DOCKETED

Docket Number:	17-AAER-01			
Project Title:	Appliance Efficiency Pre-Rulemaking for Commercial Tumble Dryers and Air Filter Labeling			
TN #:	222329			
Document Title:	Presentation - CASE TEAM Response to Docketed Commercial Tumble Dryer Comments - 1-24-2018			
Description:	This presentation contains the CASE teams responses to technical comments regarding the test procedure provided to the docket following the August 2017 workshop.			
Filer:	Ryan Nelson			
Organization:	PG&E, Southern California Edison, SDGE and SoCalGas (CASE Team)			
Submitter Role:	Public			
Submission Date:	1/23/2018 8:14:40 AM			
Docketed Date:	1/23/2018			

CASE Team Response to Docketed Commercial Tumble Dryer Comments

Suzanne Foster Porter, Kannah Consulting on behalf of the California Investor-owned Utilities

January 24, 2018

Outline

- Justification for a test and list recommendation
 - Program time and efficiency
 - Energy use of commercial tumble dryers in California
- Response to technical comments on the docket
 - Test procedure burden
 - Test procedure details
 - Scope of test protocol
 - RMC values
 - Weighting of runs
 - Timeframe of ambient temperature in environmental chamber
 - Water conductivity
 - Reproducibility

Efficiency generally improves with longer program time

A number of energy-saving technologies can maintain program time

Airflow

- Air sealing
- Axial (semi-axial) airflow
- Right-sizing fan
- Fan modulation

Heating system

- Right-sizing burner
- Heat reclamation
- Heat exchanger
- Burner modulation
- Insulation
- Heat pump (electric only)

Sensing and controls

- Automatic termination
- Controls for burner and fan in timed dry

Dryers in market today can have different efficiencies with similar program time

	Baseline 23-cubic-foot (80-pound)	Improved 23-cubic-foot (80-pound)
Program time & EF	19 to 48 minutes, average 36 min. Average EF = 1.98 lbs. per kWh	25 to 46 minutes, average 36 min. Average EF = 2.29 lbs. per kWh
Airflow	 Radial airflow through drum High rate of airflow Little to no air sealing along air pathway 	 Semi-axial airflow through drum Rate of airflow 60 to 70% of baseline unit airflow Air sealing of air pathway and damper on exhaust Drum reversal enables greater air exposure to textiles
Heating system	 Airflow through vents in housing directly to burner box Burner box has vents in side panels High BTU output 	 Air travels over motors and back of drum, reclaiming waste heat before it enters the burner box Burner box has few vented openings BTU output of heater 80 to 90% of baseline

Transferable technologies available to further reduce energy use while maintaining program time

- In 2017, the CASE Team installed a rotary heat exchanger on 23-cubic-foot (80 lb.) improved dryer
- Improved efficiency by 20% (EF of 2.29 lbs./ kWh improved to 2.74 lbs./ kWh) under the test protocol
- Average program of 37 minutes was only one minute longer than original product
- Details of installation and results in forthcoming engineering analysis report

Revised energy model continues to confirm commercial tumble dryers important in California

- 2016 estimate of stock and sales relied on TRC market study focused on units already installed
- Using sales data purchased from a third-party research firm (QY Research), the CASE Team created an alternate energy model
- New energy model confirms 2016 results of commercial tumble dryers
- Details of revised energy model forthcoming in CASE Team engineering report

Outline

- Justification for a test and list recommendation
 - Program time and efficiency
 - Energy use of commercial tumble dryers in California
- Response to technical comments on the docket
 - Test procedure burden
 - Test procedure details
 - Scope of test protocol
 - RMC values
 - Weighting of runs
 - Timeframe of ambient temperature in environmental chamber
 - Water conductivity
 - Reproducibility

CASE Team estimated cost of applying current test procedure to a single dryer

Initial facility set up cost

- Built from existing environmental chamber that controls for a wider thermal range only
- Estimate assumes all other equipment (gas meters, washer, etc.) needs to be procured
- Assumes 140 dryers tested over lifetime of the facility (approximately 1 in 6 consolidated test facilities for the market)
- Based on PG&E ATS experience setting up lab

Per dryer cost

- Assumed a market-weighted average load size to calculate cost of test cloth
- Builds on CASE Team memo submitted to the docket in June 2017 with per dryer testing labor estimates
- Includes additional cost of maintaining test cloth bank and regularly calibrating equipment
- Shipment cost

Test cost of an estimated 350 current market models (\$790 k to \$1.3 M) is less than 0.5 % of California's annual energy bill for commercial dryers (\$450 M)

Test procedure less burdensome than other similar test protocols

Test protocol	No. of runs per appliance	Other factors	Total No. of runs
DOE washer (residential)	9	2 to 3 appliances must be tested, depending on results	18 to 27
IEC 61121:2012 dryer (residential)	5	2 load types (cotton and synthetic)	10 (if testing with both loads)
Comm. tumble dryer	5 to 6	Only 5 runs for dryers without automatic termination	5 to 6
CSA 7.2-2016	1 to 2	Lower expected level of repeatability and reproducibility	1 to 2
			11

Scope chosen to cover all commercial dryers

- CASE Team product survey led to current definition of all tumble dryers with less than 65 ft³ (210 lb.) also not covered by DOE standard
- Gas and electric models only (no steam) given steam dryers are likely part of industrial/campus system addressed by utility program efforts
- Intent is to cover commercial but <u>not</u> industrial dryers, including residential-platform and large-chassis tumblers
- Covers ~90% energy use of commercial dryers in California

Washer + dryer Dual-pocket

RMC values chosen to represent possible range of values in real-world use

Run	Run sequence	Load size	IMC	RMC	Settings	
Α	Chartast timed		60%	1.5% - 4%		
В	Shortest timed	Full-Sized	60%	4% - 8%	Timod high hoat	
С	Over dry timed	Full-sized	60%	≤ 4%	nined, nigh heat	
D	Challenging timed	Partial	75%	2% - 7%		
E	Favorable timed	Full-sized	60%	4% - 7%	Timed, low heat w/ cool down	
F	Automatic termination	Partial	60%	≤ 4%	Automatic termination, medium heat	

Equal weighting of test runs recommended

$$Avg T_{cycle} = \frac{1}{5} \left[T_{cycle(AB)} + T_{cycle(C)} + T_{cycle(D)} + T_{cycle(E)} + T_{cycle(F)} \right]$$
$$Avg EF = \frac{1}{5} \left[EF_{AB} + EF_{C} + EF_{D} + EF_{E} + EF_{F} \right]$$

- CASE Team agrees with stakeholder comment that test runs are ideally weighted based on real-world use
- Field data on frequency of different types of loads is not available
- Simple average for determining an average energy factor (EF) and program time is recommended in absence of field data
- CEC requesting data on individual runs <u>and</u> the average to enable consideration of future data on frequency of loads in real-world use

Responsiveness of environmental chamber

PG&E ATS humidity-controlled and temperature-controlled chamber

- Chamber is able to adjust from other test temperatures (DOE's 75°F, CSA 77 °F, etc.) to 65°F specified in this test procedure in a matter of minutes
- Can be accomplished simultaneously with other test tasks (test textile load development, textile wetting and extraction, etc.)

Water conductivity controlled to ensure repeatability of dryers with textile moisture-sensing

- Moisture conductivity sensing is used in some dryers for automatic termination and other controls
- IEC 61121-2012 (Res. Dryers) includes the same control for water conductivity
- To reduce test burden, <u>the</u> <u>CASE Team plans protocol</u> <u>revisions to limit this control</u> <u>to dryers with in-drum</u> <u>conductivity moisture sensing</u> <u>capability</u>

Reproducibility study

- CASE Team tested 7.4 cubic-foot residentialplatform commercial dryer in Q4 2017
- Commissioned UL to independently test the exact same dryer to determine repeatability of the test protocol
- UL tests completed in January, and test report from UL forthcoming
- CASE Team plans to share results of this study with stakeholders once data is analyzed

Suzanne Foster Porter Principal, Kannah Consulting <u>sfosterporter@kannahconsulting.com</u> 970.312.7179

