| DOCKETED         |                                                                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Docket Number:   | 18-ALT-01                                                                                                                                          |
| Project Title:   | 2019-2020 Investment Plan Update for the Alternative and<br>Renewable Fuel and Vehicle Technology Program                                          |
| TN #:            | 225847                                                                                                                                             |
| Document Title:  | Bill Leighty Comments Demand for renewables-source energy<br>delivered as Hydrogen fuel may exceed energy delivered as electricity<br>via the Grid |
| Description:     | N/A                                                                                                                                                |
| Filer:           | System                                                                                                                                             |
| Organization:    | Bill Leighty                                                                                                                                       |
| Submitter Role:  | Public                                                                                                                                             |
| Submission Date: | 11/8/2018 8:47:28 AM                                                                                                                               |
| Docketed Date:   | 11/8/2018                                                                                                                                          |

Comment Received From: Bill Leighty Submitted On: 11/8/2018 Docket Number: 18-ALT-01

## Demand for renewables-source energy delivered as Hydrogen fuel may exceed energy delivered as electricity via the Grid

Please see attached files: posters presented at recent energy conferences: Windpower 2016, Intersolar 2016, Solar Power International 2018. These are based on data from a whitepaper scenario published by ITS-STEPS, UC Davis, in 2014:

https://steps.ucdavis.edu/files/08-13-2014-08-13-2014-NextSTEPS-White-Paper-Hydrogen-Transition-7.29.2014.pdf

https://steps.ucdavis.edu/the-hydrogen-transition/

Therefore, the 2019-2020 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) should include R&D&Demonstration projects to yield novel pre-commercialization level technologies for:

> Windplants and solar plants technically and economically optimized to deliver all their captured CEF energy as gaseous Hydrogen (GH2) and / or liquid Ammonia (NH3) carbon-free fuels, via new and / or repurposed underground pipelines, with no connection to nor energy delivery to, the electricity grid;

> Wind turbine generating systems based on the simple, rugged, low-cost, ubiquitous squirrel cage induction motor as the generator, in self excited induction generator (SEIG) mode, to lower the plant-gate cost of wind-source GH2 and NH3 fuels in Grid-independent windplants;
> Linepipe for underground gathering, transmission, and distribution pipeline networks for CEF GH2, which is immune to hydrogen embrittlement (HE), aka hydrogen corrosion cracking (HCC), at high and time-varying pressure necessary to accommodate variable generation (VG, VER) from wind and solar resources;

> Co-generation by wind and solar sources, on the same site, for synergistic combination to deliver GH2 and NH3 fuels produced in common energy conversion plants (electrolysis of H2 and synthesis of NH3) for delivery via new pipeline networks;

> These technologies to be available for both retrofit of extant and construction of new wind and solar generating plants, so that hundreds of still-serviceable turbines, PV strings, and plants -- many beyond their PTC and / or PPA terms -- may be returned to or kept in service for supplying the nascent market for high-purity fuel for fuel cell vehicles (FCV's) of all sizes.

By year 2050, to achieve its statutory RPS and "80 in 50" (80% reduction in CO2 emissions from transport sector, below 1990, by 2050) energy goals, California must procure the full output of about 438 GW of combined nameplate wind and solar energy or its equivalent -- about 20 x the 2015 total installed capacity in CA. ~ 58% of that will be Hydrogen transportation fuel, if ITS-STEPS at UC Davis is correct: in 2050 fuel cell vehicles will predominate in personal, bus, and truck service; BEV's are limited to short-distance, light-duty service. In 2050, Hydrogen fuel will be a bigger market for renewables-source, CO2-emission-free (CEF) energy than the electricity grid.

Therefore, we should now think "beyond electricity", to capture a larger market for wind and

solar energy than the electricity grid, to carefully consider using underground pipeline networks, for transmission, storage, and distribution of the Carbon-free fuels -- Gaseous Hydrogen (GH2) and liquid anhydrous ammonia (NH3) -- for solving renewable energy's (RE) Big Three technical and economic problems, at lower capital and O&M costs than we can achieve with electricity systems:

1. Gathering and Transmission: from diverse, stranded, remote, and rich CEF RE resources;

2. Annual-scale Firming Storage: so that variable RE becomes annually firm and dispatchable;

3. Distribution, Integration, and End-use: for an annually-firm supply of quality, CEF energy for all uses and sectors.

We should now design and optimize complete RE fuel systems, based on GH2 and NH3, at local to continental scales, from sunlight, wind, and water resources, to dispatchable energy services delivered for ALL energy uses:

- Conversion, Transmission, Combined-heat-and-power (CHP): for both stationary and transportable uses;

- Generation, Gathering, Firming storage, and end use: transportable and CHP Carbon-free fuels, as well as electricity;

This enables very low cost energy storage: less than \$ 1.00 / kWh capital cost:

- Gaseous Hydrogen (GH2) in large, deep, solution-mined salt caverns, where the salt geology is available: Gulf of Mexico coast;

- Liquid Anhydrous Ammonia (NH3) in large, refrigerated, "atmospheric", carbon steel surface tanks, extant in the Corn Belt;

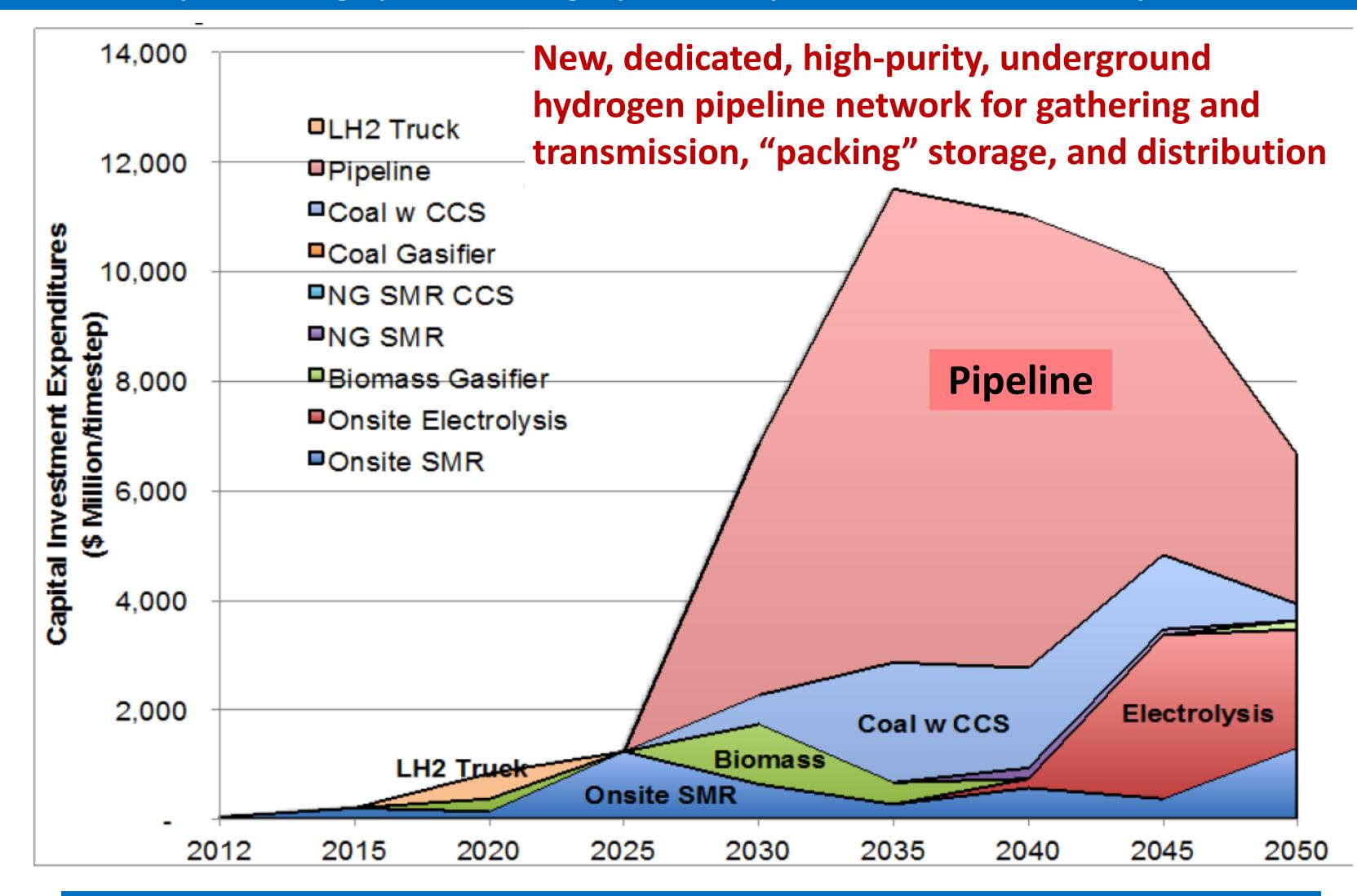
- Interconnected via continental underground pipelines, adding "free" storage by packing the GH2 pipelines (not liquid NH3 lines);

- At lower cost than any contemplated  $\hat{a} \in \hat{c}eelectricity \hat{a} \in \bullet$  storage technology, components, or systems.

Pipelined GH2 and NH3 fuels free those wind and solar PV plants, which would be dedicated to delivering all their captured RE as GH2 and NH3 fuels to pipelines, from the capital and O&M costs of generating and delivering grid-quality AC or DC electricity: the required complex generators and power electronics, field transformers, cables and substations, transmission lines.

Additional submitted attachment is included below.

## Bigger Market than Electricity Grid ? Solar-source Hydrogen Fuel for **California Transportation and Combined Heat and Power (CHP)**


Bill Leighty, The Leighty Foundation, Juneau, AK

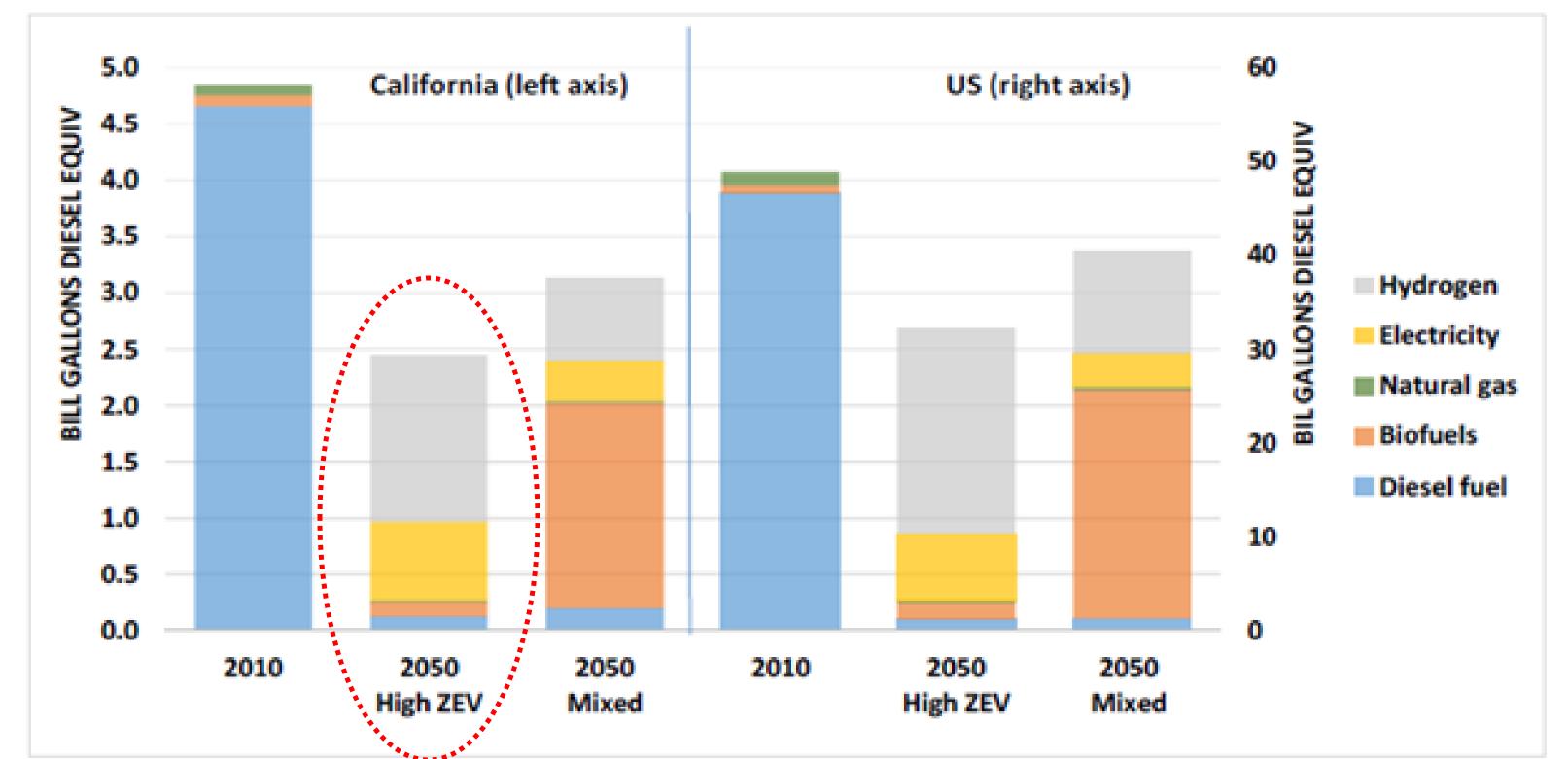
wleighty@earthlink.net

Poster download: http://www.leightyfoundation.org/wp-content/uploads/POSTER-SOLAR-2018.pdf

| Hydrogen Transportation Fuel Demand<br>California, year 2050<br>Million metric tons per year: |     |  |
|-----------------------------------------------------------------------------------------------|-----|--|
| Light Duty Vehicles (LDV)                                                                     | 3.6 |  |
| Trucking                                                                                      | 1.6 |  |
| Bus                                                                                           | 1.4 |  |
| Aviation and Other                                                                            | 0.8 |  |
| Total                                                                                         | 7.4 |  |
| Source: interpret and extrapolate from several papers by ITS-STEPS, UC Davis                  |     |  |

| Reference: Year 2015                                    | GW    |
|---------------------------------------------------------|-------|
| Total installed nameplate wind generation in California | CA) 6 |




| Total installed nameplate solar generation in California (CA)  |         |  |  |
|----------------------------------------------------------------|---------|--|--|
| ELECTRICITY: CA "Power Mix"                                    | GWh     |  |  |
| 2014: Total electricity consumed                               |         |  |  |
| 2050: Total electricity demand "Power Mix" is 130 % of 2014    | 385,896 |  |  |
| ELECTRICITY in Year 2050: CA renewables                        | GW      |  |  |
| Equivalent nameplate wind generation capacity @ 40 % CF        |         |  |  |
| Equivalent nameplate solar generation capacity @ 35 % CF       |         |  |  |
| TRANSPORTATION Hydrogen Fuel in Year 2050: CA renewables       | GW      |  |  |
| Equivalent nameplate wind generation capacity @ 40 % CF        |         |  |  |
| Equivalent nameplate solar generation capacity @ 35 % CF       | 130     |  |  |
| TOTAL CA RENEWABLE ELECTRICITY + TRANSPORT ENERGY in Year 2050 | GW      |  |  |
| Equivalent nameplate wind + solar + other @ CF (varies)        |         |  |  |

For Year 2050 Electricity + Hydrogen Transportation Fuel, California will need about: 210 GW = 35 times Year 2015 installed wind capacity in CA, or • 230 GW = 19 times Year 2015 installed solar electricity capacity in CA

Hydrogen storage in domal salt caverns

Annual-scale firming storage for < \$ 1.00 / kWh capex Each domal salt cavern: [Mt = metric ton = 1,000 kg] Stores ~ 92 GWh as ~ 2,500 Mt "working" Hydrogen "Full" at 150 bar = 2,250 psi Cavern top ~ 700 m below ground

**Capital Investment for Hydrogen Fuel Infrastructure in California** \$ 50 Billion cumulative investment : Transition to "green" Hydrogen for "80 in 50" 80 % reduction in CO2 emissions from California transportation sector by year 2050 Source: Institute of Transportation Studies (ITS), STEPS program, UC Davis





System Configuration

~ 860,000 cubic meters each cavern physical volume

- \$15 M average capex per cavern, with "cushion" H<sub>2</sub>
- Capex, approximate = \$160 / MWh = \$0.16 / kWh

Figure ES-2. Energy use by fuel type, year and scenario, California and U.S. results

Gaseous Hydrogen

100 bar

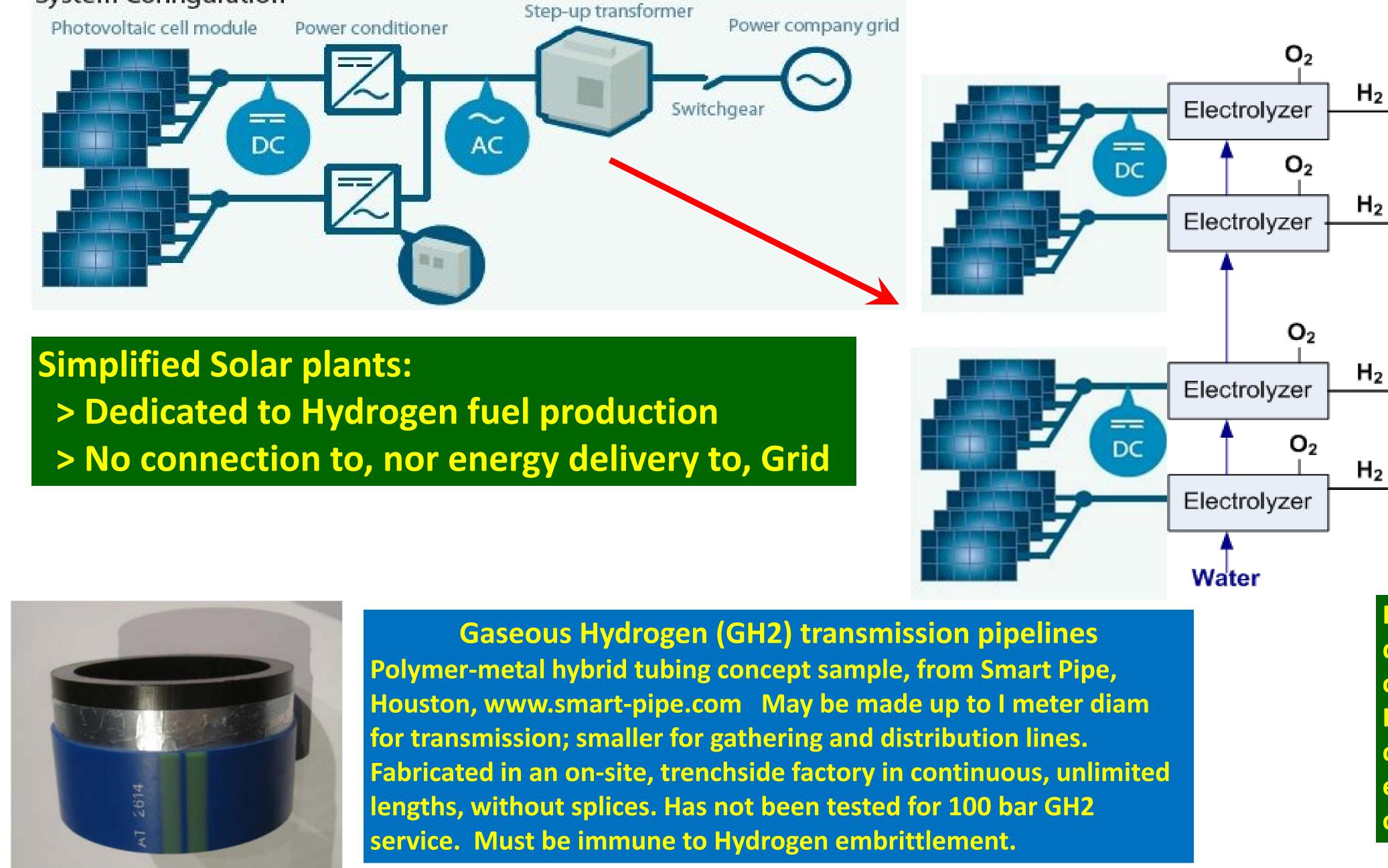
Underground

Free storage

by "packing"

Transmission

Pipeline:


>

>

>

"Goods movement" trucking diesel fuel demand in Year 2050 California (left, red circle) and USA (right), High Zero Emissions Vehicle (ZEV) case This is included in the "Hydrogen Fuel Demand" estimates on the poster's right side. Source: Institute of Transportation Studies (ITS), STEPS program, UC Davis

> Solar plants may be dedicated to Hydrogen fuel production, with no connection to the electricity grid, without costly conversion systems and infrastructure to deliver grid-quality AC or DC.



The electrolyzer(s) are a dumb DC load, fed "wild DC" from PV arrays via simple power point tracking electronics and controls. Synergistic with "wild DC" from co-located wind plants also dedicated to Hydrogen production, without Grid connection.

PV panels and arrays produce direct current (DC) which would be directly close – coupled to the electrolyzer stacks via power-tracking control. The SCADA system integrates the complete solar-to-Hydrogen plant, to reduce system complexity and capital and O&M costs, with no connection to the electricity Grid. This reduces electrolyzer kWhe input per kg Hydrogen output, boosting energy conversion efficiency and reducing plant gate Hydrogen fuel cost.

- This poster download: http://www.leightyfoundation.org/wp-content/uploads/POSTER-SOLAR-2018.pdf [SPI 2018]
- Videos: https://vimeo.com/174955229 https://vimeo.com/126045160 https://vimeo.com/86851009 https://vimeo.com/148190671 https://vimeo.com/148049904 https://vimeo.com/160472532
- Other papers, posters, presentations: www.leightyfoundation.org/earth.php

## A Bigger Market than the Electricity Grid ? Solar-source Hydrogen Fuel for California Transportation and Combined Heat and Power (CHP)

Bill Leighty, The Leighty Foundation, Juneau, Alaska, USA wleighty@earthlink.net 206-719-5554

By year 2050, to achieve its statutory RPS and "80 in 50" (80% reduction in CO2 emissions from transport sector, below 1990, by 2050) energy goals, California must procure the full output of about 438 GW of combined nameplate wind and solar energy or its equivalent -- about 20 x the 2015 total installed capacity in CA. ~ 58% of that will be Hydrogen transportation fuel, if ITS-STEPS at UC Davis is correct: in 2050 fuel cell vehicles will predominate in personal, bus, and truck service; BEV's are limited to short-distance, light-duty service. In 2050, Hydrogen fuel will be a bigger market for renewable energy than the electricity grid. In California, in the 12 months ended Oct 2017, 440,000 MWh of wind and solar energy was curtailed and lost; converted to high-purity Hydrogen via electrolysis, that would have fueled about 70,000 fuel cell light duty vehicles (LDV's) -- typical passenger cars and SUV's we all drive.

Therefore, we should now think "beyond electricity", to capture a larger market for wind energy than the electricity grid, to carefully consider using underground pipeline networks, for transmission, storage, and distribution of the Carbon-free fuels -- Gaseous Hydrogen (GH2) and liquid anhydrous ammonia (NH<sub>3</sub>) -- for solving renewable energy's (RE) Big Three technical and economic problems, at lower capital and O&M costs than we can achieve with electricity systems:

- 1. Gathering and Transmission: from diverse, stranded, remote, and rich renewable energy (RE) resources, such as solar and wind
- 2. Annual-scale Firming Storage: so that variable RE becomes annually firm and dispatchable
- 3. Distribution, Integration, and End-use: for an annually-firm supply of quality, CO2-emissions-free energy for all uses and sectors

We should now design and optimize complete RE fuel systems, based on GH2 and NH3, at local to continental scales, from sunlight, wind, and water resources, to dispatchable energy services delivered for ALL energy uses:

- Conversion, Transmission, Combined-heat-and-power (CHP): for both stationary and transportable uses
- Generation, Gathering, Firming storage, and end use: transportable and CHP Carbon-free fuels, as well as electricity

This enables very low cost energy storage: less than \$1.00 / kWh capital cost:

- Gaseous Hydrogen (GH2) in large, deep, solution-mined salt caverns, where the salt geology is available: Gulf of Mexico coast
- Liquid Anhydrous Ammonia (NH<sub>3</sub>) in large, refrigerated, "atmospheric", carbon steel surface tanks, extant in the Corn Belt
- Interconnected via continental underground pipelines, adding "free" storage by packing the GH2 pipelines (not liquid NH3 lines)
- At lower cost than any contemplated "electricity" storage technology, components, or systems

Pipelined GH2 and NH<sub>3</sub> fuels free those wind and solar plants, which would be dedicated to delivering all their captured RE as GH2 and NH<sub>3</sub> fuels to pipelines, from the capital and O&M costs of generating and delivering grid-quality AC or DC electricity: the required complex generators and power electronics, field transformers, cables and substations, transmission lines.

To achieve this goal, we must overcome these obstacles:

- Earth's richest RE resources are often stranded, far from markets with no transmission
- Markets and infrastructure for the C-free fuels -- Hydrogen and Ammonia -- do not exist for GH2; are inadequate for RE NH3
- We cannot achieve this entirely via electricity, and should not try to do so; "Smart Grid" is primarily demand side management (DSM); it adds no inherent or physical new transmission nor energy storage capacity , and only slight effective new capacity.

Therefore, we should now design and build pilot solar plants for both GH2 and NH<sub>3</sub> as complete, optimized, RE systems, by which to:

- Discover and demonstrate scalable technical proof-of-concept and economic advantages
- Explore optimum system topologies for sources, components, infrastructure, and fuels end-uses
- Motivate private-public collaboration to conceive RFP's and RFQ's for these pilot plants
- Capture the very large nascent market for CO2-emissions-free transportation fuel, in California and beyond

Humanity's urgent goal is to transform the world's largest industry from ~ 85 % fossil to ~ 100 % renewable, greenhouse gas (GHG) - emissions - free energy sources, as quickly as we prudently and profitably can: to "Run the World on Renewables", perhaps including some nuclear fission or fusion. Therefore, we should now design these alternatives to, and adjuncts to, the electricity grid:

- Wind and solar PV plants converting all RE, at their sources, with no grid connection, to GH2 or NH<sub>3</sub> fuels
- Deliver these C-free fuels via underground pipelines for transportation and CHP, accessing very-low-cost energy storage

RE-source NH<sub>3</sub>: http://www.wired.com/2016/05/chemical-reaction-revolutionized-farming-100-years-ago-now-needs-go/