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1 Introduction

When firms invest in incompatible complementary goods or technical standards, should

the government intervene and mandate compatibility? This question generates fierce

policy and antitrust debates in a wide range of industries, from digital markets to manu-

facturing because of the ambiguous welfare implications from mandating compatibility.

A shift toward compatibility gives consumers access to the combined investments of all

firms, which may benefit consumers by increasing variety, convenience, or other mea-

sures of quality. However, benefits to consumers may be offset by a decrease in firms’

investments. Compatibility fundamentally changes the nature of competition among

firms, turning firms’ investments from substitutes that steal business from rivals to

complements that have positive spillovers onto other firms. Therefore, firms may in-

vest too much under incompatibility because private gains from business-stealing do

not contribute to social surplus, but they may invest too little under compatibility

because private incentives do not internalize the positive spillovers. The theoretical

literature shows that private incentives to provide compatibility can be either too high

or too low relative to social incentives. The welfare effect of a compatibility policy is

open to empirical analysis.

This paper empirically assesses the effect of compatibility on market outcomes and

welfare in the U.S. electric vehicle market, which grew ten-fold in the number of models

and annual unit sales from 2011 to 2015. Electric vehicles attract billions of dollars

in government support for the large potential environmental benefits and innovation

spillovers. Similar to other alternative fuel transportation technologies, including hy-

drogen and natural gas, electric vehicles require a refueling infrastructure for wider

consumer acceptance. Accordingly, car manufacturers have invested heavily in build-

ing fast charging stations to refuel electric vehicles. To the chagrin of many consumers,

however, car manufacturers have aligned themselves behind three mutually incompat-

ible standards for fast charging. Incompatibility across three charging standards will

become an increasingly focal policy issue, with the U.S. Department of Transporta-

tion’s proposal to build 48 electric vehicle charging corridors on the national highways1

(or similar programs in the future) and many utilities across the nation proposing to

1The White House Office of the Press Secretary. 2016. “Obama Administration Announces New
Actions to Accelerate The Deployment of Electrical Vehicles and Charging Infrastructure.” Press
Release, November 3. https://obamawhitehouse.archives.gov/the-press-office/2016/11/03/
obama-administration-announces-new-actions-accelerate-deployment
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build charging stations2.

I evaluate the effect of a counterfactual compatibility policy in three main steps.

First, I develop a structural model of consumer vehicle purchase behavior and car

manufacturer build-out of charging networks. Second, I estimate the model using

data from the first five years of the U.S. electric vehicle market (2011-2015). Third,

I use the model and parameter estimates to simulate market outcomes when all car

manufacturers adhere to a single standard for recharging electric vehicles. I compare

the status quo to the counterfactual market equilibrium and social planner solution.

The mobility of drivers poses a challenge to specifying the relevant charging stations

for an individual consumer. The most useful refueling stations to a consumer may be

those that are near their driving paths and destinations rather than their home ad-

dresses (Houde (2012)). I cast the available charging network as a vehicle characteristic

in the static, discrete-choice framework of Berry et al. (1995). The model captures rich

geographic variation in consumer driving trips relative to charging station locations.

The model also recognizes the importance of the connectivity of stations – how they

are placed relative to each other and to driving origins and destinations – in addition

to the sheer total number of stations that have been built.

I estimate the key parameters of my model using data on market-level vehicle sales

and charging station characteristics, quantities, and locations. I estimate an empiri-

cal Bayes posterior mean for market shares to reduce noise and eliminate zero market

shares. To identify the endogenous demand parameters on price and charging stations,

I collect an original panel dataset of federal and state government incentives. Govern-

ment tax credits and rebates incentivize consumers to purchase electric vehicles and

businesses to install charging stations. Conditional on market and time fixed effects,

within-market changes over time in government subsidies are plausibly exogenous cost

shifters due to idiosyncrasies in policy-making timing. Additionally, a portion of the

charging stations in the dataset were built as part of a program in the American Re-

covery and Reinvestment Act of 2009 (Recovery Act) that chose recipient cities before

electric vehicles became available for sale. The exact timing of arrival of these Recov-

ery Act charging stations, conditional on market and time fixed effects, are plausibly

exogenous to unobserved product characteristics and contemporaneous local demand

conditions.

I model car manufacturers as competing in static oligopoly. Combining demand

2Mulkern, Anne. 2016. “PG&E May Build Nation’s Largest Deploymeent of EV Charging Spots.”
E&E News, August 26. https://www.eenews.net/stories/1060042082
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parameter estimates and the first-order conditions of the profit function, I recover

firms’ markups for vehicles and costs for charging stations, which are in line with

engineer and industry estimates.

Using parameter estimates from the consumer and firm models, I assess the impact

of a counterfactual policy that mandates compatibility in charging stations. A firm’s

charging station build-out problem, conditional on the strategies of their competitors, is

equivalent to a computational problem called “fractional knapsack” which has a simple

and fast algorithmic solution. I find that some firms do have an incentive to cut back by

4.2% on station quantities under compatibility, though consumer surplus improves by

about $500 million and the number of electric vehicles sold increases by about 100,000,

or 20.8%. The reduction in the number of charging locations under compatibility

suggests that firms make excess investments when standards are incompatible. Indeed,

the social planner would build 17.7% fewer locations compared to private investment

choices under incompatibility. Surprisingly, the social planner builds fewer locations

even compared to prive investment choices with compatibility, which means firms do

not invest too little relative to the social optimum. One way to explain this result

is that even under compatible charging standards, vehicles remain differentiated in

battery range. Therefore, the gains from compatibility are not symmetric, and firms

can still benefit from spatial differentiation in their charging locations.

This paper contributes to three different literatures. First, this paper contributes

to the empirical understanding of the impacts of compatibility. Theoretical predictions

of gains from compatibility are ambiguous, as firms’ private incentives to achieve com-

patibility may be either higher or lower than social incentives (Katz and Shapiro (1985,

1986)). Previous empirical work on the impact of compatibility has found considerable

gains in consumer welfare (Ho (2006)) and producer efficiency (Gross (2016)). How-

ever, firms’ strategic responses to compatibility may moderate the gains in consumer

welfare (Ishii (2007), Lee (2013), Knittel and Stango (2008, 2011)). After computing

the counterfactual equilibrium charging network built by firms, I find that compati-

bility in charging standards improves consumer surplus by about $500 million despite

firms decreasing the number of charging locations that they build. Compatibility does

not fully erode firms’ incentives to invest in complementary goods for their products

when their products remain differentiated.

Second, this paper contributes to the growing literature on endogenous product

positioning by endogenizing charging station investment by car manufacturers. When
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product varieties are discrete, firms’ product choices can be thought of as entry deci-

sions. A line of literature recovers fixed costs of new product entry in order to compute

welfare or solve for new product introductions (Wollmann (2018), Eizenberg (2014),

Nosko (2014), Sweeting (2013), and Draganska et al. (2009). In some settings, firms

face a continuous choice space, such as in Crawford et al. (2015) and Fan (2013).

Third, a rapidly growing literature investigates different features of the electric

vehicle market. Holland et al. (2016, 2019), Graff Zivin et al. (2014), and Michalek

et al. (2011) evaluate the short-term environmental benefits of electric vehicles. They

find high geographic variation in environmental benefits of electrifying transportation

within the U.S, depending on the fuel mix of electricity production and population

density. A second stream of this literature focuses on the design and impacts of sub-

sidies for electric vehicles and other green technologies (Clinton and Steinberg (2016),

Sheldon et al. (2017), Borenstein and Davis (2015), Holtsmark and Skonhoft (2014)).

This work finds that consumers respond to subsidies in their decisions to adopt electric

vehicles and other green technologies. Using a two-sided market framework, Li et al.

(2017) and Springel (2016) find that car purchases and charging station build-out re-

spond positively to each other and that subsidizing charging station entry is more

cost-effective in increasing electric vehicle sales.3 Recognizing the importance of charg-

ing station availability to the growth of the electric vehicle market, car manufacturers

have become involved in building charging stations. This paper differs from prior work

on electric vehicles by using existing subsidies as identifying variation in a structural

model to evaluate a counterfactual policy about charging standard compatibility. It is

the first to study car manufacturer investments in charging stations.

The rest of this paper is organized as follows. Section 2 discusses the growth of

the electric vehicle market, technical details about charging stations and standards,

government policies, and the dataset. Section 3 specifies a model of consumer vehi-

cle choice and car manufacturer investment in charging stations. Section 4 discusses

identification, estimation, and results. Section 5 uses the model estimates to simulate

market outcomes under a compatibility policy. Section 6 concludes.

3Greaker and Heggedal (2010) and Pavan (2015) study positive feedback loops between vehicle
demand and refueling infrastructure for hydrogen fuel cell and natural gas cars, respectively.
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2 The U.S. Electric Vehicle Industry

Institutional details and data availability motivate many aspects of my model. This

section describes the growth of the U.S. electric vehicle market, charging standards

and compatibility policy, the implications of government subsidies and Zero-Emissions

Vehicle (ZEV) regulations for the electric vehicle market and this paper, and lastly,

the data.

2.1 Growth of the U.S. electric vehicle market

Electric vehicles are an increasingly important segment of the U.S. automotive indus-

try, which as a whole accounts for more than 3% of U.S. GDP (U.S. Department of

Commerce (2016)). Since Tesla Motors unveiled the first modern-day electric vehicle in

2006, a luxury sports car priced at more than $100,000, automakers have been selling

models that span a wide range of prices and features.4 Electric vehicles can be classi-

fied into two types: (i) battery electric vehicles (BEVs), which only run on electricity,

and (ii) plug-in hybrid electric vehicles (PHEVs), which can take gasoline as a backup

fuel source. Unlike conventional hybrids, plug-in hybrids can be recharged by plugging

into the electric grid. For example, the Toyota Prius first launched as a conventional

hybrid in 2000, and in 2012 also became available as a plug-in hybrid. The unifying

feature across both types of electric vehicles is that they are powered by rechargeable

batteries and can be plugged in for recharging.

The electric vehicle market has expanded since its inception in late 2010 and is

projected by industry analysts to grow much more in the coming decades. The 3

available models in 2011 collectively sold about 14,000 units in U.S. MSAs in 2011.

By 2015, the number of models available and annual units sold both grew about ten-

fold, to 27 available models and about 140,000 units (Table 1). With fuel efficiency

and environmental regulations becoming increasingly stringent, car manufacturers have

plans to add plug-in technology to most of their car portfolios. Car manufacturers have

developed BEVs with higher battery ranges and lower prices, such as the Tesla Model

3 and Chevrolet Bolt, both launched in 2017. The number of charging locations for

electric vehicles also grew ten-fold, with around 2,000 by the end of 2011 and around

4Technology for electric vehicles has existed since the 1800s, but gasoline became the dominant fuel
by the 1920s. A confluence of advances in battery technology and tightening environmental regulation
has led to a revival of the electric vehicle market in recent years. See U.S. Department of Energy
(2014) for a detailed account of the history of electric vehicles.
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20,000 by the end of 2015.

Battery range and charging infrastructure are crucial for electric vehicles, analagous

to tank size and availability of gasoline stations for gasoline cars. Battery range,

the distance that an electric vehicle can travel starting with a fully charged battery,

generally increases with the size of the battery. However, other factors, such as weight,

aerodynamics, and anything else that impacts fuel efficiency also determine range.

All electric vehicles can be recharged by plugging into an ordinary electrical outlet,

so in contrast with cars of other fuel types, such as gasoline, hydrogen, or natural

gas, dedicated refueling infrastructure may not seem obviously necessary. However,

the ordinary outlet is very slow; it may be a reasonable option for overnight charging

at home, but for travel distances that exceed the battery range, drivers need faster

charging options away from home.

There are three speeds of charging options, increasing in power output and fixed

costs of installation. Level 1 are the ordinary wall outlets used by most other consumer

electronic devices. Level 2 charging stations can fully charge an electric vehicle in four

to six hours, which make them suitable for destinations where drivers may park for

a while. In residential homes, they can be attached to the outlet typically dedicated

to laundry dryers and electric ovens. Some employers and owners of shopping malls,

restaurants, and hotels have installed Level 2 charging stations as an amenity to their

employees and customers. However, sessions lasting four to six hours are too long for

many long-distance trips or for drivers who will not otherwise be parked for so long.

The fastest charging stations are called Level 3, or direct-current (DC) fast chargers.

These charging stations work in conjunction with a transformer to deliver high-power,

DC electricity to vehicles. A 30-minute charge session can refuel a battery by 80%.

Level 3 charging stations require the highest fixed costs out of all speeds because of

the transformer and higher permitting, legal, and electrician labor costs.

2.2 Charging standards and compatibility policy

Recognizing the importance of a fast refueling infrastructure for electric vehicle sales

and due to the dearth of available Level 3 charging stations, automakers have entered

the charging network market. Automakers have coalesced around three different Level

3 charging standards, each not compatible, or interoperable, with the others (Figure

1). In contrast, Level 1 and 2 charging standards are uniform across all vehicle brands
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and have been built by employers, business owners, and government programs.5 A

charging standard has two parts: (i) a set of electronic communications between the

vehicle and the charging station, and (ii) a physical connector.

Car manufacturers only began building the accompanying charging stations after

the launch of fast-charging-capable BEVs, which suggests that firms invest in charging

stations in order to boost vehicle sales (Figure 2). Nissan, in partnership with the Tokyo

Electric Power Company and other Japanese automakers, developed the Chademo

charging standard in 2010, at the same time as the development and release of Nissan’s

BEV, the Leaf. Tesla Motors announced in September 2012 that it would build a

Supercharger network to blanket the U.S., three months after the first delivery of

Tesla’s BEV, the Model S. Meanwhile, other car manufacturers, working through the

Society of Automotive Engineers (SAE), released the specifications of the SAE J1772

Combo6 standard in October 2012. However, no cars were marketed under the Combo

standard until the release of BMW i3 in May 2014. Two months later, BMW announced

that it would build charging stations under the Combo standard.

Incompatibility in fast-charging protocols is a topic of vigorous policy debate and

a potential source of social inefficiency. The European Union Parliament, with the

objective of achieving a single charging protocol, ruled that all stations built after 2018

must at least be compatible with their chosen standard. In other words, multiple stan-

dards are allowed on each station via connectors or adapters (European Commission

(2014)). Optimal policy regarding compatibility is an open empirical question.

2.3 Government subsidies and ZEV regulation

Policymakers around the world and across levels of government have been supporting

the growth of the electric vehicle market for a variety of reasons, including environmen-

tal benefits and innovation spillovers. Government subsidies and ZEV (zero-emissions

vehicle) mandates have played a crucial role in the growth of the electric vehicle indus-

try.

5The underlying reason for the lack of entry in building and operating charging stations to sell
electricity for profit remains an important question for future research. One plausible explanation is
that the size of the electric vehicle fleet does not provide enough revenue relative to the fixed costs of
building a charging station.

6Tesla vehicles may be sold with a J1772 adapter, but “J1772” without the “Combo” modifier is
only the slower, Level 2 portion of the charge port. The “J1772 Combo” has as two DC pins under the
regular J1772 port, hence the “Combo”. See Figure 1 for a depiction of each standard’s connectors.
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I use panel variation in government subsidies for electric vehicle purchases as instru-

ments for demand estimation. Electric vehicles face two main barriers to higher market

shares: they are more expensive than comparable gasoline cars due to battery man-

ufacturing costs, and they lack adequate refueling infrastructure. Federal income tax

deductions in the U.S. for purchasing an electric vehicle range from $2,500 to $7,500,

depending on the size of the battery. State income tax deductions on top of the federal

incentives range from $250 to $7,500.

I construct two instruments from policy variation to identify the charging station

elasticity of demand. The first instrument is a cost shifter. State governments sub-

sidize charging stations, ranging from 10% to 50% of costs. The state subsidies for

charging stations target businesses such as supermarkets, employers, rest-stops, and

car manufacturers. The second instrument is the number of new stations in a city that

are part of government-funded stimulus projects. In 2009, the American Recovery and

Reinvestment Act (Recovery Act) allotted $100 million to the Department of Energy

to build charging stations. I discuss the identifying assumptions central to the validity

of these instruments in Subsection 4.2.

Zero-emissions vehicle (ZEV) mandates designed by the California Air Resources

Board require a growing percentage of automakers’ overall sales to be zero-emissions.7

Battery electric, plug-in hybrid electric, and hydrogen fuel cell vehicles satisfy ZEV

regulations. The mandate is implemented and enforced through a tradable credit sys-

tem. An automaker is assigned a credit requirement each year based on total sales

volumes and that year’s ZEV percent requirement. Each qualifying vehicle sold gener-

ates credits according to a formula that takes into account the battery range and other

characteristics. For example, plug-in hybrids generate fewer credits than pure battery

electric vehicles. Automakers are allowed to bank any excess credits toward future

years as well as trade credits with other automakers. Although ZEV credit prices be-

gan to fluctuate in 2016, the maximum price of $5,000 was binding in the data period

of this paper, 2011-2015. I use $5,000 as the value of each ZEV credit and include the

value of ZEV credits in the firms’ profit function.

7Under the Clean Air Act, states can choose whether to follow emissions regulations in California.
California implements these mandates along with 9 other states. As of 2016, there are ten states with
ZEV mandates: California, Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York,
Oregon, Rhode Island, and Vermont.
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2.4 Data and descriptive statistics

My empirical analysis uses a dataset with five main elements. First, market-level

information on consumer demand for cars comes from registrations of new vehicles,

compiled by IHS Automotive (formerly R.L.Polk). These registrations are collected

by each state’s department of motor vehicles and accurately reflect new car purchases.

The dataset reports the number of registrations by car model, geographic area, and

quarter. Each car model is defined as a brand, model name, model year, and fuel

type. I use MSA delineations to define geographic markets. The panel includes 365

MSAs and 20 quarters, from 2011-2015. Second, the car quantities data are merged

into model-level characteristics information from MSN Auto, the Environmental Pro-

tection Agency, and Automotive News, including manufacturer-suggested retail price

(MSRP), manufacturer incentives, battery capacity, and fuel efficiency. The price that

enters the firm profit function is the MSRP less manufacturer incentives. The price

facing consumers is MSRP less manufacturer, federal, and state incentives. Third, I

collected panel data on federal and state subsidies described in Section 2.3. Fourth,

charging station investment data, including opening date, location, speed, and standard

are published by the Department of Energy’s Alternative Fuels Data Center. Fifth,

the National Household Travel Survey and the American Community Survey provide

information on consumer heterogeneity in commuting flows and income.

3 Model

3.1 Model overview

My model consists of two main parts: consumer vehicle choice and car manufacturer

profit maximization. The demand model is static in that consumers leave the market

after their product choice and do not purchase again. It takes into account geographic

variation in availability of charging stations and consumer heterogeneity in origin and

destination of driving trips.

Car manufacturers play a series of static stage games. In each period, they first

choose investments in charging stations to arrive in the next period. They next set

prices conditional on the charging stations installed thus far and realized consumer

demand shocks. Each period features the following sequence of events:

0. Station investments from the previous period arrive.
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Vehicle models from exogenous R&D arrive.

1. Firms choose charging station investment.

2. Consumers realize demand shocks.

3. Firms set prices given demand shocks.

4. Consumers choose a vehicle to purchase.

3.2 Consumer demand

The main purpose of the consumer choice model is to predict the demand response

to alternative quantities and locations of electric vehicle charging stations. I use a

discrete-choice model following the framework of Berry et al. (1995) and Petrin (2002).

Each period, consumers arrive at the market to purchase one of the inside goods, a

plug-in car, or the outside good, a non-plug-in car. The demand model is static in that

consumers choose myopically, without taking into account the future evolution of prices

and other product characteristics, discussed in more detail later in this subsection.

Therefore, the outside good does not include the option value of making the vehicle

purchase decision in the future.

Consumer i chooses a vehicle r in market m and period t. Consumer utility from

choosing one of the inside goods depends on consumer attributes and vehicle charac-

teristics. It is given by:

Uirmt = δrmt + µirmt + εirmt,

where δrmt is the mean utility common to all consumers within a market and period,

µirmt are mean-zero individual deviations from mean utility, and εirmt are idiosyncratic

tastes assumed to be i.i.d. logit.

Consumers derive mean utility, δrmt, from purchase price, prmt, charging station

access to be detailed later in this section, other characteristics, Xrmt, which includes a

constant, and unobservable characteristics, ξrmt:

δrmt = α log(prmt)︸ ︷︷ ︸
price

+ γSfrm(Gt) + γLgr(Gt, br)︸ ︷︷ ︸
charging network quality

+ Xrmtβ︸ ︷︷ ︸
other chars.

+ξrmt.

The individual deviations from mean utility, µirmt, depend on consumer attributes
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income, yi, and average daily driving distance, di:

µirmt = yi(σ
p
y log(prmt) + σSy frm(Gt) + σLy gr(Gt, br))

+ di(σ
p
d log(prmt) + σSd frm(Gt) + σLd gr(Gt, br)).

Demand parameters, θ = (θ1, θ2), can be categorized into the ‘linear’ parameters,

θ1 = (α, γS, γL, β), and ‘nonlinear’ parameters, θ2 = (σpy , σ
S
y , σ

L
y , σ

p
d, σ

S
d , σ

L
d ).

Consumers pay a purchase price prmt, which is equal to MSRP less manufacturer

discounts (MD) and state and federal subsidies:

prmt = MSRPrt −MDrt − State Subsidyrmt − Federal Subsidyr. (1)

MSRP and manufacturer discounts are the same across all markets and only vary

across vehicle models and time. State subsidies vary across vehicle models, markets,

and time, and federal subsidies vary across vehicle models. Sallee (2011) finds that

consumers capture the full federal and state incentives for the conventional hybrid car,

the Toyota Prius, while Busse et al. (2006) find that manufacturer discounts are in-

completely passed-through to consumers. Busse et al. (2006) hypothesize that subsidy

pass-through increases with how much consumers know about the subsidies.

I will instrument for price in estimation, to be discussed in more detail in Subsec-

tion 4.2. If prices are measured with error, the price coefficient estimates will be valid

if the instruments are uncorrelated with the measurement error. For example, if subsi-

dies are passed through incompletely to consumers due to imperfect competition, then

price coefficient estimates are valid if quarter and market fixed effects control for imper-

fect competition, or if the instruments are uncorelated with the time-market-varying

component of imperfect competition.

The network size for each standard grows over time, and Nissan’s Chademo network

vastly outnumbers the other two standards (Figure 2). However, a map of charging

locations by standard shows the stark difference in how charging locations are dis-

tributed relative to urban centers and highway corridors (Figure 3). Tesla stations

span the U.S. interstate highway system, while in contrast, Chademo and Combo sta-

tions cluster near urban areas. I model the value of charging networks as increasing

in the number of charging locations as well as location match quality with consumers’

driving needs.

Consumers in the model take two types of trips: (i) local travel within the con-
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sumer’s city of residence and (ii) long-distance travel between cities. In each period,

the set of installed charging stations Gt is mapped to utils by the local travel function

frm and inter-city travel function gr.

This paper focuses on the importance of charging infrastructure away from con-

sumers’ homes. Data from the Electric Vehicle Project show that about 22% of charge

events occur away from home.8 However, the percentage of charge events away from

home is not necessarily proportional to its importance for electric vehicle adoption. I

will infer the importance of charging stations by estimating the electric vehicle demand

response to charging station arrivals.

Most drivers conduct all of their away-from-home charging at three or fewer charg-

ing locations. Drivers tend to charge at work, near commute destinations, and other

public locations such as grocery stores or shopping malls (Idaho National Laboratory

(2015))9. Therefore, the local travel function frm assigns a population-weighted count

of the stations in set Gt, where the population weight is based on place of work rather

than place of residence. The function frm further distinguishes between the number

of Level 2 (slower) and Level 3 (fast) charging stations as well as the charging stan-

dard that vehicle model r is able to access. Consumers in the model have decreasing

marginal returns from additional stations, captured by the log functional form:

frm(Gt) =
∑
c∈Cm

wc
(
log(N l2

rct) + log(N l3
rct)
)
,

where N l2 and N l3 are the number of Level 2 and Level 3 charging stations, respectively.

The population weights wc for each county c in the set of counties Cm in each market

m (counties are wholly contained within MSAs, and geographic borders of counties

align with MSA borders) are defined as:

wc =
Population of market m who drive to county c for work

Total population in market m
.

This simple specification for the local travel function captures realistic and desirable

spatial properties. Consider a city with residential counties surrounding a commercial

core where everyone drives in for work. The commercial core would be the most

8The Electric Vehicle Project collected data on charging and driving behavior from about 5,800
Nissan Leaf and Chevrolet Volt drivers from 2012 to 2013.

9See Hardman et al. (2018) for a review of consumer interactions with electric vehicle charging
infrastructure.
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useful place for a charging location, because home charging is a superior substitute for

charging locations in the residential area. Next, consider how public transit substitutes

for driving. If few people drive to work in an MSA or to a particular county within

an MSA because of ample public transit infrastructure, then the model would assign a

low value to electric vehicle charging locations via a low numerator in the population

weights wc.
10

In addition to enabling top-ups for commutes and errands, the set of stations Gt

may also form a network that enables inter-city travel. The inter-city travel function gr

counts the number of city pairs that are connected by paths of Level 3 (fast) charging

stations. Two cities are connected for vehicle r if a set of stations matching vehicle r’s

charging standard traces a path between the cities and if the distance from one station

to the next along the path is less than the battery range br of the vehicle:

gr(Gt, br) = N city pairs
rt .

To rule out unreasonable routes, gr only counts a city pair as traversable if the path

of Level 3 charging stations is at most 30% longer than the as-the-crow-flies distance.

In estimation, I normalize gr to be between 0 and 1. Tesla’s charging locations outside

MSAs are advertised as built for the purpose of enabling long-distance driving. The

relationship between the number of connected cities and the cummulative number of

charging locations is remarkably linear, as shown in Figure 4.11

I do not explicitly model the consumer costs of charging station access for three main

reasons. First, Level 3 stations, the focus of this paper, are often free to use for the life

of the car (Tesla) or for the first two to three years after purchase (Nissan and BMW).

For these owners whose vehicles come bundled with free charging, the access price is

zero. Second, Level 2 stations are primarily offered by third-party operators with a wide

variety of nonlinear pricing schemes based on the number of minutes plugged in or the

amount of electricity served. Some employers, retailers, and municipal governments

subsidize access to particular stations on these third-party networks. Without any

detailed data on charging station access pricing, a uniform scaling factor applied to

10My specification does not incorporate other features of the charging network, such as the dispersion
of charging stations within counties. Constructing measurements of other features is feasible. However,
demand parameters for these other features would be difficult to econometrically identify convincingly,
and they would also make the firms’ charging station investment decision computationally infeasible.

11The long-distance charging network build-out problem is slightly different from canonical graph
theory problems, because two nodes (MSAs) only count as connected if the path between them is not
“too much” longer than the shortest possible path.

13



all stations to account for an access charge would be absorbed by the constant in the

utility function. Third, non-pecuniary costs of accessing charging stations - such as

search, travel, and hassle costs - are implicitly built into the functions frm and gr.

Firms’ investments in charging stations during each period may be correlated with

the unobserved product characteristic, ξrmt. For example, locally targeted advertising

is unobserved and may be correlated with firms’ investment choices. Moreover, firms

may choose to build in markets with particularly low or high realizations of ξrmt. I

address the endogeneity of price and investment in charging stations by instrumenting

for both variables with a panel dataset of government subsidies, described in Section

2.3. Section 4.2 presents the formal identifying assumptions in more detail.

Modeling the vehicle purchase decision as static may be reasonable due to unique

features of the electric vehicle market from 2011-2015. First, consider the scenario that

consumers wait to purchase because they want the better products that will arrive

in future periods, as in Gowrisankaran and Rysman (2012). Electric vehicle models

on the market did not drastically change between 2011 and 2015. Due to limited

advancements in battery chemistry and manufacturing processes, vehicles by the end

of 2015 had similar range and prices as models released in 2011. Consumers who chose

the outside option, a non-plug-in car, for the option value of a better electric vehicle

in the future would have had to wait until 2017 for significantly longer battery range

at lower prices, such as the Chevrolet Volt, 2018 model-year Nissan Leaf, and the

Tesla Model 3. The most meaningful change in product characteristics, availability of

charging stations, accrued to all electric vehicles that had been purchased. Therefore,

the option value of waiting to buy a plug-in vehicle later may be limited.

A second justification of the static consumer demand model is that consumers can-

not easily move homes or change workplaces in the short term. Therefore, purchasing

a vehicle earlier due to anticipated future charging network improvements would imply

an implausibly low weight on present-day driving needs. The static demand assump-

tion can be interpreted as consumers placing predominant weight on the present, rather

than assuming that consumers do not expect the charging network to continue to im-

prove. A formal test of the importance of dynamic considerations will only be possible

after the electric vehicle market has existed for a longer time.
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3.3 Car manufacturer investment

My model endogenizes firm choices in the quantity and locations of charging stations,

conditional on the standards coalitions that they have joined. These two control vari-

ables are part of a dynamic optimization problem that may be driven by firms’ expec-

tations of future periods beyond the time coverage of the dataset available. Therefore,

my model of firms is static. I assume that conditional on the choice of standard and

the charging stations that have already been installed, the static profit function is pro-

portional to the dynamic value function, so that optimization from the static model is

consistent with a long-run dynamic game.

I also assume that vehicle characteristics other than price and charging stations

evolve according to an exogenous product development process. This is a reasonable

assumption given that the data period of 5 years from 2011 to 2015 is short relative

to the product development cycle in the automotive industry overall and particularly

in the electric vehicle segment. Blonigen et al. (2019) show that over vehicles of all

fuel types, 70% of models are redesigned every 4 to 7 years, and an entirely new model

takes even longer. The earliest electric vehicle models released in the 2011 model year

came out with major updates only in late 2016, which is after the end of the data

period.

The profit πjt(Gt) of firm j in period t from its electric vehicle models r ∈ Jjt is

the sum over markups from cars sold minus the cost of charging station investment

c(ajt), given by∑
m

∑
r∈Jjt

(prt −mcrt + ZEVrmt)︸ ︷︷ ︸
per-car markup and ZEV credit

srmt(Gt, prmt;Xrmt, ξrmt, θ)︸ ︷︷ ︸
mkt share

Nmt︸︷︷︸
mkt size

− c(ajt), (2)

where mcrt denotes the marginal cost of producing car r in t.

In each period, firms simultaneously choose charging infrastructure investment ajt

that will arrive at the beginning of the next period, incurring cost c(ajt) and conditional

on all the stations that have already been installed. Then, firms set prices prt to

maximize profits. I model firms setting one price for the country for each model r and

period t, prt, which is the MSRP minus manufacturer discounts. The firm’s price prt

does not include government subsidies that are contained in the consumer-facing price

prmt, defined in Equation 1. I do not observe and therefore do not take into account

the region-specific discounts and dealer-specific nonlinear picing contracts.
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Firms choose the number of stations to allocate across 365 local networks and the

inter-city network, so the infrastructure investment choice ajt is a vector with 366

elements. The cost of ajt is assumed to be linear in the total number of stations, given

by,

c(ajt) = κ|ajt|+ ωjt.

I model firms as maximizing profits from plug-in vehicles, ignoring externalities

on other products in a firm’s portfolio, due to data availability and computational

constraints. Two main arguments can justify this assumption. First, many car man-

ufacturers have set up divisions dedicated to new electric models with unique phys-

ical styling. The organizational economics literature has studied when decentralized

decision-making is optimal for multi-product firms with asymmetric product divisions

(Rantakari (2008) and Roberts and Saloner (2012)). Second, institutional details sug-

gest that the three firms explicitly modeled for charging station investment, BMW,

Nissan, and Tesla, had zero or very little cannibalization in other segments over the

time period of this study.12 The remaining firms had not built charging stations by

the end of 2015.

4 Estimation, Identification, and Results

In this section, I describe the estimation of the demand and cost parameters and how

they are identified. I address the problem of zero market shares by shrinking the data

toward an empirical Bayes prior formed over similar markets. This procedure pulls

the market shares away from zero, which is important in order to apply the estimation

framework of Berry (1994) and Berry et al. (1995). Readers who are not interested in

the technical details of the empirical Bayes procedure can skip directly to Subsection

4.2 for how the demand parameters are identified and Subsection 4.3 for demand and

supply estimation results.

12Tesla Motors sells only electric vehicles and invests heavily in its network of charging stations.
BMW, the active firm in the SAE Combo standard, stated in a press release after selling the i3
for two years that more than 80% of worldwide i3 customers were new to the BMW Group (2015.
https://www.press.bmwgroup.com/global/article/attachment/T0242822EN/337735). Nissan be-
gan designing the Leaf in 2006 to leapfrog the conventional hybrid car, a segment in which they were
not competitive (Burgelman and Schifrin (2011)). Since then, Nissan has prioritized being the indus-
try leader in zero-emissions and electric vehicles by championing the Chademo standard and investing
in charging infrastructure worldwide (Nissan Motor Corporation (2012)).
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4.1 Zero market shares

This paper studies the U.S. electric vehicle industry from its inception, when new car

models initially sold zero quantities in some local markets. The dataset covers all

new vehicle registrations for each market and period, so any observed zeros are not

due to sampling error, such as from disaggregating a national sample or survey to the

local level. As described in McFadden (1974) and Berry et al. (1995), each consumer’s

choice is an independent draw from a multinomial distribution with a set of purchase

probabilities. The observed market share aggregates over the sampled consumers’

multinomial draws. Each market is finite even when the consumer sample is the full

population, and coupled with small purchase probabilities, the observed market shares

include zeros. In my sample, 35.7% of market shares in any given model-market-quarter

combination are 0, ranging from 15.5% (2011) to 45.5% (2015), as shown in Table 2.13

The true purchase probabilities underlying the observed market shares are un-

known. Common practice in demand estimation is to use the observed market shares

in place of the true purchase probabilities, which is implicitly using the maximum

likelihood estimator (MLE). Zero market shares are censored at zero and therefore

mask information about the true underlying purchase probabilities. They also make

the inversion step impossible in the Berry (1994) and Berry et al. (1995) estimation

framework. I instead use a parametric empirical Bayes or shrinkage estimator, which

generates strictly positive posterior estimates of the true purchase probabilities from

information in other markets. This is similar to the transformation in Gandhi et al.

(2017). To preserve important heterogeneity across markets, each market’s empirical

Bayes prior is formed using similar markets. I define the set of similar markets to be

the the 50 markets closest in income per capita, or about 13.7% of the 365 total number

of markets.

I model the quantities purchased of each vehicle in each market, Krm, as a draw

from a binomial distribution with Nm trials and purchase probability s0
rm. The time

subscripts t have been suppressed throughout this subsection for simplicity. The pur-

chase probabilities s0
rm are different for each vehicle and market and are drawn from

a Beta prior distribution with hyperparameters λ1rm and λ2rm. The total number of

vehicles purchased is Nm. I choose this Beta-Binomial model of market shares for

13The number of zeros increases over time because the number of available plug-in models increases.
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simplicity, though it can be generalized to a Dirichlet-Multinomial:

Krm ∼ Binomial(Nm, s
0
rm),

s0
rm ∼ Beta(λ1rm, λ2rm).

The posterior distribution of the purchase probability is also a Beta distribution,

srm ∼ Beta(λ1rm +Krm, λ2rm +Nm −Krm),

with posterior mean given by,

ŝrm =
λ1rm +Krm

Nm + λ1rm + λ2rm

.

The observed shares, which are the MLE, are,

ŝMLE
rm =

Krm

Nm

.

The strictly positive posterior mean, ŝrm, replaces the MLE, which contains zeros. In

large samples, the empirical Bayes posterior would be very similar to the observed

shares because the data would be informative enough to dominate the prior from other

markets.

For each car r in market m, the Beta prior are formed using the 50 markets closest

in per capita income, l ∈ Bm, where l is a market from the set of similar markets Bm.

The parameters of the Beta prior, λ1rm and λ2rm, are estimated from maximizing the

log of the likelihood over the outcomes in the markets that form the priors,

f(Krl, l ∈ Bm|λ1rm, λ2rm) =
∏
l∈Bm

(
Krl

Nl

)
Γ(λ1rm + λ2rm)Γ(λ1rm +Krl)Γ(Nl −Krl + λ2rm)

Γ(λ1rm)Γ(λ2rm)Γ(Nl + λ1rm + λ2rm)
.

I estimate a pair of hyperparameters λ̂1rm and λ̂2rm for each vehicle, market, and

period, and construct the posterior mean estimate of purchase probabilities, ŝrm =
λ̂1rm+Krm

Nm+λ̂1rm+λ̂2rm
. As expected, the posterior estimates of market shares have lower vari-

ance, and all shares are strictly positive, as shown in the bottom panel of Table 2.

Reassuringly, the means of the observed and empirical Bayes posterior market shares

are quite similar, .00085 and .00082, respectively. Observed zero market shares have

posterior mean estimates ranging from 5.5e-9 to .00162, as depicted in Figure 5(b).
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Berry et al. (2004) provide conditions on the number of consumers relative to the

number of products for consistency and asymptotic normality of the demand estimates

when using the MLE estimator as true purchase probabilities. I assume that the same

conditions hold when using the empirical Bayes estimator. Appendix A discusses the

advantages of the empirical Bayes estimator over other common methods.

4.2 Identification

Firm investments in charging stations each period may be correlated with unobserved

product characteristics. Therefore, additional instruments are required to identify the

demand parameters compared to the usual instruments for price. I maintain the stan-

dard assumption that other product characteristics besides price and charging network

are exogenous. I first discuss how I identify the price coefficient using variation from

government subsidies. The identifying assumption is that the vector of instruments

Zprice is orthogonal to unobserved characteristics ξ(θ2),

E[Zpriceξ(θ2)] = 0. (3)

I use three sets of instruments for price that are plausibly uncorrelated with un-

observable characteristics ξrmt. The first two sets of instruments are federal and state

subsidies. Since prices that consumers pay also include time-varying manufacturer dis-

counts, the federal and state subsidies used as instruments are not the sole sources of

variation in price. The third set of price instruments, the average characteristics of

other products in the market (BLP instruments), are relevant because they affect the

markups that firms can charge. The BLP instruments are uncorrelated with ξrmt given

the assumption that the other product characteristics arrive as part of an exogenous

development process.

Market and time fixed effects are included for all specifications. The instruments

vary within market, over time, and across vehicle models. Market fixed effects control

for local factors that do not vary much from 2011 to 2015, such as local inclinations to

be green, the proportion of housing stock with off-street parking (and enable at-home

charging), the types of electrical wiring in the housing stock, and quality of public

transit. Time fixed effects control for national factors that do not vary across markets,

such as national macroeconomic trends and global fuel price shocks.

Federal plug-in vehicle subsidies vary by car model and are determined by a piece-
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wise linear function of the battery size. This instrument provides identification from the

functional form, which I argue is uncorrelated with unobservables ξrmt after condition-

ing on battery size. It is reasonable to assume that policymakers set federal subsidies

independently from ξrmt, because Congress approved and determined the structure of

these plug-in vehicle subsidies as part of a stimulus package in 2009. I also assume

that firms do not determine components of ξrmt based on the subsidy functional form.

State plug-in vehicle subsidies vary by state and vehicle model and change over

time. With market and time fixed effects, the identifying assumption is that changes

in state subsidies over time and differences in subsidies across states or across car

models within states are uncorrelated with product unobservables ξrmt. Anecdotes

of the state legislative process support the identifying assumption that the timing of

subsidy changes are plausibly random. For example, some states enact laws that are

effective immediately, others enact laws that are effective for the next tax (calendar)

year beginning in January, while others enact laws that are effective for the next fiscal

year beginning in July. The structure of state subsidies are also plausibly exogenous

after controlling for characteristics that these subsidies condition on, such as battery

size. Appendix B shows the variation in state subsidies for electric vehicles and charging

stations over markets, time, vehicle models, and charging speeds.

Additional assumptions on the distribution of unobservable characteristics ξrmt and

the instruments are necessary to identify the charging station coefficients. I assume that

unobserved product characteristics ξrmt evolve according to a first-order autoregressive

process,

ξrm,t(θ2) = ρξrm,t−1(θ2) + νrm,t(θ2),

that νrm,t are mean zero, independent across vehicle models r, markets m, and time

periods t, and that

E[Zstationν(θ2)] = 0 (4)

for a vector of instruments Zstation.

I use three sets of instruments for charging stations that are plausibly uncorre-

lated with innovations in demand unobservables, νrmt. First, similarly to the vehicle

price subsidy instrument, state subsidies for charging stations are cost shifters that are

uncorrelated with demand shocks conditional on market and time fixed effects.

The second set of charging station instruments are the number of new stations that

are funded by the Recovery Act of 2009. As described in Section 2.3, recipient cities
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were chosen before electric vehicles arrived to the U.S. market. Each city received the

same number of stations predetermined by program funding availability, independent

of the realized evolution of the electric vehicle market in each city. Regulators may

have chosen recipient cities where they expected the highest growth rates or marginal

impacts in local electric vehicle adoption. However, the exact timing of stations arriving

in each recipient city could be due to idiosyncratic permitting and construction lags that

are plausibly uncorrelated with νrmt. In the data, Recovery Act stations arrive between

the 2nd quarter of 2011 and the 2nd quarter of 2014. Similarly, car manufacturers

may invest differently in response to the Recovery Act charging stations. If so, the

assumption that stations take at least one period to be built means that the arrival of

car manufacturers’ stations are uncorrelated with contemporaneous νrmt.

The third set of charging station instruments are the one-period lags of the charging

station quality variables. The stations arriving in the beginning of period t were chosen

by car manufacturers based on ξrm,t−1, before νrm,t were realized. Therefore, new

stations arriving in period t are uncorrelated with νrm,t.
14

4.3 Estimation Results

Demand parameters are estimated using a GMM framework with moment conditions

in Equations 3 and 4. Table 3 reports results from the logit model (Columns 1 and 2)

and a random-coefficients logit model (Columns 3 to 5). For both logit and random-

coefficients logit demand, the coefficients are positive for battery range, capacity, horse-

power, and all-wheel drive, as expected. The coefficient for the BEV dummy variable

is negative, indicating that BEVs are less preferable than PHEVs. A plausible reason

is that consumers like having gasoline as a backup fuel source.

There are seven endogenous regressors: price and interactions of three measures of

charging network quality (Local Levels 2 and 3 and # of City pairs) and two vehicle

fuel types (PHEV and BEV). Column 1 shows OLS results, and Column 2 shows

results for the IV specification with instruments as described in Subsection 4.2. The

first-stage minimum eigenvalue statistic, the analog to the first-stage F-statistic for

multiple endogenous regressors, has a value of 59.42, indicating strong instruments

(Stock and Yogo (2005)).

The price coefficient can be directly interpreted as a price elasticity due to the log

14The single event of Tesla introducing an adapter to Chademo stations occurred in April 2015.
Without any panel variation in adapter availability, this event is absorbed by the time fixed effect.
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specification. The OLS and IV specifications yield similar price elasticities (Columns 1

and 2). A price elasticity of -2.7 from the IV specification is in line with prior literature

on the automobile industry (Berry (1994), Berry et al. (1995), and Goldberg (1995)).15

Station locations and quantities are endogenously chosen by firms, so OLS estimates

of the parameters on charging network quality may be biased. Instrumenting for the

endogenous regressors increases the precision and magnitude of the coefficients.

Comparing the PHEV and BEV interactions shows that the availability of fast

charging stations (Level 3) for both local driving and inter-city travel matters more

for BEVs. In contrast, Level 2 charging seems to be more important for PHEVs. A

plausible explanation is that for PHEV drivers, gas stations are superior substitutes

for Level 3 stations for fast refueling. Therefore, PHEV demand may not respond to

Level 3 charging station availability as much as BEV demand. PHEV consumers may

see the Level 2 local charging network as a way to opportunistically top up, while BEV

consumers see the Level 2 network as poor insurance for running out of electricity

because they are so slow. Consumers may suffer from so much range anxiety that they

disregard the Level 2 network and only purchase a BEV if they are certain the battery

range can cover the majority of their day-to-day needs. Therefore, PHEV demand may

be more responsive to Level 2 charging station availability than BEV demand.

Using the price elasticity constructed from the price coefficient and random coeffi-

cients (Columns 3 to 5), I compute the markups and marginal costs of vehicles implied

by the first-order condition of the firm profit function (Equation 2). Table 4 reports

the resulting estimates. I estimate that vehicle markups range from about $7,500 at

the 10th percentile to about $26,000 at the 90th percentile, in line with gross margins

reported by car manufacturers in financial filings. Vehicle marginal costs range from

about $17,000 at the 10th percentile to about $57,000 per vehicle at the 90th percentile.

I recover charging station costs from the first-order condition of the firms’ profit

function with respect to charging stations. My cost estimate also includes the dis-

counted present value of the electricity that car manufacturers often offer for free for

the first few years of ownership or for the life of the car, but I cannot separate the

capital cost and electricity cost components due to data constraints. I estimate that

Level 3 charging stations cost about $10,000 per year on average, implying an upfront,

15Li et al. (2017) find a much smaller price elasticity of .61 and a charging station elasticity of .84
with a specification that includes product fixed effects. The difference in our estimates is driven by
differences in the conditional price variance. The instruments I use to address price endogeneity only
require market and time fixed effects to be valid, so I do not include product fixed effects.
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discounted present value of $143,000 per station using a 7% weighted average cost of

capital. This estimate of charging station fixed costs is in line with engineering esti-

mates and rumors in the electric vehicle industry that a Level 3 station costs range

from $50,000 to $150,000.1617

5 Uniform Charging Standard

I evaluate market outcomes and welfare in the counterfactual policy regime of a unified

charging standard for electric vehicles. In each period, firms play a simultaneous-move

game as described in detail in Section 3. Firms choose where and how many new charg-

ing stations to build, which take one period to complete. Consumers take into account

the available charging network when they choose between plug-in vehicles and the out-

side option to maximize utility. To find an equilibrium of the firms’ simultaneous-move

game, I simulate firms playing iterated best-response until no firm has any profitable

deviations. In each iteration, a firm conditions on the charging station investments

built by its competitors and itself in previous iterations to solve its charging station

investment problem, which is equivalent to the “fractional knapsack” problem and can

be solved with a fast, greedy algorithm (Subsection 5.2).

I present the counterfactual results in three parts in order to build intuition. Read-

ers who are not interested in technical details of the knapsack problem can skip to the

final results in Subsection 5.3. First, I compute only demand response to a single charg-

ing standard, with the number and locations of charging stations held fixed. Second,

taking into account vehicle demand responses to charging stations, firms re-optimize

the geographic placement of stations when there is a single standard, given a fixed

number of stations. Third, firms optimize over the number of stations in each period,

taking into account geographic placement decisions, demand response, and competi-

tors’ responses. Throughout the counterfactual analysis, I assume that automakers do

not change other vehicle characteristics, including price, whether cars are capable of

fast charging at all, and the battery range of each car. Therefore, vehicles are still

differentiated products in the counterfactual, with different charging networks depend-

16Etherington, Darrell. 2013. “Inside Tesla’s Supercharger Partnere Program: The
Costs And Commitments Of Electrifying Road Transport.” Tech Crunch, July 26.
https://techcrunch.com/2013/07/26/inside-teslas-supercharger-partner-program-the-
costs-and-commitments-of-electrifying-road-transport/

17Holland, Ben. 2014. “Pulling Back the Veil on EV Charging Station Costs.” Rocky Mountain
Institute Blog, April 29. https://rmi.org/pulling-back-veil-ev-charging-station-costs/
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ing on whether they are capable of fast charging and whether their range covers the

distance between pairs of charging stations.

I remain agnostic about how to achieve compatibility. One policy option is to

mandate or subsidize R&D for adapters for physical connectors and interoperability

of the communication protocols. A stronger policy is the European Union’s rule that

any new stations must at least contain a particular standard.18 All the policy options

besides creating adapters would require retrofits of existing stations. My estimated

welfare impacts serve as an upper bound on the coordination, R&D, and retrofit costs

that society would be willing to pay to achieve compatibility in electric vehicle charging

in the U.S., in the confines of my model and its assumptions.19

As shown by Small and Rosen (1981) and Williams (1977), the change in consumer

surplus in any counterfactual scenario from a comparison scenario is given by:

∆CS =

∫
i

1

dui/dyi

[(
ln

J∑
j=1

exp(δ1
r + µ1

ir)

)
−

(
ln

J∑
j=1

exp(δ0
r + µ0

ir)

)]
dF (yi, li), (5)

where dui/dyi is the marginal utility of income. Social welfare is the sum of consumer

welfare and producer profits.

5.1 Compatible stations with fixed quantities and locations

This subsection presents two results from simulating access to stations of other stan-

dards, holding the quantities and locations of charging stations fixed at the status

quo. First, I calculate the increase in consumer surplus from giving Tesla vehicles

access to Chademo stations, which can be compared to the retail price of a one-way

adapter developed by Tesla. Second, I present the model’s predicted demand response

to compatibility across all standards.

Chademo is the dominant and de facto standard in Japan. Tesla developed a one-

way adapter to give Tesla vehicles access to Chademo stations, likely for the Japanese

market, but in March 2015 also released the adapter in the U.S. market. I infer

based on a conversation with a Tesla engineer that the adapter took at least two years

of development. In the simulation, I assign Tesla vehicles a new charging network

consisting of all the existing Tesla stations as well as the Chademo stations. The

18See Ferwerda et al. (2018) for details on the evolution of charging standards in Europe.
19See Simcoe and Farrell (2012) for a discussion of paths toward compatibility.
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charging network quality variables for all other vehicles are fixed to the status quo,

as are the arrival locations and times of all stations. I then calculate the change in

consumer surplus from the change in network access (Equation 5). The retail price

of $450 for a Tesla-to-Chademo adapter is very similar to the model’s prediction of

$426.49 increase in average consumer welfare. Interestingly, Tesla initially launched the

adapter for pre-order at $1000, and then quickly adjusted the retail price to $450. The

retail price need not equal the average consumer surplus change, but this comparison

shows that the demand model and parameter estimates predict sensible magnitudes for

welfare relative to actual market prices for a limited version of compatibility. Moreover,

the retail price for a one-way adapter can give us a sense of the order of magnitude in

value we might expect from compatibility.

The gains from compatibility are asymmetric because of differences in battery range.

Stations are more useful for vehicles that have the battery range to traverse the gaps

between them, as illustrated in Figure 6. Tesla cars, which have about 200 miles of

battery range, benefit from access to Combo and Chademo stations because they can

easily traverse the distance between all stations. However, other firms’ electric vehicles

have at about 80 miles of electric range and cannot traverse the distance between Tesla

stations, which are placed 100 to 150 miles apart.20 Comparing Combo and Chademo

networks, cars on the Combo standard gain more because they can access the much

larger Chademo network in this counterfactual.

Simulating demand response to a uniform charging standard while holding fixed

the quantities and locations of stations shows that sales of plug-in vehicles with fast-

charging capability, or those that can use Level 3 stations, would increase by about

26,000 units (17.1%, Table 5). Car brands in the Tesla and Combo coalitions increase

sales, but sales of Chademo car brands decrease. The intuition for this result is that

the Chademo charging network is an important factor in generating the market shares

observed in the data, but in the counterfactual these cars lose the advantage of having

more than three times as many charging stations as the cars on other standards (Figure

2). Fast-charge-capable cars steal market share from other plug-in vehicles that cannot

fast-charge, though the majority of gains in market share for fast-charge vehicles come

from stealing market share from the outside good, the non-plug-in vehicles.

20Even in Subsection 5.3, when firms re-optimize quantities and locations of charging stations,
firms benefit asymmetrically from placing stations closer together. Tesla has no incentive to place
their stations closer together for the benefit of its competitors.
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5.2 Compatible stations with adjustment in locations

This subsection solves the firm location problem for charging station placement for any

given quantity of stations. First, I will show that each firm’s charging station allocation

problem, conditional on stations already installed by itself and its competitors, maps

to a computational problem called fractional knapsack. Therefore, a greedy algorithm

that chooses locations for stations in order of highest marginal profit gives the optimal

solution. Second, I will describe the equilibrium outcomes with three firms locating

stations in a static oligopoly game. The equilibrium outcomes are found from firms

moving in a predetermined order to play iterated best-response. An equilibrium is

reached when no firm has a profitable unilateral deviation.

A single firm’s discrete choice problem of allocating a given N stations across L

locations is computationally infeasible to solve by enumeration. For example, with

L = 366 locations and N = 285 stations to allocate, there are
(
N+L−1

N

)
≈ 1.058× 10192

possible arrangements.

Placing N stations across L independent locations is equivalent to the fractional

knapsack problem. In the knapsack problem, a thief robbing a vault finds n items.

Each item has a value and a weight, both integers. The thief wants to maximize the

value of his loot, but he can only carry W pounds in his knapsack. In the charging

station placement problem, firms maximize profits over their station location choices,

subject to the constraint of building at most N stations. The equivalent of an item

is the location and how many new stations will be built at that location. The total

number of possible items is n = L × N , because there are L total locations and each

location can receive up to N new stations. The ‘knapsack capacity’ of the charging

station allocation problem is W = N . The value of each station is its marginal profit

from car sales. The regular, or 0-1, knapsack problem requires that the thief take whole

items, while the fractional knapsack problem allows the thief to take parts of items.

Both versions of the knapsack problem can be solved in pseudo-polynomial time with a

dynamic programming algorithm. The key to mapping the charging station allocation

problem to fractional knapsack is that location profits are independent and that stations

have uniform weight of 1.

Independence in profits across local markets is given by how charging stations enter

the consumer utility function. The demand model specifies that consumers derive

utility only from stations inside their own market and from stations that help with

inter-city travel. In the model, consumers do not derive utility from any stations
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within MSAs that are not in their home city, which could be a reasonable assumption

for a variety of reasons, such as not requiring any transit at the destination, avoiding

hassle from driving in an unfamiliar city, and using public transit or riding with others.

If only charging stations within a consumer’s home market affect utility, then building

stations in one market would not affect a firm’s profits in other markets. Therefore,

profits from new stations in local networks are independent across markets.

The inter-city network enters the marginal utility of stations in local networks.

An additional pair of connected cities changes consumer utility and firm profits from

an additional station in every local network. Therefore, to be precise, the charging

station allocation problem is equivalent to fractional knapsack conditional on the total

number of stations N and the number of stations allocated to the inter-city network,

N inter. Firms solve the location problem N + 1 times, once for each possible value of

N inter ∈ {0, · · · , N}.
The fractional knapsack problem has the greedy-choice property (Cormen et al.

(2009)) and can be solved with a greedy solution. Choosing items in order of highest

value-to-weight ratio yields the maximum-value knapsack. The greedy solution in the

charging station placement problem is, for each possible number N inter of stations

devoted to the inter-city network, rank the market-quantity combinations in order of

decreasing marginal profit and choose the N − N inter highest. Record total profits

for each N inter. The N inter and corresponding allocation that gives highest profits is

the optimal solution. Allocating stations across local markets is the “inner loop,” and

finding the number of stations to allocate to local markets and the inter-city network

is the “outer loop.”

Under compatibility, firms locate stations with higher dispersion across markets.

This result carries an intuitive interpretation. Consumers derive decreasing marginal

utility from additional charging stations of each type. When stations are incompatible,

each firm faces a separate decreasing marginal value curve. The first station that a

firm builds in a market carries high value, and firms tend to build stations in the same

high-profit markets. However, under compatibility, additional stations are worth less

if other firms have already built nearby. Therefore, firms build in more markets but

fewer stations in each market (Figure 7). The number of markets that have at least

one charging station increases from 179 to 339 out of a total of 365 markets, indicating

increased spatial dispersion of stations.
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5.3 Full compatibility counterfactual

The full optimization problem to endogenize both quantities and locations can be solved

by nesting the optimal location problem within the optimal quantity problem. Given

a number of stations Nj to allocate, solve the location problem and record the profits.

Repeat for every Nj ∈ {0, . . . , N̄j}, where N̄j is a resource constraint, and choose the

N∗j and the associated location solution. The resource constraint bounds the search

space for computational ease and also reflects managerial or capital constraints that

firms may face. I choose the resource constraint to equal the number of stations that I

observe firms building in the data. Each period, firms move in iterated best-response

to choose optimal quantities and locations until an equilibrium is reached.

Table 6 presents and compares the counterfactual outcomes from each of the three

regimes: (1) Incompatible charging standards, (2) Compatible charging standards with

private charging investment, and (3) Compatible charging standards with Social Plan-

ner charging investment. Over 2011-15, private investment under compatibility results

in about $500 million higher consumer surplus than under incompatibility; the Social

Planner achieves about $3 billion higher consumer surplus than private charging in-

vestment. With a compatible charging network, both private investment and social

planner investment achieve higher consumer surplus and higher overall producer sur-

plus. However, not all firms are better off with compatibility. Firms originally on the

Chademo standard, such as Nissan and Mitsubishi, lose profits under compatibility be-

cause they lose one dimension of product differentiation, which is a car with a smaller

battery coupled with ample local charging availability. Nissan loses about $200 million

from compatibility.

Compatibility changes the nature of competition among firms, turning investments

in charging stations from demand substitutes to demand complements. When a firm

builds a station under compatibility, it improves the product quality of its competitors.

Therefore, firms have less business-stealing motive to invest in charging infrastructure.

The social planner fully internalizes the business stealing effects, and builds about

330 fewer stations (a 17.7% decrease). Firms build about 50 fewer stations (a 2.8%

decrease) under compatibility. Notably, all the decrease in private investment comes

from Nissan. BMW and Tesla build up to their resource constraint in both regimes.

The number of electric vehicles sold increases by about 100,000 units under com-

patibility and private investment compared to under incompatible charging standards.

About 85,000 more electric vehicles would be sold if the Social Planner were to make

28



the investment choices instead. The vehicles that have fast-charging capability gain

market share overall by stealing market share from the outside option (vehicles of other

fuel types) and from other electric vehicles that do not have fast-charging capabilities

(“Other Plug-In” in the last row of Table 6). The environmental impacts of a compat-

ibility policy would depend on population density and the electricity fuel mix where

consumers substitute to electric from other fuel types. My finding that some manufac-

turers would lose profits from moving to compatibility may explain why the automotive

industry has not standardized electric vehicle charging on its own.

6 Conclusion

This paper studies how firms compete in product markets by investing in complemen-

tary goods and how firms’ investment incentives change when previously incompat-

ible complementary goods become compatible. The electric vehicle market itself is

an important market to understand because it could become a larger presence in the

automotive industry and carry large potential environmental benefits.

This paper presents and estimates a structural model of consumer vehicle demand

with utility over the electric vehicle charging network. Consumers have tastes over the

local usefulness of the charging network relative to their commuting patterns as well

as over national traversability. The demand parameters are combined with a model

of oligopolistic car manufacturers to recover vehicle markups and charging station

costs. The simulated counterfactual results show that, under compatibility, firms would

reduce investments in charging stations. Yet, the size of the electric vehicle market

would still expand since consumers can access all stations. A compatibility policy

would improve social welfare despite the cutback in car manufacturer charging station

investment.

This paper motivates two lines of future work. First, the dynamic incentives in

investment intended to influence the equilibrium number of standards remain unex-

plored. Second, and more generally, a deeper understanding of industries’ ability and

willingness to self-organize into a uniform standard or to make joint investments would

inform antitrust and innovation policy.

Finally, this paper contributes to understanding the role of directed technological

change in climate change policy. Although a market price on environmental dam-

ages from emissions and pollution may be part of the first-best solution, Acemoglu
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et al. (2016) develop an endogenous growth model to show that the optimal climate

policy path includes both carbon taxes and research subsidies for clean technologies.

Aghion et al. (2016) show that firms in the automobile industry respond to higher

tax-inclusive fuel prices by innovating more in alternative fuel (electric, hybrid, and

hydrogen) technologies. This paper’s findings supports the argument that in addition

to market failures in the upstream innovation stage, other inefficiencies and market

failures in downstream product markets can hinder technological change.
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Figure 1: Types of Level 3 (DC, Fast) Charging Standards

Level 3 (DC, Fast) Charging Standards

SAE J1772 Combo Chademo Tesla

BMW: i3 Nissan: LEAF Tesla: Model S, X
GM: Bolt, Spark EV Mitsubishi: i-MiEV
Volkswagen: e-Golf Kia: Soul EV
Ford Toyota
Chrysler Peugeot
Daimler Citroën

Depiction of plug shapes from Alternative Fuel Data Center

Notes: This figure depicts the connectors of each Level 3 electric vehicle charging
standard, along with the make and model of cars compatible with each standard as of
the end of 2015. Not all electric vehicles on the market are capable of DC fast-charging.
The automakers that are listed without vehicle models had pledged support for a
particular standard, but did not yet sell vehicles that have fast-charging capabilities as
of the end of 2015.
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Figure 2: Charging Network Size over Time, by Standard

Nissan LEAF Tesla Model S BMW i3 
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Data Source: Alternative Fuel Data Center

Notes: This figure shows the number of charging locations available over time for
each charging standard. Vertical bars mark when the first cars compatible with each
standard became available in the U.S. market.

1. Nissan began deliveries of the Leaf in December of 2010 and began building Chademo
stations at the same time.

2. Tesla began deliveries of the Model S in June of 2012 and announced the Tesla
Supercharger program three months later, in September of 2012.

3. BMW began deliveries of the i3 in May of 2014 and announced a program to build
stations under the Combo standard two months later, in July of 2014.

37



Figure 3: Level 3 (DC, Fast) Charging Locations Plotted on a U.S. Map

Notes: This figure shows the Level 3 charging locations for each standard as of September 2015, using data from the
Alternative Fuels Data Center of the Department of Energy.
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Figure 4: The Number of Connected City Pairs on the Tesla Network
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Notes: This figure shows the number of city (MSA) pairs that a Tesla car could travel
using Tesla’s network (y-axis), normalized to between 0 and 100, plotted against the
number of charging locations available as they were built over time from 2011-2015
(x-axis).

1. In an OLS regression of the number of connected city pairs on the number of charging
locations available, the coefficient is about .285, which means an additional pair of
cities was connected for about every 3.5 charging locations placed by Tesla.

2. The solid line shows the predicted values from the OLS regression.
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Figure 5: Empirical Bayes Posterior Mean vs. Observed Market Shares

(a) All Market Shares
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(b) Zooming in on Observed Shares Ranging from 0 to .0006
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Notes: This figure plots the empirical Bayes posterior means against the observed market shares. Posterior mean estimates
may be larger or smaller than the original observed market shares, represented in the scatter plots as being above or below
the 45-degree line. Subfigure (a) shows all data points. Subfigure (b) zooms into the smallest market shares.
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Figure 6: Counterfactual Traversability of the National Charging Network under Compatibility
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(c) SAE 1772 Combo
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Notes: This figure shows the counterfactual traversability (number of city pairs that vehicles can drive) for each of the
three standards, holding locations and quantities of stations fixed.

1. Traversability is normalized by the total number of city pairs to between 0 and 1.

2. The solid lines represent traversability in the status quo with 3 incompatible standards, and the dashed lines are the
counterfactual traversability with a uniform standard.
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Figure 7: Markets with Charging Station Presence from Each Standard (Fixed Number of Stations)

(a) Incompatibility (Status Quo) (b) Compatibility (Counterfactual)

Notes: This figure shows the number of markets that have stations of each standard using Venn diagrams. The left figure
depicts the status quo. The right figure depicts compatibility. Under compatibility, all standards are interoperable or the
same, so the standards labels merely reference the firms’ affiliations in the status quo. In the counterfactual simulations,
firms re-optimize locations of stations, holding fixed the number of stations. Under compatibility and with fixed number
of stations, firms build in more markets and fewer stations in each market.
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Table 1: Evolution of Key Variables, 2011-2015

2011 2012 2013 2014 2015

Number of markets (MSA) 354 356 347 346 346
Number of EV models 3 6 15 22 27
MSRP of EV models (min) 32,780 29,125 22,995 22,995 22,995
MSRP of EV models (max) 109,000 116,000 102,000 135,700 140,700
EV unit sales 13,542 41,643 93,734 127,699 140,320
Battery range (min) 35 11 11 11 11
Battery range (max) 245 76 139 208 238

Notes: This table shows key variables of the U.S. electric vehicle market from 2011 to
2015, using vehicle registration data from IHS Automotive and vehicle characteristics
data from MSN Auto.
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Table 2: Unit Sales, Market Shares, and Empirical Bayes Posterior Market Shares

Variable Mean Std. Dev. Min 10% Median 90% % Zeros N

All vehicle sales 13,798.7 28,488.5 202 1,140 3,973.5 37,471 0 40,200

Plug-in sales 20.4 50.2 0 0 1 16 35.7 40,200
2011 plug-in sales 9.5 35.0 0 0 2 18 15.5 1,424
2012 plug-in sales 10.7 49.1 0 0 2 17 23.0 3,910
2013 plug-in sales 11.8 47.8 0 0 1 20 30.8 7,966
2014 plug-in sales 12.0 61.1 0 0 1 20 33.2 11,694
2015 plug-in sales 8.4 42.8 0 0 1 13 45.5 15,206

Observed market share .00085 .0019 0 0 .00024 .0023 35.7 40,200
Posterior mean share .00082 .0015 2.78e-9 .000027 .00035 .0020 0 40,200

Notes: This table shows summary statistics of vehicle sales, observed market shares, and estimates of empirical Bayes
posterior mean market shares. Each observation corresponds to outcomes for an available vehicle model, market (MSA),
and quarter, based on data from IHS Automotive from 2011 to 2015.

1. The top panel shows unit sales of all fuel types in the first row, followed by unit sales of plug-in vehicles by year.

2. The bottom panel depicts observed market shares and estimates of empirical Bayes posterior mean market shares.
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Table 3: Demand System Estimates

Logit Logit with Random Coefficients

OLS IV RC IV ×Income ×Long Distance
VARIABLES (1) (2) (3) (4) (5)

log(Price) -2.316*** -2.732*** -2.909*** -0.166*** -0.382***
(0.0787) (0.625) (0.0248) (0.0260) (0.0411)

log(Local Level 2) × PHEV 0.0931*** 0.129*** 0.227*** -0.0818*** 0.00136
(0.0177) (0.0295) (.00826) (.00771) (.00857)

log(Local Level 2) × BEV 0.0614** 0.0912*** 0.0848*** -0.00874 -0.0145
(0.0245) (0.0339) (0.0105) (.00968) (0.0115)

log(Local Level 3) × PHEV -0.00300 0.0236** 0.0224* 0.0215 -0.0139
(0.00904) (0.0114) (0.0123) (0.0133) (0.0133)

log(Local Level 3) × BEV 0.0580*** 0.0671*** 0.0619*** 0.153*** -0.0460***
(0.00776) (0.00867) (0.0158) (0.0106) (0.0137)

# City pairs × PHEV -0.234 -0.902* 0.014 0.00128 -0.00885
(0.300) (0.509) (0.0447) (0.0109) (0.00932)

# City pairs × BEV 0.00552*** 0.00524** -0.0546*** 0.0224*** 0.0410***
(0.00155) (0.00267) (0.00584) (0.00393) (0.00700)

BEV dummy -1.889*** -2.276*** -2.180*** - -
(0.133) (0.217) (0.0243)

Battery range 0.00760*** 0.00915*** 0.00952*** - -
(0.00104) (0.00174) (0.000153)

Battery size 0.0302*** 0.0288*** 0.0293*** - -
(0.00322) (0.00415) (0.000219)

Horsepower 0.00608*** 0.00749*** 0.00796*** - -
(0.000437) (0.00265) (.0000946)

All-wheel drive dummy 0.631*** 0.989*** 1.054*** - -
(0.0980) (0.231) (0.00549)

Electricity price 0.00499 -0.00456 -0.00909*** - -
(0.0107) (0.0116) (0.000230)

MSA inc. per cap. ($1000) 0.0365 0.215* 0.0627*** - -
(0.0828) (0.115) (.00848)

Autocorelation of ξ (ρ) - - 0.858*** - -
(0.000230)

Observations 40,200 35,418 35,418
R-squared 0.376 0.388 -
Market FE X X X
Time FE X X X
Min. Eigvalue Stat (IV F-stat) - 59.42 -

Notes: Logit in (1) and (2) are from linear regressions; random-coefficients logit in (3) through (5) are from
GMM. (4) shows interactions between product characteristics and household income, and (5) shows interactions
with an indicator for whether a household drives more than 60 miles per day. A unit of observation is an
available vehicle model, market, and quarter. For (1) and (2), robust standard errors in parentheses. For (3)
- (5), standard errors are bootstrapped. *** p<0.01, ** p<0.05, * p<0.1. IVs in (2) include federal and state
subsidies that vary within market, over time, and across vehicle models and charging speeds; see Subsection 4.2.
Consumer attributes are drawn from the ACS and the NHTS. Charging network quality is separated into three
measurements: “Local Level 2” represents slower charging stations inside MSAs, “Local Level 3” represents fast
charging stations inside MSAs, and “# City pairs” represents # of cities connected by paths of Level 3 stations.



Table 4: Price Elasticities, Markups, and Marginal Costs

Variable Mean Std. Err.

Own-Price Elasticity -2.702 0.002
Level 3 Station Fixed Cost (per year, $1000) 10.046 0.031

Variable Mean Std. Dev. 10th Pctile Median 90th Pctile

Price (before subsidies, $1000) 46.74 26.53 25.17 34.7 96.10
Markup ($1000) 13.872 8.851 7.577 10.451 25.813
Vehicle Marginal Cost ($1000) 29.263 15.639 16.900 24.134 56.937

Notes: This table reports price elasticities, charging station fixed costs, markups, and vehicle marginal costs calculated
from the random-coefficients logit demand estimates from Table 3 combined with first-order conditions of the firms’ profit
function.
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Table 5: Demand Response to Compatibility (Fixed Station Number and Locations)

Units Sold in MSAs (2011-2015)

Standard Status Quo Counterfactual ∆ Quantity % Change

Chademo 80,673 80,271 -402 -.5
Combo 27,289 31,650 4,361 16.0
Tesla 46,009 68,383 22,374 48.6
Other Plug-Ins 262,956 259,164 -3,792 -1.44

Total Change (Level 3) 26,333 17.1
Total Change (All Plug-Ins) 22,541 5.5

Notes: This table shows the consumer demand response to compatibility, with station
numbers and locations held fixed. The first three rows show results for vehicles on each
of the fast-charging (Level 3) standards. “Other Plug-Ins” are electric vehicles that do
not have fast-charge capability.
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Table 6: Counterfactual Market Outcomes

Simulated Counterfactual Outcomes Difference Across Regimes

Incompatible (I) Compatible (C) Social Planner (SP) (C-I) (SP-I) (SP-C)
(1) (2) (3) (4) (5) (6)

A. SOCIAL WELFARE ($millions)

∆Social Welfare - - - 2289.998 4220.684 1930.686
(1141.106) (638.902) (1361.262)

∆Consumer Surplus - - - 490.017 3104.464 2614.446
(1146.154) (555.232) (1416.486)

Producer Vehicle Profits 6293.642 8145.766 7740.801 1852.124 1447.159 -404.965
(2273.197) (3069.404) (3050.881) (287.890) (417.790) (512.623)

Nissan 1131.595 936.056 852.920 -195.539 -278.675 -83.136
(922.561) (602.007) (601.986) (56.665) (127.097) (98.641)

BMW 268.010 936.716 1028.590 668.706 760.580 91.874
(79.694) (605.593) (904.527) (81.246) (127.553) (143.222)

Tesla 2161.018 3416.890 2982.082 1255.872 821.064 -434.808
(1359.788) (1700.059) (1582.061) (227.337) (229.020) (281.513)

B. NUMBER OF CHARGING LOCATIONS

Total No. Locations 1868.510 1816.367 1537.571 -52.143 -330.939 -278.796
(150.628) (192.070) (382.786) (14.675) (53.401) (52.595)

built by Nissan 1237.510 1185.367 - -52.143 - -
(150.628) (192.070) (14.675)

built by BMW 380.000 380.000 - 0.000 - -
(0.000) (0.000) (0.000)

built by Tesla 251.000 251.000 - 0.000 - -
(0.000) (0.000) (0.000)

C. EV UNITS SOLD (thousands)

Total EV Units 488.173 589.649 573.303 101.476 85.130 -16.346
(67.840) (144.214) (194.166) (15.950) (29.176) (33.967)

Chademo 127.564 109.711 102.773 -17.853 -24.791 -6.938
(66.454) (45.403) (68.634) (4.286) (12.294) (10.773)

SAE Combo 15.670 83.672 86.828 68.002 71.158 3.156
(3.991) (58.325) (79.452) (8.217) (11.395) (13.075)

Tesla 83.953 138.351 122.420 54.398 38.467 -15.931
(41.254) (63.269) (66.109) (9.640) (9.845) (12.187)

Other Plug-In 260.986 257.914 261.282 -3.071 0.296 3.368
(3.502) (9.154) (4.250) (0.884) (0.689) (1.323)

Notes: This table presents counterfactual market outcomes with: (1) Three incompatible standards, (2) Compatible standards
and private charging investment, and (3) Compatible standards and Social Planner investment. Columns (4)-(6) compare
outcomes across regimes. Standard errors are bootstrapped.
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Supplementary Appendix For Online Publication

A Empirical Bayes Estimator for Market Shares

The empirical Bayes posterior estimate is consistent with the demand model and has

advantages over three common methods in the literature for dealing with zero market

shares. The first common method is to aggregate to a larger market definition so that

zeros are averaged away. Aggregation in this setting would smooth over important

spatial and time variation in charging station availability. The second solution is to

add a very small constant to all the market shares. This is not ideal because the model

may predict different purchase probabilities for two products that both have zero sales.

Transforming zero shares into the same non-zero share is inconsistent with the demand

model. The third solution is to drop the observations with zero shares. This solution

is not ideal because products that are known to be in the consumer choice set would

be conflated with products that were not available to consumers at all. Consumers

not purchasing a product in their choice set and consumers not having a particular

product in their choice set at all have different implications for the underlying consumer

preferences.

Gandhi et al. (2017) discuss the small and zero market share problem in more detail

and present an estimation framework to partially-identify demand parameters. First,

they pull market shares away from zero with a Bayesian posterior estimate founded

upon Laplace’s rule of succession. Next, they present a moment inequality approach to

partially identifying demand parameters. I do not follow their methods for the following

reason. The prior from Laplace’s rule of succession is that each product has the same

market share, equal to 1
Jmt

, where Jmt is the number of products in the market. The

assumption is that we know nothing about what the true purchase probabilities should

be, besides that we have observed no purchases in this particular market. In my setting

with panel data, the outcomes in other markets contain more information on purchase

probabilities that should be exploited.

Lastly, two other sets of methods are available in the literature for dealing with

zero market shares, but are not applicable in my setting. First, Ackerberg and Rysman

(2005) and Quan and Williams (2018) relax the i.i.d. assumption on the idiosyncratic

taste term, the logit errors. In practice, this framework can be thought of as a random

effects model which can allow for across-market variance in idiosyncratic tastes for a
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particular product and rationalizes zero market shares. However, it is not possible to

recover the market-specific random effects, which are necessary to run counterfactual

analysis. Second, Hortaçsu and Joo (2018) present a CES demand system with product

characteristics that accommodates zero predicted market shares.
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B State Subsidies

Figure 8: State Subsidies for Plug-In Vehicles across State, Time, and Vehicle Model

(a) Vehicle Models
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(b) States
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Notes: This figure depicts variation in state-level subsidies for plug-in electric vehicles
from 2011 to 2015. The subsidies are collected from each state’s legislative records.
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Figure 9: State Subsidies for Charging Stations across State and Time
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Notes: This figure plots change events (increases and decreases) in state-level subsidies
for charging stations from 2011 to 2015. The subsidies are collected from each state’s
legislative records. Changes in Level 2 station subsidies are in the top figure, and
changes in Level 3 station subsidies are in the bottom figure.
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