| DOCKETED         |                                                            |  |  |  |
|------------------|------------------------------------------------------------|--|--|--|
| Docket Number:   | 18-AAER-05                                                 |  |  |  |
| Project Title:   | Commercial and Industrial Air Compressors                  |  |  |  |
| TN #:            | 226210                                                     |  |  |  |
| Document Title:  | CEC Air Compressor Public Hearing Presentation             |  |  |  |
| Description:     | Presentation for Commercial and Industrial Air Compressors |  |  |  |
|                  | proposed regulation                                        |  |  |  |
| Filer:           | Alex Galdamez                                              |  |  |  |
| Organization:    | California Energy Commission                               |  |  |  |
| Submitter Role:  | Commission Staff                                           |  |  |  |
| Submission Date: | 1/4/2019 8:40:19 AM                                        |  |  |  |
| Docketed Date:   | 1/4/2019                                                   |  |  |  |

# Commercial and Industrial Air Compressors Docket # 18-AAER-05 Public Hearing

January 3, 2019 10 a.m. to noon



Alejandro Galdamez
Appliances Office
Efficiency Division
California Energy Commission



### Public Hearing

- Pursuant to Government Code, §11346.8
- Public comment on proposed regulatory language and proposed negative declaration
- No Commissioners will be present
- No decisions will be made



## Rulemaking Timeline

- November 16, 2018: Rulemaking documents posted
- November 28, 2018: California Environmental Quality Act (CEQA) document posted
- December 31, 2018: 45-day (rulemaking) and 30-day (CEQA) public comment periods end
- January 3, 2019: Public hearing
- January 9, 2019: Proposed Business Meeting adoption
- January 1, 2022: Proposed effective date



#### CEQA

- Standards will reduce electricity consumption, criteria pollutants, and other particulates
- No significant change to materials or manufacturing No change to product lifetime of air compressors
- No significant adverse effect on environment
- Recommend that the Energy Commission adopt the proposed negative declaration at the January 9, 2019, business meeting



### Background - Standard

- U.S. Department of Energy (DOE)
  - Pre-publication final rule notice December 05, 2016
  - Never published in Federal Register
    - California is not preempted form setting State efficiency standards



### Background - Standard

- Lifetime of compressors is 13 to 14 years
- California shipments ~ 3,700 per year
- Commission staff relied heavily on DOE analysis
  - DOE Technical Support Document, December 2016
  - DOE Energy Conservation Standards for Air Compressors: Final Rule, December 05, 2016
  - California Investor Owned Utilities Codes and Standards Enhancement (CASE) Initiative Analysis, March 26, 2018



# Scope - §1601

- Rotary Air Compressors, lubricated, liquid or air cooled with a fixed or variable speed brushless motor
- Full load operating pressure greater or equal to 75 psig but less than or equal to 200 psig





## Proposed Definitions - §1602

- Consistent with DOE definitions in test procedure and prepublication final rule
- Minor modifications referring to California's jurisdiction
  - "Offered for sale in California" instead of "distributed in commerce"
- "State-regulated compressors" definition introduced since regulation affects only compressors sold in California
- All other definitions consistent with DOE final rule



## Test Procedure - §1604

- Uniform Test Method for Certain Air Compressors,
   10 CFR 431, Subpart T, Appendix A
   Parts of ISO 1217 Displacement compressors
- Allowance of Alternative Efficiency Determination Methods (AEDMs)
   10 CFR § 429.63 and §429.70



#### Proposed Standard - §1605.3

- Commercial and industrial air compressors sold or offered for sale in California have to meet energy standards for stateregulated compressors
- Standard is based on calculated values that take into account the calculated isentropic efficiency compared to a minimum package isentropic efficiency calculated and dependent on the volumetric flowrate



#### **Proposed Standard**

Calculate the Isentropic Efficiency as defined in ISO 1217.

$$- \eta_{isen} = \frac{P_{isen}}{P_{real}}$$

-  $V_1$  (flowrate) is plugged into package isentropic efficiency reference curve ( $\eta_{Regr}$ ) and used in conjunction with Percentage loss reduction (d-Value) to calculate the Standard Level for the tested compressor



# **Proposed Standard**

| Equipment Class                                                     | Minimum Package Isentropic<br>Efficiency <sup>†</sup>                              | η <sub>Regr</sub><br>(package isentropic efficiency reference<br>curve)    | d<br>(Percentage<br>Loss<br>Reduction) |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|
| Rotary, lubricated, air-<br>cooled, fixed-speed<br>compressor       | $\eta_{Regr} + \left(1 - \eta_{Regr}\right) * \left(\frac{d}{100}\right)$          | $-0.00928 * ln^{2}(.4719 * V_{1}) + 0.13911 * ln(.4719 * V_{1}) + 0.27110$ | -15                                    |
| Rotary, lubricated, air-<br>cooled, variable-speed<br>compressor    | $\eta_{Regr} + \left(1 - \eta_{Regr}\right) * \left(\frac{d}{100}\right)$          | $-0.01549 * ln^{2}(.4719 * V_{1}) + 0.21573 * ln(.4719 * V_{1}) + 0.00905$ | -10                                    |
| Rotary, lubricated, liquid-<br>cooled, fixed-speed<br>compressor    | $.02349 + \eta_{Regr} + \left(1 - \eta_{Regr}\right) * \left(\frac{d}{100}\right)$ | $-0.00928 * ln^{2}(.4719 * V_{1}) + 0.13911 * ln(.4719 * V_{1}) + 0.27110$ | -15                                    |
| Rotary, lubricated, liquid-<br>cooled, variable-speed<br>compressor | $.02349 + \eta_{Regr} + \left(1 - \eta_{Regr}\right) * \left(\frac{d}{100}\right)$ | $-0.01549 * ln^{2}(.4719 * V_{1}) + 0.21573 * ln(.4719 * V_{1}) + 0.00905$ | -15                                    |



## Proposed Standard - §1605.3

- New state efficiency standard for commercial and industrial air compressors
  - Identical to DOE efficiency level two (EL 2)
  - Proposed effective date of January 1, 2022



# Proposed Data Submittals - §1606

- Removed exception that compressors were not subject to data submittal requirements
- Additional data fields required compared to DOE pre-publication final rule
  - Used for validation of submitted data



# Proposed Marking - §1607

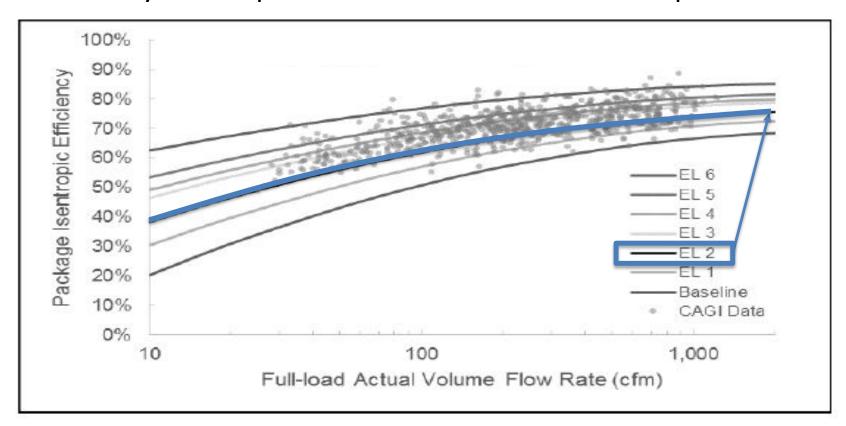
- No product specific marking
- General requirements for all appliances
  - Manufacturer or brand name
  - Model number
  - Date of manufacture



# Proposed Compliance and Enforcement - §1608

 Removed exception that compressors were not subject to enforcement




## Technical Feasibility

- Technical feasibility can be achieved with available technology for redesign:
  - Multi-staging
  - Air-end improvement
  - Auxiliary component improvement



# Technical Feasibility

#### Rotary Fixed-Speed Lubricated Air Cooled Compressors





#### Cost Effective

| Compressor Type                                    | Life<br>Span | Incremental Cost<br>(\$ / unit) | Per unit Savings<br>(\$ / unit per year) | Lifecycle Net Benefit<br>(\$/unit) |
|----------------------------------------------------|--------------|---------------------------------|------------------------------------------|------------------------------------|
| Rotary; Lubricated; Air-<br>cooled; Fixed Speed    | 13           | \$ 904                          | \$ 596                                   | \$ 5,434                           |
| Rotary: Lubricated; Liquid-<br>Cooled; Fixed speed | 13           | \$ 1,714                        | \$ 1,025                                 | \$ 9,187                           |
| Rotary; Lubricated; Air-<br>Cooled; Variable speed | 13           | \$ 1,108                        | \$ 364                                   | \$ 2,763                           |
| Rotary Lubricated Liquid-<br>cooled Variable speed | 14           | \$ 2,550                        | \$ 842                                   | \$ 6,961                           |

19



## **Estimated Savings**

|           | First Year Electricity Savings | First Year<br>Monetary<br>Savings (\$) | Lifecycle Annual<br>Electricity<br>Savings | Lifecycle Net<br>Monetary<br>Savings<br>(\$)* |
|-----------|--------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------------|
| Per Unit  | 2100 to 7000 kWh               | \$364 to \$1,025                       | 2,100 to 7,016<br>kWh                      | \$2,700 to \$9,200                            |
| Statewide | 17 GWh                         | \$ 2.4 Million                         | 217 GWh                                    | \$ 22 million per<br>year                     |

Benefit Cost Ratio: From 2:1 to 6:1

\* 3% discount rate



#### Test Lab Application

#### Step 1. Set up an account in MAEDbS

#### Step 2. Apply to be a test laboratory

- Conducted tests using the applicable test method in the previous 12 months
- Followed the test procedure in section 1604
- Properly calibrates and maintains equipment
- Maintains copies of all test reports and provides them to the Commission upon request
- Allows the Commission to witness testing

#### Step 3. Submit test data from an approved test laboratory

- Test data can be from a test that was conducted before the test laboratory was approved
- As long as the test follows the applicable test procedure in section 1604

#### Step 4. Reapply for approval at the end of each calendar year



#### Conclusion

- Staff finds the proposed standards are
  - o Technically feasible
  - Cost-effective to the consumer over the lifetime of the appliance
- Staff will recommend the Energy Commission to adopt the proposed regulations at the January 9, 2019, business meeting



### **Proposed Adoption**

**Energy Commission business meeting** 

January 9, 2019, 10 a.m.
1516 Ninth Street
Art Rosenfeld Hearing Room – First Floor
Sacramento, California 95814
(Wheelchair Accessible)

Webex:



#### Public Comments

- Public comments from in-person participants
  - Come to microphone

  - Please state name and affiliation for court reporter
    A copy of your comments is appreciated but not required
- Public comments from Webex

  - Use raise-hand feature and you will be un-muted
    Please state name and affiliation for court reporter or
  - Type comment into chat-box and it will be read into record
    Please include name and affiliation for court reporter
- Phone only participantsAll lines will be un-muted

  - Please state name and affiliation for court reporter

#### Thank You!

Alejandro Galdamez
Appliances Office
Efficiency Division
Alejandro.Galdamez@energy.ca.gov
916-654-4315

