DOCKETED	
Docket Number:	19-IEPR-03
Project Title:	Electricity and Natural Gas Demand Forecast
TN #:	227207
Document Title:	Key Drivers and Structure
Description:	Presentation by Anthony Dixon of CEC
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	3/1/2019 11:42:06 AM
Docketed Date:	3/1/2019

North American Market Gastrade (NAMGas) Model: Key Drivers and Structure

2019 Integrated Energy Policy Report California Energy Commission

Presenter: Anthony Dixon

March 4, 2019

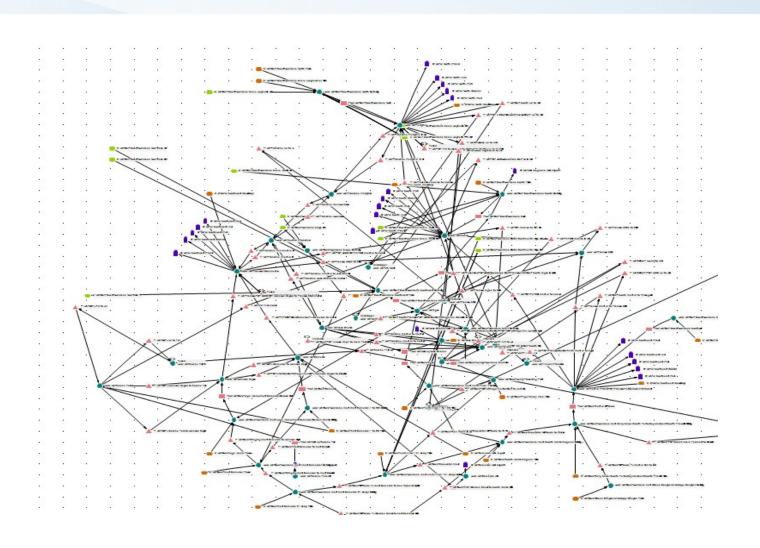
California Energy Commission

Simplified View:

North American Market Gas-trade (NAMGas) Model

NAMGas components:

Natural gas supply basins
Connected to
Interstate and Intrastate
pipelines
Connected to
Demand centers



Demand

- Model iterates between the three components to find economic equilibrium at all nodes at all time periods
- Results give prices, demand, and supply at equilibrium

Not So Simplified View: North American Market Gas-trade (NAMGas) Model

North American Market Gas-trade Model: Construction

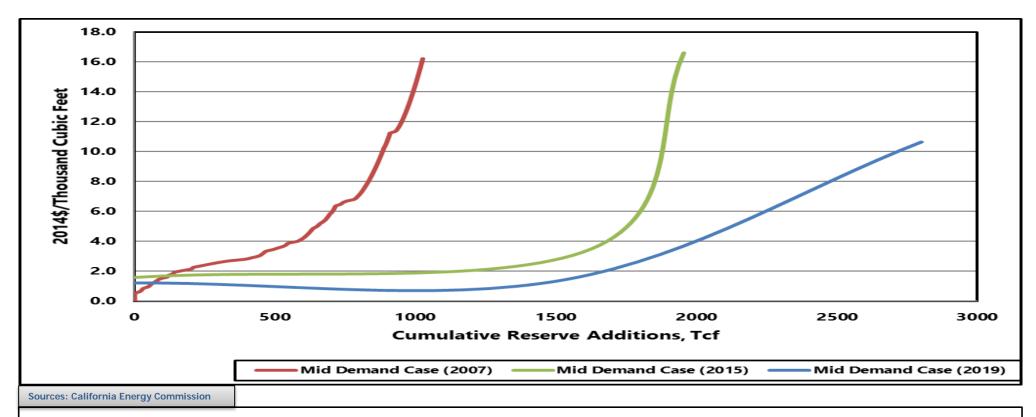
- Created in the MarketBuilder platform
 - General equilibrium modeling logic is well-vetted
- The 2019 NAMGas runs will incorporate:
 - Reset assumptions in the California portions to reflect the 2019 IEPR Common Cases
 - Update changes to North American pipeline system capacity
 - Update information on gas reserves and costs
- Vetting of staff assumptions and results by outside consultant and input from this workshop

IEPR Cases

- Staff scenarios/common cases:
 - High Demand/Low Price
 - Mid Demand
 - Low Demand/High Price
- All cases assume Senate Bill 100 Zero carbon sources for power generation by 2045

NAMGas Relies on Resource Assessments and Costs as Key Supply Drivers

Resource assessments:


- Assessments of technically recoverable resources
 - Most important factor affecting regional trade flows and price
- Model distinguishes between proved and potential resources
 - Proved resources capital costs already incurred but not operational costs
 - Potential resources undeveloped resources with no capital costs incurred

Resource costs:

- Development costs define the subset of technically recoverable resources that are economically recoverable
 - As prices rise, more resources become economic to produce

Supply Costs Continue Significant Decline – Major Input Parameter in NAMGAS

- Technology improvements and efficiencies allow more production at lower costs
- Shift in the marginal cost profile means more resources available at lower cost
- Staff's updates show a significant change in supply cost for the long term

Key Drivers (Demand)

- Initial starting prices and demand quantities:
 - Excel-based econometric tool (Small 'm' model) uses historical data to calculate starting points to run NAMGas
 - Common cases will include modifications for California and the WECC

Key Drivers (Demand)

Demand in Five Sectors:

– Residential Factors:

> Recent historical demand for natural gas, population, natural gas price, income, heating oil price, and cold and hot weather

– Commercial Factors:

Recent historical demand for natural gas, income, natural gas price, population, heating oil price, and cold and hot weather

– Industrial Factors:

Recent historical demand for natural gas, natural gas price, industrial production, and cold weather

Key Drivers (Demand)

– Power Generation Factors:

- ➤ Natural gas, coal, and fuel oil cost; coal, nuclear, hydroelectric and renewable generation, and hot weather
- Transportation Factors:
 - > Recent historical demand for natural gas, income, natural gas price, and population
 - > Applied outside California

Estimated Elasticity:

- Residential, Commercial, Industrial, Power Gen, and Transportation
- Estimated range of price elasticity is approximately 0.5298-1.2363. (Baker Institute)

IEPR Common Cases: Purpose of Cases

- Examine price and supply in the North American natural gas market:
 - Potential vulnerabilities to California
 - Potential opportunities for California
- The North American gas market is linked CA cannot be assessed in isolation
- Investigate range of natural gas price and supply uncertainty

IEPR Common Cases: (Mid Demand Case)

- Initial U.S. demand quantity:
 - 2017: Total ~ 27.46 Tcf; Power Gen ~ 9.28 Tcf
 - EIA actual natural gas demand 27.09 Tcf
 - EIA actual power generation demand 9.25 Tcf
 - 2020: Total ~ 29.14 Tcf; Power Gen ~ 9.85 Tcf
 - 2030: Total ~ 35.52 Tcf; Power Gen ~ 12.00 Tcf
- Proved Reserves: approx. 438 Tcf (EIA estimate, Dec. 2018)
 - 324 Tcf reserves assumed in 2017 IEPR
 - Record Production in 2018, approximately 32 Tcf
 - Proved Resources increased 114 Tcf, 35%
- Coal Conversion: 65 Gigawatts (beginning in 2019)
 - Analysis of EIA data of forecasted fuel use

IEPR Common Cases Assumptions: Description (Mid Demand Case)

- Potential Reserves:
 - 2,112 Tcf @ \$5.00/Mcf
 - 2,816 Tcf @ \$10.00/Mcf
- Rate of Return (Same as 2017 IEPR):
 - Resources: 12.2% (real after tax)
 - Pipeline Investment: 8.4% (real after tax)
 - Income Tax Rate: 35%
 - Return on Equity: 10%
- Backstop Technology (Updated assumptions for 2019 IEPR):
 - Unspecified at \$15.00/Mcf
- Technology Factor (Same as 2017 IEPR):
 - 1%/year.

Methodology: Estimating Power Plant Burner Tip Prices

- Natural gas burner tip prices
 - Include cost to procure and deliver gas to an electric generator
 - Include both a commodity and a transportation component
- Extract annual wholesale commodity hub prices from NAMGas Model
 - Examples: Hub: US-PG&E, US-Malin, US-SoCalGas
 - Convert annual price to monthly price
- Add transportation cost from hub to power plant to get burner tip price
 - Use pipeline utilities' tariffs

https://www.energy.ca.gov/assessments/ng_burner_tip.html

Uses of NAMGas Outputs

- Burner Tip Model
- Inputs to PLEXOS via the Burner Tip Model
- End-use natural gas rate forecast
- Electricity rate forecast
- Transportation fuel price forecast
- Cost of generation estimates
- Various stakeholders use as inputs for modeling or information source

Next Steps

Preliminary Results Workshop scheduled for April 22, 2019.

Questions and Comments