DOCKETED	
Docket Number:	19-ERDD-01
Project Title:	Research Idea Exchange
TN #:	225139
Document Title:	Presentation - Panel I - Question 6 - California Offshore Wind Research Needs
Description:	By: Walter Musial of NREL
Filer:	Silvia Palma-Rojas
Organization:	NREL
Submitter Role:	Public Agency
Submission Date:	10/29/2018 2:40:34 PM
Docketed Date:	10/29/2018

California Offshore Wind Research Needs

Next-Generation Wind Energy Technologies and their Environmental Implications

Walt Musial
Principal Engineer, Offshore Wind Lead
National Renewable Energy Laboratory

October 25, 2018

California Energy Commission

1516 Ninth Street
1st Floor, Imbrecht Hearing Room
Sacramento, California

Primary Research Question

 What research is needed, e.g. environmental and technological, to set the stage for future development and implementation of offshore wind energy in California?

Wind Plant Technology Needs

- <u>Deepwater Mooring Systems</u> design solutions to minimize foot prints, expedite anchor placements, and avoid use conflicts in water depths between 500-m and 1000-m.
- <u>Floating Platform Scaling</u> platforms with favorably cost scaling as turbine capacity increases; capturing cost benefits for larger turbines
- Floating array power system innovation optimized dynamic cabling and power delivery systems with floating substations
- <u>Control of large floating arrays</u> and system control optimization sensors, actuators, and algorithms
- Optimized turbines Purpose-built floating offshore wind turbines at 10 MW + capacity

Siting and Supply Chain Technology Needs

- Comprehensive Wind Resource Assessment and Validation (hub height)
- Campaigns to measure offshore metocean conditions for resource validation
- Technology solutions to reduce use conflicts during construction and operation
- Floating wind turbine installation strategies to reduce cost and utilize local infrastructure
- Innovations to develop alternative vessels to avoid Jones Act conflicts
- High Sea-State Crew Transfer Solutions
- State-wide coastal grid access and expansion study
- Detailed ports and harbor engineering upgrade study for specific locations future anticipating technology advancements
- Supply chain technology development to accelerate local infrastructure large scale fabrication, dry docks, land and sea upgrades

