DOCKETED	
Docket Number:	19-ERDD-01
Project Title:	Research Idea Exchange
TN #:	225138
Document Title:	Presentation - Panel I - Questions 4 and 5 - Next Generation Wind Energy Technologies and their Environmental Implications
Description:	By: Mo Li, Ph.D., UC Irvine
Filer:	Silvia Palma-Rojas
Organization:	University of California, Irvine
Submitter Role:	Public Agency
Submission Date:	10/29/2018 2:40:34 PM
Docketed Date:	10/29/2018

Next-Generation Wind Energy Technologies and Their Environmental Implications

Mo Li, Ph.D.

Assistant Professor

Department of Civil and Environmental Engineering Department of Chemical Engineering and Materials Science University of California, Irvine

CEC Workshop

Sacramento, CA October 25, 2018 Are the environmental life cycle aspects of the new composite materials and technology innovation being evaluated in the design and development of next-generation land-based and offshore wind technology?

Environmental Life Cycle Impacts of Wind Turbine Blades

- ¹ 1st generation of WT blades are reaching end of life. Most waste is sent to landfill.
- Macroscopic quantitative assessment of environmental life cycle impacts:
 - 1) Analyze global data to calculate the amount of WT blade materials consumed in the past;
 - 2) Consider eco data for raw materials, manufacturing, transportation, operations and maintenances.
- Main findings:
 - 1) A typical 45.2 meter 1.5 MW blade: 795 GJ (CO2 footprint 42.1 tonnes), dominated by raw materials and manufacturing processes (96% of the total).
 - 2) Based on the 2014 installed capacity, the total mass of WTB is 78 kt, their energy consumption is 82 TJ and the carbon dioxide footprint is 4.35 Mt.

	Major	Supporting	Consu	ımable
_	Carbon fibre UD	Steel accessories	Continuous filament mat	Resin flow pipes
	Glass fibre UD	Copper accessories	Peel-ply/release film	T-fitting and infusion valve
Liu & Barlow, <i>Mater. Sci. Eng.</i>	Glass fibre multi- axial fabric	Aluminium accessories	Vacuum bag film	Mould cleaner and releasing agent
2016	Resin	Balsa	Porous membrane	Hand Spray adhesives
	Resin Curing agent	PVC	Flow mesh layer	Gel coat
	Structural adhesives	Paint	Breather bleeder	
	Structural adhesive	Putty	Vacuum bagging	
	curing agent		sealant tape	

Table 1. Materials listed in the bill of materials.

Environmental Life Cycle Impacts of wind turbine blades

	Material by weight	Energy consumption
CF/GF fabric	60.4%	38.6%
Resin and adhesives	32.3%	56.7%
Steel	1.1%	6.0%
Copper	0.3%	2.5%
Aluminium	0.0%	0.6%
Balsa	2.3%	0.3%
PVC	1.7%	0.1%
Paint	0.9%	0.3%
Putty	0.7%	1.3%
Spray Adhesives	0.0%	1.3%

Table 6. Material usage and energy consumption ratio of a 1.5 MW blade.

Table 8. GFRP and CFRP blade comparison.

Model	45.2A-1.5-IVB (full glass fibre, GFRP)	45.3-DW93 (carbon fibre spar, GFRP+CFRP)	% increase of CFRP over GFRP
Total energy consumption (GJ)	795	1194	+50.3%
Total CO ₂ footprint (tonnes)	42.1	67.7	+60.9%
Total water consumption (tonnes)	989	1,079	+9.1%
Energy payback time (months)	2.02	2.27	+12.7%

Liu & Barlow, Mater. Sci. Eng. 2016

Life Cycle Analysis of Wind Turbine

Component	Material	Total Mass (kg)
Tower structure	Low carbon steel	164000.000
Tower, Cathodic Protection	Zinc alloys	203.000
Nacelle, gears	Stainless steel	19000.000
Nacelle, generator core	Cast iron, gray	9000.000
Nacelle, generator conductors	Copper	1000.000
Nacelle, transformer core	Cast iron, gray	6000.000
Nacelle, transformer conductors	Copper	2000.000
Nacelle, transformer conductors	Aluminum alloys	1700.000
Nacelle, cover	GFRP, epoxy matrix (isotropic)	4000.000
Nacelle, main shaft	Cast iron, ductile (nodular)	12000.000
Nacelle, other forged components	Stainless steel	3000.000
Nacelle, other cast components	Cast iron, ductile (nodular)	4000.000
Rotor, blades	CFRP, epoxy matrix (isotropic)	24500.000
Rotor, iron components	Cast iron, ductile (nodular)	2000.000
Rotor, spinner	GFRP, epoxy matrix (isotropic)	3000.000
Rotor, spinner	Cast iron, ductile (nodular)	2200.000
Foundations, pile & platform	Concrete	805000.000
Foundations, steel	Low carbon steel	27000.000
Transmission, conductors	Copper	254.000
Transmission, conductors	Aluminum alloys	72.000
Transmission, insulation	Polyethylene (PE)	1380.000
Total		1.091E+006

Ghenai, *Sustainable Development*, 2012 Haapala & Prempreeda, *Int. J. Sustainable Manufacturing*, 2014

Life Cycle Analysis of Wind Turbine

Landfill

End of Life – Landfill			
Phase	Energy (J)	CO2 (kg)	
Material	1.7594E+013	1.2546E+006	
Manufacture	1.3593E+012	107669,7209	
Transport	2.4336E+011	17278.6954	
Use	1.6778E+011	11912.5577	
End of life	2.1826E+011	13095.7080	
Total	1.9583E+013	1.4045E+006	

Recycling

Phase	Energy (J)	CO2 (kg)
Material	1.7594E+013	1.2546E+006
Manufacture	1.3593E+012	107669.7209
Transport	2.4336E+011	17278.6954
Use	1.6778E+011	11912.5577
End of life	-6.8512E+012	-495917.2797
Total	1.2513E+013	895503.8906

Table 4. Disposal and recycling strategy * [48].

Material Type	Disposal Method
Iron	90% Recycling
Fiberglass	100% Landfill
Oil	100% Combusted
Plastic PVC	100% Landfill
Aluminum	55.1% Recycling
Steel	90% Recycling
Copper	90% Recycling
Concrete	100% Landfill

Ghenai, *Sustainable Development*, 2012 Chipindula et al., *Sustainability*, 2018

Question 4

- Are the environmental life cycle aspects of the new composite materials and technology innovation being evaluated in the design and development of next-generation land-based and offshore wind technology?
 - It is important to evaluate how new materials, bigger blades, taller towers and foundation designs, and advanced manufacturing processes affect life cycle environmental impacts of wind turbine structures.
 - Consider impacts on birds, bats and ecosystem.
 - Explore new strategies to reduce life cycle environmental impacts, especially during raw materials and manufacturing processes.

Question 5

- There is a growing need for monitoring techniques and systems, which can provide information about structural defects and potential damage in next-generation and offshore wind turbines, such as instances of fatigue cracking or higher than expected levels of vibration.
- What type of monitoring technology is currently used in the field? Is there any need to develop or improve technologies that provide accurate and real-time data for proactive maintenance in larger land-based and offshore technologies?

Structural Health Monitoring and Damage Detection Methods for Wind Turbines

- Visual inspection (new developments include videoscope, flying remote visual inspection device, etc.)
- Vibration analysis (e.g., compare mode shapes between the reference and an inspection stage.)
- Point-based strain measurements (conventional strain gauges or optical fiber sensors)
- Acoustic emission method
- Ultrasonic testing techniques
- Radiographic inspection
- Thermal imaging method

Ciang et al., Meas. Sci. Technol., 2008 Schubel et al., Renew. Energ., 2013 Tchakoua et al., Energies, 2014 Li et al., Smart Mater. Struct., 2015

Smarsly et al. First International Conference on Performance-Based Lif-Cycle Structural Engineering, 2012

Current SHM Methods

Current methods	Blade monitoring	Steel tow monitori	ver ng	Concrete tower monitoring
	Limited to surface	visible damage	е	
Visual inspection	An autonomous drone locates the wind turbine, automatically comes up the most efficient inspection path, and collects images for inspectors to make decisions. Skyspecs, https://skyspecs.com/skyspecs-solution/autonomous-inspection/			autonomous-inspection/
Vibration analysis	 Requires the deployment of a variety of sensors and computationally intensive analysis techniques; Focuses on global behavior rather than local damage; Affected by environmental change, e.g., weather change affects the modal behavior. 			
Point-based strain measurements	 Not sensitive to damage away from the sensor locations; Only measures surface strain change at sensor locations; Difficult to detect concrete cracking, damage or degradation. 			sensor locations; sensor locations; nage or degradation.

Current SHM Methods

Current methods	Blade monitoring	Steel tower monitoring	Concrete tower monitoring	
Acoustic emission method	 Must be near for accurate n High cost; Data contamin noise and sec 	damage source neasurement; nation due to condary source.	 High signal attenuation in concrete; Data contamination due to noise and secondary source. 	
Ultrasonic techniques	 Power hungry instrumentation; Environmental condition significantly influences test quality. 			
Radiographic inspection	 Sensitive to cracks and voids; Does not evaluate global structural performance; Expensive instruments, and labor intensive. 			
Thermal imaging	 Lower resolution; Labor intensive; Unsuitable for early fault detection because T develops slowly. 			

Ciang et al., *Meas. Sci. Technol.*, 2008 Rumsey & Paquette., *Proc. of SPIE,* 2008 Liu et al., *Renew. Energ.*, 2010 Márquez et al., *Renew. Energ.*, 2010 Schubel et al., *Renew. Energ.*, 2013 Tchakoua et al., *Energies*, 2014 Ruan et al., *Smart Mater. Struct.*, 2014 Li et al., *Smart Mater. Struct.*, 2015

Question 5

- What type of monitoring technology is currently used in the field? Is there any need to develop or improve technologies that provide accurate and real-time data for proactive maintenance in larger land-based and offshore technologies?
 - The size of wind turbines has increased over the years. It is difficult to perform inspection and maintenance (height, remote and offshore location)
 - Continuous monitoring is extremely important to improve safety, minimize down time, provide reliable power generation, and lower costs related to maintenance and logistics (especially that the turbine price increases with larger capacity).
 - Research on reliable, low cost, continuous and *spatial* damage sensing that can be integrated into a wind turbine system would be beneficial to reduce life-cycle costs and to make wind energy more affordable.