DOCKETED			
Docket Number:	18-MISC-04		
Project Title:	Vehicle Grid Integration Roadmap Update		
TN #:	225343		
Document Title:	Technology Panel, Presentation		
Description:	N/A		
Filer:	System		
Organization:	Sunil Chhaya/EPRI		
Submitter Role:	Public		
Submission Date:	10/30/2018 1:58:56 AM		
Docketed Date:	10/30/2018		

Comment Received From: Sunil Chhaya Submitted On: 10/30/2018 Docket Number: 18-MISC-04

Technology Panel, Presentation

Additional submitted attachment is included below.

California Vehicle Grid Integration (VGI) Roadmap Update

Technology Panel

Sunil M. Chhaya, PhD Technical Executive

Workshop on California Vehicle-Grid Integration Roadmap Update 10/30/2018

EPRI EV/Grid Integration Projects Portfolio: 2016-2021

Open Vehicle-Grid Integration Platform Phase 2

 Collaboration with OEMs/Utilities for aggregated EV DR services; 6 major OEMs /15 utilities participating; 'All of the above' standards approach

Vehicle to Grid (V2G) Integration (CEC 14-086)

- AC On-vehicle V2G implementation/demonstration (SAE/IEEE Standards)
- Development of Transformer and Facility-oriented V2G Management Control System; EPRI/E3 V2G Valuation Study

DER/V2G Integration (DoE EE 0007792)

• DC Off-vehicle V2G implementation/demonstration (SAE/IEEE Standards); Development of Smart Power Integrated Node (SPIN) DC V2G/DER System; Unified V2G/PV/Stationary Storage integrated power electronics and software; Battery degradation analysis

V2G Integration with Microgrid and Building Energy Controls Systems (CEC 16-054)

• V2G/DER communications/control software integration – V2G as a dispatchable DER asset

PEVs as a part of Broader Ecosystem (CEC 15-075)

• Open Demand Side Resource Integration Platform: residential, commercial flex loads, EVs as a resource; Open-Source Platform

EVs in the Virtual Wide-Area Microgrid Setting (CEC 17-052)

 V2G, Managed Charging, Portable Storage, Commercial and Shared EVs, DC and AC infrastructure with microgrids, DERs and commercial buildings – 2 IOUs, 3 locations, 5 microgrids, coordinated DERMS

EV Infrastructure Cybersecurity (DOE DE 0008852)

• EV Ecosystem Cybersecurity: Requirements, Design, Assessment, Mainstreaming at component, subsystem, system level including XFC

Learnings for VGI

Hierarchy of control

- Customer preferences are paramount
- Localized VGI interface and control
 - VGI will become part of local energy management systems
 - Microgrid Control Systems, Facility EMS, Home EMS
 - Home Owner and Site/Facility Owner have autonomy to determine charging load management requirements
 - EMS developers providing PV and storage (DER) integration solutions to support EV charging
 - Challenge is Site Host EMS meeting EV driver needs, utility needs within the site load management constraints.

There are different VGI Communications pathways

- Through direct communications (utility to vehicle), indirect communications (utility to 3rd party to vehicle) and EVSP provider communications (EVSE Network, eMobility Operators, Mobility Service Operators)
- Options versus charging environment and technologies need to be evaluated for cost effectiveness

V1G and V2G communications and controls are dynamically different

- V1G is about managing time of charge within utility pricing and load/capacity constraints
- V2G is the dynamic orchestration of EV power / energy to provide dispatchability to the grid and to other loads
- V2G is about 2x-4x more valuable to the grid (per preliminary EPRI/E3 estimates)

Standards necessary but not sufficient for integrated system operation

• Interoperability matters, as do control algorithms and use cases

New Technologies to Improve Cybersecurity

Apply the NIST Catalogue of Smart Grid Standards for Cybersecurity

- NIST Principle of Cybersecurity is end to end authentication and encryption
 - End to End premise for VGI is <u>Utility to EV</u>
- Cybersecurity cannot just be added to EV and Equipment
 - Middleman penetration/attack risks and protection of customer PII data
 - Must be part of the end to end architecture embedded cybersecurity solution

CEC can Significantly Impact the Direction through Active Emphasis

- Defer to comprehensive effort of the DOE to address cybersecurity
- Join nationwide DoE-led collaboration of experts from multiple industries to coordinate accelerated deployment – NIST, EPRI, Sandia, INL, ABB, Siemens, Virginia Tech, DoT
- CEC: consider joining forces and instituting industry expert(s) to represent CEC and participate in the EPRI-led DoE EV Infrastructure Cybersecurity Working Group

Scope of EPRI-Led DOE EE0008852 Project: EV Infrastructure Cybersecurity Requirements, Design, Assessment, Mainstreaming

11/2018					
Assess	Requirements + Design	Build + Test	Validate – Components and System	Mainstream	
 Define prevalent architectures and data pathways Define attack pathways Identify vulnerabilities Form EV Infrastructure Cybersecurity Working Group (EVICSWG) 	 System requirements Component requirements Test requirements Test harness requirements Test harness design Cybersecurity scenario test generator EV Infrastructure Ecosystem Emulator (EVIEE) – by component and as a system 	 Build Cybersecurity scenario generator (CSG) Build EV infrastructure ecosystem emulator by component and as a system Validate test harness and EV infrastructure ecosystem emulator 	 CSG→ EVIEE→ component under test CSG→ EVIEE shell → System under test 	 EVICSWG – discuss findings, feed requirements to appropriate standards-bodies Publish requirements and obtain stakeholder consensus 	
This is a flagship project for the broader EPRI-wide Utility Industry Cybersecurity Initiative					

Standards and Methods of Communications to Consider

- Value \rightarrow Use Cases \rightarrow Requirements (Technical and Business) \rightarrow Implementations that meet requirements
- Emphasis on **open** standards based hardware and software that is non-proprietary will prevent vendor lockin, stranded assets and obsolescence.
- There Is no commercial implementation/development of VGI technologies to date primarily due to a lack of clearly defined value, markets or programs (except tariff-based mechanisms now emerging)
- Verification of standards and communications technologies is required to determine
 - Applicability across multiple settings: Residential, Fleet, Workplace, Commercial Public/Private Host Sites, Multiple Dwelling Facilities, Utility Owned, etc.
 - Efficiency and cost effectiveness specific to each setting
 - Interoperability with microgrid and local energy management systems for tighter integrated DER asset management
 - Scalability for evolving functionality across multiple environments
 - Extensibility for application across various EV charging technologies wired vs. wireless, AC vs DC fast, future-proof
- Point of Reference for VGI implementation per the Roadmap affects determinations
 - Short term versus long term focus
 - V2G (longer term) more dynamic communications requirements than V1G (short term)
 - Compatibility between short term and long term functionality should be considered
 - Requires definition of VGI functional requirements and clear articulation of value for future EV charging technologies and use cases
 - Roadmap should foster innovation and investment in technology and evolve accordingly

There is a dire need to enact well-structured TD&D programs that provide comprehensive datasets around customers, use cases, charging technologies, standards and value, leading to well-defined commercialization / rollout

Use Cases that Benefit from EVSE Embedded Metering

- Every use case relying on energy flow (uni/bi-directional and pricing) could benefit from EVSE embedded metering
- Electric Vehicle charging will represent largest uncontrolled mobile load (and generation) irrespective of any feature - Utilities require EV load impact and usage data
 - Data for predictive EV load impact analysis becoming more critical projected circuit hotspots
 - Analogy to solar impact not important in the beginning Rule 21 now requires monitoring and functional control communications to monitor, manage, and mitigate the impact from solar
 - Determination of VGI use case measurement and verification
 - Effectiveness and value verification basis for compensation
- Evaluate feasibility for utilization of vehicle telemetry for EV load impact and generation data
 - Viable broader EV load/generation data source OEM support needed
 - Feasibility for verification of compensation from EV DR/DER aggregation programs at aggregator and customer level
 - Define criteria based on accuracy assessments of vehicle telemetry
- NIST handbook 44 is a consumer weights and measure issue and does not apply in residential and free access use cases

Analytical Models To Link Demand With Grids Operating At High Penetrations Of Renewables

- There are limited analytical tools for projecting and analyzing renewables grid impact and interjecting overlays of EV projected loads
 - Requires some granular detail by segments of the distribution circuit network.
 - Some Analytical Models that may be applied
 - ICA 2.0 California Integration Capacity Analysis
 - DREAMS Distributed Resource Energy Analysis and Management System
 - dGEN Distributed Generation Market Demand
 - SAM Systems Advisor Model
 - SIND Solar Integration National Dataset
 - StorageVET or DER-VET Storage / Distributed Energy Resource Value Estimation Tool
- The analysis could feasibly go beyond to inclusion of costs for VGI versus avoided upgrade investment, and provide a basis for calculating value of EV grid service use cases...
- EPRI continues to work with DoE Labs, academia, industry and the utility industry to extend the existing analytics capabilities for grid value and EV integration
- EPRI can propose analysis requirements, evaluate applicability of existing analytical models, and define an analytical framework worthy of consideration for collaborative development and application

