DOCKETED	
Docket Number:	18-IEPR-05
Project Title:	Climate Adaptation and Resiliency
TN #:	224365
Document Title:	Data-Driven Approach to Wildfire Resiliency for Utilities & Communities in California
Description:	Presentation by Vincent Chen, Jupiter,
Filer:	Denise Costa
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	8/1/2018 8:12:30 PM
Docketed Date:	8/2/2018

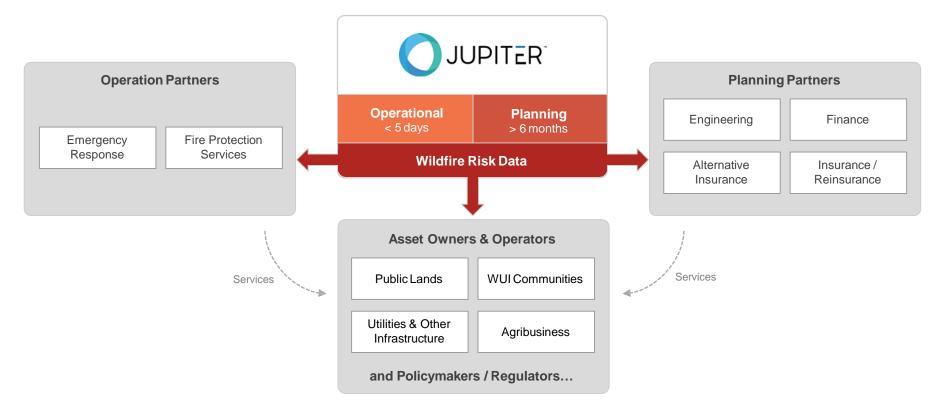
Data-Driven Approach to Wildfire Resiliency for Utilities & Communities in California

IEPR Joint Agency Climate Adaptation Workshop | August 2, 2018

JUPITER

Vincent Chen | vincent.chen@jupiterintel.com

Diverse Hazards, Common Lessons


Sandy impact on NYC T&D catalyzed:

- Greater back-up redundancy
- More robust fuel delivery arrangements
- Capacity building and coordination around generator deployment
- Microgrids in longer term planning

- Although wildfires present a unique set of risks to vulnerable communities, energy resiliency challenges associated with wildfires are not new and lessons learned elsewhere can be applicable
- A critical component to resiliency planning is actionable data that informs short term operational response and long term planning

Data Enables a Resiliency Ecosystem

Next-Generation Wildfire Modeling

Short-term Operations

- Cloud-native Infrastructure
 On-demand, flexible computing capacity suitable for
 "burst" processing
- Hyper-local Numerical Weather Prediction
 Leverage latest atmospheric science and land-surface
 science combined with local data assimilation to
 produce more accurate, high resolution probabilistic
 forecast of temperature, humidity, wind, and
 precipitation
- State-of-the-art Vegetation Model Integration of public domain fuel-surveys and ondemand remote sensing data

Long-term Planning

- Commercial Satellite
 Novel data and analytical methods based on optical
 and radar observations
- Machine Learning / Al Linking fire characterization to fuel and downscaled meteorological conditions in a changing climate
- Non-stationary Climate
 - Multi-seasonal climate covariates factoring in nonstationary aspects of the climate
- Integration with other Earth Systems models Develop full stack capability with integration of biological and social economic models

Thank you

Vincent Chen | <u>vincent.chen@jupiterintel.com</u> Matt Stein | <u>matt.stein@jupiterintel.com</u>

