DOCKETED					
Docket Number:	19-BSTD-02				
Project Title:	Project Title:Residential Alternative Calculation Method Variable Capacity Heat Pump Modeling Approach				
TN #:	227124				
Document Title:Presentation - Residential Alternative Calculation Method Avariabl Capacity Heat Pump Modeling Approach - Public Workshop					
Description:	Description: VCHP Workshop Presentation Slides				
Filer:	RJ Wichert				
Organization:	California Energy Commission				
Submitter Role:	Commission Staff				
Submission Date:	2/21/2019 6:49:38 AM				
Docketed Date:	2/21/2019				

Public Workshop

Residential Alternative Calculation Method Variable Capacity Heat Pump Modeling Approach

February 15, 2019 California Energy Commission

General Workshop Information

- Broadcast using WebEx
 - The meeting is being recorded
 - In person participants: please sign in
- Online participants
 - Will remain muted unless they request to comment
 - Online comments will be taken after in person participants and in alphabetical order
- Comments
 - Provide business card and state name and affiliation before speaking
- Presentation
 - This presentation and transcript will be posted on our website in a few days

General Workshop Information

- Moderator
 - Larry Froess, P.E. California Energy Commission
- Presenters
 - Abram Conant Proctor Engineering Group
 - Bruce A. Wilcox P.E.
- Question and Answers

Variable Capacity Heat Pumps Proposed Compliance Option

2/15/2019

ENERGTOURDE

MAKELINDA

Background

Currently no credit for mini and multi split variable capacity heat pumps (VCHP)

- High SEER and HSPF ratings not demonstrated to predict installed performance
- Issues with comfort, controls, installation

Research Plan

- Field based evaluation of multiple VCHP systems
- Determine appropriate credit and requirements

Studies have been conducted each year since 2014

- http://www.etcc-ca.com/reports/variable-compressor-speed-heat-pumps
- <u>https://www.etcc-ca.com/reports/central-valley-research-homes-</u> evaluation-ducted-and-ductless-configurations-variable

Central Valley Research Homes (CVRH) Laboratory Houses

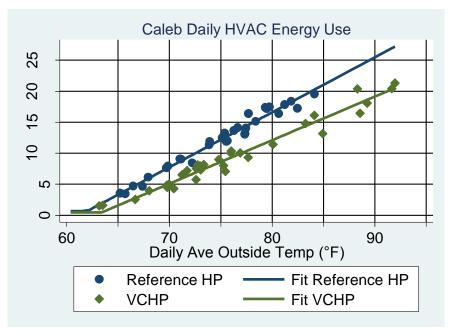
Houses received deep energy retrofits in 2013 and now approach the efficiency of modern CA building standards

Extensively Instrumented

Simulated Occupants

Title 24 internal gains schedule

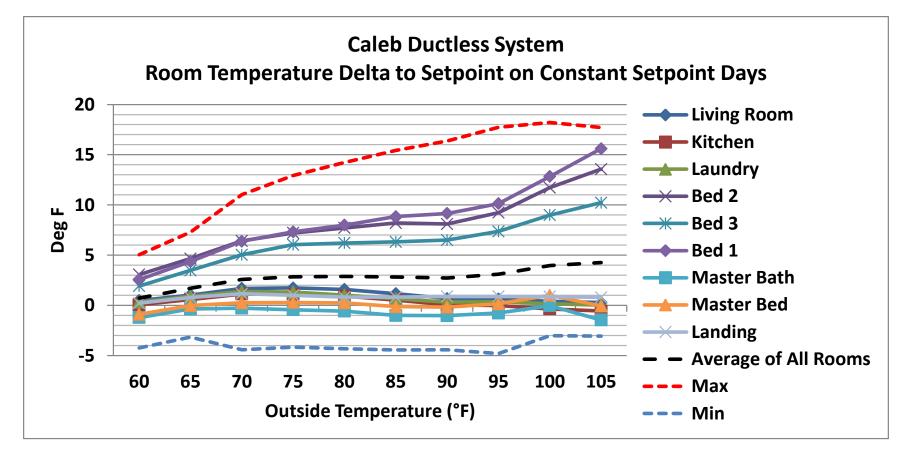
Reference HP System



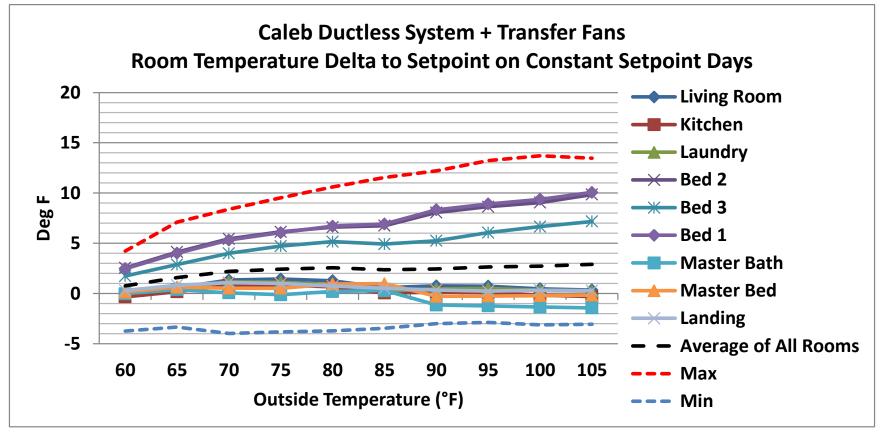
- Single speed, SEER 14, HSPF 8.2, in conditioned space
- VCHP and Reference HP alternate every few days
- Expected VCHP energy savings =
 - (VCHP SEER Reference SEER)/VCHP SEER
 - (VCHP HSPF Reference HSPF)/VCHP HSPF

VCHP Systems

	SEER	EER	HSPF	Туре
Grange 2014	21.7	13.4	9.4	Ductless multi split
Mayfair 2014	21.5	14.5	12.2	Ducted mini split
Caleb 2015	20.9	12.7	10.5	Ductless mini and multi split with transfer fans
Grange 2015	25.5	13.8	11.5	Ductless mini split with transfer fans
Mayfair 2015	16	12.5	10	Ducted mini split
Caleb 2016 Ducted	19.0	12.8	10.6	Ducted mini splits
Caleb 2016 Ductless	21.0	13.2	10.4	Ductless mini and multi split
Caleb 2016 Ductless + Fans	21.0	13.2	10.4	Ductless mini and multi split with transfer fans
Grange 2016 Ducted	29.3	15.2	14	Ducted mini split
Grange 2016 Ductless	29.3	15.2	14	Ductless mini split
Grange 2016 Ductless + Fans	29.3	15.2	14	Ductless mini split with transfer fans
Mayfair 2016 Ducted	21	12.5	12	Ducted mini split
Mayfair 2016 Ductless	21	12.5	12	Ductless mini split
Mayfair 2016 Ductless + Fans	21	12.5	12	Ductless mini split with transfer fans
Caleb 2017 Ducted	14.6	9.3	9.1	Ducted mini splits
Grange 2017 Ducted 1 Ton	29.3	15.2	14	Ducted mini split
Grange 2017 Ducted .75 Ton	33	18	14.2	Ducted mini split
Mayfair 2017 Ducted 1.5 Ton	21	12.5	12	Ducted mini split
Mayfair 2017 Ducted 1 Ton	26.1	13.8	12.5	Ducted mini split


Analysis Approach Comparison of Normalized Annual Energy Use

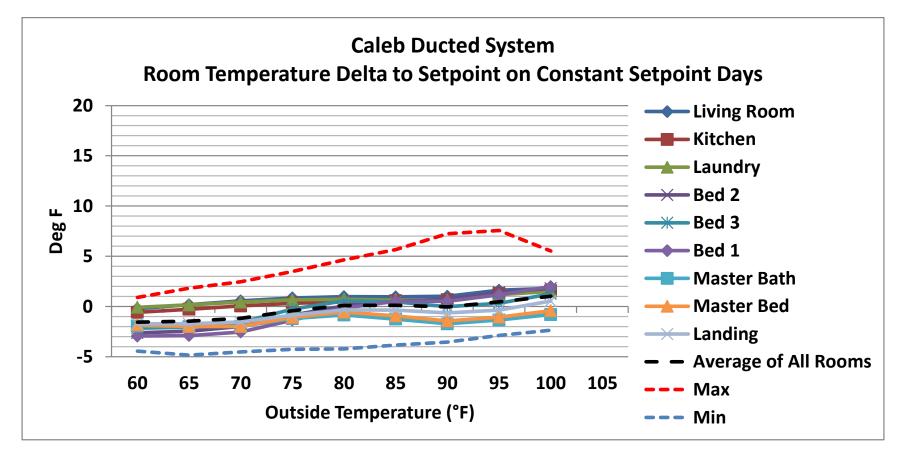
- Linear regression of daily energy use vs. daily average outdoor temperature
- Applied to Title 24 weather file for Stockton, CA to calculate normalized annual energy use
- Expected energy savings =
 - (VCHP SEER Reference SEER)/VCHP SEER
 - (VCHP HSPF Reference HSPF)/VCHP HSPF


Temperature Control Problems

When All Rooms Are Not Directly Served by Ductless VCHP

Temperature Control Problems

When All Rooms Are Not Directly Served by Ductless VCHP

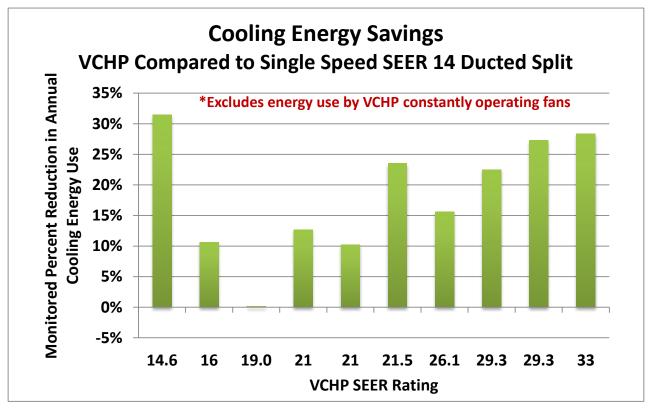


Transfer fans are not an adequate solution

- Comfort is not being provided
- Meaningful energy use comparison is not possible since the house isn't being fully cooled

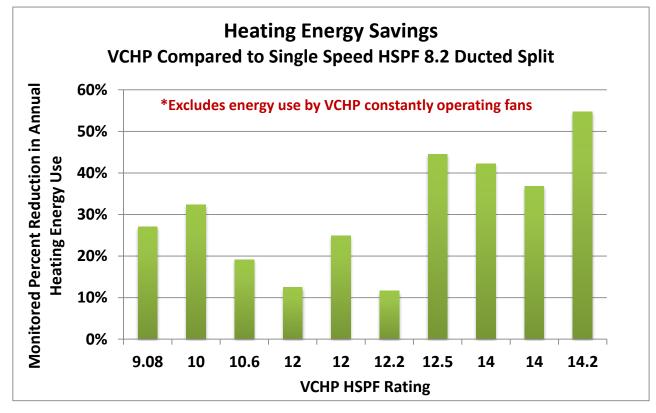
Temperature Control

When All Rooms Are Directly Served by Ducted VCHP

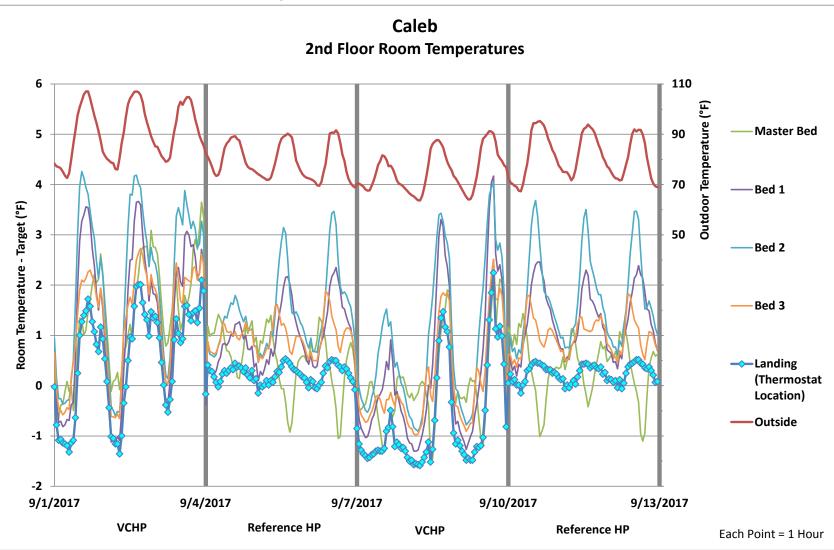

All habitable rooms must be directly served

VCHP Systems Evaluated

	Reference HP			VCHP			
	SEER	EER	HSPF	SEER	EER	HSPF	Notes
Grange 2014	15.5	11.9	3.412	21.7	13.4	9.4	Found to be 29% undercharged
Mayfair 2014	16*	13*	3.412*	21.5	14.5	12.2	
Caleb 2015	14	12	8.2	20.9	12.7	10.5	Not all habitable rooms were served
Grange 2015	14	11.5	8.2	25.5	13.8	11.5	Not all habitable rooms were served
Mayfair 2015	14	11.5	8.2	16	12.5	10	
Caleb 2016 Ducted	14	12	8.2	19.0	12.8	10.6	
Caleb 2016 Ductless	14	12	8.2	21.0	13.2	10.4	Not all habitable rooms were served
Caleb 2016 Ductless + Fans	14	12	8.2	21.0	13.2	10.4	Not all habitable rooms were served
Grange 2016 Ducted	14	11.5	8.2	29.3	15.2	14	
Grange 2016 Ductless	14	11.5	8.2	29.3	15.2	14	Not all habitable rooms were served
Grange 2016 Ductless + Fans	14	11.5	8.2	29.3	15.2	14	Not all habitable rooms were served
Mayfair 2016 Ducted	14	11.5	8.2	21	12.5	12	
Mayfair 2016 Ductless	14	11.5	8.2	21	12.5	12	Not all habitable rooms were served
Mayfair 2016 Ductless + Fans	14	11.5	8.2	21	12.5	12	Not all habitable rooms were served
Caleb 2017 Ducted	14	12	8.2	14.6	9.3	9.1	
Grange 2017 Ducted 1 Ton	14	11.5	8.2	29.3	15.2	14	
Grange 2017 Ducted .75 Ton	14	11.5	8.2	33	18	14.2	
Mayfair 2017 Ducted 1.5 Ton	14	11.5	8.2	21	12.5	12	
Mayfair 2017 Ducted 1 Ton	14	11.5	8.2	26.1	13.8	12.5	


*Energy use adjusted to represent SEER 14 / HSPF 8.2 for consistency in the modeling analysis

SEER Rating Is Not A Reliable Predictor of Cooling Energy Use


- The lowest SEER rated VCHP system had the best cooling energy performance relative to the single speed Reference heat pump
- A SEER 29 VCHP should use less than half as much energy as the SEER 14, but the actual energy savings are much smaller

HSPF Rating Is Not A Reliable Predictor of Heating Energy Use

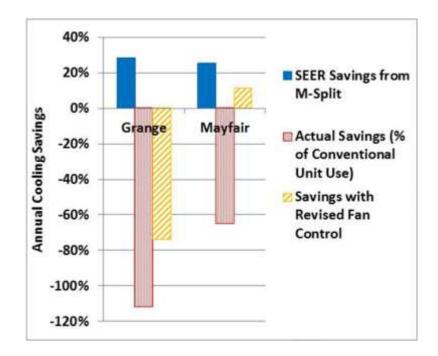
- In general, heating savings were larger than cooling savings
- Some systems used significantly more energy than predicted by the relative HSPF rating

Sources of Uncertainty Indoor Temperature Control Differences

Sources of Uncertainty Occupant Behavior Not Accounted For

Source: Mike MacFarland and Keith O'Hara

Sources of Uncertainty


VCHP System Design, Installation and Commissioning

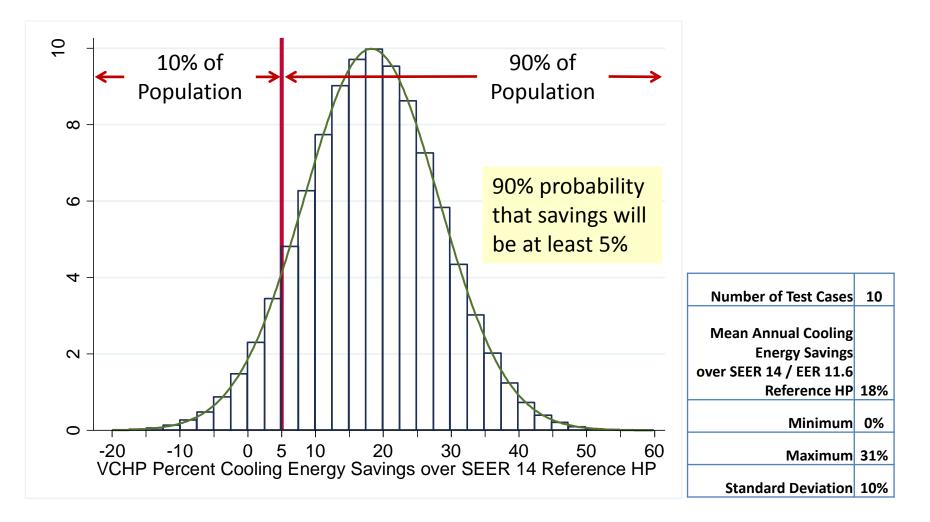
Most VCHP systems were specified, installed, configured and commissioned by the research team or by the VCHP manufacturer.

• Probably optimistic relative to typical design and installation

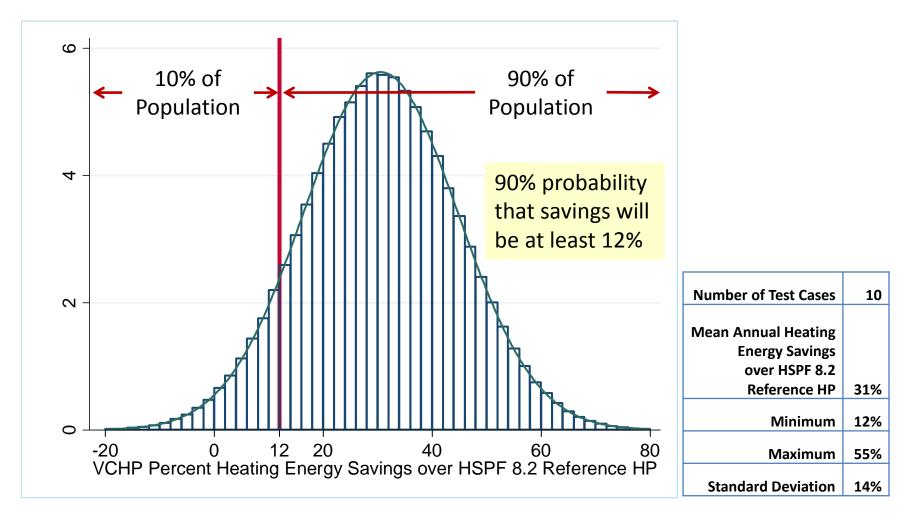
The two systems that were installed by local HVAC contractors and are therefore the most representative of typical installation performed poorly.

- Low refrigerant charge (Grange)
- Constantly operating indoor fans

Modeling Approach


Default VCHP model

- Represents CVRH monitored seasonal energy savings over single speed SEER 14 / HSPF 8.2 HP, using current CBECC-Res model
- One model adopted for all VCHP systems, not a function of VCHP SEER, EER or HSPF ratings


Specific VCHP model

 Expected to become possible when reliable performance inputs become available (more information will be presented later)

Cooling Energy Savings over SEER 14 HP Projected to a Normal Population

Heating Energy Savings over HSPF 8.2 HP Projected to a Normal Population

Proposed VCHP Performance Credit

- 5% cooling energy savings over minimum efficiency single speed SEER 14 / EER 11.6 Reference HP
- 12% heating energy savings over minimum efficiency single speed HSPF 8.2 Reference HP
- Reference HP fan efficacy = 0.35 W/cfm
 - This represents additional VCHP credit over the standard assumption
- Credit for ducts in conditioned space
- 50W/ton continuous fan energy assumed for ducted VCHP systems unless manufacturer certifies the fan does not operate continuously in the factory default control configuration (auto fan credit)

Applicable System Types for Proposed VCHP Performance Credit

- Mini and multi-split VCHP systems with ductless indoor units
- Ducted mini and multi split VCHP systems with, low-static indoor units
 - Low-static:
 - Less than 0.35 IWC at cooling full load air volume
 - As defined by 10 CFR Parts 429 and 430, Docket No. EERE–2016–BT–TP–0029, Federal Register Vol. 82, No. 3, January 5, 2017

Requirements for All VCHP Systems

- Each habitable room must be directly served by ducted air handler or ductless head
 - Transfer fans do not meet this requirement
- All ducts and indoor units (ducted or ductless) must be located entirely in conditioned space
- Wall mount thermostat required in each zone > 150 ft²
- Indoor and outdoor unit make, model and serial numbers must be visible for field verification
- Field verification of installed system

Requirements for Ducted VCHP Systems

- The manufacturer must certify to the Energy Commission that:
 - The VCHP system meets the DOE definition of a low-static system
 - If the auto fan credit is claimed, that in the factory default controls configuration the system does not operate the indoor unit fan when the compressor is off, except for a fan overrun (fan off delay) of less than 10 minutes at the end of the compressor on cycle
- VCHP system model numbers must be listed on the CEC website as a low-static system, and as eligible for the auto fan credit, if claimed
- Low Leakage Ducts in Conditioned Space per RA3.1.4.3.8
- Airflow \geq 350 cfm/ton for each ducted indoor unit
- Air filters sized per 2019 Title 24 Part 6 Section 150.0(m)12B, and with a maximum clean filter pressure drop of 0.1 inch w.c. at the filter's design airflow rate, regardless of filter depth.

Field Verification for All VCHP Systems

- Model number, nominal cooling capacity, and location of each indoor unit matches installer reported documentation
- Refrigerant charge

Field Verification for Ducted VCHP Systems

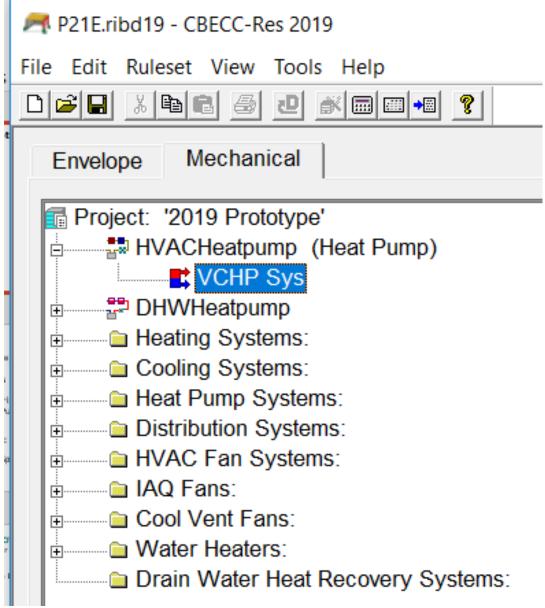
- Verified Low Leakage Ducts in Conditioned Space per RA3.1.4.3.8
- Airflow \geq 350 cfm/ton for each ducted indoor unit
- Air filters sized according to the requirements in 2019 Title 24 Part 6 Standards Section 150.0(m)12B, and all filters shall have a maximum clean filter pressure drop of 0.1 inch w.c. at the filter's design airflow rate, regardless of filter depth.
- Model numbers are listed on the CEC website as a low-static system
- If auto fan credit was claimed, model numbers are listed as eligible on CEC website and indoor fan of installed system does not operate continuously

Field Verification New HERS Protocols for Multiple-Split Systems

The new protocols will be used for all ducted multiple-split system types when applicable.

• Verified airflow for ducted indoor units

- Airflow target for each indoor unit will be based on the nominal cooling capacity (ton) from the nameplate of the <u>indoor</u> unit. This is a modification of the method used for conventional split systems that uses the nominal cooling capacity (ton) of the outdoor condensing unit.
- Each ducted indoor unit required to verify compliance with the calculated minimum cfm/ton.
- Duct leakage measurement for ducted indoor units
 - Leakage target will be based on the nominal cooling capacity (ton) from the nameplate of the indoor unit. This is a modification of the RA3.1.4.2.2 nominal air handler airflow calculation.
 - Each ducted indoor unit required to comply individually with the applicable calculated maximum duct leakage (% of 400 cfm/ton)
- Verified Low Leakage Ducts in Conditioned Space protocol for ducted indoor units
 - No change to the protocol specified in RA3.1.4.3.8.
 - Each ducted indoor unit required to comply individually.


Future Modeling Approach

Optional voluntary pathway to credit a specific VCHP system

- Manufacturer provides:
 - Data from CSA Exp-07 test
 - ASHRAE 205 performance map

CSA based model needs to be developed – this is beyond the scope of current modeling efforts

CBECC-Res 2019 VCHP Option

CBECC-Res Compliance Software

• Proposed VCHP model Inputs

- Example Compliance Comparison with Standard Design Split Heat Pump having:
 - Ducts in 2019 Prescriptive Attic
 - Verified Ducts in Conditioned Space

CBECC-Res Compliance Software

- Provides Performance compliance for Low Rise Residential building permits
- Compliance based on comparing the Energy Design Rating (EDR) of
 - Prescriptive Standard Design
 - Builders Proposed Design
- Both Efficiency and Total must comply
- Based on detailed hourly simulations using Time Dependent Valuation (TDV)
- Draft 2019 Standards version Public Workshop yesterday

Feb. 15, 2019

Draft VCHP version

CBECC-Res Compliance Software Project

HOME	CBECC-RES 2013	CBECC-RES 2016	CBECC-RES 2019	FAQ/ HELP	REFERENCE DOCUMENTS	SOFTWARE ARCHIVE	
CBECC-RE	S 2019					SIGN UP to be notified about new versions of CBECC-Res	
Download/I compliance	nstall CBECC-R	email address Subscribe					
This software is intended for users who wish to review the software as part of the approval process. Results from this version cannot be used for							

This software is intended for users who wish to review the software as part of the approval process. Results from this version cannot be used for compliance of any kind and are subject to change as the 2019 software development continues.

- <u>CBECC-Res 2019.0.11 Alpha</u> January 28, 2019 (<u>alternate link</u>) Click either link to download CBECC-Res 2019.0.11 Alpha (1242), which will be the subject of a Commission Workshop on February 14, 2019.
- <u>CBECC-Res 2019.0.11 Alpha-VCHP February 13, 2019</u> (alternative link)
 Click either link to download CBECC-Res 2019.0.11 Alpha-VCHP (1250), which includes the proposed VCHP Compliance Option that will be the subject of a Commission Workshop on February 15, 2019.

o CBECC-Res 2019.0.11 Alpha-VCHP

http://www.bwilcox.com/BEES/cbecc2019.html

VCHP Heat Pump System Type

HeatpumpSystemVCHP

 VCHP - Meets requirements of the VCHP compliance option
 ▼

 - select heat pump component type SplitHeatPump - Central split heat pump

 SDHVSplitHeatPump - Small duct, high velocity, central split heat pump

 DuctlessMiniSplitHeatPump - Ductless mini-split heat pump

 DuctlessMultiSplitHeatPump - Ductless multi-split heat pump

 DuctlessVRFHeatPump - Ductless variable refrigerant flow (VRF) heat pump

 PkgHeatPump - Central packaged heat pump

 LrgPkgHeatPump - Large (>= 65 kBtuh) packaged unit

 RoomHeatPump - Non-central room A/C system

 AirToWaterHeatPump - Air to water heat pump (able to heat DHW)

 GroundSourceHeatPump - Ground source heat pump (able to heat DHW)

 VCHP - Meets requirements of the VCHP compliance option

VCHP Input Screen

Type: VCHP - Meets requirements of the											
VCHP: Meets all the requirements of the VCHP Compliance Option.											
HSPF, Cap @ 17, SEER and EER for re	eporting only, no analysis impact										
Heating Performance:	Cooling Performance:										
HSPF: 8.2 ratio	SEER: 14 (kBtu/h)/k	w									
	EER: 11.6 kBtuh/kW	/									
Capacity (Btuh)											
@ 47°F: 36,000											
	AC Charge: Verified	•									
@ 17°F: 24,000											
Ducts: Unducted											

Unducted VCHP Input

Unducted 🔹
Unducted
Ducted
Partially Ducted

Ducts:	Unducted	•

Done

Unducted VCHP

If Ducted or Partly Ducted And Certified Auto-Fan

Ducts:	Ducted 💌
	Unducted
	Ducted
	Partially Ducted
	r artially b dotted

Ducts:	Ducted <	
	Certified Auto-Fan	

Done

Ducted or Partly Ducted and Not Certified

Ducts:	Ducted 🗸
	Unducted
	Ducted
	Partially Ducted

Ducts:	Ducted <
	Certified Auto-Fan

Done with 50 W/ton continuous fan

Or

Ducts:	Partially Ducted
	Certified Auto-Fan

Done with 25 W/ton continuous fan

Ducted VCHP in Conditioned Space

Feb. 15, 2019

Wilcox - VCHP

12" furred space below the ceiling

Short, Low Pressure Ducts to Rooms

VCHP Air Handler in Furred Space

Return Grill and Access Hatch

2019 EDR Compliance Comparison with Standard Design Split Heat Pump

	EDR Efficiency				EDR Flexibilty				EDR Total			
	Standard	VCHP	Diff	% Diff	Standard	VCHP	Diff	% Diff	Standard	VCHP	Diff	% Diff
CZ01	66.8	56.9	9.9	15%	21.8	21.8	0.0	0%	45.0	35.1	9.9	22%
CZ02	52.6	47.9	4.7	9%	20.7	20.7	0.0	0%	31.9	27.2	4.7	15%
CZ03	54.9	50.5	4.4	8%	22.8	22.8	0.0	0%	32.1	27.7	4.4	14%
CZ04	52.0	47.2	4.8	9%	21.4	21.3	0.1	0%	30.6	25.9	4.7	15%
CZ05	53.5	49.4	4.1	8%	22.1	22.0	0.1	0%	31.4	27.4	4.0	13%
CZ06	55.8	52.8	3.0	5%	26.1	26.0	0.1	0%	29.7	26.8	2.9	10%
CZ07	55.2	54.3	0.9	2%	28.3	28.3	0.0	0%	26.9	26.0	0.9	3%
CZ08	52.2	49.8	2.4	5%	25.6	25.6	0.0	0%	26.6	24.2	2.4	9%
CZ09	52.3	48.7	3.6	7%	23.2	23.2	0.0	0%	29.1	25.5	3.6	12%
CZ10	52.4	48.4	4.0	8%	21.9	22.0	-0.1	0%	30.5	26.4	4.1	13%
CZ11	49.3	43.8	5.5	11%	20.4	20.4	0.0	0%	28.9	23.4	5.5	19%
CZ12	50.2	45.6	4.6	9%	19.3	19.3	0.0	0%	30.9	26.3	4.6	15%
CZ13	50.6	44.9	5.7	11%	20.7	20.7	0.0	0%	29.9	24.2	5.7	19%
CZ14	51.7	45.7	6.0	12%	20.9	20.9	0.0	0%	30.8	24.8	6.0	19%
CZ15	51.3	45.4	5.9	12%	26.1	26.1	0.0	0%	25.2	19.3	5.9	23%
CZ16	63.9	54.2	9.7	15%	18.2	18.1	0.1	1%	45.7	36.1	9.6	21%
Average	54.04	49.09	4.95	9%	22.47	22.45	0.02	0%	31.58	26.64	4.93	15%

2700 ft2 prototype with 2019 prescriptive features & Standard Design PV Split HP Ducts in 2019 prescriptive attic, with max fan W/cfm VCHP sized @ full load. Split sized 75% w/ backup resistance heat

2019 TDV Comparison with Standard Design Split Heat Pump

	Н	V/ft2	Cooling kTDV/ft2				Total kTDV/ft2					
	Standard	VCHP	Diff	% Diff	Standard	VCHP	Diff	% Diff	Standard	VCHP	Diff	% Diff
CZ01	46.0	27.6	18.4	40%	0.0	0.0	0.0		83.7	65.4	18.4	22%
CZ02	25.7	17.4	8.3	32%	2.8	1.9	1.0	34%	62.8	53.6	9.2	15%
CZ03	18.8	11.2	7.6	40%	0.0	0.0	0.0		55.4	47.9	7.6	14%
CZ04	20.7	13.3	7.4	36%	4.7	3.1	1.7	35%	58.4	49.3	9.1	16%
CZ05	18.0	10.7	7.3	41%	0.0	0.0	0.0		56.1	48.8	7.3	13%
CZ06	8.6	5.7	2.9	34%	3.8	2.3	1.5	40%	44.5	40.1	4.4	10%
CZ07	3.0	2.1	1.0	32%	0.6	0.3	0.3	43%	36.8	35.5	1.2	3%
CZ08	4.6	3.4	1.2	26%	12.3	9.6	2.8	22%	43.7	39.8	3.9	9%
CZ09	7.0	5.1	1.9	27%	22.6	17.6	5.0	22%	54.9	48.1	6.8	12%
CZ10	8.4	6.1	2.3	28%	26.1	20.3	5.8	22%	60.7	52.5	8.1	13%
CZ11	23.8	16.7	7.2	30%	37.7	30.0	7.7	20%	78.3	63.4	14.9	19%
CZ12	22.7	16.3	6.4	28%	22.1	17.7	4.4	20%	72.5	61.7	10.8	15%
CZ13	20.7	14.9	5.9	28%	42.6	33.1	9.5	22%	80.1	64.8	15.3	19%
CZ14	23.6	16.4	7.2	31%	36.1	28.0	8.1	23%	77.8	62.5	15.3	20%
CZ15	1.9	1.4	0.5	25%	87.2	69.7	17.5	20%	76.7	58.8	18.0	23%
CZ16	61.7	41.1	20.6	33%	4.6	3.2	1.4	31%	104.6	82.6	22.0	21%
Average	19.7	13.1	6.6	32%	19.0	14.8	4.2	27%	65.4	54.7	10.8	15%

2700 ft2 prototype with 2019 prescriptive features Split HP Ducts in 2019 prescriptive attic, with max fan W/cfm VCHP sized @ full load. Split sized 75% w/ backup resistance heat

Energy Use Comparison with Standard Design Split Heat Pump

	H	leating kWł	ı	(
	Standard	VCHP	Diff	% Diff	Standard	VCHP	Diff	% Diff
CZ01	4565	2723	1843	40%	0	0	0	
CZ02	2739	1852	887	32%	24	16	8	33%
CZ03	1933	1149	783	41%	0	0	0	
CZ04	2214	1421	793	36%	38	25	13	35%
CZ05	1893	1121	772	41%	0	0	0	
CZ06	945	628	317	34%	49	30	19	39%
CZ07	327	223	105	32%	4	2	2	43%
CZ08	507	375	133	26%	309	270	39	13%
CZ09	778	568	210	27%	595	494	101	17%
CZ10	944	683	261	28%	771	627	144	19%
CZ11	2553	1788	765	30%	1614	1286	328	20%
CZ12	2423	1745	678	28%	414	345	69	17%
CZ13	2201	1580	620	28%	1801	1439	362	20%
CZ14	2608	1811	797	31%	1581	1247	334	21%
CZ15	212	159	53	25%	5377	4361	1016	19%
CZ16	5589	3687	1902	34%	219	153	66	30%
Average	2027	1344	682	32%	800	643	156	25%

2700 ft2 prototype with 2019 prescriptive features

Split HP Ducts in 2019 prescriptive attic, with max fan W/cfm VCHP sized @ full load. Split sized 75% w/ backup resistance heat

2019 EDR Compliance Comparison with Split Heat Pump & DICS

	EDR Efficiency				EDR Flexibilty				EDR Total			
	VLLDCS	VCHP	Diff	% Diff	VLLDCS	VCHP	Diff	% Diff	VLLDCS	VCHP	Diff	% Diff
CZ01	60.5	56.9	3.6	6%	21.8	21.8	0.0	0%	38.7	35.1	3.6	9%
CZ02	50.3	47.9	2.4	5%	20.8	20.7	0.1	0%	29.5	27.2	2.3	8%
CZ03	51.8	50.5	1.3	3%	22.8	22.8	0.0	0%	29.0	27.7	1.3	4%
CZ04	49.7	47.2	2.5	5%	21.3	21.3	0.0	0%	28.4	25.9	2.5	9%
CZ05	50.8	49.4	1.4	3%	22.0	22.0	0.0	0%	28.8	27.4	1.4	5%
CZ06	54.1	52.8	1.3	2%	26.1	26.0	0.1	0%	28.0	26.8	1.2	4%
CZ07	54.6	54.3	0.3	1%	28.3	28.3	0.0	0%	26.3	26.0	0.3	1%
CZ08	51.0	49.8	1.2	2%	25.5	25.6	-0.1	0%	25.5	24.2	1.3	5%
CZ09	50.7	48.7	2.0	4%	23.2	23.2	0.0	0%	27.5	25.5	2.0	7%
CZ10	50.6	48.4	2.2	4%	22.0	22.0	0.0	0%	28.6	26.4	2.2	8%
CZ11	47.1	43.8	3.3	7%	20.4	20.4	0.0	0%	26.7	23.4	3.3	12%
CZ12	48.4	45.6	2.8	6%	19.3	19.3	0.0	0%	29.1	26.3	2.8	10%
CZ13	48.3	44.9	3.4	7%	20.7	20.7	0.0	0%	27.6	24.2	3.4	12%
CZ14	49.1	45.7	3.4	7%	20.9	20.9	0.0	0%	28.2	24.8	3.4	12%
CZ15	49.3	45.4	3.9	8%	26.1	26.1	0.0	0%	23.2	19.3	3.9	17%
CZ16	59.7	54.2	5.5	9%	18.1	18.1	0.0	0%	41.6	36.1	5.5	13%
Average	51.63	49.09	2.53	5%	22.46	22.45	0.01	0%	29.17	26.64	2.53	9%

2700 ft2 prototype with 2019 prescriptive features & Standard Design PV Split HP w/ Verified Low Leakage Ducts in Conditioned Space, & max fan W/cfm VCHP sized @ full load. Split sized 75% w/ backup resistance heat

TDV Comparison with Standard Design Split Heat Pump & DICS

	Heating kTDV/ft2				Cooling kTDV/ft2				Total kTDV/ft2			
	VLLDCS	VCHP	Diff	% Diff	VLLDCS	VCHP	Diff	% Diff	VLLDCS	VCHP	Diff	% Diff
CZ01	34.2	27.6	6.6	19%	0.0	0.0	0.0		72.0	65.4	6.6	9%
CZ02	21.7	17.4	4.3	20%	2.2	1.9	0.3	13%	58.2	53.6	4.6	8%
CZ03	13.5	11.2	2.3	17%	0.0	0.0	0.0		50.1	47.9	2.3	4%
CZ04	17.4	13.3	4.1	24%	3.8	3.1	0.8	20%	54.1	49.3	4.9	9%
CZ05	13.2	10.7	2.5	19%	0.0	0.0	0.0		51.3	48.8	2.5	5%
CZ06	7.0	5.7	1.3	18%	2.9	2.3	0.6	20%	41.9	40.1	1.8	4%
CZ07	2.4	2.1	0.3	14%	0.4	0.3	0.1	21%	36.0	35.5	0.4	1%
CZ08	4.1	3.4	0.7	17%	10.9	9.6	1.3	12%	41.8	39.8	2.0	5%
CZ09	6.2	5.1	1.1	18%	20.2	17.6	2.6	13%	51.8	48.1	3.7	7%
CZ10	7.6	6.1	1.5	19%	23.3	20.3	3.0	13%	56.9	52.5	4.4	8%
CZ11	21.2	16.7	4.5	21%	34.4	30.0	4.4	13%	72.2	63.4	8.8	12%
CZ12	20.3	16.3	4.0	20%	20.2	17.7	2.5	13%	68.3	61.7	6.5	10%
CZ13	18.7	14.9	3.8	20%	38.4	33.1	5.3	14%	73.9	64.8	9.1	12%
CZ14	20.8	16.4	4.4	21%	32.4	28.0	4.4	13%	71.3	62.5	8.8	12%
CZ15	1.8	1.4	0.3	18%	81.1	69.7	11.4	14%	70.4	58.8	11.7	17%
CZ16	52.8	41.1	11.7	22%	4.0	3.2	0.8	21%	95.1	82.6	12.5	13%
Average	16.4	13.1	3.3	19%	17.1	14.8	2.3	15%	60.3	54.7	5.7	9%

2700 ft2 prototype with 2019 prescriptive features

Split HP w/ Verified Low Leakage Ducts in Conditioned Space, & max fan W/cfm VCHP sized @ full load. Split sized 75% w/ backup resistance heat

Energy Use Comparison with Standard Design Split Heat Pump and DICS

	H	leating kWł	า		C	ooling kWh	1 I	
	VLLDCS	VCHP	Diff	% Diff	VLLDCS	VCHP	Diff	% Diff
CZ01	3378	2723	655	19%	0	0	0	
CZ02	2314	1852	463	20%	19	16	3	14%
CZ03	1382	1149	233	17%	0	0	0	
CZ04	1861	1421	440	24%	31	25	6	20%
CZ05	1387	1121	266	19%	0	0	0	
CZ06	765	628	137	18%	38	30	8	21%
CZ07	260	223	37	14%	3	2	1	21%
CZ08	452	375	77	17%	291	270	21	7%
CZ09	693	568	125	18%	551	494	57	10%
CZ10	845	683	163	19%	709	627	82	12%
CZ11	2266	1788	478	21%	1479	1286	193	13%
CZ12	2171	1745	427	20%	382	345	37	10%
CZ13	1987	1580	406	20%	1657	1439	218	13%
CZ14	2302	1811	491	21%	1438	1247	191	13%
CZ15	194	159	35	18%	5055	4361	695	14%
CZ16	4772	3687	1085	23%	194	153	40	21%
Average	1689	1344	345	19%	740	643	97	14%

2700 ft2 prototype with 2019 prescriptive features

Split HP w/ Verified Low Leakage Ducts in Conditioned Space, & max fan W/cfm VCHP sized @ full load. Split sized 75% w/ backup resistance heat

Continuous Fan for Ducted Systems

- o 50 W/ton for fully ducted
- o 25 W/ton for partly ducted
- Fully ducted example for CTZ1
 - Off cycle fan energy = 686 kWh
 - Total VCP kWh = 2550
 - Continuous fan adds 27%

Questions?

- Bruce Wilcox
- o 510 528 4406
- o bwilcox@lmi.net

We strongly encourage submitting written comments via e-file by March 1, 2019.

Comments on the Draft 2019 Alternative Calculation Method Reference Manuals and Compliance Software Tools can be submitted to:

https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber=19-BSTD-02

Comments can also be submitted physically or by e-mail, here:

California Energy Commission Dockets Office, MS-4 Re: Docket No. 19-BSTD-01 1516 Ninth Street Sacramento, CA 95814-5512 Docket@energy.ca.gov

Larry Froess, P.E. Project Manager, ACM & CBECC Software Larry.Froess@energy.ca.gov 916-654-4525

Jeff Miller, P.E. Mechanical Engineer Jeff.Miller@energy.ca.gov (916) 651-6182

Payam Bozorgchami, P.E. Project Manager, 2022 Building Standards Payam.Bozorgchami@energy.ca.gov 916-654-4618 **Todd Ferris** Supervisor, Software Tools Development <u>Todd.Ferris@energy.ca.gov</u> 916-654-4072

Christopher Meyer Manager, Building Standards Office Christopher.Meyer@energy.ca.gov 916-654-4052