DOCKETED	
Docket Number:	18-TRAN-01
Project Title:	School Bus Workshops
TN #:	226082
Document Title:	DC Fast Charger (DCFC) Infrastructure Presentation
Description:	N/A
Filer:	Jessica Martinez
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	12/13/2018 7:51:50 AM
Docketed Date:	12/13/2018

DC Fast Charger (DCFC) Infrastructure

Rhombus Energy Solutions

Ed Munar ed@rhombusenergy.com

About Rhombus

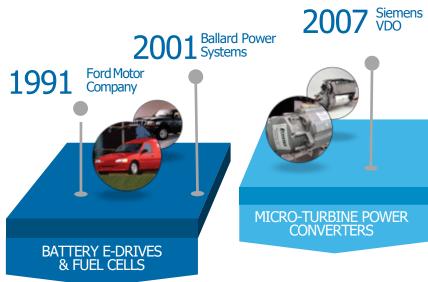
Experts in power conversion and energy management, delivering intelligent conversion solutions to the market

Rhombus solution(s)

- Intelligent power conversion solutions for energy storage, test applications, & fast charging in the commercial / industrial segments
 - > Bi-directional Inverters for Energy Storage Systems and Microgrids
 - > Regenerative Test Equipment
 - > Fast Charging Systems for Heavy Duty Commercial Vehicles
- > Design services in Power and control
 - > Power Electronics Contract Innovation / Engineering
 - > Experts in power and control
 - > Leadership in Wideband solutions focused in Silicon Carbide
- Vectorstat Mesh network site controller

Differentiation

- Deliver highly robust products, semi-customized, white-labeled solutions w/ integrated software to the market.
- > Made in USA


History and team

Founded in 2012 by a group of seasoned power electronics industry veterans

Acquired Energy Development Associates and its team with a 25-year history in developing electric vehicles and power conversion solutions

Dearborn Facility History

NON-STATIONARY BATTERY

- > Power Converters
- > Vehicle SW Controls
- > Motor SW Controls
- > Battery Interfaces

MICRO-TURBINE POWER CONVERTERS

COMPLEX POWER CONTROLS

- > Grid interface controls
- Grid Protections
- Power Controls
- > Industrial Battery Chargers

INVERTER DESIGNS

PVINVERTER

2009 Continental

- > System Level Topologies
- Multiple MPPT tracking

OTHER POWER CONTROLS

- > UPS Controls
- Micro-Grid Controls

2015

Rhombus Takeover

2011 EDA (Employee Buy-out)

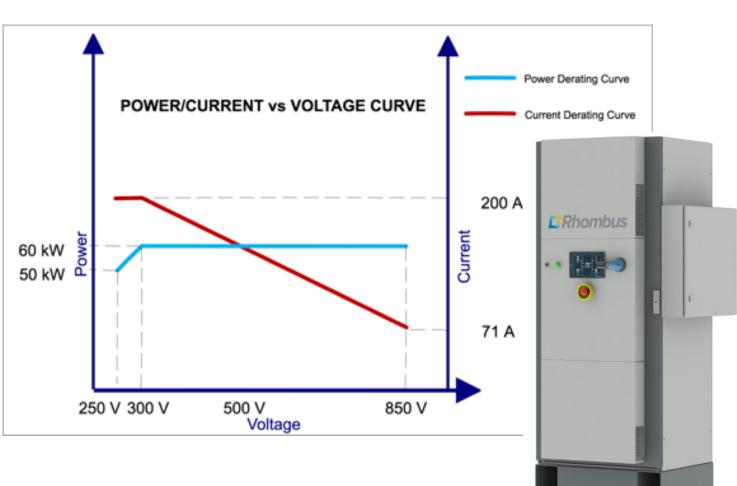
BATTERY INVERTERS

- > Bi-directional regenerative
- > Power Levels 30kW to 1MW Test equipment:
- > UL certified high power testing lab
- > Higher Speed Power Controls

- Shipping Inverters since 2001, Over 1000 units in the field
- Quality Example: 130 Active units, >4 M hours operation with < 18operational events

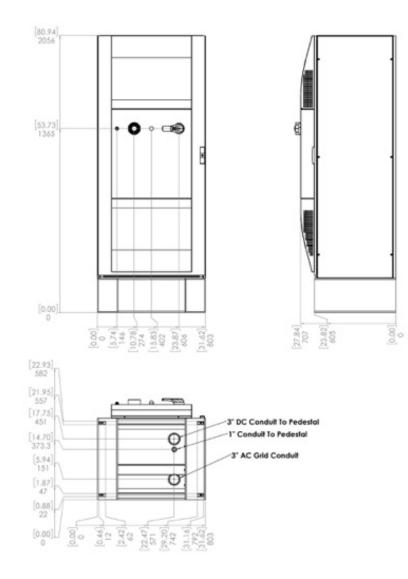
Nearly maintenance free \triangleright

Fast DC Charger Overview



PCS

60 kW Charger



Specs

- 60 kW
- V2G (Bidirectional)
- CCS1
- ISO/IEC 15118
- OCPP 1.6
- NEMA 3R
- Dual Voltage Range
- Separate Charge Dispenser

Mechanical Overview of 60kW Charger

Charging Overview

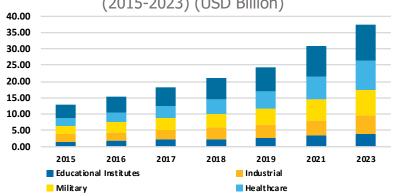
Key Characteristics	L1	L2	L3
Power	1.4kW	3.3 – 19.2kW	25– 500kW
Cost	\$	\$\$	\$\$\$ - \$\$\$\$
Use	Home	Home/charge Station	Commercial
Type of Voltage	AC	AC	DC and DC/AC
Source Voltage	120 VAC	208 - 240 VAC	240 – 480 VAC
Charge Voltage	120 VAC	208 - 240 VAC	200 – 800 VDC 208 – 240 VAC
Connector	J1772	J1772 or CHAdeMO	J1772-Combo (CCS1) CHAdeMO
Time to Charge	Long	Medium	Fast
Size	Small/Portable	Medium/Fixed	Large/Fixed

Level 3 Chargers

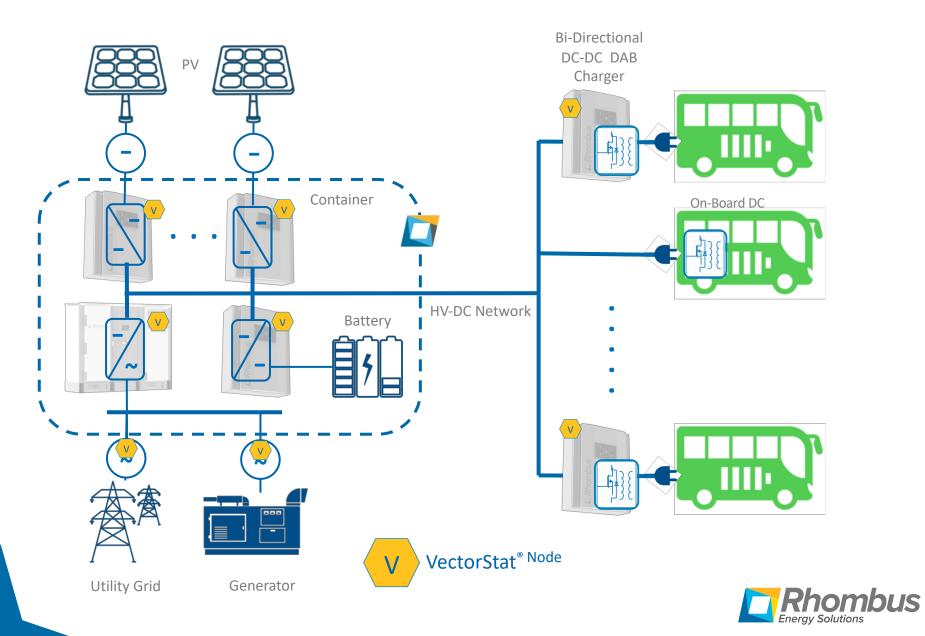
Key Characteristics	Uni-Dir (V1G)	Bi-Dir (V2G)				
Overview						
Power	25kW-500kW	50kW-500kW				
UL	UL 2202 UL2231-1 UL2231-2	UL9741 UL2231-1 UL2231-2				
Cost	\$\$-\$\$\$	\$\$-\$\$\$				
Use	Charging	Charging Stack Revenue Opp Emergency				
Time to Charge	Medium - Fast	Medium - Fast				
Electrical Characteristics						
Source Voltage	240 – 480 VAC	240 – 480 VAC				
Source Current	50-1000 AAC	100-1000 AAC				
Source Frequency	50/60 Hz	50/60 Hz				

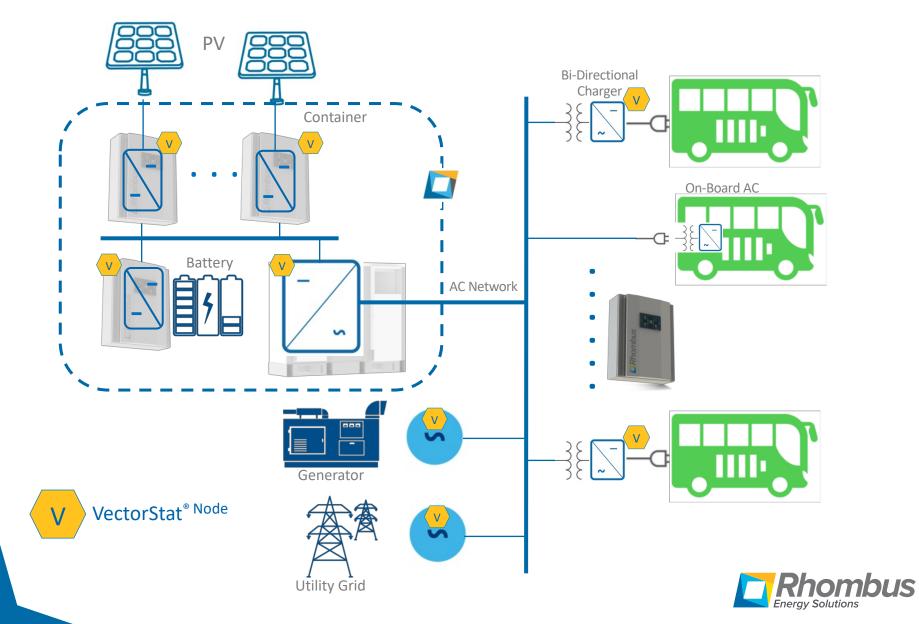
Level 3 Chargers

Key Characteristics	Uni-Dir (V1G)	Bi-Dir (V2G)				
Physical Characteristics						
Size	Medium/Large	Medium/Large				
Configuration	Stand-a-lone PCS + Dispenser	Stand-a-lone PCS + Dispenser				
Cable Entry PCS/Dispenser	Top/ bottom					
Cable Exit PCS/Dispenser	Top/ bottom					
Distance to dispenser	Up to 500 ft (possibly more)					
Connector	J1772 or CHAdeMO J1772 or CHAdeM					
Operational Temp	Depends on Mfg. / Depends on location					
Indoor/Outdoor	NEMA1/NEMA3R	NEMA1/NEMA3R				
Communication						
Vehicle Communication	CHAdeMO CAN bus & ISO 15118	ISO 15118				
Network Management	OCPP 1.6	OCPP 1.6				
HMI (Human Machine Interface)	Plug & GO/Pay-Terminal/Ext Pin					
		Energy Solutions				

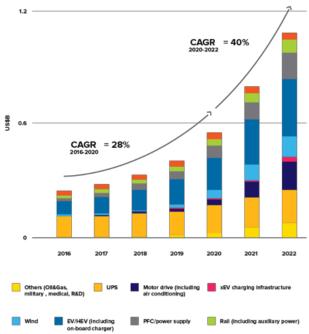

Future: Built to Order, Containerized Microgrids

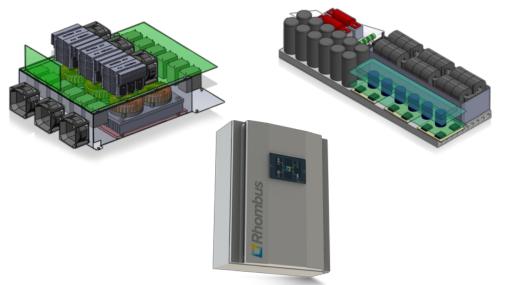
Rhombus Power Hub


- > Containerizing reduces the installation cost & complexity
- > Increases Site flexibility
- High Density, Batteries 2-4MWh
- High Power 500kW-1MW PCS (off grid / on grid)
- VectorStat Site Controller
- > Gen-Set Connections
- PV Connections
- Multiple configurations, Factory Built & Tested
- > Integrated Fire Suppression & Safety Systems


Microgrid Market, by vertical (2015-2023) (USD Billion)

Rhombus DC Power Hub


Rhombus AC Power Hub


Roadmap: Silicon Carbide (SiC); Integrated Software

- The tipping point has arrived for the \$40B Power Electronic Industry to adopt "wide-band gap" semi-conductors. The components are still 2-3X the cost of silicon but the reduction in system level cost makes products less expensive and more efficient.
- SiC-based Inverters / Converters reduces the size and switch losses by ~50%
- Rhombus has extensive experience in developing products using SiC

Silicon Carbide (SiC) Semi-Conductor Adoption

