DOCKETED	
Docket Number:	19-IEPR-04
Project Title:	Transportation
TN #:	227310
Document Title:	Presentation - LBNL EV Infrastructure and Grid-Integration Overview
Description:	Lawrence Berkeley National Laboratory presentation at March 11
	IEPR Staff Workshop
Filer:	Denise Costa
Organization:	Lawrence Berkeley National Laboratory
Submitter Role:	Public Agency
Submission Date:	3/11/2019 2:36:36 PM
Docketed Date:	3/11/2019

LBNL EV Infrastructure and Grid-Integration Overview

Colin Sheppard, Samveg Saxena, Doug Black

BEAM Agent-Based Travel Demand Model

PEV Load Flexibility with Increasing Workplace Charging

DC Fast Requirements for SAEV Ride Hail using BEAM

- Adopting the EV fleet for automated taxis leads to more waiting time, deadheading VMT, and less customers served compared with the same number of ICEVs
- Charging infrastructure can significantly affect the above metrics

RERKELEV I AR

GEM Model

BERKELEY LAB

GEM Results:

Charging Infrastructure and Fleet Composition by Region

GEM Results: National EV Charging Load

GEM Results: National EV Load with Private Smart Charging

BERKELEY LAB

IERGY TECHNOLOGIES AREA ENERGY ANALYSIS AND ENVIRONMENTAL IMPACTS DIVISION

Results: Smart Charging

60000 -

ESC

MAT-NL

MAT-NY

ENC

ĥ. 20 40 60

5 報告 12.0 66 323 -8H 10 164 10.5 10 157 部-

ENERGY TECHNOLOGIES AREA ENERGY ANALYSIS AND ENV

AlCo Fleet and Public EV Smart Charging

BERKELEY LAB

Examining LDV, MDV, HDV ZEV Fueling Needs & Grid Integration Potential – Example for FCEVs

1. Hydrogen fuel demands

Non-LDV data from EMFAC + LDV data from travel survey data

Generate probabilistic simulations from aggregate data

2. HFCV scenarios

(Synthesis from CA modelers)

3. Refueling algorithms

- MDVs and buses: End of shift
- HDVs: refueling probability similar to LDVs (fuel tank level)

For 2030 reference year

4. Hydrogen refueling profiles

Grid System Models = System costs,

renewables

Thank you