DOCKETED				
Docket Number:	19-IEPR-03			
Project Title:	Electricity and Natural Gas Demand Forecast			
TN #:	227493			
Document Title:	City of Redding Electric Utility Form 6 Demand Side Program Methodology 2019			
Description:	N/A			
Filer:	Lisa Casner			
Organization:	City of Redding Electric Utility			
Submitter Role:	Public Agency			
Submission Date:	4/3/2019 10:06:06 AM			
Docketed Date:	4/3/2019			

Form 6 – Demand Side Management Methodology Documentation

Program Background:

The Energy Storage (ES) program has consisted of installations of ice based Thermal Energy Storage Systems (TES) at Redding's commercial customer facilities between 2005 and 2017. Installations of energy storage equipment provided a pathway to shift air conditioning load to off peak hours. As shown on Form 3.4, the energy storage program includes both <u>dispatchable capacity</u>, where REU specifies the control strategy of the energy storage equipment and <u>nondispatchable capacity</u>, where the customer controls the energy storage equipment.

The demand response values shown in Form 3.4 for dispatchable installations are based on the stipulated values shown below.

Demand	Response	Capacity
--------	----------	----------

Demand Response Supusity							
Demand Response Capacity (kW) based on HVAC System							
Capacity and Vintage							
	Equipment Nominal Tonnage						
Year of Connected Package Unit	3	3.5	4	5	6		
2006+	5.5	6.5	7.4	9.2	11.0		
1999-2005	6.7	7.8	8.9	11.2	13.4		
1992-1998	7.2	8.4	9.6	12.0	14.5		
1984-1991	7.3	8.5	9.8	12.2	14.8		
Pre 1984	8.3	9.6	11.0	13.7	16.4		

<u>Nondispatchable</u> installations are chiller based TES systems that provide optimized equipment utilization profiles resulting in load shifting capacity shown in Form 3.4. These values are based on custom engineering calculations.

Load Impacts:

Redding's load forecast reflects the historical embedded use of the ES program and as such, they are not provided as separate inputs into the load forecast.