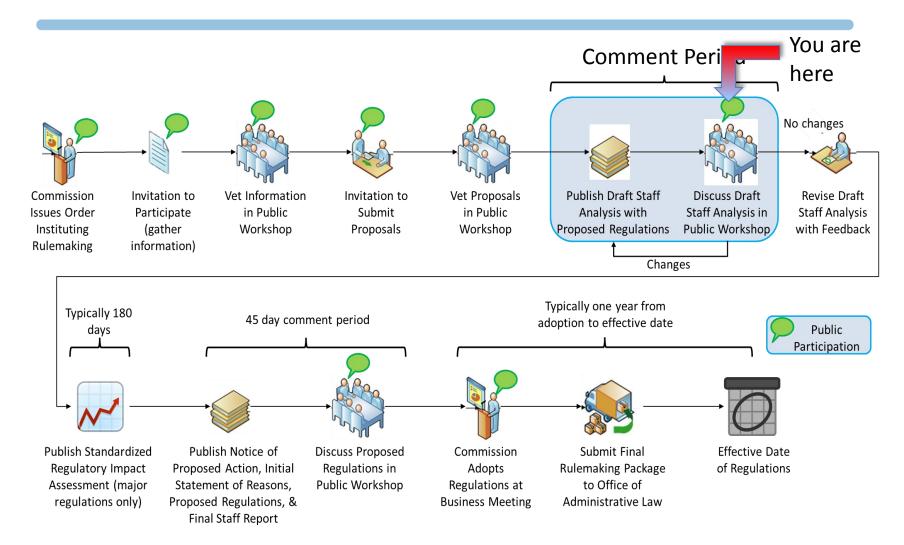
| DOCKETED         |                                                                  |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------|--|--|--|--|--|--|
| Docket Number:   | 17-AAER-06                                                       |  |  |  |  |  |  |
| Project Title:   | Commercial and Industrial Fans & Blowers                         |  |  |  |  |  |  |
| TN #:            | 224115                                                           |  |  |  |  |  |  |
| Document Title:  | Presentation - Commercial and Industrial Fans and Blowers        |  |  |  |  |  |  |
| Description:     | Proposed Standard Draft Staff Report - Presentation by Alejandro |  |  |  |  |  |  |
|                  | Galdamez - July 10, 2018 Workshop                                |  |  |  |  |  |  |
| Filer:           | Alex Galdamez                                                    |  |  |  |  |  |  |
| Organization:    | California Energy Commission                                     |  |  |  |  |  |  |
| Submitter Role:  | Commission Staff                                                 |  |  |  |  |  |  |
| Submission Date: | 7/10/2018 3:24:21 PM                                             |  |  |  |  |  |  |
| Docketed Date:   | 7/10/2018                                                        |  |  |  |  |  |  |

#### Commercial and Industrial Fans and Blowers Proposed Standard Draft Staff Report




Alejandro Galdamez July 10, 2018 California Energy Commission



- Rulemaking Process
- Background
- Staff Proposal
- Technical Feasibility
- Savings Methodology
- Cost Effectiveness
- Statewide Energy Savings
- Conclusions
- Scheduled Presentations
- Public Comments



#### **Rulemaking Process**





## Background

- The U.S. Department of Energy started the process to regulate commercial and industrial fans and blowers
- Issued the Notices of Data Availability and used data provided by industry for the analysis
- DOE assumptions were used in analyzing embedded fan shipments



 Staff proposal focuses on stand-alone fans and embedded fans in non-regulated equipment



Stand-alone axial inline fan



Axial panel embedded fans

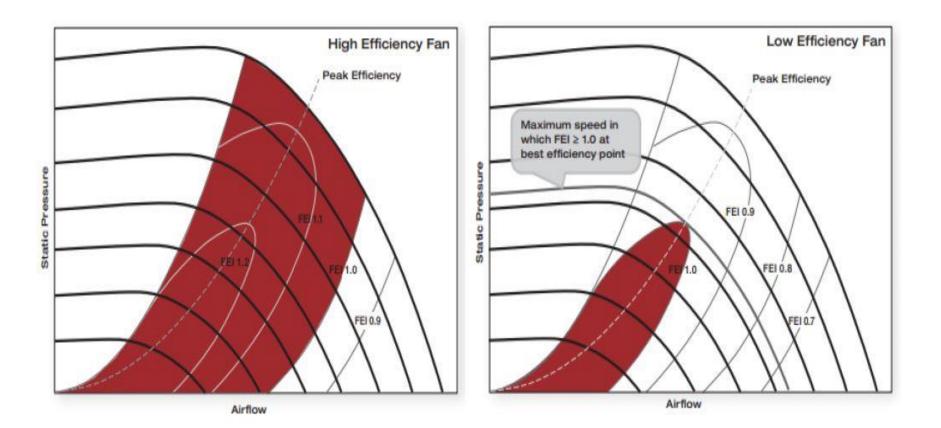


- The draft staff report contains proposal details
  - <u>https://efiling.energy.ca.gov/GetDocument.aspx?t</u>
    <u>n=223774</u>
- Staff seeks comments and supporting data for the proposed standard

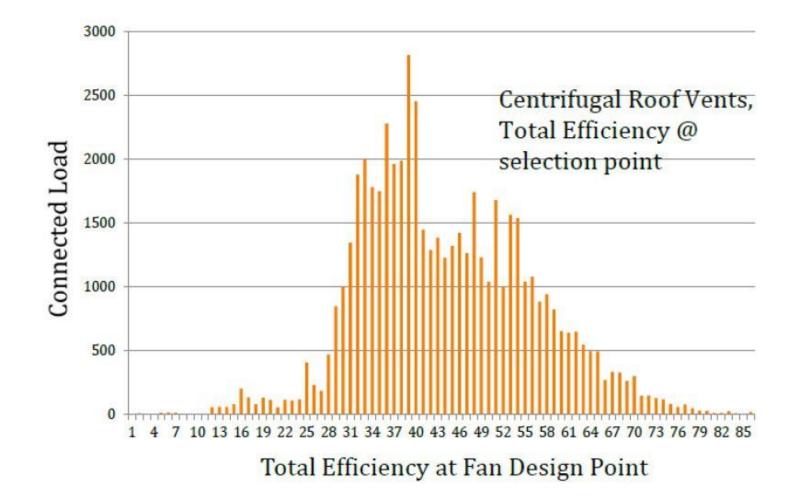


- Stand-alone and embedded fans in nonregulated equipment:
  - Break horsepower greater or equal to 1 horsepower or 1 kilowatt
  - Air horsepower less than or equal to 150
- Covered fans: Axial inline fans, axial panel fans, centrifugal housed and unhoused fans, centrifugal inline fans, inline mixed flow fans, power roof/wall ventilators

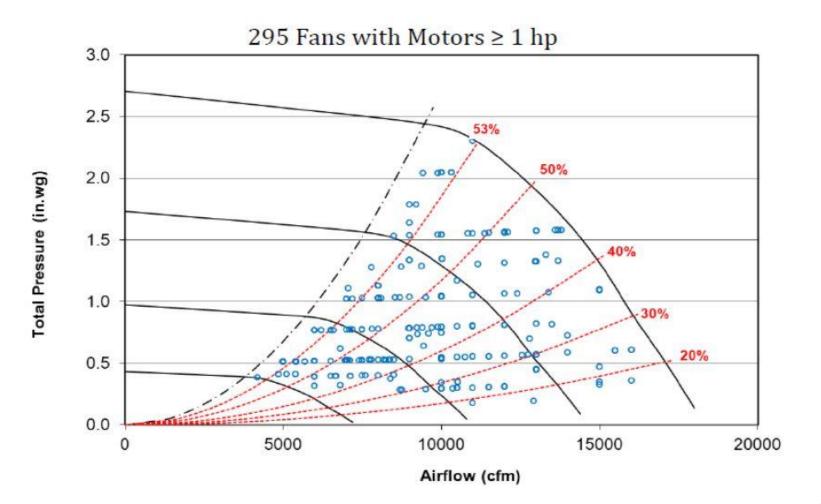



- CEC staff is proposing the Fan Energy Index (FEI) of 1 as the metric for the fans covered under this proposal
- FEI is equal to the Reference Fan Electrical input power (FEP<sub>ref</sub>) compared to the actual fan electrical input power (FEP<sub>act</sub>)

# FEI=FEPref/FEPact




- ANSI/AMCA 208-18 Calculation of the Fan Energy Index
  - AMCA 208-18 requires ANSI/AMCA Standards 210 and ANSI/AMCA 207
  - Both AMCA 210 and AMCA 207 are necessary for the calculations of AMCA 208
















| Fan Model      | Design<br>BHP | FEI  | Operation<br>Cost<br>(\$/yr) | Weight<br>(Ibs) | Housing<br>Width | Budget<br>Cost |
|----------------|---------------|------|------------------------------|-----------------|------------------|----------------|
| Sq Inline 30 " | 5.33          | 0.62 | \$1,363                      | 571             | 46"              | \$3,300        |
| Sq Inline 42"  | 2.92          | 1.12 | \$758 <                      | 735             | 58″              | \$4,050        |
| Mixed Flow 27" | 2.77 🔇        | 1.18 | \$719                        | 611             | 41"              | \$6,700        |
| EQB-27         | 2.83          | 1.16 | \$734                        | 451             | 41"              | \$3,900        |



30" Sq Inline

42" Sq Inline

27" Mixed Flow

EQB-27



- The figures on slides 11 and 12 represent two different centrifugal stand-alone fans
- The same technical feasibility is applicable to stand-alone fans and embedded fans since:
  - When tested outside of the embedded unit, it will perform exactly the same as a stand-alone fan
  - Current design practices for some embedded fans is driven by space available and not efficiency
  - For some embedded fans, the system is built around the fan (i.e. air chillers)



We received additional information on the FEI compliance on Unitary Rooftop units

|            | TSP  |       | FEI (EL1) |       | 8 - N | FEI (EL2) |       |       | FEI (EL3) |       |       | FEI (EL4) |       |       | FEI (EL5) |       |       | FEI (EL6) |       |
|------------|------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|
|            | 8.8  | 1.3   | 1.4       | 1.4   | 1.2   | 1.3       | 1.3   | 1.1   | 1.2       | 1.2   | 1.1   | 1.2       | 1.2   | 1.0   | 1.1       | 1.1   | 0.9   | 0.9       | 1.0   |
| Example    | 5.0  | 1.4   | 1.4       | 1.4   | 1.3   | 1.4       | 1.3   | 1.3   | 1.3       | 1.2   | 1.2   | 1.2       | 1.1   | 1.1   | 1.1       | 1.1   | 1.0   | 1.0       | 0.9   |
| in a 1     | 1.3  | 1.5   | 1.3       | 1.2   | 1.4   | 1.2       | 1.1   | 1.3   | 1.1       | 1.0   | 1.3   | 1.1       | 1.0   | 1.2   | 1.0       | 0.9   | 1.0   | 0.9       | 0.8   |
| C          | CFM  | 29000 | 43500     | 58000 | 29000 | 43500     | 58000 | 29000 | 43500     | 58000 | 29000 | 43500     | 58000 | 29000 | 43500     | 58000 | 29000 | 43500     | 58000 |
| Unitary WF | Fail |       | 0%        |       |       | 0%        |       |       | 0%        |       |       | 11%       |       |       | 11%       |       |       | 89%       |       |



- California Energy Commission staff used operating costs for different fans at the different efficiency levels as calculated in DOE's third NODA
- The calculation is based on the difference in operational cost between a non compliant fan and one operating at efficiency level 3



#### Cost Effectiveness Stand-alone Fans

| Fan Type                       | Per Unit<br>Electricity<br>Savings<br>(kWh/yr) | Per Unit<br>Incremental<br>Cost<br>(\$) | Average<br>Lifetime<br>(yr) | Per Unit<br>Average<br>Annual<br>Savings<br>(\$/yr) | Life Cycle<br>Net<br>benefit<br>(\$/unit) |
|--------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------|-----------------------------------------------------|-------------------------------------------|
| Axial<br>Cylindrical<br>Housed | 1,155                                          | 399                                     | 29                          | 169                                                 | 2,839                                     |
| Panel                          | 500                                            | 53                                      | 28                          | 85                                                  | 1,542                                     |
| Centrifugal<br>Housed          | 408                                            | 33                                      | 27                          | 69                                                  | 1,236                                     |
| Centrifugal<br>Unhoused        | 130                                            | 39                                      | 27                          | 22                                                  | 365                                       |
| Inline Mixed<br>Flow           | 1,131                                          | 689                                     | 27                          | 192                                                 | 2,830                                     |
| Radial                         | 2,211                                          | 221                                     | 30                          | 323                                                 | 6,111                                     |
| Power Roof<br>Ventilators      | 927                                            | 595                                     | 30                          | 157                                                 | 2,489                                     |

17



#### Cost Effectiveness Embedded Fans

| Fan Type                       | Per Unit<br>Electricity<br>Savings<br>(kWh/yr) | Per Unit<br>Incremental<br>Cost (\$) | Average<br>Lifetime<br>(Yr) | Per Unit<br>Average<br>Annual<br>Savings<br>(\$/yr) | Life Cycle<br>Net Benefit<br>(\$/unit) |
|--------------------------------|------------------------------------------------|--------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------|
| Axial<br>Cylindrical<br>Housed | 362                                            | 187                                  | 18                          | 61                                                  | 657                                    |
| Panel                          | 102                                            | 56                                   | 21                          | 17                                                  | 211                                    |
| Centrifugal<br>Housed          | 380                                            | 178                                  | 18                          | 65                                                  | 709                                    |
| Centrifugal<br>Unhoused        | 130                                            | 47                                   | 17                          | 22                                                  | 243                                    |



## Statewide Energy Savings

- Stand-alone fans:
  - First year: 50 GWh
  - After full stock turnover: 1,400 GWh/year
- Embedded fans:
  - First year: 24 GWh
  - After full stock turnover: 430 GWh/year



#### Conclusions

- Cost-effective
  - Calculated savings include a discount rate of 3%
- Technically feasible to achieve
- First year energy savings (~74 GWh)
- Energy savings after full stock turnover (~1800 GWh/year
  - Compare:
    - Battery chargers: 2,200 GWh/year
    - State-regulated LEDs: 859 GWh/year
    - Portable electric spas: 218 GWh/year



#### Conclusions

- First Year Savings
  - ~\$183 million
- Savings after stock turnover:
  - ~\$529 million per year

or

~\$4.8 billion cumulative savings for California consumers



- Definition
  - All covered stand-alone definitions
- Exemptions
  - Circulating fans
  - Energy Commission staff did not include emergency fans due to concerns on how they are identified



- Test procedure
  - Basic model testing
  - Energy Commission is seeking more information, examples, and data on the implementation of fan laws for testing and/or reporting



- Embedded fans definition
  - Comments on the definition for embedded fans
  - Energy Commission is seeking definitions for embedded fans that would prevent loopholes in regulations



• Scope

Energy Commission is accepting substantiated comments to define the scope of embedded fans



- Test Procedure
  - Energy Commission staff is seeking engineering data and information supporting whether or not the test procedure is representative for embedded fans



- Energy Savings
  - Preliminary calculations received show significant energy savings for California
  - Energy Commission staff is accepting data and analysis supporting a different conclusion for embedded fans



- Cost effectiveness
  - Energy Commission staff has received comments on additional costs associated with embedded fans
  - Energy Commissions is requesting data and itemized information on cost increases



#### Comments

- Comments due by 5:00 p.m. on July 31, 2018
- To submit electronically:
  - Go to <u>http://www.energy.ca.gov/appliances/2017-AAER-06-13/17-AAER-06.html</u>
  - Click on "Submit eComment"
- To send a hard copy:

California Energy Commission Dockets Office, MS-4 Re: Docket No. 17-AAER-06 1516 Ninth Street Sacramento, CA 95814-5512

 To send a digital copy: <u>docket@energy.ca.gov</u> include docket number 17-AAER-06 and indicate Commercial and Industrial Fans and Blowers in the subject line



#### Thank you!

#### Alejandro Galdamez P.E. Appliances Office Efficiency Division <u>Alejandro.Galdamez@energy.ca.gov</u> (916) 654-4315