z _v	0.683 meters*	2.2 feet*	$6.25D[1-(\theta_e/\theta_s)^{1/2}]$, meters*=meters above stack top		Sect.2/Eq.6
Height above Ground, z _v +h _s	36.497 meters	119.7 feet*		where $(\theta_a/\theta_s)^{1/2} = (\theta_e/\theta_s)^{1/2} = 0.93412399$	

Method (1): Simplified Plume-averaged Vertical Velocity V' - Assumes Product Va constant above jet phase such that V _{plume} (2a) = V _{exit} D					
Vertica	l Velocity, V'	Solutions in Table Below	V _{exit} D/2a' (conservation of buoyancy)	Sect.3&4	
Method (2): Plume-averaged Vertical Velocity V given by Analytical Solution in Paper where Product Va given by equations below:					
Vertica	l Velocity, V	Solutions in Table Below	$\{(Va)_{o}^{3} + 0.12F_{o}[(z-z_{v})^{2} - (6.25D-z_{v})^{2}]\}^{(1/3)} / a$	Sect.2.1(6)	
Produc	t, (Va) _o	7.566 m²/s	$V_{exit}D/2(\theta_e/\theta_s)^{1/2}$		

Table of plume Top-Hat Diameters (2a) and Plume-averaged Vertical Velocities for both Method (1) (assuming conservation of buoyancy & gaussian distribution of vertical velocities) and Method (2) (based on Peter Best's paper's Analytical Solution) starting at end of jet phase:

from 100 meters above ground	d in increments of	50.0	meters			
				Ve	ert.Vel (m/s)	
Height above stack ton meters*	Ht above Gro	und = h _{plume} +h _s	$D_{plume}=2a=$		Method (2) $(14)^{3} = 0.425 [(14)^{2}$	$(2.255)^{2}$ $)^{2}$ $)^{1/3}$
Height above stack top, meters	meters 46 189	161 F	2*0.16(2-2 _v)	$v = v_{exit} D/2a$	$V = {(Va)_{o}^{2} + 0.12F_{o}[(z-z_{v})^{2} - 48]$	(6.25D-z _v) ²]} ^{4/3} / a
64 186 meters*	100.000	229.1	30.320	0.80	4.08	7
114.186 meters*	150.000	<u> </u>	36 321	0.80	1.03	-
164.186 meters*	200.000	656.2	52.321	0.31	1.17	-
214.186 meters*	250.000	820.2	68.321	0.24	1.07	-
264.186 meters*	300.000	984.3	84.321	0.19	0.99	-
314.186 meters*	350.000	1148.3	100.321	0.16	0.94	
364.186 meters*	400.000	1312.3	116.321	0.14	0.89	
414.186 meters*	450.000	1476.4	132.321	0.12	0.85	
464.186 meters*	500.000	1640.4	148.321	0.11	0.82	_
514.186 meters*	550.000	1804.5	164.321	0.10	0.79	-
564.186 meters*	600.000	1968.5	180.321	0.09	0.77	-
664 186 meters*	700.000	2132.5	196.321	0.08	0.75	-
714.186 meters*	750.000	2250.0	212.321	0.07	0.71	-
764.186 meters*	800.000	2624.7	244.321	0.07	0.70	-
814.186 meters*	850.000	2788.7	260.321	0.06	0.68	-
864.186 meters*	900.000	2952.8	276.321	0.06	0.67	
914.186 meters*	950.000	3116.8	292.321	0.06	0.66	
964.186 meters*	1000.000	3280.8	308.321	0.05	0.64	Num
1014.186 meters*	1050.000	3444.9	324.321	0.05	0.63	Dista
1064.186 meters*	1100.000	3608.9	340.321	0.05	0.62	- Cento
1114.186 meters*	1150.000	3773.0	356.321	0.05	0.61	-
1214 186 meters*	1200.000	3937.0	372.321	0.04	0.60	-
	1250.000	4101.0	500.521	0.04	0.00	_]
0.000 meters*	35.814	117.5	-0.219	-74.06	-63.80	٦ (
0.305 meters*	36.119	118.5	-0.121	-133.68	-115.12	
0.610 meters*	36.424	119.5	-0.024	-685.32	-590.08	1 -
0.914 meters*	36.728	120.5	0.074	219.20	188.74	
1.219 meters*	37.033	121.5	0.171	94.49	81.38	
1.524 meters*	37.338	122.5	0.269	60.22	51.89	
1.829 meters*	37.643	123.5	0.367	44.20	38.11	
2.134 meters*	37.948	124.5	0.464	34.91	30.12	
2.438 meters*	38.252	125.5	0.562	28.84	24.91	
3.048 meters*	38.862	120.3	0.039	24.38	18 54	
3.353 meters*	39.167	128.5	0.854	18.96	16.45	
3.658 meters*	39.472	129.5	0.952	17.02	14.79	
3.962 meters*	39.776	130.5	1.049	15.44	13.44	
4.267 meters*	40.081	131.5	1.147	14.12	12.32	
4.572 meters*	40.386	132.5	1.244	13.02	11.38	
4.877 meters*	40.691	133.5	1.342	12.07	10.58	
5.182 meters*	40.996	134.5	1.439	11.25	9.89	
5.486 meters*	41.300	135.5	1.537	10.54	9.29	
6.096 meters*	41.605	130.5	1.034	9.91	8.70	
6 401 meters*	42.215	137.5	1.830	8.85	7.87	
6.706 meters*	42.520	139.5	1.927	8.41	7.50	
7.010 meters*	42.824	140.5	2.025	8.00	7.16	┥ ├──
7.315 meters*	43.129	141.5	2.122	7.63	6.86	1 -
7.620 meters*	43.434	142.5	2.220	7.30	6.581	
7.925 meters*	43.739	143.5	2.317	6.99	6.329	
8.230 meters*	44.044	144.5	2.415	6.71	6.097	┥ ┝──
8.534 meters*	44.348	145.5	2.512	6.45	5.885	┥ ┝──
8.839 meters*	44.653	146.5	2.610	6.21	5.689	
9.144 meters*	44.938	147.5	2.707	5.78	5.307	
9.754 meters*	45.568	149.5	2.902	5.58	5.183	
10.058 meters*	45.872	150.5	3.000	5.40	5.038	
10.363 meters*	46.177	151.5	3.098	5.23	4.902	┥ ├──
10.668 meters*	46.482	152.5	3.195	5.07	4.775]
10.973 meters*	46.787	153.5	3.293	4.92	4.656	\bot
11.278 meters*	47.092	154.5	3.390	4.78	4.544	↓ □
11.582 meters*	47.396	155.5	3.488	4.64	4.439	⊣
11.887 meters*	47.701	156.5	3.585	4.52	4.341	┥ ┝──
12.192 meters*	48.006	15/.5	3.683	4.40	4.247	┥ ┝──
12.497 [meters" 12.802 meters*	48.311 19 616	158.5 150 E	3./8U 2.970	4.29 1 1 0	4.159	┥ ┝──
13,106 meters*	48.010	160 5	3,975	4.10	3 997	┥ ├──
13.411 meters*	49.225	161.5	4.073	3.98	3.922	
13.716 meters*	49.530	162.5	4.170	3.88	3.851	┥ ┣━
14.021 meters*	49.835	163.5	4.268	3.80	3.783]
14.326 meters*	50.140	164.5	4.365	3.71	3.719	

Number of Stacks	144
Distance Between Stacks	2 feet
Center to Center Distance Between Stacks	7.4 feet

Vert.Vel (m/s)							
Ht above Ground = h _{plume} +h _s	Method (3)	Number of Stacks	Plume Diameter				
feet	V = V'*Number of Stacks ^{0.25}	(within plume)	feet				
117.5	-68.93	1	-0.72				
118.5	-124.40	1	-0.40				
119.5	-637.70	1	-0.08				
120.5	203.97	1	0.24				
121.5	87.93	1	0.56				
122.5	56.06	1	0.88				
123.5	41.15	1	1.20				
124.5	32.51	1	1.52				
125.5	26.88	1	1.84				
126.5	22.91	1	2.16				
127.5	19.97	1	2.48				
128.5	17.71	1	2.80				
129.5	15.90	1	3.12				
130.5	14.44	1	3.44				
131.5	13.22	1	3.76				
132.5	12 20	1	4 08				
133.5	11 33	1	4 40				
134.5	10.57	1	4.40				
135.5	9.91	1	5.04				
136.5	0.23	1	5.36				
130.5	9.55	1	5.50				
137.5	8.62	1	5.08				
130.5	8.50	1	6.00				
139.5	7.95	1	6.32				
140.5	7.38	1	6.64				
141.5	7.25	1	0.90				
142.5	6.32	1	7.28				
145.5	6.75	1	7.00				
144.5	6.61	1	7.92				
145.5	6.49	1	8.24				
140.5	6.38	1	8.50				
147.5	6.28	1	8.88				
148.5	6.18	2	9.20				
149.5	6.09	2	9.52				
150.5	6.00	2	9.84				
151.5	5.92	2	10.16				
152.5	5.84	2	10.48				
153.5	5.77	2	10.80				
154.5	5.70	2	11.12				
155.5	5.63	2	11.44				
156.5	5.57	3	11.76				
157.5	5.51	3	12.08				
158.5	5.45	3	12.40				
159.5	5.40	3	12.72				
160.5	5.34	3	13.04				
161.5	5.29	3	13.36				
162.5	5.25	3	13.68				
163.5	5.20	4	14.00				
164.5	5.15	4	14.32				